JP5566420B2 - Gas alarm - Google Patents

Gas alarm Download PDF

Info

Publication number
JP5566420B2
JP5566420B2 JP2012109506A JP2012109506A JP5566420B2 JP 5566420 B2 JP5566420 B2 JP 5566420B2 JP 2012109506 A JP2012109506 A JP 2012109506A JP 2012109506 A JP2012109506 A JP 2012109506A JP 5566420 B2 JP5566420 B2 JP 5566420B2
Authority
JP
Japan
Prior art keywords
self
sensor
temperature
gas
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012109506A
Other languages
Japanese (ja)
Other versions
JP2012155761A (en
Inventor
一茂 笹崎
和行 守谷
彰一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2012109506A priority Critical patent/JP5566420B2/en
Publication of JP2012155761A publication Critical patent/JP2012155761A/en
Application granted granted Critical
Publication of JP5566420B2 publication Critical patent/JP5566420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Emergency Alarm Devices (AREA)

Description

本発明は、例えばプロトン導電体膜を用いた電気化学式ガスセンサのように、水容器に蓄えた水の水分を利用した反応により雰囲気の対象ガス濃度を検出する電気化学式ガスセンサを備えたガス警報器に関する。   The present invention relates to a gas alarm including an electrochemical gas sensor that detects a target gas concentration in an atmosphere by a reaction using water content stored in a water container, such as an electrochemical gas sensor using a proton conductor film. .

燃焼機器の不完全燃焼等によるCOガスを検出し警報するCO警報器のように、周辺雰囲気中のCO濃度を測定する装置として、従来から、電気化学式COセンサを内蔵したものが知られている。   2. Description of the Related Art Conventionally, devices that incorporate an electrochemical CO sensor have been known as devices for measuring the CO concentration in the surrounding atmosphere, such as a CO alarm device that detects and alarms CO gas due to incomplete combustion or the like of combustion equipment. .

図4に断面図で示すように、この電気化学式COセンサ1は、内部に水5が収容された金属缶2の上部開口4にプロトン導電体膜3を設置して、その対極32を金属缶2内に露出させると共に、反対側の検知極31にガス吸着フィルタ8cを内蔵した金属キャップ8を重ねて金属缶2の上部開口4にかしめ固定して構成されている。   As shown in a cross-sectional view in FIG. 4, this electrochemical CO sensor 1 has a proton conductor film 3 installed in an upper opening 4 of a metal can 2 in which water 5 is accommodated, and a counter electrode 32 as a metal can. The metal cap 8 having the gas adsorption filter 8 c built in is overlapped with the detection electrode 31 on the opposite side and is caulked and fixed to the upper opening 4 of the metal can 2.

上述した構成の電気化学式COセンサ1では、周辺雰囲気中のCOが、金属キャップ8の導入孔8aから内部に導入されて、活性炭やシリカゲル、ゼオライト等からなるガス吸着フィルタ8cや導出孔8b、そして、金属キャップ8とプロトン導電体膜3との間に介設した金属製の拡散防止板7の拡散制御孔7aを通過して検知極31に到達し、ここで、対極32側からプロトン導電体膜3に供給される金属缶2内の水5の水分を利用した酸化反応を起こして、検知極31にプロトン(2H+
)と電子(2e- )を発生させる。
In the electrochemical CO sensor 1 having the above-described configuration, CO in the ambient atmosphere is introduced into the inside through the introduction hole 8a of the metal cap 8, and the gas adsorption filter 8c and the discharge hole 8b made of activated carbon, silica gel, zeolite, and the like, and Then, it passes through the diffusion control hole 7a of the metal diffusion prevention plate 7 interposed between the metal cap 8 and the proton conductor film 3, and reaches the detection electrode 31, where the proton conductor from the counter electrode 32 side. An oxidation reaction using the water of the water 5 in the metal can 2 supplied to the membrane 3 is caused, and protons (2H +
) And electrons (2e-).

検知極31に発生した電子(2e- )はプロトン導電体膜3の内部を通過できないので検知極31に滞留し、一方、プロトン(2H+
)は、プロトン導電体膜3の内部を通過して対極32に移動し、ここで、容器2内の酸素と還元反応を起こして、対極32に水(H2 O)を生成する。
Electrons (2e−) generated at the sensing electrode 31 cannot pass through the proton conductor film 3 and thus stay at the sensing electrode 31, while protons (2H +)
) Passes through the proton conductor film 3 and moves to the counter electrode 32, where it undergoes a reduction reaction with oxygen in the container 2 to generate water (H 2 O) at the counter electrode 32.

したがって、検知極31と電気的に接続されてそのターミナルとして機能する金属キャップ8と、拡散防止板7を介して対極32と電気的に接続されてそのターミナルとして機能する金属缶2との間に負荷(図示せず)を接続すると、検知極31に滞留した電子(2e- )の対極32に向かう流れが負荷に生じ、これにより対極32から負荷を経て検知極31に向かう短絡電流の流れが生じるので、この負荷に流れる短絡電流を電流−電圧変換することで、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号が得られる(例えば特許文献1,2)。   Therefore, between the metal cap 8 that is electrically connected to the detection electrode 31 and functions as its terminal, and the metal can 2 that is electrically connected to the counter electrode 32 via the diffusion prevention plate 7 and functions as its terminal. When a load (not shown) is connected, a flow of electrons (2e−) staying at the detection electrode 31 toward the counter electrode 32 is generated in the load, whereby a short-circuit current flows from the counter electrode 32 to the detection electrode 31 through the load. Therefore, a CO concentration signal having a voltage value corresponding to the CO concentration in the ambient atmosphere can be obtained by current-voltage conversion of the short-circuit current flowing through the load (for example, Patent Documents 1 and 2).

また、上記同様に水容器に蓄えた水の水分を利用するガスセンサとして、2つの電極間にイオン伝導固体電解膜を備えるとともに、イオン伝導固体電解膜に一定の相対湿度を維持するように水を充填した水容器を備えたガスセンサがある(例えば特許文献3)。   Also, as described above, as a gas sensor that utilizes the water content of water stored in a water container, an ion conductive solid electrolytic membrane is provided between two electrodes, and water is supplied to the ion conductive solid electrolytic membrane so as to maintain a constant relative humidity. There is a gas sensor provided with a filled water container (for example, Patent Document 3).

特開2004−170101号公報JP 2004-170101 A 特開2004−279293号公報JP 2004-279293 A 特開2000−146908号公報JP 2000-146908 A

前記電気化学式COセンサは、それ自身では、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号を生成するために外部からの電力供給を必要としないことから、電池によって長期間駆動する必要のあるCO警報器での利用に適している。その反面、COセンサ1は水5を使ってCO濃度を検出しているので、水5が蒸発などにより減少すると検知極32aに充分に水5が供給できなくなり、正確にCO濃度を検出できないという問題がある。そこで、従来、COセンサ1の充放電の特性を利用して水の減少を検出する自己診断を行うものがある。   Since the electrochemical CO sensor itself does not require an external power supply to generate a CO concentration signal having a voltage value corresponding to the CO concentration in the surrounding atmosphere, it needs to be driven by a battery for a long period of time. Suitable for use with CO alarms with On the other hand, since the CO sensor 1 detects the CO concentration using the water 5, if the water 5 decreases due to evaporation or the like, the water 5 cannot be sufficiently supplied to the detection electrode 32a, and the CO concentration cannot be detected accurately. There's a problem. Therefore, there is a conventional self-diagnosis that detects a decrease in water using the charge / discharge characteristics of the CO sensor 1.

しかしながら、特に極低温環境において、金属缶2の上部開口4のかしめ部分等に侵入した水が凝固して膨張し、電極と導電体膜の接触が離れ、断線と同様な現象を起こすことがある。このような現象があっても低温から常温に戻ればセンサは正常に戻る。すなわち、水が十分に有るにもかかわらず自己診断でエラーとなることがある。なお、この自己診断によるエラーは水の枯渇を検出するもの、すなわち警報器の劣化を判断するものであるため、多くの警報器ではこのエラーが発生した場合には以後復帰することがなく不都合が生じる。   However, particularly in a cryogenic environment, the water that has entered the caulking portion of the upper opening 4 of the metal can 2 solidifies and expands, and the contact between the electrode and the conductor film may be separated, resulting in a phenomenon similar to disconnection. . Even if such a phenomenon occurs, the sensor returns to normal when the temperature returns from low temperature to room temperature. That is, an error may occur in self-diagnosis even though there is sufficient water. The error due to this self-diagnosis is to detect the depletion of water, that is, to judge the deterioration of the alarm device. Therefore, in many alarm devices, if this error occurs, there will be no inconvenience since it will not be restored. Arise.

本発明は、上記のような問題点に着目し、自己診断による不本意なエラー発生を防止して管理のし易いガス警報器を提供することを課題とする。   An object of the present invention is to provide a gas alarm device that is easy to manage by preventing the occurrence of unintentional errors due to self-diagnosis, focusing on the above problems.

請求項1のガス警報器は、 水容器に蓄えた水の水分を利用した反応により雰囲気の対象ガス濃度を検出する電気化学式ガスセンサを備え、前記ガスセンサの異常を検出する自己診断機能を有するとともに、前記ガスセンサの温度を判断して前記自己診断機能の実行と該自己診断機能の禁止とを選択的に実行する機能を有し、該ガスセンサの温度が氷点以下でないと判断されたときは前記自己診断機能の実行を選択し、該ガスセンサの温度が氷点以下であると判断されたときは前記自己診断機能の禁止を選択するガス警報器であって、前記ガスセンサの温度が氷点以下であるか否かの判断を、当該ガス警報器の本体ケース内のガスセンサの雰囲気の温度を検出して判断することを特徴とする。   The gas alarm device according to claim 1 includes an electrochemical gas sensor that detects a target gas concentration in an atmosphere by a reaction using water moisture stored in a water container, and has a self-diagnosis function that detects an abnormality of the gas sensor. A function of selectively executing execution of the self-diagnosis function and prohibition of the self-diagnosis function by determining a temperature of the gas sensor, and determining that the temperature of the gas sensor is not lower than a freezing point; When the execution of the function is selected and it is determined that the temperature of the gas sensor is below the freezing point, the gas alarm is selected to prohibit the self-diagnosis function, and whether or not the temperature of the gas sensor is below the freezing point The determination is made by detecting the temperature of the atmosphere of the gas sensor in the main body case of the gas alarm device.

請求項1のガス警報器によれば、ガスセンサにおける水が凝固するときは自己診断機能が禁止されるので、水の凝固による断線状態でもエラーとなることがなく、また、常温に戻って水が解ける状態では、自己診断機能により水容器中の水の枯渇を検出することができ、適正な自己診断を行うことができる。   According to the gas alarm device of claim 1, since the self-diagnosis function is prohibited when the water in the gas sensor is solidified, an error does not occur even in a disconnection state due to the solidification of the water. In the unsolvable state, the self-diagnosis function can detect the depletion of water in the water container, and an appropriate self-diagnosis can be performed.

なお、自己診断機能を禁止しているときには、短い処理タイミングで温度判断及び自己診断の実行と禁止の選択を行うと、常温になったときにその温度変化に即座に追従して、素早く通常の自己診断機能を実行する状態に戻れる。   When the self-diagnosis function is prohibited, if temperature judgment and execution of self-diagnosis and selection of prohibition are performed at a short processing timing, when the temperature reaches room temperature, the temperature change immediately follows and normal Return to the state to execute the self-diagnosis function.

本発明の実施形態に係るガス警報器の要部ブロック図である。It is a principal part block diagram of the gas alarm which concerns on embodiment of this invention. 本発明の実施形態における警報監視処理のフローチャートである。It is a flowchart of the alarm monitoring process in embodiment of this invention. 本発明の実施形態における自己診断処理のフローチャートである。It is a flowchart of the self-diagnosis process in the embodiment of the present invention. 本発明に係る電気化学式COセンサの一例を示す断面図である。It is sectional drawing which shows an example of the electrochemical CO sensor which concerns on this invention.

次に、本発明の実施の形態を図面を参照して説明する。図1は本発明の実施形態に係るガス警報器の要部ブロック図である。図に示すように、ガス警報器は、ガスセンサとしてのCOセンサ1、マイクロコンピュータ(以下、マイコンという)10、サーミスタ等の温度センサ20、自己診断回路30、増幅回路40、音声警報出力回路50及び当該ガス警報器の各部に電源を供給する電池60を備えている。なお、COセンサ1は、例えば前掲の図4に示す電気化学式センサ1であり、CO濃度に応じて発生する電流を電圧に変換して、増幅回路40を介してマイコン10に出力する。また、温度センサ20は当該ガス警報器の図示しない本体ケース内の温度を検出するものであり、その温度検出信号をマイコン10に出力する。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a principal block diagram of a gas alarm device according to an embodiment of the present invention. As shown in the figure, the gas alarm device includes a CO sensor 1 as a gas sensor, a microcomputer 10 (hereinafter referred to as a microcomputer), a temperature sensor 20 such as a thermistor, a self-diagnosis circuit 30, an amplifier circuit 40, an audio alarm output circuit 50, and A battery 60 for supplying power to each part of the gas alarm is provided. The CO sensor 1 is, for example, the electrochemical sensor 1 shown in FIG. 4 described above, converts a current generated according to the CO concentration into a voltage, and outputs the voltage to the microcomputer 10 via the amplifier circuit 40. The temperature sensor 20 detects a temperature in a main body case (not shown) of the gas alarm device, and outputs a temperature detection signal to the microcomputer 10.

マイコン10は、処理プログラムに従って各種の処理を行うCPU10aと、CPU10aが行う処理のプログラムなどを格納したROM10bと、CPU10aでの各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有するRAM10c、所定のレジスタに設定された時間の計測あるいは日時、時刻等を計時するためのタイマ10d等で構成されており、これらの各要素はバスラインによって接続されている。そして、マイコン10は、所定のサンプリング周期により、COセンサ1から増幅回路40を介して出力される電圧信号によりCOのガス濃度を計測し、そのガス濃度が警報設定点以上となった時に音声警報出力回路50から警報を発し、警報解除設定点以下になったときに警報を停止する。   The microcomputer 10 includes a CPU 10a that performs various processes according to a processing program, a ROM 10b that stores a program for processing performed by the CPU 10a, a work area that is used in various processes in the CPU 10a, a data storage area that stores various data, and the like. The RAM 10c has a timer 10d for measuring the time set in a predetermined register or the date and time, and the like, and these elements are connected by a bus line. Then, the microcomputer 10 measures the CO gas concentration by the voltage signal output from the CO sensor 1 via the amplifier circuit 40 at a predetermined sampling period, and when the gas concentration becomes equal to or higher than the alarm set point, a sound alarm is issued. An alarm is issued from the output circuit 50, and the alarm is stopped when the alarm becomes below the alarm release set point.

なお、COは、燃焼器具を正常な状態で使用しても発生することが知られており、特に、鍋、やかん等の調理器具を用いて、お湯を沸かす場合に、冷たい調理器具が暖まるまでの間にCOが発生するので、CO濃度(ガス濃度)が警報設定点を超えてもすぐには警報の発生を行わず、予め定めた遅延時間経過後も警報設定点を越えている状態が継続した場合に、警報を発生するようにしてもよい。   Note that CO is known to be generated even when the combustion utensil is used in a normal state. In particular, when boiling hot water using a cooking utensil such as a pan or a kettle, the cold cooking utensil is warmed up. Since CO occurs during this period, even if the CO concentration (gas concentration) exceeds the alarm set point, an alarm is not generated immediately, and the alarm set point is exceeded even after a predetermined delay time has elapsed. If it continues, an alarm may be generated.

自己診断回路30はマイコン10からの指示によりCOセンサ1の自己診断を実行する回路である。この自己診断回路30によるCOセンサ1の自己診断は、このCOセンサ1を一種のコンデンサとみなし、その充放電特性が水の量に応じて異なることを利用している。自己診断回路30は、COセンサ1を充電する充電回路や、充電及び放電の切換動作を行うためのトランジスタスイッチ等を備えている。そして、自己診断回路30はマイコン10からの指示により、COセンサ1に抵抗を通じて充電した後、放電し、放電電流を電圧に変換し、増幅回路40を介してマイコン10に出力する。そして、マイコン10はその放電カーブを検出する。この放電カーブは、ガスセンサ1に水が減少していない正常時と、水が減少した劣化時とでは異なっている。そこで、マイコン10は検出される放電カーブを正常時の放電カーブと比較して水の減少の有無を検知する。そして、検知結果が正常範囲内になければ劣化であると判断し、劣化が生じている場合はその旨を図示しない表示手段を使って報知する。   The self-diagnosis circuit 30 is a circuit that executes a self-diagnosis of the CO sensor 1 in accordance with an instruction from the microcomputer 10. The self-diagnosis of the CO sensor 1 by the self-diagnosis circuit 30 uses the fact that the CO sensor 1 is regarded as a kind of capacitor and its charge / discharge characteristics differ depending on the amount of water. The self-diagnosis circuit 30 includes a charging circuit that charges the CO sensor 1 and a transistor switch that performs switching operation between charging and discharging. The self-diagnosis circuit 30 charges the CO sensor 1 through a resistor in accordance with an instruction from the microcomputer 10, discharges it, converts the discharge current into a voltage, and outputs the voltage to the microcomputer 10 via the amplifier circuit 40. Then, the microcomputer 10 detects the discharge curve. This discharge curve is different between when the gas sensor 1 is in a normal state where water is not decreasing and when the water sensor is deteriorated. Therefore, the microcomputer 10 compares the detected discharge curve with the normal discharge curve to detect the presence or absence of water reduction. If the detection result is not within the normal range, it is determined that the deterioration has occurred, and if the deterioration has occurred, the fact is notified using a display means (not shown).

図2及び図3は実施形態のガス警報器におけるCPU10aの制御プログラムの要部フローチャートであり、同図に基づいて動作を説明する。図2は警報監視処理のフローチャートであり、この警報監視処理は例えば30秒毎の所定のサンプリング周期で起動される。先ず、CPU10aは、ステップS1で温度センサ20の検出信号により温度を計測し、ステップS2でCOセンサ1の出力に基づいてガス濃度を測定し、ステップS3で所定の演算処理を行う。そして、ステップS4で警報が必要な状態か否かを判定し、必要であればステップS5で警報を出力して1回の処理を終了する。警報が必要でなければ、ステップS6で警報状態であれば警報を解除し、1回の処理を終了する。   2 and 3 are main part flowcharts of the control program of the CPU 10a in the gas alarm device of the embodiment, and the operation will be described based on the same figure. FIG. 2 is a flowchart of the alarm monitoring process, and this alarm monitoring process is started at a predetermined sampling cycle every 30 seconds, for example. First, the CPU 10a measures the temperature based on the detection signal of the temperature sensor 20 in step S1, measures the gas concentration based on the output of the CO sensor 1 in step S2, and performs predetermined arithmetic processing in step S3. In step S4, it is determined whether or not an alarm is required. If necessary, an alarm is output in step S5, and one process is completed. If an alarm is not necessary, the alarm is canceled if the alarm is in step S6, and one process is terminated.

図3は自己診断処理のフローチャートであり、この図3の自己診断処理はタイマ10dに設定される設定時間を周期として起動される。なお、初期状態では設定時間は50時間に設定されている。先ず、ステップS11で、前記ステップS1で計測した直近の計測温度が0℃以下であるか否かを判定する。この計測温度は、前記所定のサンプリング周期により温度センサ20で計測している温度であるが、その内の直近の計測温度により判定する。計測温度が0℃以下でなければ、COセンサ1の温度が氷点以下ではないと判断し、ステップS12で、自己診断回路30に指示を出力して自己診断を行う。そして、ステップS13でタイマ10dの設定時間を50時間に設定し、1回の処理を終了する。ステップS11で、計測温度が0℃以下であれば、COセンサ1の温度が氷点以下であると判断し、ステップS14でタイマ10dの設定時間を1時間に設定し、1回の処理を終了する。   FIG. 3 is a flowchart of the self-diagnosis process. The self-diagnosis process of FIG. 3 is started with a set time set in the timer 10d as a cycle. In the initial state, the set time is set to 50 hours. First, in step S11, it is determined whether or not the latest measured temperature measured in step S1 is 0 ° C. or less. The measured temperature is a temperature measured by the temperature sensor 20 in the predetermined sampling period, and is determined by the latest measured temperature. If the measured temperature is not 0 ° C. or less, it is determined that the temperature of the CO sensor 1 is not below the freezing point, and in step S12, an instruction is output to the self-diagnosis circuit 30 to perform self-diagnosis. In step S13, the set time of the timer 10d is set to 50 hours, and one process is completed. In step S11, if the measured temperature is 0 ° C. or less, it is determined that the temperature of the CO sensor 1 is below the freezing point. In step S14, the set time of the timer 10d is set to 1 hour, and one process is completed. .

以上のように、COセンサ1の温度が氷点以下でないと判断されるときは、当該自己診断処理が50時間毎に繰り返され、そのつど氷点以下でなければ自己診断が実行される。一方、COセンサ1の温度が氷点以下であると判断されるときは、自己診断が禁止されるとともに、当該自己診断処理(すなわち温度判定)が1時間毎に繰り返される。そして、COセンサ1の温度が氷点を超えた場合には、自己診断が実行されるとともに、その後、当該自己診断処理が50時間毎に繰り返されるように設定される。   As described above, when it is determined that the temperature of the CO sensor 1 is not below the freezing point, the self-diagnosis process is repeated every 50 hours, and if it is not below the freezing point, the self-diagnosis is executed. On the other hand, when it is determined that the temperature of the CO sensor 1 is below the freezing point, self-diagnosis is prohibited and the self-diagnosis process (that is, temperature determination) is repeated every hour. When the temperature of the CO sensor 1 exceeds the freezing point, the self-diagnosis is executed, and thereafter, the self-diagnosis process is set to be repeated every 50 hours.

したがって、COセンサ1における水5が、かしめ部分等で凝固した場合、自己診断が禁止されるので、断線状態による不用意なエラーを生じることがない。なお、COセンサ1で水の凝固が発生していてCOセンサ1自体でガス濃度を検出できなくなっていたとしても、このような氷点以下の温度では、COガスの発生は考えられないので、特に問題はない。また、温度が氷点を超えれば、COセンサ1の水の凝固も解けるので、COセンサ1が正常に戻り、通常の警報及び自己診断を行うことができる。   Accordingly, when the water 5 in the CO sensor 1 is solidified at a caulking portion or the like, self-diagnosis is prohibited, so that an inadvertent error due to a disconnection state does not occur. Even if water coagulation occurs in the CO sensor 1 and the gas concentration cannot be detected by the CO sensor 1 itself, the generation of CO gas is not considered at such a temperature below the freezing point. No problem. Moreover, if the temperature exceeds the freezing point, the coagulation of the water in the CO sensor 1 can be solved, so that the CO sensor 1 returns to normal and a normal alarm and self-diagnosis can be performed.

なお、自己診断処理は通常は50時間毎に行っているが、当該ガス警報器の出荷モード解除後や、リセット直後、あるいは電源投入直後に初期故障チェックを行い、このときにも自己診断を行うようにしている。この場合に、COセンサ1の温度が氷点以下であると判断された場合には自己診断は禁止されるが、この初期故障チェック時には自己診断が禁止されても、初期故障チェック自体は正常に終了したものとして処理する。   Although the self-diagnosis process is normally performed every 50 hours, the initial failure check is performed immediately after the release of the gas alarm device in the shipping mode, immediately after resetting, or immediately after the power is turned on. I am doing so. In this case, if it is determined that the temperature of the CO sensor 1 is below the freezing point, the self-diagnosis is prohibited. However, even if the self-diagnosis is prohibited during the initial failure check, the initial failure check itself is normally completed. Treat as you did.

以上の実施形態ではガスセンサとして、図4に示す電気化学式センサ1を例に説明したが、例えば、前記特許文献3のようなセンサなど、水容器に蓄えた水の水分を利用した反応により雰囲気の対象ガス濃度を検出する電気化学式ガスセンサに適用できることはいうまでもない。   In the above embodiment, the electrochemical sensor 1 shown in FIG. 4 has been described as an example of the gas sensor. However, for example, a sensor such as the sensor described in Patent Document 3 may be used to react the atmosphere using water stored in a water container. Needless to say, the present invention can be applied to an electrochemical gas sensor for detecting a target gas concentration.

1 電気化学式COセンサ
2 金属缶
5 水
10 マイクロコンピュータ
10a CPU
10b ROM
10c RAM
10d タイマ
20 温度センサ
30 自己診断回路
50 音声警報出力回路
60 電池
1 Electrochemical CO Sensor 2 Metal Can 5 Water 10 Microcomputer 10a CPU
10b ROM
10c RAM
10d timer 20 temperature sensor 30 self-diagnosis circuit 50 voice alarm output circuit 60 battery

Claims (1)

水容器に蓄えた水の水分を利用した反応により雰囲気の対象ガス濃度を検出する電気化学式ガスセンサを備え、
前記ガスセンサの異常を検出する自己診断機能を有するとともに、
前記ガスセンサの温度を判断して前記自己診断機能の実行と該自己診断機能の禁止とを選択的に実行する機能を有し、
該ガスセンサの温度が氷点以下でないと判断されたときは前記自己診断機能の実行を選択し、該ガスセンサの温度が氷点以下であると判断されたときは前記自己診断機能の禁止を選択するガス警報器であって、
前記ガスセンサの温度が氷点以下であるか否かの判断を、当該ガス警報器の本体ケース内のガスセンサの雰囲気の温度を検出して判断することを特徴とするガス警報器。
Equipped with an electrochemical gas sensor that detects the target gas concentration in the atmosphere by a reaction using the water content of the water stored in the water container,
While having a self-diagnosis function to detect abnormality of the gas sensor,
A function of selectively executing execution of the self-diagnosis function and prohibition of the self-diagnosis function by determining the temperature of the gas sensor;
When it is determined that the temperature of the gas sensor is not below the freezing point, the execution of the self-diagnosis function is selected. When it is determined that the temperature of the gas sensor is below the freezing point, the gas alarm is selected to prohibit the self-diagnosis function. A vessel,
A gas alarm device characterized by determining whether the temperature of the gas sensor is below the freezing point by detecting the temperature of the atmosphere of the gas sensor in the main body case of the gas alarm device.
JP2012109506A 2012-05-11 2012-05-11 Gas alarm Active JP5566420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012109506A JP5566420B2 (en) 2012-05-11 2012-05-11 Gas alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012109506A JP5566420B2 (en) 2012-05-11 2012-05-11 Gas alarm

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006336638A Division JP5059394B2 (en) 2006-12-14 2006-12-14 Gas alarm

Publications (2)

Publication Number Publication Date
JP2012155761A JP2012155761A (en) 2012-08-16
JP5566420B2 true JP5566420B2 (en) 2014-08-06

Family

ID=46837350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012109506A Active JP5566420B2 (en) 2012-05-11 2012-05-11 Gas alarm

Country Status (1)

Country Link
JP (1) JP5566420B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6501220B2 (en) * 2015-03-30 2019-04-17 能美防災株式会社 Fire detector and fire detection system
CN109166283B (en) * 2018-10-18 2020-12-08 泉州台商投资区五逸季科技有限公司 Vehicle-mounted carbon monoxide alarm instrument panel based on constant potential electrolysis principle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200443B1 (en) * 1998-09-29 2001-03-13 Atwood Industries, Inc. Gas sensor with a diagnostic device
JP4200633B2 (en) * 2000-04-14 2008-12-24 株式会社デンソー Diesel engine intake throttle valve failure determination device
US6948352B2 (en) * 2002-02-07 2005-09-27 Walter Kidde Portable Equipment, Inc. Self-calibrating carbon monoxide detector and method
US7090755B2 (en) * 2004-10-28 2006-08-15 Figaro Engineering Inc. Gas detecting device with self-diagnosis for electrochemical gas sensor
JP2006156410A (en) * 2005-12-28 2006-06-15 Sony Corp Fuel cell and its driving method
JP5197949B2 (en) * 2006-12-21 2013-05-15 ライオン株式会社 Bleaching goods

Also Published As

Publication number Publication date
JP2012155761A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5059394B2 (en) Gas alarm
EP0990895B1 (en) Gas sensor with electrically conductive hydrophobic membranes
AU2003209004A1 (en) Self-calibrating carbon monoxide detector and method
JP2007230398A (en) Device and method of monitoring battery
JP4834616B2 (en) Alarm
JP2007280935A (en) Lifetime judging method of primary cell
CA2771434A1 (en) Sensor system and method to prevent battery flaming in overcharge
JP2004279293A (en) Self-diagnosis method for proton conductor gas sensor, and gas detector
JP4834617B2 (en) Alarm
JP5481153B2 (en) Alarm
JP5566420B2 (en) Gas alarm
JP5198403B2 (en) Alarm
JP2019134628A (en) Management device, power storage device, and method of managing power storage element
JP2007183113A (en) Temperature detector
JP2008298643A (en) Method of detecting abnormality in internal current consumption of packed battery
JP5115992B2 (en) Carbon monoxide gas measuring device and alarm
JP2011043370A (en) Alarm device
JP4670301B2 (en) Backup power system
JP5065332B2 (en) Carbon monoxide gas measuring device and alarm
JP2010148252A (en) Failure diagnosis circuit and battery pack
JP2008164309A (en) Co detector for combustor, and co alarm device
JP5263974B2 (en) Radio notification device and battery capacity reduction detection method thereof
JP2007170953A (en) Deterioration determining device of secondary battery
JP2007240484A (en) Co alarm and electrochemical sensor
JP2011086073A (en) Alarm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140617

R150 Certificate of patent or registration of utility model

Ref document number: 5566420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250