CN103543208B - 基于频谱分析原理减小tofd检测近表面盲区的方法 - Google Patents

基于频谱分析原理减小tofd检测近表面盲区的方法 Download PDF

Info

Publication number
CN103543208B
CN103543208B CN201310508087.9A CN201310508087A CN103543208B CN 103543208 B CN103543208 B CN 103543208B CN 201310508087 A CN201310508087 A CN 201310508087A CN 103543208 B CN103543208 B CN 103543208B
Authority
CN
China
Prior art keywords
tofd
blind region
near surface
defect
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310508087.9A
Other languages
English (en)
Other versions
CN103543208A (zh
Inventor
林莉
张东辉
张树潇
赵天伟
罗忠兵
刘丽丽
谢雪
杨会敏
李喜孟
严宇
陈春林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Engineering Research & Design Co Ltd
Dalian University of Technology
Original Assignee
Nuclear Engineering Research & Design Co Ltd
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Engineering Research & Design Co Ltd, Dalian University of Technology filed Critical Nuclear Engineering Research & Design Co Ltd
Priority to CN201310508087.9A priority Critical patent/CN103543208B/zh
Publication of CN103543208A publication Critical patent/CN103543208A/zh
Application granted granted Critical
Publication of CN103543208B publication Critical patent/CN103543208B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种基于频谱分析原理减小TOFD检测近表面盲区的方法,属于超声无损检测技术领域。该方法采用一套包括TOFD超声检测仪、集成TOFD操作软件的计算机、TOFD探头、扫查装置、校准试块及数字示波器构成的超声测试系统。针对TOFD检测中近表面区域进行扫查,对采集到的包含有缺陷信息的混叠时域信号进行频谱分析,读取幅度谱中谐振频率,结合材料纵波声速计算出直通波与缺陷上尖端衍射波声程差,进而确定近表面盲区内缺陷埋深。与其他减小近表面盲区深度的方法相比,该方法对硬件系统无额外要求,不受限于被检工件厚度,具有较好的工程应用价值。

Description

基于频谱分析原理减小TOFD检测近表面盲区的方法
技术领域
本发明涉及一种基于频谱分析原理减小TOFD检测近表面盲区的方法,其属于超声无损检测领域。
背景技术
超声衍射时差法(Time of Flight Diffraction,简称TOFD)是利用缺陷的衍射波信号来对缺陷进行定位定量的一种超声检测方法。TOFD具有能够实时成像、定量精度高、缺陷检出率高的优点,近年来得到了越来越广泛的应用。但是,由于直通波具有一定脉冲宽度,在TOFD检测中存在近表面盲区,是TOFD检测技术应用的局限性之一。
对于近表面盲区问题,现有解决方法有TOFD与脉冲反射法相结合法(TOFDR)、图像能量分布方法、二次反射法(TOFDW)、衍射横波法(S-TOFD)。其中TOFDR需要TOFD与脉冲反射法两套检测系统,增加了对测试系统的硬件要求,丧失了TOFD法中检测速度快、实时成像的优点;图像能量分布方法中缺陷信号的提取效果受待处理图像的成像质量影响较大,存在侧向波抑制不完全或损伤缺陷信号的问题;TOFDW法定位依赖底面反射回波,因而受被检工件厚度影响较大;S-TOFD法是通过衍射横波对近表面缺陷进行定位的,但是在TOFD检测中波型转换机制复杂,辨识有效信号的难度较大。
发明内容
本发明的目的是提供一种基于频谱分析原理减小TOFD检测近表面盲区的方法,针对TOFD检测中近表面区域进行扫查,对采集到的包含有缺陷信息的混叠时域信号进行频谱分析,读取幅度谱中谐振频率,结合材料纵波声速计算出直通波与缺陷上尖端衍射波之间的声程差,进而确定近表面盲区内缺陷埋深。
本发明采用的技术方案是:一种基于频谱分析原理减小TOFD检测近表面盲区的方法采用一套包括TOFD超声检测仪、集成TOFD操作软件的计算机、TOFD探头、扫查装置、校准试块及数字示波器构成的超声测试系统,所述超声测试系统对包含有近表面缺陷信息的混叠时域信号进行采集及后处理,并根据频谱分析后得到的幅度谱中谐振频率fn计算缺陷上尖端衍射波与直通波的声程差,进而确定近表面缺陷埋深,所述方法的测量步骤如下:
(1)对被检工件近表面区域TOFD检测参数进行选择,根据被检工件情况,针对厚度方向小于工件厚度20%,宽度方向至少覆盖整个焊缝这一检测范围,选择合适的探头并调整探头中心间距、时间窗口范围、检测灵敏度、脉冲重复频率和扫查增量;
(2)确定步骤(1)TOFD检测参数下的近表面盲区深度,利用与被检工件声学性能相同的对比试块,通过试验测定近表面盲区的大小,或者,测量直通波脉冲宽度tp,根据近表面盲区计算公式(1),通过理论计算得到近表面盲区深度
D ds = [ ( ct p 2 ) 2 + sct p ] 1 2 - - - ( 1 )
其中,Dds是近表面盲区深度,c是材料纵波声速,tp是直通波脉冲宽度,s是1/2探头中心间距;
(3)对被检工件近表面进行扫查并采集时域信号,利用校准好的上述TOFD测试系统,基于步骤(1)中确定的检测参数进行检测,将TOFD探头对称放置于被检工件焊缝两侧,沿焊缝方向进行D扫查,根据直通波的变化可以发现近表面缺陷,明确缺陷在焊缝长度方向上的位置后,沿垂直于焊缝方向对目标缺陷进行B扫查,记录存储得到B扫图,并通过数字示波器将B扫查抛物线顶点处的时域信号导出;
(4)对采集得到的B扫查抛物线顶点处时域信号进行频谱分析,由于直通波具有一定脉冲宽度,导致直通波与近表面缺陷的上尖端衍射波发生波形混叠,根据波的干涉原理,在对采集到的混叠时域信号进行FFT变换所得到的幅度谱中fn处会出现极大或极小值
f n = nc 4 l ( n = 1,2,3 . . . ) - - - ( 2 )
其中fn和n分别为谐振频率和谐振频率阶数,l是直通波与缺陷上尖端衍射波之间的半声程差;
读取谐振频率,根据公式(2)计算得到l,代入公式(3)中,即可求得缺陷埋深d
d = ( s + l ) 2 - s 2 - - - ( 3 )
其中,d是近表面缺陷埋深,s是1/2探头中心间距。
本发明的有益效果是:这种基于频谱分析原理减小TOFD检测近表面盲区的方法采用一套包括TOFD超声检测仪、集成TOFD操作软件的计算机、TOFD探头、扫查装置、校准试块及数字示波器构成的超声测试系统。针对TOFD检测中近表面区域进行扫查,对采集到的包含有缺陷信息的混叠时域信号进行频谱分析,读取幅度谱中谐振频率,结合材料纵波声速计算出直通波与缺陷上尖端衍射波声程差,进而确定近表面盲区内缺陷埋深。与其他减小近表面盲区深度的方法相比,该方法对硬件系统无额外要求,不受限于被检工件厚度,具有较好的工程应用价值。
附图说明
下面结合附图和实例对本发明作进一步说明。
图1是TOFD超声测试系统硬件结构连接示意图。
图2是被检工件缺陷分布及TOFD探头放置示意图。
图3是对比试块近表面缺陷D扫图。
图4是对比试块近表面缺陷时域信号。
图5是埋深5mm底面开口槽B扫图及抛物线顶点处时域信号。
图6是埋深5mm底面开口槽时域信号幅度谱。
具体实施方式
在基于频谱分析原理减小TOFD检测近表面盲区的方法中采用的超声测试系统由图1中所示Dynaray Lite超声检测仪、集成UltraVision3.2R操作软件的计算机、标称频率5MHz的TOFD探头、扫查装置、校准试块及DPO4032数字示波器构成。它采用的测量以及处理步骤如下:
(1)研究对象为碳钢试块,尺寸140mm×50mm×35mm(长×宽×高),其中的底面开口槽埋深5mm,经测量得到材料纵波声速为5954m/s。采用所述校准好的超声测试系统,并选用探头频率为5MHz,晶片尺寸6mm,入射角度为60°的两TOFD探头。将两探头对称放置于焊缝两侧,并设置探头中心间距2s=34mm,见图2。设置A扫描时间窗口,使得时间窗口的起始位置为直通波到达接收探头前0.5μs以上,时间窗口的终止位置为底面反射波到达接收探头后0.5μs以上;系统增益设置为45dB;脉冲重复频率设置为128Hz;扫查增量设置为0.3mm。
(2)采用选择好的参数对包含不同埋深横通孔的碳钢对比试块进行测试,对于埋深2、4、6mm的Ф2mm横通孔,其D扫图结果及相应时域信号分别见图3(a)–(c)、图4(a)–(c),从图中可看出由于横通孔的上尖端衍射波与直通波发生了混叠,无法根据扫查结果直接定位。对于埋深8mm的Ф2mm横通孔,其D扫结果及相应时域信号分别见图3(d)、4(d),从图中可看出横通孔的上尖端衍射波与直通波刚好不混叠,可以根据扫查结果直接定位。据此判断在本次采用的TOFD测试系统及检测参数下近表面盲区深度为8mm。为对测试结果进行进一步验证,采集了一个无缺陷处的直通波,经测量直通波脉冲宽度为0.65μs,根据公式(1)计算得到理论近表面盲区深度为8.3mm,这与测试结果基本一致。
(3)将探头置于被检工件焊缝两侧,沿焊缝方向进行D扫查,根据直通波的变化确定缺陷在焊缝长度方向的位置后,沿垂直于焊缝方向进行B扫查,通过数字示波器将B扫查抛物线顶点处的时域信号导出,用来进行信号后续处理。缺陷B扫图与B扫查抛物线顶点处的时域信号分别见图5(a)、(b)。
(4)对采集到的时域信号进行傅里叶变换,得到幅度谱见图6。已知材料纵波声速c=5954m/s,从图中可以读取两个相邻的谐振频率f2=3.7MHz,f4=7.1MHz,代入公式(2)可得直通波与缺陷的平均半声程差l=0.83mm;将s、l值代入公式(3),计算得到缺陷埋深d=5.4mm;已知缺陷的实际埋深为5mm,计算误差为0.4mm。

Claims (1)

1.一种基于频谱分析原理减小TOFD检测近表面盲区的方法,其特征是:采用一套包括TOFD超声检测仪、集成TOFD操作软件的计算机、TOFD探头、扫查装置、校准试块及数字示波器构成的超声测试系统,所述超声测试系统对包含有近表面缺陷信息的混叠时域信号进行采集及后处理,并根据频谱分析后得到的幅度谱中谐振频率fn计算缺陷上尖端衍射波与直通波的声程差,进而确定近表面缺陷埋深,所述方法的测量步骤如下:
(1)对被检工件近表面区域TOFD检测参数进行选择,根据被检工件情况,针对厚度方向小于工件厚度20%,宽度方向至少覆盖整个焊缝这一检测范围,选择合适的探头并调整探头中心间距、时间窗口范围、检测灵敏度、脉冲重复频率和扫查增量;
(2)确定步骤(1)TOFD检测参数下的近表面盲区深度,利用与被检工件声学性能相同的对比试块,通过试验测定近表面盲区的大小,或者测量直通波脉冲宽度tp,根据近表面盲区计算公式(1),通过理论计算得到近表面盲区深度
D ds = [ ( ct p 2 ) 2 + sct p ] 1 2 - - - ( 1 )
其中,Dds是近表面盲区深度,c是材料纵波声速,tp是直通波脉冲宽度,s是1/2探头中心间距;
(3)对被检工件近表面进行扫查并采集时域信号,利用校准好的TOFD测试系统,基于步骤(1)中确定的检测参数进行检测,将TOFD探头对称放置于被检工件焊缝两侧,沿焊缝方向进行D扫查,根据直通波的变化发现近表面缺陷,明确缺陷在焊缝长度方向上的位置后,沿垂直于焊缝方向对目标缺陷进行B扫查,记录存储得到B扫图,并通过数字示波器将B扫查抛物线顶点处的时域信号导出;
(4)对采集得到的B扫查抛物线顶点处时域信号进行频谱分析,由于直通波具有一定脉冲宽度,导致直通波与近表面缺陷的上尖端衍射波发生波形混叠,根据波的干涉原理,在对采集到的混叠时域信号进行FFT变换所得到的幅度谱中fn处会出现极大或极小值
f n = nc 4 l ( n = 1,2,3 · · · ) - - - ( 2 )
其中fn和n分别为谐振频率和谐振频率阶数,l是直通波与缺陷上尖端衍射波之间的半声程差;
读取谐振频率,根据公式(2)计算得到l,代入公式(3)中,即可求得缺陷埋深d
d = ( s + l ) 2 - s 2 - - - ( 3 )
其中,d是近表面缺陷埋深,s是1/2探头中心间距。
CN201310508087.9A 2013-10-24 2013-10-24 基于频谱分析原理减小tofd检测近表面盲区的方法 Active CN103543208B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310508087.9A CN103543208B (zh) 2013-10-24 2013-10-24 基于频谱分析原理减小tofd检测近表面盲区的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310508087.9A CN103543208B (zh) 2013-10-24 2013-10-24 基于频谱分析原理减小tofd检测近表面盲区的方法

Publications (2)

Publication Number Publication Date
CN103543208A CN103543208A (zh) 2014-01-29
CN103543208B true CN103543208B (zh) 2015-07-08

Family

ID=49966868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310508087.9A Active CN103543208B (zh) 2013-10-24 2013-10-24 基于频谱分析原理减小tofd检测近表面盲区的方法

Country Status (1)

Country Link
CN (1) CN103543208B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897777A (zh) * 2015-06-17 2015-09-09 中国核工业二三建设有限公司 基于Burg算法的自回归谱外推技术提高TOFD检测纵向分辨率的方法
CN105973990B (zh) * 2015-09-16 2019-09-27 中国核工业二三建设有限公司 一种基于几何关系的倾斜裂纹tofd定量检测方法
CN106198739A (zh) * 2016-07-07 2016-12-07 大连理工大学 一种基于波型转换的tofd近表面盲区缺陷定位检测方法
WO2019186981A1 (ja) * 2018-03-29 2019-10-03 つくばテクノロジー株式会社 超音波伝搬映像の画像処理方法
CN110220977A (zh) * 2019-06-11 2019-09-10 大连理工大学 基于模式转换波的管道结构tofd检测近表面盲区抑制方法
CN114720564B (zh) * 2022-06-08 2022-09-30 中国空气动力研究与发展中心计算空气动力研究所 基于超声横波的结构表面减薄缺陷起始点定位方法、设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215218A (ja) * 2000-02-02 2001-08-10 Imc:Kk 超音波探傷装置
JP2004219287A (ja) * 2003-01-16 2004-08-05 Kawasaki Heavy Ind Ltd 超音波探傷方法とその装置
JP3629256B2 (ja) * 2002-07-22 2005-03-16 九州電力株式会社 超音波tofd法による探傷方法
JP2005326238A (ja) * 2004-05-13 2005-11-24 Kyushu Electric Power Co Inc 超音波tofd法によるき裂進展監視方法及び装置
CN1804611A (zh) * 2005-12-27 2006-07-19 哈尔滨工业大学 基于合成孔径聚焦的超声渡越时间检测方法
CN101701937A (zh) * 2009-11-09 2010-05-05 哈尔滨工程大学 一种超声无损检测方法及检测装置
CN101839895A (zh) * 2009-12-17 2010-09-22 哈尔滨工业大学 一种基于超声tofd的近表面缺陷识别方法
WO2010127429A1 (en) * 2009-05-08 2010-11-11 University Of Toronto Ultrasonic scanning system and ultrasound image enhancement method
CN102435675A (zh) * 2011-09-23 2012-05-02 南昌航空大学 不等厚板对接焊缝超声tofd技术检测方法
JP2012154747A (ja) * 2011-01-25 2012-08-16 Jfe Steel Corp クラック深さ測定方法およびクラック深さ測定装置
JP2013148525A (ja) * 2012-01-23 2013-08-01 Toshiba Corp 超音波探傷装置、方法及びプログラム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215218A (ja) * 2000-02-02 2001-08-10 Imc:Kk 超音波探傷装置
JP3629256B2 (ja) * 2002-07-22 2005-03-16 九州電力株式会社 超音波tofd法による探傷方法
JP2004219287A (ja) * 2003-01-16 2004-08-05 Kawasaki Heavy Ind Ltd 超音波探傷方法とその装置
JP2005326238A (ja) * 2004-05-13 2005-11-24 Kyushu Electric Power Co Inc 超音波tofd法によるき裂進展監視方法及び装置
CN1804611A (zh) * 2005-12-27 2006-07-19 哈尔滨工业大学 基于合成孔径聚焦的超声渡越时间检测方法
WO2010127429A1 (en) * 2009-05-08 2010-11-11 University Of Toronto Ultrasonic scanning system and ultrasound image enhancement method
CN101701937A (zh) * 2009-11-09 2010-05-05 哈尔滨工程大学 一种超声无损检测方法及检测装置
CN101839895A (zh) * 2009-12-17 2010-09-22 哈尔滨工业大学 一种基于超声tofd的近表面缺陷识别方法
JP2012154747A (ja) * 2011-01-25 2012-08-16 Jfe Steel Corp クラック深さ測定方法およびクラック深さ測定装置
CN102435675A (zh) * 2011-09-23 2012-05-02 南昌航空大学 不等厚板对接焊缝超声tofd技术检测方法
JP2013148525A (ja) * 2012-01-23 2013-08-01 Toshiba Corp 超音波探傷装置、方法及びプログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Simultaneousdeterminationofthecoatingthicknessanditslongitudinal velocity by ultrasonic nondestructive method;Y. Zhao et al.;《NDT&E International》;20100630;第43卷;第579–585页 *
分离谱技术在超声衍射时差法信号处理中的应用;杨书荣等;《声学技术》;20100228;第29卷(第1期);第44-47页 *

Also Published As

Publication number Publication date
CN103543208A (zh) 2014-01-29

Similar Documents

Publication Publication Date Title
CN103543208B (zh) 基于频谱分析原理减小tofd检测近表面盲区的方法
CN104535657B (zh) 一种薄板工件相控阵超声导波成像检测系统及其检测方法
CN103293225B (zh) 锅炉水冷壁管氢损伤超声波检测与诊断方法
CN111337171B (zh) 一种应用于临界折射纵波应力检测的声时差测量方法
CN103543206A (zh) 一种铝合金预拉伸板残余应力水浸超声检测方法
CN104698089A (zh) 一种适用于倾斜裂纹定量和成像的超声相对时间传播技术
CN103822971A (zh) 一种超声显微镜分辨力测试及校准方法
CN106198739A (zh) 一种基于波型转换的tofd近表面盲区缺陷定位检测方法
CN103235039A (zh) 基于线性调频技术的焊缝缺陷超声tofd检测方法
CN101441198A (zh) 一种风洞洞体结构对接焊缝超声波检测的方法
CN105973990B (zh) 一种基于几何关系的倾斜裂纹tofd定量检测方法
Sen et al. Ultrasonic thickness measurement for aluminum alloy irregular surface parts based on spectral analysis
CN104897777A (zh) 基于Burg算法的自回归谱外推技术提高TOFD检测纵向分辨率的方法
CN111174894B (zh) 一种激光超声横波声速测量方法
CN105403627A (zh) 一种用于增强超声检测图像横向分辨率的方法
CN108918667B (zh) 一种楔体缺陷检测方法
CN113533504B (zh) 基于激光超声表面波频域参数的亚表面裂纹定量测量方法
KR20120122440A (ko) 초음파 비파괴 검사 장치 및 초음파 비파괴 검사 방법
Cao et al. A correlation-based approach to corrosion detection with lamb wave mode cutoff
SU917711A3 (ru) Способ настройки ультразвуковой установки
CN104458915B (zh) 一种风塔焊缝非线性超声检测方法
CN105044215A (zh) 一种非破坏性的材料声速现场测量方法
Michaels et al. Chirp generated acoustic wavefield images
JP2001343365A (ja) 金属薄板の厚み共振スペクトル測定方法及び金属薄板の電磁超音波計測方法
CN204514866U (zh) 一种薄板工件相控阵超声导波成像检测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant