JP5568019B2 - 原子共振器を使用した周波数発生のためのデバイス、システム、および方法 - Google Patents
原子共振器を使用した周波数発生のためのデバイス、システム、および方法 Download PDFInfo
- Publication number
- JP5568019B2 JP5568019B2 JP2010545606A JP2010545606A JP5568019B2 JP 5568019 B2 JP5568019 B2 JP 5568019B2 JP 2010545606 A JP2010545606 A JP 2010545606A JP 2010545606 A JP2010545606 A JP 2010545606A JP 5568019 B2 JP5568019 B2 JP 5568019B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency signal
- frequency
- solid
- atomic
- clock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B17/00—Generation of oscillations using radiation source and detector, e.g. with interposed variable obturator
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F5/00—Apparatus for producing preselected time intervals for use as timing standards
- G04F5/14—Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F5/00—Apparatus for producing preselected time intervals for use as timing standards
- G04F5/14—Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
- G04F5/145—Apparatus for producing preselected time intervals for use as timing standards using atomic clocks using Coherent Population Trapping
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B19/00—Generation of oscillations by non-regenerative frequency multiplication or division of a signal from a separate source
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/26—Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Ecology (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US2674408P | 2008-02-07 | 2008-02-07 | |
| US61/026,744 | 2008-02-07 | ||
| PCT/IL2009/000131 WO2009098686A2 (en) | 2008-02-07 | 2009-02-05 | Device, system, and method of frequency generation using an atomic resonator |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2011526744A JP2011526744A (ja) | 2011-10-13 |
| JP2011526744A5 JP2011526744A5 (enExample) | 2012-03-29 |
| JP5568019B2 true JP5568019B2 (ja) | 2014-08-06 |
Family
ID=40674209
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2010545606A Expired - Fee Related JP5568019B2 (ja) | 2008-02-07 | 2009-02-05 | 原子共振器を使用した周波数発生のためのデバイス、システム、および方法 |
Country Status (6)
| Country | Link |
|---|---|
| US (4) | US8299858B2 (enExample) |
| EP (1) | EP2255441A2 (enExample) |
| JP (1) | JP5568019B2 (enExample) |
| CN (1) | CN101990742A (enExample) |
| BR (1) | BRPI0908763A2 (enExample) |
| WO (1) | WO2009098686A2 (enExample) |
Families Citing this family (118)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT505470B1 (de) * | 2007-06-15 | 2010-09-15 | Univ Graz Tech | Verfahren und vorrichtung zum messen von magnetfeldern |
| WO2009098686A2 (en) | 2008-02-07 | 2009-08-13 | Lahav Gan | Device, system, and method of frequency generation using an atomic resonator |
| US9360844B2 (en) | 2008-02-07 | 2016-06-07 | Dimension 4 Ltd. | Apparatus, system, and method of frequency generation using an atomic resonator |
| JP5609130B2 (ja) * | 2010-02-02 | 2014-10-22 | セイコーエプソン株式会社 | 原子発振器 |
| US8778416B2 (en) | 2010-02-10 | 2014-07-15 | Nayacure Therapeutics Ltd. | Pharmaceutical compositions and methods for the treatment and prevention of cancer |
| JP5699467B2 (ja) * | 2010-07-14 | 2015-04-08 | セイコーエプソン株式会社 | 光学モジュールおよび原子発振器 |
| WO2012116427A1 (en) | 2011-03-01 | 2012-09-07 | National Research Council Of Canada | Frequency stabilization of an atomic clock against variations of the c-field |
| JP6056118B2 (ja) * | 2011-03-23 | 2017-01-11 | セイコーエプソン株式会社 | 光学モジュール及び原子発振器 |
| JP2013098607A (ja) * | 2011-10-28 | 2013-05-20 | Seiko Epson Corp | 原子発振器 |
| GB2515226A (en) | 2012-04-13 | 2014-12-17 | Univ California | Gyroscopes based on nitrogen-vacancy centers in diamond |
| US9052698B1 (en) | 2012-06-27 | 2015-06-09 | University Of South Florida | Atomic clock using a photodetector |
| US8816784B1 (en) * | 2012-06-27 | 2014-08-26 | University Of South Florida | Silicon-based atomic clocks |
| US20140028405A1 (en) * | 2012-07-27 | 2014-01-30 | Qualcomm Incorporated | Low power microfabricated atomic clock |
| US9219938B2 (en) * | 2012-11-01 | 2015-12-22 | Wheatstone Corporation | System and method for routing digital audio data using highly stable clocks |
| CN102944854A (zh) * | 2012-11-16 | 2013-02-27 | 江汉大学 | 用于测量剩场量绝对值的测量系统及其测量方法 |
| JP6346446B2 (ja) | 2013-02-14 | 2018-06-20 | 株式会社リコー | 原子発振器、cpt共鳴の検出方法及び磁気センサ |
| JP6028922B2 (ja) * | 2013-02-15 | 2016-11-24 | セイコーエプソン株式会社 | 量子干渉装置および原子発振器 |
| US9753102B1 (en) * | 2013-02-28 | 2017-09-05 | University Of South Florida | Silicon-based magnetometer |
| RU2529756C1 (ru) * | 2013-05-06 | 2014-09-27 | Открытое акционерное общество "Российский институт радионавигации и времени" | Квантовый стандарт частоты на основе эффекта когерентного пленения населенности |
| US9325334B2 (en) * | 2013-06-12 | 2016-04-26 | Texas Instruments Incorporated | IC, process, device generating frequency reference from RF gas absorption |
| US20140373599A1 (en) * | 2013-06-25 | 2014-12-25 | Texas Instruments Incorporated | Detection and locking to the absorption spectra of gasses using quartz enhanced photoacoustic sprectroscopy |
| JP2015089055A (ja) * | 2013-11-01 | 2015-05-07 | セイコーエプソン株式会社 | 光学モジュールおよび原子発振器 |
| CN103809426B (zh) * | 2014-03-13 | 2017-02-15 | 北京大学 | 单电子原子光钟及其制备方法 |
| US9245551B2 (en) | 2014-03-18 | 2016-01-26 | Seagate Technology Llc | Nitrogen-vacancy nanocrystal magnetic source sensor |
| US9910105B2 (en) | 2014-03-20 | 2018-03-06 | Lockheed Martin Corporation | DNV magnetic field detector |
| US10088336B2 (en) | 2016-01-21 | 2018-10-02 | Lockheed Martin Corporation | Diamond nitrogen vacancy sensed ferro-fluid hydrophone |
| US9551763B1 (en) | 2016-01-21 | 2017-01-24 | Lockheed Martin Corporation | Diamond nitrogen vacancy sensor with common RF and magnetic fields generator |
| US10006973B2 (en) | 2016-01-21 | 2018-06-26 | Lockheed Martin Corporation | Magnetometer with a light emitting diode |
| US9557391B2 (en) | 2015-01-23 | 2017-01-31 | Lockheed Martin Corporation | Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system |
| US9853837B2 (en) | 2014-04-07 | 2017-12-26 | Lockheed Martin Corporation | High bit-rate magnetic communication |
| US9824597B2 (en) | 2015-01-28 | 2017-11-21 | Lockheed Martin Corporation | Magnetic navigation methods and systems utilizing power grid and communication network |
| US9829545B2 (en) | 2015-11-20 | 2017-11-28 | Lockheed Martin Corporation | Apparatus and method for hypersensitivity detection of magnetic field |
| US10338162B2 (en) | 2016-01-21 | 2019-07-02 | Lockheed Martin Corporation | AC vector magnetic anomaly detection with diamond nitrogen vacancies |
| US9638821B2 (en) | 2014-03-20 | 2017-05-02 | Lockheed Martin Corporation | Mapping and monitoring of hydraulic fractures using vector magnetometers |
| US10168393B2 (en) | 2014-09-25 | 2019-01-01 | Lockheed Martin Corporation | Micro-vacancy center device |
| US20170212046A1 (en) * | 2016-01-21 | 2017-07-27 | Lockheed Martin Corporation | Measurement parameters for qc metrology of synthetically generated diamond with nv centers |
| US9910104B2 (en) | 2015-01-23 | 2018-03-06 | Lockheed Martin Corporation | DNV magnetic field detector |
| US9614589B1 (en) | 2015-12-01 | 2017-04-04 | Lockheed Martin Corporation | Communication via a magnio |
| US9869731B1 (en) * | 2014-03-31 | 2018-01-16 | The Regents Of The University Of California | Wavelength-modulated coherence pumping and hyperfine repumping for an atomic magnetometer |
| CA2945016A1 (en) | 2014-04-07 | 2015-10-15 | Lockheed Martin Corporation | Energy efficient controlled magnetic field generator circuit |
| EP3248021A4 (en) * | 2015-01-23 | 2018-12-12 | Lockheed Martin Corporation | Dnv magnetic field detector |
| EP3251193A4 (en) | 2015-01-28 | 2018-08-08 | Lockheed Martin Corporation | In-situ power charging |
| US11487871B2 (en) * | 2015-01-31 | 2022-11-01 | San Diego Gas & Electric Company | Methods and systems for detecting and defending against invalid time signals |
| US10310091B2 (en) * | 2015-01-31 | 2019-06-04 | Southwest Research Institute | GPS-based time stamp system |
| WO2016126436A1 (en) | 2015-02-04 | 2016-08-11 | Lockheed Martin Corporation | Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system |
| WO2016126435A1 (en) | 2015-02-04 | 2016-08-11 | Lockheed Martin Corporation | Apparatus and method for estimating absolute axes' orientations for a magnetic detection system |
| SG11201706982YA (en) * | 2015-02-27 | 2017-09-28 | Univ Yale | Techniques of oscillator control for quantum information processing and related systems and methods |
| EP3262770B1 (en) | 2015-02-27 | 2024-04-03 | Yale University | Techniques for universal quantum control of quantum coherent states and related systems and methods |
| EP3325404A4 (en) | 2015-07-24 | 2019-03-27 | Yale University | TECHNIQUES FOR OSCILLATOR STATUS MANIPULATION FOR QUANTUM INFORMATION PROCESSING AND RELATED SYSTEMS AND METHODS |
| US9589236B1 (en) * | 2015-09-28 | 2017-03-07 | International Business Machines Corporation | High fidelity and high efficiency qubit readout scheme |
| WO2017062735A1 (en) * | 2015-10-08 | 2017-04-13 | President And Fellows Of Harvard College | Ultrahigh resolution dynamic ic chip activity detection for hardware security |
| WO2017078766A1 (en) | 2015-11-04 | 2017-05-11 | Lockheed Martin Corporation | Magnetic band-pass filter |
| CN105403845A (zh) * | 2015-11-19 | 2016-03-16 | 江汉大学 | 一种电磁感应测量装置 |
| WO2017087013A1 (en) * | 2015-11-20 | 2017-05-26 | Lockheed Martin Corporation | Apparatus and method for closed loop processing for a magnetic detection system |
| CN105610440A (zh) * | 2015-12-17 | 2016-05-25 | 北京无线电计量测试研究所 | 一种调整cpt原子频率标准的方法及装置 |
| WO2017123261A1 (en) | 2016-01-12 | 2017-07-20 | Lockheed Martin Corporation | Defect detector for conductive materials |
| AU2016387312A1 (en) | 2016-01-21 | 2018-09-06 | Lockheed Martin Corporation | Magnetometer with light pipe |
| WO2017127096A1 (en) | 2016-01-21 | 2017-07-27 | Lockheed Martin Corporation | Diamond nitrogen vacancy sensor with dual rf sources |
| WO2017127090A1 (en) | 2016-01-21 | 2017-07-27 | Lockheed Martin Corporation | Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control |
| EP3405603A4 (en) | 2016-01-21 | 2019-10-16 | Lockheed Martin Corporation | DIAMOND NITROGEN SENSOR WITH SWITCHING ON DIAMOND |
| JP6655415B2 (ja) * | 2016-02-16 | 2020-02-26 | ルネサスエレクトロニクス株式会社 | 磁気計測装置 |
| CN105912786A (zh) * | 2016-04-14 | 2016-08-31 | 江汉大学 | 一种外部场强激励式原子频标仿真系统 |
| EP3242139B1 (en) * | 2016-05-04 | 2018-06-13 | Julius-Maximilians-Universität Würzburg | Method and apparatus for determining a magnetic field |
| US10338163B2 (en) | 2016-07-11 | 2019-07-02 | Lockheed Martin Corporation | Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation |
| US10677953B2 (en) | 2016-05-31 | 2020-06-09 | Lockheed Martin Corporation | Magneto-optical detecting apparatus and methods |
| US10330744B2 (en) | 2017-03-24 | 2019-06-25 | Lockheed Martin Corporation | Magnetometer with a waveguide |
| US10145910B2 (en) | 2017-03-24 | 2018-12-04 | Lockheed Martin Corporation | Photodetector circuit saturation mitigation for magneto-optical high intensity pulses |
| US10408890B2 (en) | 2017-03-24 | 2019-09-10 | Lockheed Martin Corporation | Pulsed RF methods for optimization of CW measurements |
| US10228429B2 (en) | 2017-03-24 | 2019-03-12 | Lockheed Martin Corporation | Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing |
| US10371765B2 (en) | 2016-07-11 | 2019-08-06 | Lockheed Martin Corporation | Geolocation of magnetic sources using vector magnetometer sensors |
| US10281550B2 (en) | 2016-11-14 | 2019-05-07 | Lockheed Martin Corporation | Spin relaxometry based molecular sequencing |
| US10571530B2 (en) | 2016-05-31 | 2020-02-25 | Lockheed Martin Corporation | Buoy array of magnetometers |
| US10359479B2 (en) | 2017-02-20 | 2019-07-23 | Lockheed Martin Corporation | Efficient thermal drift compensation in DNV vector magnetometry |
| US10345395B2 (en) | 2016-12-12 | 2019-07-09 | Lockheed Martin Corporation | Vector magnetometry localization of subsurface liquids |
| US20170343621A1 (en) | 2016-05-31 | 2017-11-30 | Lockheed Martin Corporation | Magneto-optical defect center magnetometer |
| US10527746B2 (en) | 2016-05-31 | 2020-01-07 | Lockheed Martin Corporation | Array of UAVS with magnetometers |
| US10345396B2 (en) | 2016-05-31 | 2019-07-09 | Lockheed Martin Corporation | Selected volume continuous illumination magnetometer |
| US10274550B2 (en) | 2017-03-24 | 2019-04-30 | Lockheed Martin Corporation | High speed sequential cancellation for pulsed mode |
| US10317279B2 (en) | 2016-05-31 | 2019-06-11 | Lockheed Martin Corporation | Optical filtration system for diamond material with nitrogen vacancy centers |
| WO2018089455A1 (en) | 2016-11-08 | 2018-05-17 | Massachusetts Institute Of Technology | Methods and apparatus for optically detecting magnetic resonance |
| CN106325049A (zh) * | 2016-11-08 | 2017-01-11 | 中北大学 | 端面耦合纳米光波导双光路芯片级原子钟 |
| WO2018089850A1 (en) | 2016-11-10 | 2018-05-17 | Liang Jiang | Generalized quantum channels |
| CN106405450A (zh) * | 2016-12-05 | 2017-02-15 | 中北大学 | 端面耦合纳米光波导双光路芯片级磁强计 |
| CN106405449A (zh) * | 2016-12-05 | 2017-02-15 | 中北大学 | 垂直耦合纳米光波导双光路芯片级磁强计 |
| US10459041B2 (en) | 2017-03-24 | 2019-10-29 | Lockheed Martin Corporation | Magnetic detection system with highly integrated diamond nitrogen vacancy sensor |
| US10379174B2 (en) | 2017-03-24 | 2019-08-13 | Lockheed Martin Corporation | Bias magnet array for magnetometer |
| US10371760B2 (en) | 2017-03-24 | 2019-08-06 | Lockheed Martin Corporation | Standing-wave radio frequency exciter |
| US10338164B2 (en) | 2017-03-24 | 2019-07-02 | Lockheed Martin Corporation | Vacancy center material with highly efficient RF excitation |
| DE102017205268A1 (de) * | 2017-03-29 | 2018-10-04 | Robert Bosch Gmbh | Verfahren zum Fertigen einer Kristallkörpereinheit für eine Sensorvorrichtung, Verfahren zum Herstellen einer Sensorvorrichtung, System und Verfahren zum Erfassen einer Messgröße sowie Sensorvorrichtung |
| US20190018085A1 (en) * | 2017-07-11 | 2019-01-17 | Lockheed Martin Corporation | Magnetometer with thermal electric cooling of the excitation light source |
| SG11202005645RA (en) | 2018-01-05 | 2020-07-29 | Univ Yale | Robust quantum logical gates |
| FR3078169B1 (fr) * | 2018-02-16 | 2020-03-13 | Thales | Dispositif et procede d'analyse en frequence d'un signal |
| US10749539B2 (en) | 2018-03-26 | 2020-08-18 | Honeywell International Inc. | Apparatus and method for a vapor cell atomic frequency reference |
| TR201806136A2 (tr) * | 2018-04-30 | 2018-05-21 | Tuerk Telekomuenikasyon A S | Kuantum nv-elmas atom saati̇ |
| DE102018208102A1 (de) * | 2018-05-23 | 2019-11-28 | Robert Bosch Gmbh | Vorrichtung und Verfahren zum Bereitstellen eines Zeitsignals |
| JP2021536565A (ja) * | 2018-08-27 | 2021-12-27 | マサチューセッツ インスティテュート オブ テクノロジー | アンサンブル固体スピンセンサのマイクロ波共振器読み出し |
| US10564201B1 (en) * | 2018-12-31 | 2020-02-18 | Quantum Valley Ideas Laboratories | Testing antenna systems |
| JP7504422B2 (ja) * | 2019-03-04 | 2024-06-24 | 学校法人沖縄科学技術大学院大学学園 | 超低雑音極低温マイクロ波増幅 |
| CN110133545A (zh) * | 2019-04-29 | 2019-08-16 | 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) | 一种基于nv色心的光纤磁场传感系统 |
| CN110400609A (zh) * | 2019-07-29 | 2019-11-01 | 内蒙古科技大学 | 纳米金刚石稀土空位色心性能的预测方法 |
| US11988727B1 (en) | 2019-07-31 | 2024-05-21 | Hrl Laboratories, Llc | Magnetostrictive MEMS magnetic gradiometer |
| US11567147B1 (en) | 2019-07-31 | 2023-01-31 | Hrl Laboratories, Llc | Phononic comb enhanced gradiometers |
| US11747512B1 (en) | 2019-08-23 | 2023-09-05 | Hrl Laboratories, Llc | Phononic comb enhanced MEMS gravity gradiometers |
| US11156897B2 (en) | 2019-09-23 | 2021-10-26 | Hrl Laboratories, Llc | Enhanced stability oscillators using a phononic comb |
| US11575348B1 (en) | 2020-08-26 | 2023-02-07 | Hrl Laboratories, Llc | Phononic comb enhanced capacitive inductive sensor |
| US11431293B1 (en) | 2020-09-25 | 2022-08-30 | Hrl Laboratories, Llc | Noise suppression in a phononic comb |
| US11863194B1 (en) | 2021-02-02 | 2024-01-02 | Hrl Laboratories, Llc | Phononic comb enhanced atomic clock |
| US11606098B1 (en) | 2021-02-23 | 2023-03-14 | Hrl Laboratories, Llc | Comb enhanced oscillator with AM-to-PM noise suppression |
| US12206422B2 (en) | 2021-06-07 | 2025-01-21 | University Of Science And Technology Of China | Method for implementing atomic clock based on NV-15N coupling spin system in diamond and device |
| US12483224B1 (en) | 2021-07-16 | 2025-11-25 | Hrl Laboratories, Llc | Acoustically coupled dual resonators for phononic frequency comb generation |
| US11841739B2 (en) * | 2021-12-10 | 2023-12-12 | Orolia Switzerland S.A. | Modular software defined atomic clock systems and methods thereof |
| US11533101B1 (en) * | 2022-02-08 | 2022-12-20 | Quantum Valley Ideas Laboratories | Communicating information using photonic crystal masers |
| US12373721B2 (en) * | 2022-02-22 | 2025-07-29 | The University Of Chicago | Controlled photon Fock state generation using arbitrarily weak photonic nonlinearities |
| CN115097711B (zh) * | 2022-05-24 | 2023-03-07 | 电子科技大学 | 一种基于铯原子拉比共振的铯原子钟微波信号功率稳定系统 |
| US12160240B2 (en) | 2022-07-29 | 2024-12-03 | Hrl Laboratories, Llc | Method and system for generating phononic frequency comb |
| US12191867B1 (en) | 2022-09-08 | 2025-01-07 | Hrl Laboratories, Llc | In-situ phase noise compensation for phononic frequency combs |
| US12346069B2 (en) | 2022-11-16 | 2025-07-01 | University Of South Florida | Atomic clock utilizing spin-dependent recombination |
| CN115561988B (zh) * | 2022-12-06 | 2023-03-07 | 浙江赛思电子科技有限公司 | 一种授时终端及其授时系统和方法 |
Family Cites Families (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0275063A3 (en) * | 1987-01-12 | 1992-05-27 | Sumitomo Electric Industries Limited | Light emitting element comprising diamond and method for producing the same |
| JP3333400B2 (ja) * | 1996-09-17 | 2002-10-15 | 株式会社東芝 | 光素子 |
| US6380844B2 (en) * | 1998-08-26 | 2002-04-30 | Frederick Pelekis | Interactive remote control toy |
| JP3780123B2 (ja) * | 1999-07-22 | 2006-05-31 | 富士通株式会社 | 原子発振器 |
| WO2003088472A2 (en) * | 2002-04-09 | 2003-10-23 | California Institute Of Technology | Atomic clock based on an opto-electronic oscillator |
| US7030704B2 (en) * | 2003-08-26 | 2006-04-18 | California Institute Of Technology | Method and apparatus for a solid-state atomic frequency standard |
| JP2007036555A (ja) * | 2005-07-26 | 2007-02-08 | Seiko Epson Corp | 発振器における加熱構造、発振器、及び、電子機器 |
| US7142066B1 (en) * | 2005-12-30 | 2006-11-28 | Intel Corporation | Atomic clock |
| CN100564243C (zh) * | 2006-01-13 | 2009-12-02 | 中国科学院上海微系统与信息技术研究所 | 一种低温圆片级微型气体盒的制作方法 |
| JP2007228225A (ja) * | 2006-02-23 | 2007-09-06 | Seiko Epson Corp | 弾性表面波デバイス |
| US7468637B2 (en) * | 2006-04-19 | 2008-12-23 | Sarnoff Corporation | Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock |
| JP4720635B2 (ja) * | 2006-06-14 | 2011-07-13 | エプソントヨコム株式会社 | 原子発振器、受動形原子発振器、原子発振器の温度制御方法及び受動形原子発振器の温度制御方法 |
| US9360844B2 (en) | 2008-02-07 | 2016-06-07 | Dimension 4 Ltd. | Apparatus, system, and method of frequency generation using an atomic resonator |
| WO2009098686A2 (en) | 2008-02-07 | 2009-08-13 | Lahav Gan | Device, system, and method of frequency generation using an atomic resonator |
| JP4807397B2 (ja) | 2008-10-10 | 2011-11-02 | Tdk株式会社 | バルントランス |
| US7825736B2 (en) * | 2008-12-18 | 2010-11-02 | Princeton University | Method for suppressing light shift in optical pumping systems |
-
2009
- 2009-02-05 WO PCT/IL2009/000131 patent/WO2009098686A2/en not_active Ceased
- 2009-02-05 BR BRPI0908763-0A patent/BRPI0908763A2/pt active Search and Examination
- 2009-02-05 JP JP2010545606A patent/JP5568019B2/ja not_active Expired - Fee Related
- 2009-02-05 US US12/866,264 patent/US8299858B2/en not_active Expired - Fee Related
- 2009-02-05 EP EP09707585A patent/EP2255441A2/en not_active Withdrawn
- 2009-02-05 CN CN2009801122874A patent/CN101990742A/zh active Pending
-
2012
- 2012-08-29 US US13/597,369 patent/US8587382B2/en not_active Expired - Fee Related
-
2013
- 2013-10-17 US US14/056,095 patent/US9201403B2/en not_active Expired - Fee Related
-
2015
- 2015-10-27 US US14/923,907 patent/US9685909B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| US8299858B2 (en) | 2012-10-30 |
| WO2009098686A3 (en) | 2009-11-05 |
| BRPI0908763A2 (pt) | 2015-07-28 |
| US9201403B2 (en) | 2015-12-01 |
| JP2011526744A (ja) | 2011-10-13 |
| US9685909B2 (en) | 2017-06-20 |
| US8587382B2 (en) | 2013-11-19 |
| CN101990742A (zh) | 2011-03-23 |
| WO2009098686A2 (en) | 2009-08-13 |
| EP2255441A2 (en) | 2010-12-01 |
| US20140104008A1 (en) | 2014-04-17 |
| US20120326793A1 (en) | 2012-12-27 |
| US20160218672A1 (en) | 2016-07-28 |
| US20100321117A1 (en) | 2010-12-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5568019B2 (ja) | 原子共振器を使用した周波数発生のためのデバイス、システム、および方法 | |
| US9360844B2 (en) | Apparatus, system, and method of frequency generation using an atomic resonator | |
| Merimaa et al. | All-optical atomic clock based on coherent population trapping in 85Rb | |
| Hong | Optical frequency standards for time and length applications | |
| Abdel Hafiz et al. | Symmetric autobalanced Ramsey interrogation for high-performance coherent-population-trapping vapor-cell atomic clock | |
| Miletic et al. | AC Stark-shift in CPT-based Cs miniature atomic clocks | |
| US6806784B2 (en) | Miniature frequency standard based on all-optical excitation and a micro-machined containment vessel | |
| Vicarini et al. | Demonstration of the mass-producible feature of a Cs vapor microcell technology for miniature atomic clocks | |
| Kang et al. | Demonstration of a high-performance pulsed optically pumped Rb clock based on a compact magnetron-type microwave cavity | |
| Tamm et al. | Spectroscopy of the electric-quadrupole transition 2 S 1/2 (F= 0)–2 D 3/2 (F= 2) in trapped 171 Yb+ | |
| Lutwak et al. | The chip-scale atomic clock-coherent population trapping vs. conventional interrogation | |
| Batori et al. | μ POP clock: A microcell atomic clock based on a double-resonance Ramsey scheme | |
| Formichella et al. | Influence of the ac-Stark shift on GPS atomic clock timekeeping | |
| Boudot et al. | Coherent population trapping resonances in Cs–Ne vapor microcells for miniature clocks applications | |
| Schmittberger et al. | A review of contemporary atomic frequency standards | |
| Zhang et al. | The development of active optical clock | |
| WO2014108845A1 (en) | Apparatus, system, and method of frequency generation using an atomic resonator | |
| Shi et al. | Dual-frequency optical-microwave atomic clocks based on cesium atoms | |
| Zibrov et al. | Three-photon-absorption resonance for all-optical atomic clocks | |
| Klinger et al. | Cs microcell optical reference at 459 nm with short-term frequency stability below 2× 10− 13 | |
| Deng et al. | Effect of buffer gas ratios on the relationship between cell temperature and frequency shifts of the coherent population trapping resonance | |
| Hollberg | Atomic clocks for GNSS | |
| Knappe et al. | Long-term stability of NIST chip-scale atomic clock physics packages | |
| Buell | Laser-pumped and laser-cooled atomic clocks for space applications | |
| Knappe et al. | Microfabricated atomic frequency references |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120202 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120202 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130131 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130627 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20131004 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20131011 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131226 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140218 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140502 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140527 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140620 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5568019 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |