JP5568244B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP5568244B2
JP5568244B2 JP2009070772A JP2009070772A JP5568244B2 JP 5568244 B2 JP5568244 B2 JP 5568244B2 JP 2009070772 A JP2009070772 A JP 2009070772A JP 2009070772 A JP2009070772 A JP 2009070772A JP 5568244 B2 JP5568244 B2 JP 5568244B2
Authority
JP
Japan
Prior art keywords
trench
insulating film
hdp
region
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009070772A
Other languages
Japanese (ja)
Other versions
JP2010225804A (en
Inventor
英知 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2009070772A priority Critical patent/JP5568244B2/en
Publication of JP2010225804A publication Critical patent/JP2010225804A/en
Application granted granted Critical
Publication of JP5568244B2 publication Critical patent/JP5568244B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Element Separation (AREA)

Description

本発明は半導体装置の製造方法、特に、素子分離膜の形成方法の改良に関するものである。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in a method for forming an element isolation film.

半導体デバイスの集積回路では、隣接する素子同士を電気的に分離するために素子分離領域を形成する。以下、STI(Shallow Trench Isolation)の形成方法について説明する。図1(A)〜(C)、図2(D)〜(F)は、従来の半導体装置の製造工程の一部を示す断面図である。   In an integrated circuit of a semiconductor device, an element isolation region is formed in order to electrically isolate adjacent elements. Hereinafter, a method for forming STI (Shallow Trench Isolation) will be described. 1A to 1C and 2D to 2F are cross-sectional views illustrating a part of a manufacturing process of a conventional semiconductor device.

まず、周知の方法により、図1(A)に示すように、シリコン基板102上にシリコン酸化膜104及び、シリコン窒化膜106を形成する。次に、図1(B)に示すように、フォトリソグラフィ工程及びエッチング工程によってトレンチパターン(凹部)108を形成する。   First, as shown in FIG. 1A, a silicon oxide film 104 and a silicon nitride film 106 are formed on a silicon substrate 102 by a known method. Next, as shown in FIG. 1B, a trench pattern (concave portion) 108 is formed by a photolithography process and an etching process.

次に、シリコン基板102を酸化させて、図1(C)に示すように、当該シリコン基板102の表面にシリコン酸化膜110を形成する。続いて、図2(D)に示すように、HDP−CVD (High Density Plasma - Chemical Vapor Deposition)法によりシリコン酸化膜112をトレンチ108の内部に埋め込む。このときの成膜条件は、例えば、SiH4:60sccm, O2:120sccm, Ar:100sccm,Source-RF出力:3000W, Bias-RF出力:1500Wとする。   Next, the silicon substrate 102 is oxidized to form a silicon oxide film 110 on the surface of the silicon substrate 102 as shown in FIG. Subsequently, as shown in FIG. 2D, a silicon oxide film 112 is buried in the trench 108 by HDP-CVD (High Density Plasma-Chemical Vapor Deposition). The film forming conditions at this time are, for example, SiH4: 60 sccm, O2: 120 sccm, Ar: 100 sccm, Source-RF output: 3000 W, and Bias-RF output: 1500 W.

次に、CMP (Chemical Mechanical Polishing)法により、図2(E)に示すように、シリコン酸化膜112の表面を平坦化する。その後、図2(F)に示すように、周知の方法によってシリコン窒化膜106を除去する。以上の製造工程により、シリコン基板102上にシリコン酸化膜112で充填されたSTI(素子分離領域)114が形成され、隣接する素子同士を電気的に分離することができる。   Next, the surface of the silicon oxide film 112 is planarized by CMP (Chemical Mechanical Polishing) as shown in FIG. Thereafter, as shown in FIG. 2F, the silicon nitride film 106 is removed by a known method. Through the above manufacturing process, the STI (element isolation region) 114 filled with the silicon oxide film 112 is formed on the silicon substrate 102, and adjacent elements can be electrically isolated from each other.

なお、特開2008−103645号公報(図6〜図8、段落[0024]〜[0034])には、HDP−CVDによってシリコン酸化膜を堆積してSTIを埋め込んだ後、メモリデバイスの微細領域であるセル部のシリコン酸化膜を選択的に除去し、次に流動性の良いSOG膜により埋め込む方法について開示されている。
特開2008−103645号公報
In JP 2008-103645 A (FIGS. 6 to 8, paragraphs [0024] to [0034]), a silicon oxide film is deposited by HDP-CVD and STI is embedded, and then a fine region of a memory device is formed. A method of selectively removing the silicon oxide film in the cell portion and then filling it with an SOG film having good fluidity is disclosed.
JP 2008-103645 A

次に、従来技術の問題点・欠点について、図3及び図4を用いて説明する。集積回路の微細化に伴いSTIのスリットが狭くなってくると、図3の左側に示すように、メモリデバイスのセル部のように微細な領域では、HDP−CVD膜114中にボイド(空孔)116が発生する。このボイド116は、後工程にてゲート配線のショート等の不良を引き起こし、製品の歩留り低下の要因となる。   Next, problems and disadvantages of the prior art will be described with reference to FIGS. When the STI slit becomes narrower as the integrated circuit becomes finer, voids (voids) are formed in the HDP-CVD film 114 in a fine region such as a cell portion of a memory device as shown on the left side of FIG. ) 116 occurs. The void 116 causes a defect such as a short circuit of the gate wiring in a later process, which causes a decrease in product yield.

ボイドの発生を防ぐためには、HDP−CVDのD/S比を小さくする必要がある。ここで、D/S比とはHDP−CVD成膜時のデポジション(D)とスパッタ(S)のレートから(D+S)/Sとして算出される係数であり、値が小さいほどスパッタの比率が大きくなる。しかし、D/S比を小さくする(例えば、通常5に対して2程度)と、図4に示すように、素子形成部のSi基板102がスパッタにより削られて、所望のSiパターン寸法が得られず、あるいはSi基板102のダメージによる回路動作不良を引き起こす問題がある。(特に、周辺回路部の孤立したパターンが削れ易い傾向がある。)   In order to prevent the generation of voids, it is necessary to reduce the D / S ratio of HDP-CVD. Here, the D / S ratio is a coefficient calculated as (D + S) / S from the deposition (D) and sputtering (S) rates during HDP-CVD film formation, and the smaller the value, the more the sputtering ratio. growing. However, when the D / S ratio is reduced (for example, about 2 with respect to 5 in general), as shown in FIG. 4, the Si substrate 102 of the element forming portion is scraped by sputtering, and a desired Si pattern dimension is obtained. There is a problem that circuit failure occurs due to damage to the Si substrate 102. (Especially, isolated patterns in the peripheral circuit section tend to be cut off easily.)

この問題を解決する策として、トレンチ加工を2回に分けて形成する方法が考えられる。図5(A)〜(D)、図6(E)〜(G)、図7(H),(I)を参照してその製造方法について説明する。まず、図5(A)に示すように、シリコン基板202上にシリコン酸化膜204及び、シリコン窒化膜206を形成する。   As a measure for solving this problem, a method of forming trench processing in two steps is conceivable. A manufacturing method thereof will be described with reference to FIGS. 5A to 5D, FIGS. 6E to 6G, and FIGS. 7H and 7I. First, as shown in FIG. 5A, a silicon oxide film 204 and a silicon nitride film 206 are formed on a silicon substrate 202.

次に、図5(B)に示すように、フォトリソグラフィ工程及びエッチング工程によって、ラフピッチ部のみにトレンチ208を加工する。続いて、図5(C)に示すように、微細ピッチ部及びラフピッチ部の両方にHDP−CVD膜210を成膜する。このときのHDP−CVD成膜条件は、D/S比5程度としてボイドが発生せずシリコン窒化膜206の削れが発生しない条件とする。   Next, as shown in FIG. 5B, the trench 208 is processed only in the rough pitch portion by a photolithography process and an etching process. Subsequently, as shown in FIG. 5C, an HDP-CVD film 210 is formed on both the fine pitch portion and the rough pitch portion. The HDP-CVD film forming conditions at this time are such that the D / S ratio is about 5 and no void is generated and the silicon nitride film 206 is not scraped.

その後、図5(D)に示すように、微細ピッチ部のHDP−CVD膜210を除去する。次に、図6(E)に示すように、微細ピッチ部にトレンチ212を形成する。その後、図6(F)に示すように、微細ピッチ部のトレンチ212内面にシリコン酸化膜214を形成する。   Thereafter, as shown in FIG. 5D, the HDP-CVD film 210 in the fine pitch portion is removed. Next, as shown in FIG. 6E, trenches 212 are formed in the fine pitch portions. Thereafter, as shown in FIG. 6F, a silicon oxide film 214 is formed on the inner surface of the trench 212 in the fine pitch portion.

次に、図6(G)に示すように、微細ピッチ部及びラフピッチ部の両方にHDP−CVD膜216を成膜する。このときのHDP−CVD成膜条件は、D/S比を2程度として微細ピッチ部にボイドが発生しない条件とする。続いて、CMP (Chemical Mechanical Polishing)法により、図7(H)に示すように、シリコン酸化膜216の表面を平坦化する。その後、図7(I)に示すように、周知の方法によってシリコン窒化膜206を除去する。以上の製造工程により、シリコン基板202上にシリコン酸化膜216で充填されたSTI(素子分離領域)が形成され、隣接する素子同士を電気的に分離することができる。なお、削れ易いパターンがあるラフピッチ部は、一回目のHDP−CVD膜210で覆われているため、シリコン基板202が削れられることはない。   Next, as shown in FIG. 6G, an HDP-CVD film 216 is formed on both the fine pitch portion and the rough pitch portion. The HDP-CVD film formation conditions at this time are such that the D / S ratio is about 2 and no void is generated in the fine pitch portion. Subsequently, the surface of the silicon oxide film 216 is planarized by CMP (Chemical Mechanical Polishing) as shown in FIG. Thereafter, as shown in FIG. 7I, the silicon nitride film 206 is removed by a known method. Through the above manufacturing process, an STI (element isolation region) filled with the silicon oxide film 216 is formed on the silicon substrate 202, and adjacent elements can be electrically isolated from each other. Note that the rough pitch portion having a pattern that can be easily cut is covered with the first HDP-CVD film 210, and thus the silicon substrate 202 is not cut.

しかしながら、図5(A)〜(D)、図6(E)〜(G)、図7(H),(I)に示した方法では、工程数が多く、製造コストが増加する欠点がある。   However, the methods shown in FIGS. 5A to 5D, FIGS. 6E to 6G, and FIGS. 7H and 7I have the disadvantage that the number of steps is large and the manufacturing cost increases. .

なお、上述した特開2008−103645号公報では、HDP−CVDでボイドができた状態で一旦成膜した後、微細領域のみ除去しSOGで埋め込むという方法によって、この問題を解決している。しかしながら、SOGを使った膜ではウェットエッチレートが非常に速く、STI段差制御性が悪い。また、CMPによるスクラッチ等の欠陥が入った場合、欠陥が容易に拡大しゲート配線のショート等の不良が発生しやすいという問題がある。
In Japanese Patent Application Laid-Open No. 2008-103645 described above, this problem is solved by a method of forming a film once with a void formed by HDP-CVD and then removing only a fine region and embedding with SOG. However, a film using SOG has a very fast wet etch rate and poor STI step controllability. In addition, when a defect such as a scratch due to CMP is introduced, the defect is easily enlarged and a defect such as a short circuit of the gate wiring is likely to occur.

本発明は上記のような状況に鑑みてなされたものであり、工程数及び製造コストの増加を抑えつつ、良好なSTI領域を形成可能な半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a method of manufacturing a semiconductor device capable of forming a good STI region while suppressing an increase in the number of steps and manufacturing cost.

上記課題を解決するために、本発明は、STIによって素子分離を行う半導体装置の製造方法において、半導体基板上の第1の領域に第1のトレンチ及び前記第1の領域とは異なる第2の領域に前記第1のトレンチよりも幅の広い第2のトレンチを形成する工程と;前記第1のトレンチの内部を含む前記第1の領域を覆って第1の絶縁膜を形成するとともに、前記第2のトレンチの内部を含む前記第2の領域を覆って前記第1の絶縁膜を空孔なく形成する工程と;前記第2の領域を覆う前記第1の絶縁膜を残存させるとともに、前記第1の領域を覆う前記第1の絶縁膜を前記第1のトレンチの内部を含めて除去する工程と;前記第1のトレンチ内部にHDP−CVD膜である第2の絶縁膜を形成することにより当該第1のトレンチを空孔なく埋め込むとともに、前記第2の領域を覆う前記第1の絶縁膜上に前記第2の絶縁膜を形成する工程とを含むことを特徴とする。 In order to solve the above-described problems, the present invention provides a method for manufacturing a semiconductor device in which element isolation is performed by STI, wherein a first trench on a semiconductor substrate and a second trench different from the first region are provided. Forming a second trench having a width wider than that of the first trench in a region ; forming a first insulating film covering the first region including the inside of the first trench; and Forming the first insulating film without voids so as to cover the second region including the inside of the second trench; leaving the first insulating film covering the second region ; and forming a second insulating film which is inside HDP-CVD film of the first trench; step and removing including the inside of said first trench with said first insulating film covering the first region The first trench can be Embedded with, characterized in that it comprises a step of forming a second insulating film on the first insulating film covering the second region.

上述した本発明によれば、トレンチ内の絶縁膜形成時に半導体基板の削れを防止しつつ、微細ピッチ部をボイド無く埋め込むことができる。その結果、ボイドによるゲート配線のショートや半導体基板の削れによる回路動作不良等が防止され、半導体素子の歩留りが向上する。   According to the present invention described above, the fine pitch portion can be embedded without voids while preventing the semiconductor substrate from being scraped when forming the insulating film in the trench. As a result, short circuit of the gate wiring due to voids, circuit malfunction due to semiconductor substrate scraping, and the like are prevented, and the yield of semiconductor elements is improved.

また、図5(A)〜(D)、図6(E)〜(G)、図7(H),(I)で示すように、微細ピッチ部とラフピッチとでトレンチ加工を別々に2度に分けて形成する方法に比べ、工程数を削減でき、製造コストの増加を抑制することができる。
Further, as shown in FIGS. 5A to 5D, FIGS. 6E to 6G, and FIGS. 7H and 7I, trench processing is separately performed twice at the fine pitch portion and the rough pitch. Compared with the method of forming separately, the number of steps can be reduced, and an increase in manufacturing cost can be suppressed.

図1(A)〜(C)は、従来の半導体装置の製造工程の一部を示す断面図である。1A to 1C are cross-sectional views illustrating a part of a manufacturing process of a conventional semiconductor device. 図2(D)〜(F)は、従来の半導体装置の製造工程の一部を示す断面図である。2D to 2F are cross-sectional views illustrating a part of the manufacturing process of the conventional semiconductor device. 図3は、従来の半導体装置の製造工程を採用した場合の問題点を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining a problem in the case of employing a conventional semiconductor device manufacturing process. 図4は、従来の半導体装置の製造工程を採用した場合の問題点を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining problems in the case where a conventional semiconductor device manufacturing process is employed. 図5(A)〜(D)は、他の従来方法による半導体装置の製造工程の一部を示す断面図である。5A to 5D are cross-sectional views illustrating a part of a manufacturing process of a semiconductor device according to another conventional method. 図6(E)〜(G)は、他の従来方法による半導体装置の製造工程の一部を示す断面図である。6E to 6G are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to another conventional method. 図7(H),(I)は、他の従来方法による半導体装置の製造工程の一部を示す断面図である。7 (H) and 7 (I) are cross-sectional views showing a part of a semiconductor device manufacturing process according to another conventional method. 図8(A)〜(D)は、本発明の第1実施例に係る半導体装置の製造工程の一部を示す断面図である。8A to 8D are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to the first embodiment of the present invention. 図9(E)〜(G)は、本発明の第1実施例に係る半導体装置の製造工程の一部を示す断面図である。9E to 9G are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to the first embodiment of the present invention. 図10(H)〜(J)は、本発明の第1実施例に係る半導体装置の製造工程の一部を示す断面図である。FIGS. 10H to 10J are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to the first embodiment of the present invention. 図11(A)〜(D)は、本発明の第2実施例に係る半導体装置の製造工程の一部を示す断面図である。11A to 11D are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to the second embodiment of the present invention. 図12(E)〜(H)は、本発明の第2実施例に係る半導体装置の製造工程の一部を示す断面図である。12E to 12H are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to the second embodiment of the present invention.

図8(A)〜(D)、図9(E)〜(G)は、本発明の第1実施例に係る半導体装置の製造工程の一部を示す断面図である。本実施例においては、まず、図8(A)に示すように、シリコン基板302上にシリコン酸化膜304及び、シリコン窒化膜306を形成する。   8A to 8D and 9E to 9G are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to the first embodiment of the present invention. In this embodiment, first, as shown in FIG. 8A, a silicon oxide film 304 and a silicon nitride film 306 are formed on a silicon substrate 302.

次に、図8(B)に示すように、フォトリソグラフィ工程及びエッチング工程によって、微細ピッチ部及びラフピッチ部の両方にトレンチパターン(凹部)312,308を各々形成する。   Next, as shown in FIG. 8B, trench patterns (concave portions) 312 and 308 are formed in both the fine pitch portion and the rough pitch portion by a photolithography process and an etching process, respectively.

次に、シリコン基板302を酸化して、図8(C)に示すように、当該シリコン基板302の表面(トレンチ312,308の内面)にシリコン酸化膜314を形成する。   Next, the silicon substrate 302 is oxidized to form a silicon oxide film 314 on the surface of the silicon substrate 302 (inner surfaces of the trenches 312 and 308), as shown in FIG. 8C.

続いて、図8(D)に示すように、シリコン酸化膜314上に、HDP−CVD膜316を形成する。HDP−CVD膜316の成膜条件は、例えば、SiH4:60sccm, O2:120sccm, Ar:100sccm, Source-RF出力:3000W, Bias-RF出力:1500Wとし、D/S比は5程度とする。このとき、微細ピッチ部(メモリセル部)のHDP−CVD膜316中にはボイド318が発生し、周辺回路のラフピッチ部のHDP−CVD膜316中にはボイドが発生しないようにD/S比を設定する。   Subsequently, as shown in FIG. 8D, an HDP-CVD film 316 is formed on the silicon oxide film 314. The deposition conditions for the HDP-CVD film 316 are, for example, SiH4: 60 sccm, O2: 120 sccm, Ar: 100 sccm, Source-RF output: 3000 W, Bias-RF output: 1500 W, and a D / S ratio of about 5. At this time, the void 318 is generated in the HDP-CVD film 316 in the fine pitch portion (memory cell portion), and the D / S ratio is set so that no void is generated in the HDP-CVD film 316 in the rough pitch portion of the peripheral circuit. Set.

次に、ホトリソグラフィ工程により、図9(E)に示すように、周辺回路のラフピッチ部をレジスト320で覆う。続いて、レジスト320をマスクとして用い、図9(F)に示すように、セル部の微細ピッチ部のHDP−CVD膜316をエッチングする。このエッチング工程は、DHFによる薬液処理でもCF系ガスによる処理でも良い。エッチング工程によりボイド318の発生している高さ(深さ)までHDP−CVD膜316をエッチングする。この時、HDP−CVD膜316はトレンチ底部に残留しても良く、トレンチ側壁のSi基板302が露出しても良い。   Next, as shown in FIG. 9E, a rough pitch portion of the peripheral circuit is covered with a resist 320 by a photolithography process. Subsequently, using the resist 320 as a mask, the HDP-CVD film 316 in the fine pitch portion of the cell portion is etched as shown in FIG. This etching process may be a chemical treatment with DHF or a treatment with a CF-based gas. The HDP-CVD film 316 is etched to the height (depth) at which the void 318 is generated by the etching process. At this time, the HDP-CVD film 316 may remain at the bottom of the trench, or the Si substrate 302 on the trench sidewall may be exposed.

その後、図9(G)に示すように、レジスト320を除去し、露出しているトレンチ側壁の半導体基板の面302を再び酸化して、シリコン酸化膜322を形成する。次に、図10(H)に示すように、微細ピッチ部及びラフピッチ部の両方に再度HDP−CVD膜324を成膜する。このHDP−CVD成膜条件は、例えば、SiH4:60sccm, O2:100sccm, Ar:100sccm, Source-RF出力:3000W, Bias-RF出力:4000Wとし、D/S比は3以下と小さい条件とする。   Thereafter, as shown in FIG. 9G, the resist 320 is removed, and the exposed surface 302 of the semiconductor substrate on the side wall of the trench is oxidized again to form a silicon oxide film 322. Next, as shown in FIG. 10H, an HDP-CVD film 324 is formed again on both the fine pitch portion and the rough pitch portion. The HDP-CVD film forming conditions are, for example, SiH4: 60 sccm, O2: 100 sccm, Ar: 100 sccm, Source-RF output: 3000 W, Bias-RF output: 4000 W, and a D / S ratio as small as 3 or less. .

通常、HDP−CVD膜324を成膜する工程において、D/S比を小さく設定している時、HDP−CVD成膜時のスパッタ成分によりパターンが削れる可能性がある。特に、STI幅が広い箇所では、HDP−CVDの特徴から成膜成分よりもスパッタ成分の速度が速くなる特徴があるため、ラフピッチのパターンは削れ易くなる。しかし、この削れ易いパターンがある周辺回路部においては、一回目のHDP−CVD膜316により覆われているため削れることはない。また、D/S比を低めに設定しているが、セル内は微細ピッチでスパッタにより削れにくい特徴があるので、Si基板302を削らずにボイド無く埋め込むことができる。ここで、シリコン窒化膜306は、この後工程で除去されるので削れても問題とならない。   Usually, in the process of forming the HDP-CVD film 324, when the D / S ratio is set to be small, there is a possibility that the pattern is scraped by the sputter component at the time of HDP-CVD film formation. In particular, a portion having a wide STI width has a feature that the speed of the sputter component is higher than that of the film forming component due to the feature of HDP-CVD. However, the peripheral circuit portion having the easily cut pattern is not cut because it is covered with the first HDP-CVD film 316. Although the D / S ratio is set low, the inside of the cell has a feature that it is difficult to be scraped off by sputtering at a fine pitch, so that the Si substrate 302 can be buried without voids without being cut. Here, since the silicon nitride film 306 is removed in a subsequent process, there is no problem even if it is scraped.

続いて、CMP (Chemical Mechanical Polishing)法により、図10(I)に示すように、HDP−CVD膜324の表面を平坦化する。その後、図10(J)に示すように、周知の方法によってシリコン窒化膜306を除去する。以上の製造工程により、シリコン基板302上にシリコン酸化膜324で充填されたSTI(素子分離領域)が形成され、隣接する素子同士を電気的に分離することができる。   Subsequently, the surface of the HDP-CVD film 324 is planarized by CMP (Chemical Mechanical Polishing) as shown in FIG. Thereafter, as shown in FIG. 10J, the silicon nitride film 306 is removed by a known method. Through the above manufacturing process, an STI (element isolation region) filled with the silicon oxide film 324 is formed on the silicon substrate 302, and adjacent elements can be electrically isolated from each other.

以上のように、本発明の第1の実施例を用いれば、HDP−CVD成膜時にSi基板の削れを防止しつつ、微細ピッチ部をボイド無く埋め込むことができる。その結果、ボイドによるゲート配線のショートやSi基板の削れによる回路動作不良等が防止され、半導体素子の歩留りが向上する。   As described above, by using the first embodiment of the present invention, the fine pitch portion can be embedded without voids while preventing the Si substrate from being scraped during the HDP-CVD film formation. As a result, short circuit of the gate wiring due to voids, circuit malfunction due to scraping of the Si substrate, and the like are prevented, and the yield of semiconductor elements is improved.

また、図5(A)〜(D)、図6(E)〜(G)、図7(H),(I)で示すように、微細ピッチ部とラフピッチとでトレンチ加工を別々に2度に分けて形成する方法に比べ、工程数を削減でき、製造コストの増加を抑制することができる。   Further, as shown in FIGS. 5A to 5D, FIGS. 6E to 6G, and FIGS. 7H and 7I, trench processing is separately performed twice at the fine pitch portion and the rough pitch. Compared with the method of forming separately, the number of steps can be reduced, and an increase in manufacturing cost can be suppressed.

図11(A)〜(D)、図12(E)〜(H)は、本発明の第2実施例に係る半導体装置の製造工程の一部を示す断面図である。本実施例においては、まず、図11(A)に示すように、シリコン基板402上にシリコン酸化膜404及び、シリコン窒化膜406を形成する。   11A to 11D and 12E to 12H are cross-sectional views illustrating a part of the manufacturing process of the semiconductor device according to the second embodiment of the present invention. In this embodiment, first, as shown in FIG. 11A, a silicon oxide film 404 and a silicon nitride film 406 are formed on a silicon substrate 402.

次に、図11(B)に示すように、フォトリソグラフィ工程及びエッチング工程によって、微細ピッチ部及びラフピッチ部の両方にトレンチパターン(凹部)412,408を各々形成する。   Next, as shown in FIG. 11B, trench patterns (concave portions) 412 and 408 are formed in both the fine pitch portion and the rough pitch portion by a photolithography process and an etching process, respectively.

次に、シリコン基板402を酸化して、図11(C)に示すように、当該シリコン基板402の表面(トレンチ412,408の内面)にシリコン酸化膜414を形成する。   Next, the silicon substrate 402 is oxidized to form a silicon oxide film 414 on the surface of the silicon substrate 402 (inner surfaces of the trenches 412 and 408), as shown in FIG.

続いて、図11(D)に示すように、シリコン酸化膜314上に、HDP−CVD膜416を形成する。HDP−CVD成膜条件は、例えば、SiH4:70sccm, O2:120sccm, Ar:130sccm, Source-RF出力:3000W, Bias-RF出力:1000Wとし、D/S比は10程度とする。このとき、メモリセル部の微細ピッチ部のHDP−CVD膜416中にはボイド418が発生し、周辺回路のラフピッチ部のHDP−CVD膜416中にはボイドが発生しない。   Subsequently, as shown in FIG. 11D, an HDP-CVD film 416 is formed over the silicon oxide film 314. The HDP-CVD film forming conditions are, for example, SiH4: 70 sccm, O2: 120 sccm, Ar: 130 sccm, Source-RF output: 3000 W, Bias-RF output: 1000 W, and the D / S ratio is about 10. At this time, a void 418 is generated in the HDP-CVD film 416 in the fine pitch portion of the memory cell portion, and no void is generated in the HDP-CVD film 416 in the rough pitch portion of the peripheral circuit.

また、微細ピッチ部のボイド418からHDP−CVD膜416の表面までの距離「a」がラフピッチ部のHDP−CVD膜416の表面から半導体基板402までの距離「b」より小さくなるようにD/S比を設定する。   Further, the distance “a” from the void 418 in the fine pitch portion to the surface of the HDP-CVD film 416 is smaller than the distance “b” from the surface of the HDP-CVD film 416 in the rough pitch portion to the semiconductor substrate 402. Set the S ratio.

次に、DHF処理により、図12(E)に示すように、HDP−CVD膜416をエッチングする。このとき、ラフピッチ部では表面にSi基板402の面が露出せず、微細ピッチ部ではボイド418が表面に露出してSi基板402の面が露出しないようにエッチング量を設定する。   Next, the HDP-CVD film 416 is etched by DHF treatment as shown in FIG. At this time, the etching amount is set so that the surface of the Si substrate 402 is not exposed on the surface in the rough pitch portion, and the void 418 is exposed on the surface in the fine pitch portion and the surface of the Si substrate 402 is not exposed.

その後、図12(F)に示すように、再度HDP−CVD膜424を成膜する。このHDP−CVD膜424の成膜条件は、例えば、SiH4:60sccm, O2:100sccm, Ar:100sccm, Source-RF出力:3000W, Bias-RF出力:4000Wとし、D/S比は3以下と小さい条件とする。このとき、Si基板402の面が露出していないため、Si基板402は削られず、微細ピッチ部にボイド無くHDP−CVD膜424が埋め込まれる。   After that, as shown in FIG. 12F, an HDP-CVD film 424 is formed again. The deposition conditions of the HDP-CVD film 424 are, for example, SiH4: 60 sccm, O2: 100 sccm, Ar: 100 sccm, Source-RF output: 3000 W, Bias-RF output: 4000 W, and the D / S ratio is as small as 3 or less. Condition. At this time, since the surface of the Si substrate 402 is not exposed, the Si substrate 402 is not cut, and the HDP-CVD film 424 is embedded without voids in the fine pitch portion.

続いて、CMP (Chemical Mechanical Polishing)法により、図12(G)に示すように、HDP−CVD膜424の表面を平坦化する。その後、図12(H)に示すように、周知の方法によってシリコン窒化膜406を除去する。以上の製造工程により、シリコン基板402上にシリコン酸化膜424で充填されたSTI(素子分離領域)が形成され、隣接する素子同士を電気的に分離することができる。   Subsequently, the surface of the HDP-CVD film 424 is planarized by CMP (Chemical Mechanical Polishing) as shown in FIG. Thereafter, as shown in FIG. 12H, the silicon nitride film 406 is removed by a known method. Through the above manufacturing process, an STI (element isolation region) filled with the silicon oxide film 424 is formed on the silicon substrate 402, and adjacent elements can be electrically isolated from each other.

以上のように、本発明の第2実施例を用いれば、第1実施例と同様に、HDP−CVD成膜時にSi基板の削れを防止しつつ、微細ピッチ部をボイド無く埋め込むことができる。その結果、ボイドによるゲート配線のショートやSi基板の削れによる回路動作不良等が防止され、半導体素子の歩留りが向上する。また、第1実施例よりも更に工程数を削減(ホトリソグラフィ・酸化・レジスト除去の3工程)できるため、製造コストを抑制できる。   As described above, if the second embodiment of the present invention is used, the fine pitch portion can be embedded without voids while preventing the Si substrate from being scraped during HDP-CVD film formation, as in the first embodiment. As a result, short circuit of the gate wiring due to voids, circuit malfunction due to scraping of the Si substrate, and the like are prevented, and the yield of semiconductor elements is improved. Further, since the number of steps can be further reduced (three steps of photolithography, oxidation, and resist removal) as compared with the first embodiment, the manufacturing cost can be suppressed.

以上、本発明の実施例について説明したが、本発明はこれらの実施例に何ら限定されるものではなく、特許請求の範囲に示された技術的思想の範疇において変更可能なものである。
As mentioned above, although the Example of this invention was described, this invention is not limited to these Examples at all, It can change in the category of the technical idea shown by the claim.

302,402:半導体(Si)基板
306,406:シリコン窒化膜
308,408,312,412:トレンチ
316,416:第1の絶縁膜(HDP−CVD膜)
318,418:ボイド
324,424:第2の絶縁膜(HDP−CVD膜)
302, 402: Semiconductor (Si) substrates 306, 406: Silicon nitride films 308, 408, 312, 412: Trench 316, 416: First insulating film (HDP-CVD film)
318, 418: voids 324, 424: second insulating film (HDP-CVD film)

Claims (5)

STIによって素子分離を行う半導体装置の製造方法において、
半導体基板上の第1の領域に第1のトレンチ及び前記第1の領域とは異なる第2の領域に前記第1のトレンチよりも幅の広い第2のトレンチを形成する工程と;
前記第1のトレンチの内部を含む前記第1の領域を覆って第1の絶縁膜を形成するとともに、前記第2のトレンチの内部を含む前記第2の領域を覆って前記第1の絶縁膜を空孔なく形成する工程と;
前記第2の領域を覆う前記第1の絶縁膜を残存させるとともに、前記第1の領域を覆う前記第1の絶縁膜を前記第1のトレンチの内部を含めて除去する工程と;
前記第1のトレンチ内部にHDP−CVD膜である第2の絶縁膜を形成することにより当該第1のトレンチを空孔なく埋め込むとともに、前記第2の領域を覆う前記第1の絶縁膜上に前記第2の絶縁膜を形成する工程とを含むことを特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device that performs element isolation by STI,
Forming a first trench in a first region on a semiconductor substrate and a second trench having a width wider than that of the first trench in a second region different from the first region ;
Forming a first insulating film covering the first region including the inside of the first trench, and covering the second region including the inside of the second trench; Forming without voids;
Leaving the first insulating film covering the second region, and removing the first insulating film covering the first region including the inside of the first trench ;
By forming a second insulating film, which is an HDP-CVD film, inside the first trench , the first trench is embedded without voids, and the first insulating film covering the second region is formed. And a step of forming the second insulating film .
前記第1の絶縁膜は、HDP−CVD膜であることを特徴とする請求項1に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 1, wherein the first insulating film is an HDP-CVD film. 前記第1の絶縁膜を形成する際のD/S比を前記第2の絶縁膜を形成する際のD/S比よりも高くすることを特徴とする請求項2に記載の半導体装置の製造方法。   3. The semiconductor device manufacturing method according to claim 2, wherein a D / S ratio when forming the first insulating film is higher than a D / S ratio when forming the second insulating film. Method. 前記第1の領域を覆う前記第1の絶縁膜を除去する工程において、当該第1の絶縁膜内に形成された空孔を除去することを特徴とする請求項3に記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 3, wherein in the step of removing the first insulating film covering the first region, voids formed in the first insulating film are removed. Method. 前記第1の領域前記第2の領域を覆って前記第1の絶縁膜を形成する工程において、
前記第2のトレンチ部の前記第1の絶縁膜表面から前記半導体基板表面までの距離「b」が前記第1のトレンチ部の前記第1の絶縁膜表面から空孔までの距離「a」よりも長くなるようにHDP−CVD膜の形成におけるD/S比を設定し、
前記第1の領域を覆う前記第1の絶縁膜を除去する工程において、前記第1のトレンチ部の内面が表面に露出しないように当該第1の絶縁膜を残存させることを特徴とする請求項2,3又は4に記載の半導体装置の製造方法。
In the step of forming the first insulating film to cover the second region and the first region,
The distance “b” from the surface of the first insulating film to the surface of the semiconductor substrate of the second trench portion is greater than the distance “a” from the surface of the first insulating film to the hole of the first trench portion. Set the D / S ratio in the formation of the HDP-CVD film so as to be longer,
In the step of removing said first insulating film covering the first region, claims inner surface of the first trench portion is equal to or to leave the first insulating film so as not to be exposed to the surface A method for manufacturing a semiconductor device according to 2 , 3 or 4.
JP2009070772A 2009-03-23 2009-03-23 Manufacturing method of semiconductor device Expired - Fee Related JP5568244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070772A JP5568244B2 (en) 2009-03-23 2009-03-23 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070772A JP5568244B2 (en) 2009-03-23 2009-03-23 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2010225804A JP2010225804A (en) 2010-10-07
JP5568244B2 true JP5568244B2 (en) 2014-08-06

Family

ID=43042690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070772A Expired - Fee Related JP5568244B2 (en) 2009-03-23 2009-03-23 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5568244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115600A1 (en) * 2013-01-22 2014-07-31 ピーエスフォー ルクスコ エスエイアールエル Method for manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567675A (en) * 1991-09-09 1993-03-19 Hitachi Ltd Manufacture of semiconductor device
JP2002208629A (en) * 2000-11-09 2002-07-26 Toshiba Corp Semiconductor device and method for manufacturing the same
JP2004047851A (en) * 2002-07-15 2004-02-12 Renesas Technology Corp Manufacturing method for semiconductor device
US7329586B2 (en) * 2005-06-24 2008-02-12 Applied Materials, Inc. Gapfill using deposition-etch sequence
US8232176B2 (en) * 2006-06-22 2012-07-31 Applied Materials, Inc. Dielectric deposition and etch back processes for bottom up gapfill
JP2008103645A (en) * 2006-10-20 2008-05-01 Toshiba Corp Production method of semiconductor device

Also Published As

Publication number Publication date
JP2010225804A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
US7615494B2 (en) Method for fabricating semiconductor device including plug
JP2008227360A (en) Method for manufacturing semiconductor device
JP4751083B2 (en) Semiconductor device and manufacturing method thereof
US7772112B2 (en) Method of manufacturing a semiconductor device
JP2001257259A (en) Method of forming element isolating structure
JP2000188330A (en) Formation of dual-damascene wire
US7595252B2 (en) Method of manufacturing a semiconductor memory device
JP5568244B2 (en) Manufacturing method of semiconductor device
JP4039504B2 (en) Manufacturing method of semiconductor device
KR20060083249A (en) Method of forming field oxide in flash memory device
JP2005150681A (en) Method for forming metal wiring of semiconductor device
KR100620707B1 (en) Method for Forming Shallow Trench Isolation of Semiconductor Device
KR101006508B1 (en) Method for forming element isolation layer of semiconductor device
US7214596B2 (en) Method for the fabrication of isolation structures
KR100656281B1 (en) Method for gapfilling in semiconductor device using deposition-etch-etch-deposition
KR100751686B1 (en) Method of forming a shallow trench isolation in a NAND flash memory device
JP2006351890A (en) Method of manufacturing element isolation structure unit
JP2007049148A (en) Semiconductor element provided with barrier metal spacer and its manufacturing method
JP2005197694A (en) Process for forming interconnection of semiconductor integrated circuit
JP4967207B2 (en) Manufacturing method of semiconductor device
JP2024135307A (en) Semiconductor device and its manufacturing method
KR100753033B1 (en) Method for fabricating semiconductor device
JP2003023066A (en) Manufacturing method for semiconductor device
KR100984854B1 (en) Method for forming element isolation layer of semiconductor device
KR101046376B1 (en) Device Separating Method of Semiconductor Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130708

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5568244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees