JP5575157B2 - 超音波探傷装置、方法及びプログラム - Google Patents

超音波探傷装置、方法及びプログラム Download PDF

Info

Publication number
JP5575157B2
JP5575157B2 JP2012010693A JP2012010693A JP5575157B2 JP 5575157 B2 JP5575157 B2 JP 5575157B2 JP 2012010693 A JP2012010693 A JP 2012010693A JP 2012010693 A JP2012010693 A JP 2012010693A JP 5575157 B2 JP5575157 B2 JP 5575157B2
Authority
JP
Japan
Prior art keywords
reception
transmission
ultrasonic
interval
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012010693A
Other languages
English (en)
Other versions
JP2013148525A (ja
Inventor
淳 千星
摂 山本
敏 長井
誠 落合
忠浩 三橋
智 山本
弘幸 安達
順一 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012010693A priority Critical patent/JP5575157B2/ja
Publication of JP2013148525A publication Critical patent/JP2013148525A/ja
Application granted granted Critical
Publication of JP5575157B2 publication Critical patent/JP5575157B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、構造物の溶接部に含まれる欠陥を探知する超音波探傷技術に関する。
溶接により作製された構造物は、その品質確保のために、溶接後の非破壊検査が必須である。そのような構造物の内部欠陥を検出する手法としては超音波探傷試験(UT:Ultrasonic Testing)や放射線透過探傷(RT:Radiographic Testing)がある。
このうち超音波探傷試験UTは、放射線透過探傷試験RTで必要とされる遮蔽等の大掛かりな付帯装置が不要なために、現場計測方法として広く応用されている。
超音波探傷試験UTは、欠陥を精度良く高速に検出するために、斜角探傷法、TOFD法(Time Of Flight Diffraction)、及びフェーズドアレイ法といった種々の方式が、測定対象や現場状況に応じて適宜使い分けされている。また、さらなる欠陥計測の精度向上と高速化を目的としてこれら方式の改良が進められている(例えば、特許文献1)。
特許第4452001号公報
ところで、溶接部の内部欠陥を超音波探傷試験UTで計測する場合、超音波の伝播経路が、溶接境界面における屈折や結晶粒の影響によって変化することが知られている。この場合、検出された欠陥深度、サイジングの計測値に誤差が計上されてしまう。
本発明はこのような事情を考慮してなされたもので、溶接部の内部欠陥の検査を高精度で実施する超音波探傷技術を提供することを目的とする。
超音波探傷装置において、第1母材部の送信点から所定の送信角で超音波ビームを溶接部に送信させる送信部と、前記溶接部の内部欠陥からの超音波エコーを所定の受信角で第2母材部の受信点で受信させる受信部と、前記超音波エコーの受信感度を判定する感度判定部と、前記送信点から前記受信点に至る超音波の伝播時間を導出する伝播時間導出部と、前記送信点及び前記受信点を結ぶ線分のうち前記第1母材部が占める第1間隔、前記溶接部が占める溶接間隔、前記第2母材部が占める第2間隔を演算パラメータとして取得するパラメータ取得部と、少なくとも超音波の伝播速度、前記伝播時間、前記送信角、前記受信角、前記第1間隔、前記第2間隔及び前記溶接間隔を演算パラメータとして前記欠陥の深度を演算する演算部と、を備えることを特徴とする。
本発明により、溶接部の内部欠陥の検査を高精度で実施する超音波探傷技術が提供される。
本発明に係る超音波探傷装置の第1実施形態を示すブロック図。 (A)は超音波の伝播経路の説明図、(B)は検出された超音波の波形グラフ、(C)は各種演算パラメータから欠陥深度を演算するための演算式。 第1実施形態に係る超音波探傷装置の動作を示すフローチャート。 本発明に係る超音波探傷装置の第2実施形態を示すブロック図。 第2実施形態に係る超音波探傷装置の動作を示すフローチャート。 本発明に係る超音波探傷装置の第3実施形態を示すブロック図。 第3実施形態に係る超音波探傷装置の動作を示すフローチャート。 本発明に係る超音波探傷装置の第4実施形態を示すブロック図。 第4実施形態に係る超音波探傷装置の動作を示すフローチャート。
(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように第1実施形態の超音波探傷装置10は、第1母材部43aの送信点23から所定の送信角θtで超音波ビームBを溶接部41に送信させる送信部20と、この溶接部41の内部欠陥42からの超音波エコーEを所定の受信角θrで第2母材部43bの受信点33で受信させる受信部30と、超音波エコーEの受信感度を判定する感度判定部13と、送信点23から受信点33に至る超音波の伝播時間tを導出する伝播時間導出部14と、送信点23及び受信点33を結ぶ線分のうち第1母材部43aが占める第1間隔Lt、溶接部41が占める溶接間隔Lw、第2母材部43bが占める第2間隔Lrを演算パラメータとして取得するパラメータ取得部12と、少なくとも超音波の伝播速度v、伝播時間t、送信角θt、受信角θr、第1間隔Lt、第2間隔Lr及び溶接間隔Lwを演算パラメータとして欠陥42の深度Ddを演算する演算部15と、を備える。
構造物40としては、厚肉の板材である第1母材部43a及び第2母材部43bを突き合わせて溶接部41を形成したものを例示している。しかし、各実施形態に係る超音波探傷装置10が適用される構造物は、特に限定されない。
送信部20には、単一の振動素子25からなる送信プローブ21が接続されている。この振動素子25は、所定の角度でシュー22に固定され、このシュー22が構造物40の表面に当接する。そして、この送信プローブ21は、送信点23から所定の送信角θtで超音波ビームBを送信する。なお、送信プローブ21における送信点23の位置及び送信角θtは、予め校正により正確に導いておく。
受信部30にも、単一の振動素子35からなる受信プローブ31が接続されている。この振動素子35も、所定の角度でシュー32に固定され、このシュー32が構造物40の表面に当接する。そして、この受信プローブ31は、構造物40からの超音波エコーEを所定の受信角θrで受信点33において受信する。なお、受信プローブ31における受信点33の位置及び受信角θrも、予め校正により正確に導いておく。
送信プローブ21及び受信プローブ31は、溶接部41を挟んで、構造物40の表面を移動走査できるように対向配置されている。また、振動素子25,35の取付角度が変更され種々の送信角θt及び受信角θrを有する複数の送信プローブ21及び受信プローブ31を準備しておく。
このように、送信角θt及び受信角θrの異なる複数のプローブを用いて超音波探傷試験を実施することにより、内部欠陥42の深度Ddの計測精度を向上させることができる。
図2(A)に基づいて、超音波の伝播経路を説明する。
欠陥42は、溶接部41の横方向中心に存在していることを前提とし、縦方向の存在位置(欠陥深度Dd)を求める。また、図2(A)は、溶接部41形状を縦断面上で長方形としてモデル化されたものである。
そして、超音波ビームBは、送信点23から送信角θtで第1母材部43aを直進し、溶接部41との境界面に到達すると伝播方向が変化する。そして、溶接部41を伝播する超音波が欠陥42に入射すると、反射して超音波エコーEとなる。
この超音波エコーEは、第2母材部43bとの境界面に到達すると伝播方向が変化して、第2母材部43bを直進し、受信角θrで受信点33に到達する。
図2(B)は、受信点33において検出される超音波の波形グラフである。
この波形グラフは、端末11のモニタに表示され、送信点23から超音波ビームBが送信された時点を基準として、受信点33において構造物40の表面を伝わるラテラル波45が最初に観測される。その次に、欠陥42から反射された欠陥エコー46が観測され、その後、構造物40の裏面からの裏面エコー47が観測される。
なお、図示を省略しているが、欠陥42の上端と下端から反射したエコーの伝播時間をそれぞれ別々に検出することにより、欠陥42のサイジングを実施することができる。
感度判定部13は、波形グラフに示される欠陥エコー46の強度に基づいて、受信点33における超音波エコーEの受信感度を判定するものである。
感度判定部13の具体例としては、端末11のモニタに欠陥エコー46を表示させて、オペレータにその強度を把握させるためのスケール調整手段等が挙げられる。もしくは、欠陥エコー46の波形から極大値及び極小値等の特徴点を自動的に読み取り、その強度を評価するための定量値の導出手段として実現することもできる。
オペレータは、端末11に表示される波形グラフ等を注視しつつ、送信プローブ21の送信点23を移動走査して超音波エコーEの受信感度が最大になるように第1間隔Ltを設定する。さらに、受信プローブ31の受信点33を移動走査して超音波エコーEの受信感度が最大になるように第2間隔Lrを設定する。
伝播時間導出部14は、このように超音波エコーEの受信感度が最大となるよう第1間隔Lt及び第2間隔Lrを調整した後に、欠陥エコー46の伝播時間tを導出する。
パラメータ取得部12は、オペレータにより端末11から入力された第1間隔Lt、溶接間隔Lw、第2間隔Lr、超音波の伝播速度v等の演算パラメータを取得する他に、超音波ビームBの条件パラメータ等も取得する。
図2(C)は、各種演算パラメータから欠陥深度Ddを演算するための演算式である。
演算部15は、少なくとも超音波の伝播速度v、伝播時間t、送信角θt、受信角θr、第1間隔Lt、第2間隔Lr及び溶接間隔Lwを演算パラメータとして欠陥42の深度Ddを演算する。
つまり、送信点23から受信点33に到達する超音波の全路程長は(v・t)で表される。そして、第1母材部43aを直進する超音波の路程長は(Lt/sinθt)で表され、第2母材部43bを直進する超音波の路程長は(Lr/sinθr)で表される。
また、超音波が第1母材部43aから溶接部41に入射する深さDtは(Lt/tanθt)で表され、超音波が溶接部41から第2母材部43bに入射する深さDrは(Lr/tanθr)で表される。
このように、溶接部41を伝播する超音波の入射位置、路程長及び出射位置が規定されるので、溶接部41の横方向中心に位置していることを前提として、内部欠陥42の欠陥深度Ddが、図2(C)の方程式の解として導かれる。
なお、図2(C)の演算式は、本質的な項のみを抽出して表現した簡略式であり、実際には種々の補正項が付加された演算式を用いる。
図3のフローチャートに基づいて第1実施形態に係る超音波探傷装置の動作を説明する(適宜、図1参照)。
検査対象の構造物40及び使用するプローブ21,31が決定すると、演算パラメータのうち、溶接間隔Lw、送信角θt、受信角θrを取得することができる(S11)。
送信プローブ21及び受信プローブ31を、溶接部41を挟んで、構造物40の表面に対向配置する(S12)。
次に、送信プローブ21を所定範囲において移動走査させながら(S13)、超音波ビームBを送信し、受信プローブ31において超音波エコーEを受信する(S14,S15;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる第1間隔Ltを見出し、その位置に送信プローブ21を設定する(S15;Yes,S16)。
引き続いて、受信プローブ31を所定範囲において移動走査させながら(S17)、固定した送信プローブ21から超音波ビームBを送信し、超音波エコーEを受信する(S18,S19;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる第2間隔Lrを見出し、その位置に受信プローブ31を設定する(S19;Yes,S20)。
そして、送信プローブ21及び受信プローブ31がそれぞれ第1間隔Lt及び第2間隔Lrで固定された状態で、超音波の伝播時間tを導出する(S21)。次に、演算式(図2(C))にこの第1間隔Lt及び第2間隔Lrを演算パラメータとして入力し(S22)、欠陥深度Ddを演算する(S23)。
なお、送信角θt、受信角θrの異なる送信プローブ21及び受信プローブ31に変更し、(S11)〜(S23)のフローを繰り返して統計処理をすることにより、より正確な欠陥深度Ddを得ることができる。
また、実施形態において、送信プローブ21を先に移動走査したが、受信プローブ31を先に移動走査して、欠陥エコー46の信号感度の最大判定を実施してもよい。
(第2実施形態)
図4に基づいて、第2実施形態に係る超音波探傷装置を説明する。なお、図4において図1に対応する部分は、同一符号で示し、重複する説明を省略する。
第2実施形態の受信部30には、複数の振動素子35がアレイ状に配列した受信プローブ34に接続されている。
この受信部30は、超音波エコーEが入射した振動素子35の各々から出力される信号を検出する信号検出部36と、各々の検出信号の位相遅延時間を調整することにより受信角θrを変化させる受信角走査部37と、位相遅延処理のなされた各々の検出信号を加算する加算部38とから構成されている。
感度判定部13においては、加算信号の波形強度をモニタし、受信角走査部37において受信角θrを電子走査し、超音波エコーEの受信感度が最大になる受信角θrを判定し設定値にする。
図5のフローチャートに基づいて第2実施形態に係る超音波探傷装置の動作を説明する(適宜、図3参照)。
検査対象の構造物40及び使用するプローブ21,34が決定すると、アレイ式の受信プローブ34は固定して使用するために、演算パラメータのうち、送信角θt、溶接間隔Lw、第2間隔Lrを取得することができる(S11A)。
送信プローブ21及び受信プローブ34を、溶接部41を挟んで、構造物40の表面に対向配置する(S12)。この時点で、受信プローブ34の初期受信角を任意に設定しておく。
次に、送信プローブ21を所定範囲において移動走査させながら(S13)、超音波ビームBを送信し、受信プローブ34において超音波エコーEを受信する(S14;S15;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる第1間隔Ltを見出し、その位置に送信プローブ21を設定する(S16)。
引き続いて、受信プローブ34を所定範囲において電子走査させながら(S17A)、固定した送信プローブ21から超音波ビームBを送信し、超音波エコーEを受信する(S18,S19;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる受信角θrを見出し、この受信角θrに受信プローブ34を設定する(S19;Yes,S20)。
そして、送信プローブ21の第1間隔Lt及び受信プローブ34の受信角θrを固定した状態で、超音波の伝播時間tを導出する(S21)。次に、演算式(図2(C))にこの第1間隔Lt及び受信角θrを演算パラメータとして入力し(S22A)、欠陥深度Ddを演算する(S23)。
なお、実施形態において、送信プローブ21を先に移動走査したが、受信プローブ34を先に電子走査して、欠陥エコー46の信号感度の最大判定を実施してもよい。
また、受信角θrを電子走査しながら超音波エコーEの最大感度を観測する手法を例示したが、受信プローブ34を構成する一つの振動素子35が受信する超音波の伝播時間に基づいて、超音波エコーEの受信感度が最大になるような受信角θrを設定してもよい。
(第3実施形態)
図6に基づいて、第3実施形態に係る超音波探傷装置を説明する。なお、図6において図1に対応する部分は、同一符号で示し、重複する説明を省略する。
第3実施形態の送信部20は、複数の振動素子25がアレイ状に配列した送信プローブ24に接続されている。
この送信部20は、振動素子25に超音波を生じさせる信号を発生する信号発生部26と、各々の発生信号の位相遅延時間を調整することにより送信角θtを変化させる送信角走査部27と、各々の発生信号に基づいて対応する振動素子25から超音波ビームBを出力させる素子駆動部28とから構成されている。
感度判定部13においては、超音波エコーEの波形強度をモニタし、送信角走査部27において送信角θtを電子走査し、超音波エコーEの受信感度が最大になる送信角θtを判定し設定値にする。
図7のフローチャートに基づいて第3実施形態に係る超音波探傷装置の動作を説明する(適宜、図6参照)。
検査対象の構造物40及び使用するプローブ24,31が決定すると、アレイ式の送信プローブ24は固定して使用するために、演算パラメータのうち、第1間隔Lt、溶接間隔Lw、受信角θrを取得することができる(S11B)。
送信プローブ24及び受信プローブ31を、溶接部41を挟んで、構造物40の表面に対向配置する(S12)。この時点で、受信プローブ31の初期位置は任意に設定しておく。
次に、送信プローブ24を所定範囲において電子走査させながら(S13B)、超音波ビームBを送信し、受信プローブ31において超音波エコーEを受信する(S14,S15;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる送信角θtを見出し、この送信角θtに送信プローブ24を設定する(S15;Yes,S16)。
引き続いて、受信プローブ31を所定範囲において移動走査させながら(S17)、送信角θtの固定された送信プローブ24から超音波ビームBを送信し、超音波エコーEを受信する(S18;S19;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる第2間隔Lrを見出し、その位置に受信プローブ31を設定する(S19;Yes,S20)。
そして、送信プローブ24の送信角θt及び受信プローブ31の第2間隔Lrを固定した状態で、超音波の伝播時間tを導出する(S21)。次に、演算式(図2(C))にこの送信角θt及び第2間隔Lrを演算パラメータとして入力し(S22B)、欠陥深度Ddを演算する(S23)。
なお、実施形態において、送信プローブ24を先に電子走査したが、受信プローブ31を先に移動走査して、欠陥エコー46の信号感度の最大判定を実施してもよい。
また、送信角θtを電子走査しながら超音波エコーEの最大感度を観測する手法を例示したが、送信プローブ24を構成する一つの振動素子25が送信する超音波の伝播時間に基づいて、超音波エコーEの受信感度が最大になるような送信角θtを設定してもよい。
(第4実施形態)
図8に基づいて、第4実施形態に係る超音波探傷装置を説明する。第4実施形態において送信プローブ24及び受信プローブ34は、共にアレイ式のものが採用されている。なお、図8において図4及び図6に対応する部分は、同一符号で示し、重複する説明を省略する。
図9のフローチャートに基づいて第4実施形態に係る超音波探傷装置の動作を説明する(適宜、図8参照)。
検査対象の構造物40及び使用するプローブ24,34が決定すると、アレイ式のプローブ24,34は固定して使用するために、演算パラメータのうち、第1間隔Lt、溶接間隔Lw、第2間隔Lrを取得することができる(S11C)。
送信プローブ24及び受信プローブ34を、溶接部41を挟んで、構造物40の表面に対向配置する(S12)。この時点で、プローブ24,34の初期送信角及び初期受信角を任意に設定しておく。
次に、送信プローブ24を所定範囲において電子走査させながら(S13C)、超音波ビームBを送信し、受信プローブ34において超音波エコーEを受信する(S14,S15;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる送信角θtを見出し、この送信角θtに送信プローブ24を設定する(S15;Yes,S16)。
引き続いて、受信プローブ34を所定範囲において電子走査させながら(S17C)、送信角θtの固定された送信プローブ24から超音波ビームBを送信し、超音波エコーEを受信する(S18,S19;No)。そして、波形グラフ(図2(B))を参照しつつ欠陥エコー46の信号感度が最大となる受信角θrを見出し、この受信角θrに受信プローブ34を設定する(S19;Yes,S20)。
そして、送信プローブ24の送信角θt及び受信プローブ34の受信角θrを固定した状態で、超音波の伝播時間tを導出する(S21)。次に、演算式(図2(C))にこの送信角θt及び受信角θrを演算パラメータとして入力し(S22C)、欠陥深度Ddを演算する(S23)。
なお、実施形態において、送信プローブ24を先に電子走査したが、受信プローブ34を先に電子走査して、欠陥エコー46の信号感度の最大判定を実施してもよい。
以上において、超音波ビームBは特定の送信角θtで入射し、超音波エコーEは特定の受信角θrで反射するものとして説明したが、実際の超音波の進行方向は、一定範囲内の広がりを有する。従って、移動走査によって設定される第1間隔Lt及び第2間隔Lr並びに電子走査によって設定される送信角θt及び受信角θrは、誤差の許容範囲を広げることにより固定値として初期設定することもできる。
以上述べた少なくともひとつの実施形態の超音波探傷装置によれば、溶接部における超音波伝播経路の変化を考慮するために、内部欠陥の位置計測及びサイジングを高精度で実施することが可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
例えば、図2(A)について、溶接部41は縦断面上で長方形となるモデルを用いて説明したが、例えば溶接条件による溶接形状の解析、モックアップによる形状分析、過去の同一又は近似した条件による溶接の溶接形状データ等に基づいて、より実際の溶接部形状に即したモデルとすることが可能である。
10…超音波探傷装置、11…端末、12…パラメータ取得部、13…感度判定部、14…伝播時間導出部、15…演算部、20…送信部、21…送信プローブ、22…シュー、23…送信点、24…アレイ式の送信プローブ、25…振動素子、26…信号発生部、27…送信角走査部、28…素子駆動部、30…受信部、31…受信プローブ、32…シュー、33…受信点、34…アレイ式の受信プローブ、35…振動素子、36…信号検出部、37…受信角走査部、38…加算部、40…構造物、41…溶接部、42…欠陥、43a…第1母材部、43b…第2母材部、45…ラテラル波、46…欠陥エコー、47…裏面エコー、B…超音波ビーム、E…超音波エコー、v…伝播速度、t…伝播時間、θt…送信角、θr…受信角、Lt…第1間隔、Lr…第2間隔、Lw…溶接間隔、Dd…欠陥深度。

Claims (8)

  1. 第1母材部の送信点から所定の送信角で超音波ビームを溶接部に送信させる送信部と、
    前記溶接部の内部欠陥からの超音波エコーを所定の受信角で第2母材部の受信点で受信させる受信部と、
    前記超音波エコーの受信感度を判定する感度判定部と、
    前記送信点から前記受信点に至る超音波の伝播時間を導出する伝播時間導出部と、
    前記送信点及び前記受信点を結ぶ線分のうち前記第1母材部が占める第1間隔、前記溶接部が占める溶接間隔、前記第2母材部が占める第2間隔を演算パラメータとして取得するパラメータ取得部と、
    少なくとも超音波の伝播速度、前記伝播時間、前記送信角、前記受信角、前記第1間隔、前記第2間隔及び前記溶接間隔を演算パラメータとして前記欠陥の深度を演算する演算部と、を備えることを特徴とする超音波探傷装置。
  2. 請求項1に記載の超音波探傷装置において、
    前記送信部は、単一の振動素子を有する送信プローブに接続され、
    前記送信プローブの前記送信点を所定範囲内で移動走査して前記超音波エコーの受信感度が最大になるように前記第1間隔が設定されることを特徴とする超音波探傷装置。
  3. 請求項1又は請求項2に記載の超音波探傷装置において、
    前記受信部は、単一の振動素子を有する受信プローブに接続され、
    前記受信プローブの前記受信点を所定範囲内で移動走査して前記超音波エコーの受信感度が最大になるように前記第2間隔が設定されることを特徴とする超音波探傷装置。
  4. 請求項1又は請求項2に記載の超音波探傷装置において、
    前記受信部は、複数の振動素子がアレイ状に配列された受信プローブに接続され、
    前記受信プローブの前記受信角を所定範囲内で電子走査して前記超音波エコーの受信感度が最大になるように前記受信角が設定されることを特徴とする超音波探傷装置。
  5. 請求項1、請求項3及び請求項4のいずれか1項に記載の超音波探傷装置において、
    前記送信部は、複数の振動素子がアレイ状に配列された送信プローブに接続され、
    前記送信プローブの前記送信角を所定範囲内で電子走査して前記超音波エコーの受信感度が最大になるように前記送信角が設定されることを特徴とする超音波探傷装置。
  6. 請求項4又は請求項5に記載の超音波探傷装置において、
    前記送信プローブ又は前記受信プローブを構成する一つの振動素子が送信又は受信する超音波の前記伝播時間に基づいて、前記超音波エコーの受信感度が最大になるように前記送信角又は前記受信角が設定されることを特徴とする超音波探傷装置。
  7. 第1母材部の送信点から所定の送信角で超音波ビームを溶接部に送信させるステップと、
    前記溶接部の内部欠陥からの超音波エコーを所定の受信角で第2母材部の受信点で受信させるステップと、
    前記超音波エコーの受信感度を判定するステップと、
    前記送信点から前記受信点に至る超音波の伝播時間を導出するステップと、
    前記送信点及び前記受信点を結ぶ線分のうち前記第1母材部が占める第1間隔、前記溶接部が占める溶接間隔、前記第2母材部が占める第2間隔を演算パラメータとして取得するステップと、
    少なくとも超音波の伝播速度、前記伝播時間、前記送信角、前記受信角、前記第1間隔、前記第2間隔及び前記溶接間隔を演算パラメータとして前記欠陥の深度を演算するステップと、を含むことを特徴とする超音波探傷方法。
  8. コンピュータに、
    第1母材部の送信点から所定の送信角で超音波ビームを溶接部に送信させるステップ、
    前記溶接部の内部欠陥からの超音波エコーを所定の受信角で第2母材部の受信点で受信させるステップ、
    前記超音波エコーの受信感度を判定するステップ、
    前記送信点から前記受信点に至る超音波の伝播時間を導出するステップ、
    前記送信点及び前記受信点を結ぶ線分のうち前記第1母材部が占める第1間隔、前記溶接部が占める溶接間隔、前記第2母材部が占める第2間隔を演算パラメータとして取得するステップ、
    少なくとも超音波の伝播速度、前記伝播時間、前記送信角、前記受信角、前記第1間隔、前記第2間隔及び前記溶接間隔を演算パラメータとして前記欠陥の深度を演算するステップ、を実行させることを特徴とする超音波探傷プログラム。
JP2012010693A 2012-01-23 2012-01-23 超音波探傷装置、方法及びプログラム Active JP5575157B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010693A JP5575157B2 (ja) 2012-01-23 2012-01-23 超音波探傷装置、方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010693A JP5575157B2 (ja) 2012-01-23 2012-01-23 超音波探傷装置、方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2013148525A JP2013148525A (ja) 2013-08-01
JP5575157B2 true JP5575157B2 (ja) 2014-08-20

Family

ID=49046138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010693A Active JP5575157B2 (ja) 2012-01-23 2012-01-23 超音波探傷装置、方法及びプログラム

Country Status (1)

Country Link
JP (1) JP5575157B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942154B2 (en) 2018-02-07 2021-03-09 KABUSHIKl KAISHA TOSHIBA Ultrasonic inspection apparatus and ultrasonic inspection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543208B (zh) * 2013-10-24 2015-07-08 大连理工大学 基于频谱分析原理减小tofd检测近表面盲区的方法
CN108318583A (zh) * 2018-01-06 2018-07-24 浙江大学 用于tofd和相控阵集成检测聚烯烃管道热熔对接接头的装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615463U (ja) * 1984-06-15 1986-01-13 株式会社 富士電機総合研究所 超音波探傷機
JP2007315820A (ja) * 2006-05-23 2007-12-06 Central Res Inst Of Electric Power Ind 超音波探傷装置及び超音波探傷プログラム
JP5123644B2 (ja) * 2007-11-15 2013-01-23 三菱重工業株式会社 超音波探傷方法および超音波探傷装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942154B2 (en) 2018-02-07 2021-03-09 KABUSHIKl KAISHA TOSHIBA Ultrasonic inspection apparatus and ultrasonic inspection method

Also Published As

Publication number Publication date
JP2013148525A (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5841026B2 (ja) 超音波探傷法及び超音波探傷装置
KR101163549B1 (ko) 위상배열 초음파 탐상용 기본 보정시험편
CN105021142B (zh) 一种激光搭接焊缝宽度的测量方法和所用装置
JP2008122209A (ja) 超音波探傷装置及び方法
JP5731765B2 (ja) 超音波探傷装置および超音波探傷方法
KR101163554B1 (ko) 위상배열 초음파 탐상용 검증용 시험편
US11474076B2 (en) Acoustic model acoustic region of influence generation
WO2009104811A9 (ja) 超音波計測装置及び超音波計測方法
JP5565904B2 (ja) 超音波探傷試験体の表面形状の同定方法並びに同定プログラム、開口合成処理プログラム及びフェーズドアレイ探傷プログラム
JP5575157B2 (ja) 超音波探傷装置、方法及びプログラム
KR20070065934A (ko) 위상배열 초음파 결함길이평가 장치 및 그 방법
JP2016090272A (ja) 超音波探傷検査方法及び超音波探傷検査装置
JP2014077708A (ja) 検査装置および検査方法
KR20100124238A (ko) 위상배열 초음파 탐상을 위한 보정(대비)시험편 및 보정절차
CN109142527B (zh) 一种用于超声相控阵焊缝检测的缺陷定位方法
JP4682921B2 (ja) 超音波探傷方法及び超音波探傷装置
JP6733650B2 (ja) 超音波探傷方法、超音波探傷装置、鋼材の製造設備列、及び鋼材の製造方法
WO2017030458A1 (ru) Ультразвуковая диагностика вертикально-ориентированных дефектов в призматической металлопродукции
JP2006138672A (ja) 超音波検査方法及び装置
JP5959677B2 (ja) 超音波探傷装置および超音波探傷方法
Hoyle et al. Ultrasonic algorithms for calculating probe separation distance, combined with full matrix capture with the total focusing method
Nanekar et al. Characterization of planar flaws by synthetic focusing of sound beam using linear arrays
WO2019030815A1 (ja) 超音波検査方法および超音波検査装置
JP5123644B2 (ja) 超音波探傷方法および超音波探傷装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R151 Written notification of patent or utility model registration

Ref document number: 5575157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151