JP5198403B2 - Alarm - Google Patents

Alarm Download PDF

Info

Publication number
JP5198403B2
JP5198403B2 JP2009237650A JP2009237650A JP5198403B2 JP 5198403 B2 JP5198403 B2 JP 5198403B2 JP 2009237650 A JP2009237650 A JP 2009237650A JP 2009237650 A JP2009237650 A JP 2009237650A JP 5198403 B2 JP5198403 B2 JP 5198403B2
Authority
JP
Japan
Prior art keywords
gas sensor
diagnosis
gas
sensor
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009237650A
Other languages
Japanese (ja)
Other versions
JP2011085455A (en
Inventor
英樹 高橋
裕正 高島
良春 名川
和宏 犬塚
唯宣 中島
尚史 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2009237650A priority Critical patent/JP5198403B2/en
Publication of JP2011085455A publication Critical patent/JP2011085455A/en
Application granted granted Critical
Publication of JP5198403B2 publication Critical patent/JP5198403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Alarm Devices (AREA)

Description

本発明は、警報器に係り、特に、水を収容する水容器からの水蒸気と対象ガスとの反応によって対象ガス濃度を検出する電気化学式ガスセンサに故障があるか否かを自己診断する警報器に関する。   The present invention relates to an alarm device, and more particularly, to an alarm device that self-diagnose whether there is a failure in an electrochemical gas sensor that detects a target gas concentration by a reaction between water vapor from a water container that contains water and the target gas. .

従来、燃焼機器の不完全燃焼等によるCOガスを検出し警報するCO警報器のように、周辺雰囲気中のCO濃度を測定する装置として、電気化学式COセンサ(ガスセンサ)を内蔵したものが知られている。図8は電気化学式COセンサの一例を示す断面図であり、この電気化学式COセンサ1は、内部に水5が収容された金属缶2(水容器)の上部開口4にプロトン導電体膜3を設置して、その対極32を金属缶2内に露出させると共に、反対側の検知極31にガス吸着フィルタ8cを内蔵した金属キャップ8を重ねて金属缶2の上部開口4にかしめ固定して構成されている。   2. Description of the Related Art Conventionally, devices that incorporate an electrochemical CO sensor (gas sensor) are known as devices for measuring the CO concentration in the surrounding atmosphere, such as a CO alarm device that detects and alarms CO gas due to incomplete combustion of combustion equipment. ing. FIG. 8 is a cross-sectional view showing an example of an electrochemical CO sensor. This electrochemical CO sensor 1 has a proton conductor film 3 in the upper opening 4 of a metal can 2 (water container) containing water 5 therein. Installed, the counter electrode 32 is exposed in the metal can 2, and the metal cap 8 containing the gas adsorption filter 8 c is overlapped on the opposite detection electrode 31 and caulked and fixed to the upper opening 4 of the metal can 2. Has been.

この電気化学式のCOセンサ1では、周辺雰囲気中のCOガス(対象ガス)が、金属キャップ8の導入孔8aから内部に導入されて、活性炭やシリカゲル、ゼオライト等からなるガス吸着フィルタ8cや導出孔8b、そして、金属キャップ8とプロトン導電体膜3との間に介設した金属製の拡散防止板7の拡散制御孔7aを通過して検知極31に到達し、ここで、対極32側からプロトン導電体膜3に供給される金属缶2内の水5の水分を利用した酸化反応を起こして、検知極31にプロトン(2H+ )と電子(2e- )を発生させる。 In this electrochemical CO sensor 1, CO gas (target gas) in the ambient atmosphere is introduced into the inside through the introduction hole 8 a of the metal cap 8, and the gas adsorption filter 8 c and the lead-out hole made of activated carbon, silica gel, zeolite, or the like. 8b, and passes through the diffusion control hole 7a of the metal diffusion prevention plate 7 interposed between the metal cap 8 and the proton conductor film 3, and reaches the detection electrode 31, where An oxidation reaction is performed using the moisture of the water 5 in the metal can 2 supplied to the proton conductor film 3 to generate protons (2H + ) and electrons (2e ) at the detection electrode 31.

検知極31に発生した電子(2e- )はプロトン導電体膜3の内部を通過できないので検知極31に滞留し、一方、プロトン(2H+ )は、プロトン導電体膜3の内部を通過して対極32に移動し、ここで、金属缶2内の酸素と還元反応を起こして、対極32に水(H2 O)を生成する。したがって、検知極31と電気的に接続されてそのターミナルとして機能する金属キャップ8と、拡散防止板7を介して対極32と電気的に接続されてそのターミナルとして機能する金属缶2との間に負荷(図示せず)を接続すると、検知極31に滞留した電子(2e- )の対極32に向かう流れが負荷に生じ、これにより対極32から負荷を経て検知極31に向かう短絡電流の流れが生じるので、この負荷に流れる短絡電流を電流−電圧変換することで、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号が得られる。 The electrons (2e ) generated in the detection electrode 31 cannot pass through the proton conductor film 3 and therefore stay in the detection electrode 31, while the proton (2H + ) passes through the proton conductor film 3. It moves to the counter electrode 32, where it causes a reduction reaction with oxygen in the metal can 2 to generate water (H 2 O) at the counter electrode 32. Therefore, between the metal cap 8 that is electrically connected to the detection electrode 31 and functions as its terminal, and the metal can 2 that is electrically connected to the counter electrode 32 via the diffusion prevention plate 7 and functions as its terminal. When a load (not shown) is connected, a flow of electrons (2e ) accumulated in the detection electrode 31 toward the counter electrode 32 is generated in the load, and thereby a short-circuit current flows from the counter electrode 32 through the load to the detection electrode 31. As a result, a CO concentration signal having a voltage value corresponding to the CO concentration in the ambient atmosphere can be obtained by current-voltage conversion of the short-circuit current flowing through the load.

ところで、上述したCOセンサを用いたCO警報器において、従来より、金属缶2中の水が減少する「水なし」、「断線」、「短絡」といった故障を検出する自己診断を行っている(例えば特許文献1,2)。このCOセンサ1の自己診断は、このCOセンサ1を一種のコンデンサとみなし、その放電時の電流波形が「水なし」、「断線」、「短絡」といった故障によって正常時とは異なることを利用して行っている。   By the way, in the CO alarm device using the above-described CO sensor, a self-diagnosis for detecting a failure such as “no water”, “disconnection”, and “short circuit” in which water in the metal can 2 decreases has been conventionally performed ( For example, Patent Documents 1 and 2). This self-diagnosis of the CO sensor 1 regards the CO sensor 1 as a kind of capacitor, and utilizes the fact that the current waveform at the time of discharge differs from that in the normal state due to failures such as “no water”, “disconnection”, and “short circuit” It is done.

前述のCOセンサの自己診断時に、COセンサ(CO警報器)の周囲にCOガスが存在すると、COセンサを流れる充放電電流はそのCO濃度により変動する。このため、実際の設置環境において、COガス存在中に出荷モードを解除した場合、COガスを検出し、故障として誤検知してしまうという問題があった。この問題を解決するために特許文献3のものでは、出荷モード解除時にCOガスの存在を検出した場合には、出荷モード解除を停止し、報知するという提案がなされている。   If CO gas is present around the CO sensor (CO alarm device) during the above-described self-diagnosis of the CO sensor, the charge / discharge current flowing through the CO sensor varies depending on the CO concentration. For this reason, in the actual installation environment, when the shipping mode is canceled while the CO gas is present, there is a problem that the CO gas is detected and erroneously detected as a failure. In order to solve this problem, in Japanese Patent Application Laid-Open No. 2003-228561, when the presence of CO gas is detected when the shipping mode is canceled, the shipping mode cancellation is stopped and a notification is made.

特開2008−309711号公報JP 2008-309711 A 特開2008−309713号公報JP 2008-309713 A 特開2008−309712号公報JP 2008-309712 A

前述の従来の警報器にあっては、COセンサが初期正常状態でCOガスが存在していた場合、故障として誤検知して出荷モード解除が停止されてしまい、COセンサが正常であるにもかかわらず、クレーム品として返却されてしまうという問題がある。   In the above-described conventional alarm device, when the CO sensor is in the initial normal state and the CO gas is present, it is erroneously detected as a failure and the release of the shipping mode is stopped, and the CO sensor is normal. Regardless, there is a problem of being returned as a complaint.

そこで、本発明は、上記のような問題点に着目し、COセンサに故障があるか否かを自己診断する警報器において、COガスが存在していてもCOセンサの故障の誤検知を防止することを課題とする。   Therefore, the present invention pays attention to the above-mentioned problems, and prevents false detection of CO sensor failure even in the presence of CO gas in an alarm device that self-diagnose whether or not the CO sensor has a failure. The task is to do.

請求項1の警報器は、水を収容する水容器からの水蒸気と対象ガスとの反応によってプロトン導電体膜を挟む検知極と対極との間に流れる電流が対象ガスのガス濃度に応じて変化する電気化学式ガスセンサと、前記ガスセンサに接続された放電抵抗と、前記ガスセンサの検知極と対極に電流を供給して該ガスセンサを充電するための電源と、前記電源−前記ガスセンサ間に設けられて前記ガスセンサの充電及び放電を切り替える切替スイッチと、前記切替スイッチをオンして前記ガスセンサを充電した後に前記切替スイッチをオフして前記ガスセンサを放電させるスイッチ制御手段と、前記ガスセンサに流れる電流を電圧に変換する電流/電圧変換回路と、前記スイッチ制御手段による前記ガスセンサの充電及び放電を行って前記電流/電圧変換回路の出力電圧に基づいてガスセンサの故障診断を行う自己診断手段と、を有する警報器において、前記自己診断手段は、前記ガスセンサの充電中の第1ポイントで故障診断を行う第1診断機能と、前記ガスセンサの放電開始直後の定電圧時の第2ポイントで故障診断を行う第2診断機能と、前記ガスセンサの放電後の第3ポイントで故障診断を行う第3診断機能とを有し、該自己診断手段は、前記ガスセンサで検出される対象ガス濃度が所定レベル未満の場合は、前記第2診断機能と前記第1診断機能または前記第3診断機能により、または、前記第2診断機能と前記第1診断機能及び前記第3診断機能により、前記ガスセンサの故障診断を行い、前記ガスセンサで検出される対象ガス濃度が所定レベル以上の場合は、前記第2診断機能のみにより前記ガスセンサの故障診断を行うことを特徴とする。   In the alarm device according to claim 1, the current flowing between the detection electrode and the counter electrode sandwiching the proton conductor film is changed according to the gas concentration of the target gas due to the reaction between the water vapor from the water container containing water and the target gas. An electrochemical gas sensor, a discharge resistor connected to the gas sensor, a power source for charging the gas sensor by supplying a current to a detection electrode and a counter electrode of the gas sensor, and a power source provided between the gas sensor and the gas sensor. A changeover switch for switching between charging and discharging of the gas sensor; switch control means for turning off the changeover switch and discharging the gas sensor after charging the gas sensor by turning on the changeover switch; and converting a current flowing through the gas sensor into a voltage Current / voltage conversion circuit that performs charging and discharging of the gas sensor by the switch control means, and the current / voltage A self-diagnosis unit that diagnoses a failure of the gas sensor based on the output voltage of the conversion circuit, wherein the self-diagnosis unit includes a first diagnosis function that performs a failure diagnosis at a first point during charging of the gas sensor; A second diagnostic function for performing a fault diagnosis at a second point at a constant voltage immediately after the start of discharge of the gas sensor, and a third diagnostic function for performing a fault diagnosis at a third point after the discharge of the gas sensor, When the target gas concentration detected by the gas sensor is less than a predetermined level, the self-diagnosis means uses the second diagnostic function and the first diagnostic function or the third diagnostic function, or the second diagnostic function and the The first diagnostic function and the third diagnostic function perform failure diagnosis of the gas sensor, and when the target gas concentration detected by the gas sensor is equal to or higher than a predetermined level, the second diagnostic machine Only by and performing failure diagnosis of the gas sensor.

請求項2の警報器は、請求項1に記載の警報器であって、前記自己診断手段が、前記ガスセンサで検出される対象ガス濃度が所定レベル以上の場合で、前記第2診断機能のみにより前記ガスセンサの故障診断を行った後、所定時間経過後に少なくとも前記第1診断機能または第3診断機能による前記ガスセンサの故障診断を行うことを特徴とする。なお、前記第2診断機能のみにより前記ガスセンサの故障診断を行った後、所定時間経過後に前記第1診断機能と第3診断機能とによる前記ガスセンサの故障診断を行ってもよい。すなわち、第1及び第3診断機能は、故障内容の判別を行うか否かの目的に応じて組み合わせは自由である。   The alarm device according to claim 2 is the alarm device according to claim 1, wherein the self-diagnosis unit is configured to use only the second diagnosis function when the target gas concentration detected by the gas sensor is equal to or higher than a predetermined level. After the failure diagnosis of the gas sensor, the failure diagnosis of the gas sensor is performed at least by the first diagnosis function or the third diagnosis function after a predetermined time has elapsed. In addition, after performing the failure diagnosis of the gas sensor only by the second diagnosis function, the failure diagnosis of the gas sensor may be performed by the first diagnosis function and the third diagnosis function after a predetermined time has elapsed. That is, the first and third diagnostic functions can be freely combined depending on the purpose of determining whether or not the failure content is to be determined.

図3はCOセンサの正常時、短絡故障時、断線及び水なし故障時の充放電電流に対応する電圧信号の特性を示す図である。図3(A) に示す正常時には、太い実線で示すCOガスが存在しない場合と、太い破線で示すCOガスが存在する場合とで、電圧信号の波形が異なる。図に示すP1,P2,P3は故障検出を行う候補ポイントである。第1ポイントP1は充電中のポイントであり、第2ポイントP2は放電開始直後の定電圧時のポイントであり、第3ポイントP3は放電後のポイントである。このうち、第1ポイントP1と第3ポイントP3では、COガスが存在しない場合と存在する場合とで電圧値が異なり、COガスのガス濃度が高いほど電圧値が低くなる。しかしながら、第2ポイントでは、COガスが存在しない場合と存在する場合とで電圧値が同じになっている。したがって、ガス濃度が所定レベル未満の場合は、第1ポイントP1による第1診断機能、第2ポイントP2による第2診断機能及び第3ポイントP3による第3診断機能のそれぞれによりガスセンサの故障診断を行っても、故障の誤検知を防止でき、ガス濃度が所定レベル以上の場合は、第2ポイントP2による第2診断機能のみによりガスセンサの故障診断を行うと、COガスが有っても故障の誤検知を防止できる。   FIG. 3 is a diagram showing the characteristics of the voltage signal corresponding to the charge / discharge current when the CO sensor is normal, short-circuited, disconnected, or without water. In the normal state shown in FIG. 3A, the waveform of the voltage signal differs between the case where the CO gas indicated by the thick solid line does not exist and the case where the CO gas indicated by the thick broken line exists. P1, P2, and P3 shown in the figure are candidate points for performing failure detection. The first point P1 is a point during charging, the second point P2 is a point at a constant voltage immediately after the start of discharging, and the third point P3 is a point after discharging. Among these, at the first point P1 and the third point P3, the voltage value differs depending on whether or not the CO gas is present, and the voltage value decreases as the gas concentration of the CO gas increases. However, at the second point, the voltage value is the same when no CO gas is present and when it is present. Therefore, when the gas concentration is less than the predetermined level, the gas sensor is diagnosed for failure by each of the first diagnostic function based on the first point P1, the second diagnostic function based on the second point P2, and the third diagnostic function based on the third point P3. However, if the gas concentration is equal to or higher than the predetermined level and the gas sensor is diagnosed only by the second diagnostic function based on the second point P2, it is possible to prevent malfunctions even if CO gas is present. Detection can be prevented.

請求項1の警報器によれば、COガスが存在していても、COガスに依存しない第2ポイントで故障診断を行うため、例えば出荷モード解除時や通常モード時の故障診断時に、COガスの存在による故障の誤検知を防止しながら、実際の故障も検出することができる。   According to the alarm device of claim 1, since the failure diagnosis is performed at the second point that does not depend on the CO gas even if the CO gas exists, the CO gas is detected at the time of the failure diagnosis in the shipping mode release or the normal mode, for example. It is possible to detect an actual failure while preventing erroneous detection of the failure due to the presence of.

請求項2の警報器によれば、請求項1の効果に加えて、例えば出荷モード解除時など、始めCOガスが存在していても所定時間経過してCOガスが存在しなくなった場合に、少なくとも第1ポイント及び第3ポイントによる故障診断を行って、故障検知精度を高めることができる。   According to the alarm device of claim 2, in addition to the effect of claim 1, for example, when the CO gas is present at the beginning, such as when the shipping mode is released, when the CO gas is no longer present after a predetermined time has elapsed, Failure diagnosis can be performed at least by the first point and the third point to improve failure detection accuracy.

本発明の実施形態のガス警報器の要部ブロック図である。It is a principal part block diagram of the gas alarm device of embodiment of this invention. 図1に示すガス警報器の等価回路図である。It is an equivalent circuit schematic of the gas alarm device shown in FIG. 本発明に係るCOセンサの正常時、短絡故障時、断線及び水なし故障時の充放電電流に対応する電圧信号の特性を示す図である。It is a figure which shows the characteristic of the voltage signal corresponding to the charging / discharging electric current at the time of the normal time of the CO sensor which concerns on this invention, a short circuit failure, a disconnection, and a waterless failure. 実施形態におけるマイコンが実行する第1実施例の出荷モード解除時の自己診断処理の制御プログラムの要部フローチャートである。It is a principal part flowchart of the control program of the self-diagnosis process at the time of cancellation | release of the shipping mode of 1st Example which the microcomputer in embodiment performs. 実施形態におけるマイコンが実行する第1実施例の通常モード時の制御プログラムを示す要部フローチャートである。It is a principal part flowchart which shows the control program at the time of the normal mode of 1st Example which the microcomputer in embodiment performs. 実施形態におけるマイコンが実行する第2実施例の出荷モード解除時の自己診断処理の制御プログラムを示す要部フローチャートである。It is a principal part flowchart which shows the control program of the self-diagnosis process at the time of the shipping mode cancellation | release of 2nd Example which the microcomputer in embodiment performs. 実施形態におけるマイコンが実行する第2実施例の通常モード時の制御プログラムを示す要部フローチャートである。It is a principal part flowchart which shows the control program at the time of the normal mode of 2nd Example which the microcomputer in embodiment performs. 本発明に係る電気化学式COセンサの一例を示す断面図である。It is sectional drawing which shows an example of the electrochemical CO sensor which concerns on this invention.

次に、本発明の実施の形態を図面に基づいて説明する。図1は本発明の実施形態に係る警報器としてのガス警報器の一実施の形態を示す回路図である。同図に示すように、このガス警報器は、ガスセンサとしてのCOセンサ1、マイクロコンピュータ(以下、マイコンという)10、自己診断回路30、電流/電圧変換回路40、音声警報出力回路50及び当該ガス警報器の各部に電源を供給する電池60を備えている。COセンサ1は、例えば前掲の図8に示す電気化学式COセンサ1であり、対象ガスとしてのCOガスのCO濃度(ガス濃度)に応じた短絡電流Iを電流/電圧変換回路40に出力する。なお、マイコン10の処理は以下の各実施例によって異なるが、ブロック図は同様である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a gas alarm as an alarm according to an embodiment of the present invention. As shown in the figure, this gas alarm device includes a CO sensor 1 as a gas sensor, a microcomputer (hereinafter referred to as a microcomputer) 10, a self-diagnosis circuit 30, a current / voltage conversion circuit 40, an audio alarm output circuit 50, and the gas. A battery 60 for supplying power to each part of the alarm device is provided. The CO sensor 1 is, for example, the electrochemical CO sensor 1 shown in FIG. 8 described above, and outputs a short circuit current I corresponding to the CO concentration (gas concentration) of the CO gas as the target gas to the current / voltage conversion circuit 40. The processing of the microcomputer 10 differs depending on the following embodiments, but the block diagram is the same.

電流/電圧変換回路40は、COセンサ1の検知極31が−入力端に、対極32が+入力端に接続された演算増幅器41と、演算増幅器41の−入力端及び出力端間に設けられた帰還抵抗Rとから構成されていて、短絡電流Iに応じた電圧信号をマイコン10に出力する。COセンサ1の検知極31と、演算増幅器41の−入力端との間には、抵抗Rsが設けられている。そして、この抵抗Rsと並列にスイッチSW2が設けられている。このスイッチSW2は、マイコン10によってオン/オフが制御される。   The current / voltage conversion circuit 40 is provided between the operational amplifier 41 having the detection electrode 31 of the CO sensor 1 connected to the negative input terminal and the counter electrode 32 connected to the positive input terminal, and between the negative input terminal and the output terminal of the operational amplifier 41. A voltage signal corresponding to the short-circuit current I is output to the microcomputer 10. A resistor Rs is provided between the detection electrode 31 of the CO sensor 1 and the negative input terminal of the operational amplifier 41. A switch SW2 is provided in parallel with the resistor Rs. The switch SW2 is turned on / off by the microcomputer 10.

マイコン10は、処理プログラムに従って各種の処理を行うCPU10aと、CPU10aが行う処理のプログラムなどを格納したROM10bと、CPU10aでの各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有するRAM10c、所定のレジスタに設定された時間の計測あるいは日時、時刻等を計測するためのタイマ10d等で構成されており、これらの各要素はバスラインによって接続されている。そして、マイコン10は、所定のサンプリング周期により、電流/電圧変換回路40から出力される電圧信号をサンプリングしてCOガスのCO濃度を計測し、そのCO濃度が警報設定点以上となった時に音声警報出力回路50から警報を発し、警報解除設定点以下になった時に警報を停止する。   The microcomputer 10 includes a CPU 10a that performs various processes according to a processing program, a ROM 10b that stores a program for processing performed by the CPU 10a, a work area that is used in various processes in the CPU 10a, a data storage area that stores various data, and the like. The RAM 10c has a timer 10d for measuring the time set in a predetermined register or the date, time, etc., and these elements are connected by a bus line. Then, the microcomputer 10 samples the voltage signal output from the current / voltage conversion circuit 40 at a predetermined sampling period to measure the CO concentration of the CO gas. When the CO concentration becomes equal to or higher than the alarm set point, the microcomputer 10 An alarm is issued from the alarm output circuit 50, and the alarm is stopped when the alarm output set point or lower is reached.

自己診断回路30は、マイコン10からの指示によりCOセンサ1の自己診断を実行する回路である。自己診断回路30によるCOセンサ1の自己診断は、このCOセンサ1を一種のコンデンサとみなして行われる。この自己診断回路30について図2を参照して説明する。図2は、図1に示すガス警報器の等価回路図である。   The self-diagnosis circuit 30 is a circuit that executes a self-diagnosis of the CO sensor 1 in accordance with an instruction from the microcomputer 10. The self-diagnosis of the CO sensor 1 by the self-diagnosis circuit 30 is performed by regarding the CO sensor 1 as a kind of capacitor. The self-diagnosis circuit 30 will be described with reference to FIG. FIG. 2 is an equivalent circuit diagram of the gas alarm shown in FIG.

図2中、Rdは、電流/電圧変換回路40の入力抵抗Rdである。入力抵抗Rdは、COセンサ1の両端に接続されていて、放電抵抗として働く。また、自己診断回路30は、COセンサ1に電流を供給してCOセンサ1を充電するための電源としての電流源33と、電流源33−COセンサ1間に設けられてCOセンサ1の充電及び放電を切り替える切替スイッチSW1と、を備えている。上記切替スイッチSW1は、マイコン10によってオン/オフが制御される。   In FIG. 2, Rd is the input resistance Rd of the current / voltage conversion circuit 40. The input resistance Rd is connected to both ends of the CO sensor 1 and functions as a discharge resistance. The self-diagnosis circuit 30 is provided between the current source 33 and the CO sensor 1 as a power source for supplying current to the CO sensor 1 to charge the CO sensor 1 and charging the CO sensor 1. And a changeover switch SW1 for switching between discharges. On / off of the changeover switch SW1 is controlled by the microcomputer 10.

次に、ガス警報器の上記自己診断回路30を用いた自己診断時の動作について説明する。マイコン10からの指示により切替スイッチSW1をオン、スイッチSW2をオフすると、電流源33からCOセンサ1が充電される。その後、切替スイッチSW1をオフ、スイッチSW2をオンすると、電流源33からCOセンサ1への充電が遮断され、COセンサ1に蓄積された電荷が入力抵抗Rdを介して放電される。   Next, the operation at the time of self-diagnosis using the self-diagnosis circuit 30 of the gas alarm will be described. When the changeover switch SW1 is turned on and the switch SW2 is turned off according to an instruction from the microcomputer 10, the CO sensor 1 is charged from the current source 33. Thereafter, when the changeover switch SW1 is turned off and the switch SW2 is turned on, the charging from the current source 33 to the CO sensor 1 is interrupted, and the electric charge accumulated in the CO sensor 1 is discharged via the input resistor Rd.

電流/電圧変換回路40は、入力抵抗Rdに流れる電流(即ち電流/電圧変換回路40に流れる電流)が0のとき所定の基準電圧を出力し、入力抵抗Rdに流れる電流が増加するほど小さくなる電圧信号を出力する。このため、充電及び放電時の電流/電圧変換回路40(入力抵抗Rd)の電圧信号は、正常時には図3(A) の太い実線で示すような波形になる。すなわち、充電開始に応じて基準電圧から徐々に減少し、充電から放電に切り替わると、その直後は一定時間0Vに張り付き、放電電流の過渡現象により増加して再び基準電圧になる。   The current / voltage conversion circuit 40 outputs a predetermined reference voltage when the current flowing through the input resistor Rd (that is, the current flowing through the current / voltage conversion circuit 40) is 0, and becomes smaller as the current flowing through the input resistor Rd increases. Outputs a voltage signal. For this reason, the voltage signal of the current / voltage conversion circuit 40 (input resistance Rd) during charging and discharging has a waveform as shown by the thick solid line in FIG. That is, it gradually decreases from the reference voltage in response to the start of charging, and immediately after switching from charging to discharging, it sticks to 0 V for a certain period of time, increases due to the transient phenomenon of the discharge current, and becomes the reference voltage again.

また、短絡故障時における電流/電圧変換回路40から出力される電圧信号は、図3(B) に示すようになる。COセンサ1が短絡すると、電流源33からの電流は短絡されたCOセンサ1のみに流れ、電流/電圧変換回路40にはほとんど流れない。したがって、短絡故障時はCOセンサ1に電荷がたまらないので、切替スイッチSW2をオンして放電を開始させても電流/電圧変換回路40には電流が流れない。よって、電圧信号は充電時も放電時も略基準電圧付近をキープする波形となる。   The voltage signal output from the current / voltage conversion circuit 40 at the time of a short circuit failure is as shown in FIG. When the CO sensor 1 is short-circuited, the current from the current source 33 flows only to the short-circuited CO sensor 1 and hardly flows to the current / voltage conversion circuit 40. Therefore, since no electric charge is accumulated in the CO sensor 1 at the time of a short circuit failure, no current flows through the current / voltage conversion circuit 40 even if the changeover switch SW2 is turned on to start discharging. Therefore, the voltage signal has a waveform that keeps approximately the vicinity of the reference voltage during charging and discharging.

また、断線又は水なし故障時における電流/電圧変換回路40から出力される電圧信号は、図3(C) に示すようになる。断線、水なし故障の場合、両者ともCOセンサ1のコンデンサ成分がなく、オープン状態となるため、切替スイッチSW1をオンして充電を開始しても、電流源33からの電流はCOセンサ1には流れずに、その全てが電流/電圧変換回路40に流れる。断線故障、水なし故障は、COセンサ1に電荷がたまらないので、切替スイッチSW1をオンして放電を開始しても、電流/電圧変換回路40には電流が流れない。よって、電圧信号は、充電時は基準電圧よりも低い電圧で一定となり、充電から放電に切り替わると基準電圧に戻る波形となる。   Further, the voltage signal output from the current / voltage conversion circuit 40 at the time of disconnection or failure without water is as shown in FIG. In the case of a disconnection or waterless failure, both have no capacitor component of the CO sensor 1 and are in an open state. Therefore, even if the switch SW1 is turned on and charging is started, the current from the current source 33 is supplied to the CO sensor 1. All flow through the current / voltage conversion circuit 40. In the case of a disconnection failure or a failure without water, no electric charge is accumulated in the CO sensor 1, so that no current flows through the current / voltage conversion circuit 40 even when the changeover switch SW1 is turned on to start discharging. Therefore, the voltage signal is constant at a voltage lower than the reference voltage during charging, and has a waveform that returns to the reference voltage when switching from charging to discharging.

マイコン10は、故障診断を行うときに、切替スイッチSW1,SW2を制御して上記充放電の制御をし、そのとき電流/電圧変換回路40から出力される電圧信号をサンプリングする。また、図3に示すように、第1ポイントP1、第2ポイントP2及び第3ポイントP3に対して電圧の閾値A〜Eが設定されており、この閾値A〜Eと各ポイントの電圧値とを比較して故障診断を行う。第1ポイントP1における診断が第1診断機能、第2ポイントP2における診断が第2診断機能、第3ポイントP3における診断が第3診断機能である。   When performing the fault diagnosis, the microcomputer 10 controls the change-over switches SW1 and SW2 to control the charge / discharge, and samples the voltage signal output from the current / voltage conversion circuit 40 at that time. Further, as shown in FIG. 3, threshold values A to E of voltages are set for the first point P1, the second point P2, and the third point P3, and the threshold values A to E and the voltage values at the respective points are set. To make a fault diagnosis. The diagnosis at the first point P1 is the first diagnosis function, the diagnosis at the second point P2 is the second diagnosis function, and the diagnosis at the third point P3 is the third diagnosis function.

第1診断機能では、第1ポイントP1の電圧値が閾値Dと閾値Eの範囲内であれば正常と判定し、閾値Dと閾値Eの範囲外であれば故障と判定する。第2診断機能では、第2ポイントP2の電圧値が閾値C未満であれば正常と判定し、閾値C以上であれば故障と判定する。第3診断機能では、第3ポイントP3の電圧値が閾値Aと閾値Bの範囲内であれば正常と判定し、閾値Aと閾値Bの範囲外であれば故障と判定する。なお、第1診断機能で故障を検出すると、その電圧値により故障理由の判定を行う。すなわち、図3(B) ,(C) に示すように、短絡故障時と、断線または水なし故障時とでは、電圧値が異なる。そこで、第1ポイントP1における電圧値が閾値D以上の場合には短絡故障と判定し、第1ポイントP1における電圧値が閾値E未満の場合には断線または水なし故障と判定する。   In the first diagnosis function, if the voltage value of the first point P1 is within the range between the threshold value D and the threshold value E, it is determined as normal, and if it is outside the range between the threshold value D and the threshold value E, it is determined as a failure. In the second diagnosis function, if the voltage value of the second point P2 is less than the threshold value C, it is determined to be normal, and if it is equal to or greater than the threshold value C, it is determined to be a failure. In the third diagnosis function, if the voltage value of the third point P3 is within the range between the threshold A and the threshold B, it is determined as normal, and if it is outside the range between the threshold A and the threshold B, it is determined as a failure. When a failure is detected by the first diagnostic function, the reason for the failure is determined based on the voltage value. That is, as shown in FIGS. 3B and 3C, the voltage value differs between a short-circuit fault and a disconnection or waterless fault. Therefore, when the voltage value at the first point P1 is greater than or equal to the threshold value D, it is determined that there is a short circuit failure, and when the voltage value at the first point P1 is less than the threshold value E, it is determined that there is a disconnection or no water failure.

そして、図3(A) に示すように、第2ポイントP2においては、COガスが存在する場合でもCOガスが存在しない場合でも、電圧値に変化がないので、このCOガスのCO濃度に応じて、診断機能を切り替える。すなわち、CO濃度が所定レベル(例えば50ppm)以上であれば、第2診断機能だけで故障診断を行う。また、COガスのCO濃度が所定レベル未満であれば、第1〜第3診断機能で故障診断を行う。   As shown in FIG. 3A, at the second point P2, there is no change in the voltage value in the presence of CO gas or in the absence of CO gas. Switch the diagnostic function. That is, if the CO concentration is equal to or higher than a predetermined level (for example, 50 ppm), failure diagnosis is performed using only the second diagnosis function. If the CO concentration of the CO gas is less than a predetermined level, failure diagnosis is performed using the first to third diagnosis functions.

(第1実施例)図4はマイコン10が実行する第1実施例の出荷モード解除時の自己診断処理の制御プログラムの要部フローチャート、図5はマイコン10が実行する第1実施例の通常モード時の制御プログラムの要部フローチャートである。まず、出荷モードが解除されると、図4のステップS1でCOセンサ1で検出されるCO濃度が所定レベル(例えば50ppm)以上かを判定する。所定レベル未満であれば、ステップS2で第1ポイントP1、第2ポイントP2及び第3ポイントP3の電圧信号により故障診断を行う(第1診断機能、第2診断機能及び第3診断機能の診断)。そして、ステップS3で故障が検出されていれば、ステップS4で故障警報を開始して処理を終了する。ステップS1でCO濃度が所定レベル以上であれば、ステップS5で第2ポイントP2のみの電圧信号により故障診断を行う(第2診断機能のみの診断)。そして、ステップS6で故障が検出されていれば、ステップS7で故障警報を開始して処理を終了する。 (First Embodiment) FIG. 4 is a flow chart of the main part of a control program for self-diagnosis processing at the time of canceling the shipping mode of the first embodiment executed by the microcomputer 10, and FIG. 5 is a normal mode of the first embodiment executed by the microcomputer 10. It is a principal part flowchart of a control program at the time. First, when the shipping mode is canceled, it is determined in step S1 in FIG. 4 whether the CO concentration detected by the CO sensor 1 is equal to or higher than a predetermined level (for example, 50 ppm). If it is less than the predetermined level, failure diagnosis is performed in step S2 using the voltage signals at the first point P1, the second point P2, and the third point P3 (diagnosis of the first diagnosis function, the second diagnosis function, and the third diagnosis function). . If a failure is detected in step S3, a failure alarm is started in step S4 and the process is terminated. If the CO concentration is equal to or higher than the predetermined level in step S1, failure diagnosis is performed with a voltage signal of only the second point P2 in step S5 (diagnosis using only the second diagnosis function). If a failure is detected in step S6, a failure alarm is started in step S7 and the process ends.

図5の通常モード時には、ステップS11で前回の故障診断時から50時間が経過しているかを判定し、50時間が経過していなければ、ステップS12でCOガスの監視(及び警報)、あるいはその他の処理を行ってステップS11に戻る。そして、50時間が経過していれば、ステップS13以降で故障診断を行う。すなわち、この通常モードでは50時間毎に故障診断を行う。   In the normal mode of FIG. 5, it is determined in step S11 whether 50 hours have passed since the previous failure diagnosis, and if 50 hours have not passed, CO gas monitoring (and alarm) in step S12, or other The process returns to step S11. If 50 hours have elapsed, failure diagnosis is performed in step S13 and subsequent steps. That is, in this normal mode, failure diagnosis is performed every 50 hours.

ステップS13では、COセンサ1で検出されるCO濃度が所定レベル(例えば50ppm)以上かを判定する。所定レベル未満であれば、ステップS14以降の処理を行い、CO濃度が所定レベル以上であれば、ステップS18以降の処理を行う。ステップS14〜S16は図4のステップS2〜S4と同じであり、ステップS18〜S20は図4のステップS5〜7と同じである。この通常モード時の故障診断では、これより前に故障と判定された故障警報が開始されている場合があるので、ステップS15及びステップS19で故障が検出されていないと判定されたときは、ステップS17,S21でそれぞれ故障警報を解除するものである。   In step S13, it is determined whether the CO concentration detected by the CO sensor 1 is equal to or higher than a predetermined level (for example, 50 ppm). If it is less than the predetermined level, the process after step S14 is performed. If the CO concentration is equal to or higher than the predetermined level, the process after step S18 is performed. Steps S14 to S16 are the same as steps S2 to S4 in FIG. 4, and steps S18 to S20 are the same as steps S5 to 7 in FIG. In the failure diagnosis in the normal mode, since a failure alarm that has been determined as a failure may have started before this, if it is determined in step S15 and step S19 that no failure has been detected, step The failure alarm is canceled in S17 and S21, respectively.

(第2実施例)図6はマイコン10が実行する第2実施例の出荷モード解除時の自己診断処理の制御プログラムの要部フローチャート、図7はマイコン10が実行する第2実施例の通常モード時の制御プログラムの要部フローチャートである。この第2実施例では、COセンサ1で検出されるCO濃度が所定レベル(50ppm)以上の場合、第1実施例と同様に第2ポイントP2のみ(第2診断機能のみ)によりCOセンサ1の故障診断を行う。そして、その後、一定時間(例えば1時間等の所定時間)経過後に、第1ポイントP1、第2ポイントP2及び第3ポイントP3の第1〜第3診断機能によりCOセンサ1の故障診断を行う。なお、以下の説明では第1実施例との対応関係を説明することで同じ処理についての詳細説明は省略する。 (Second Embodiment) FIG. 6 is a main part flowchart of a control program for self-diagnosis processing at the time of canceling the shipping mode of the second embodiment executed by the microcomputer 10, and FIG. 7 is a normal mode of the second embodiment executed by the microcomputer 10. It is a principal part flowchart of a control program at the time. In the second embodiment, when the CO concentration detected by the CO sensor 1 is equal to or higher than a predetermined level (50 ppm), as in the first embodiment, only the second point P2 (only the second diagnostic function) is used. Perform fault diagnosis. Then, after a predetermined time (for example, a predetermined time such as 1 hour) has elapsed, a failure diagnosis of the CO sensor 1 is performed by the first to third diagnosis functions of the first point P1, the second point P2, and the third point P3. In the following description, the correspondence with the first embodiment is described, and a detailed description of the same processing is omitted.

すなわち、図6のステップS31〜S37は第1実施例(図4)のステップS1〜S7と同じであり、ステップS35〜S37で第2ポイントP2のみにより故障診断を行った後、ステップS38で一定時間経過するまで待機し、一定時間経過するとステップS31に戻る。また、図7のステップS41〜S51は第1実施例(図5)のステップ11〜S21と同じであり、ステップS48〜S51で第2ポイントP2のみにより故障診断を行った後、ステップS52で一定時間経過するまで待機し、一定時間経過するとステップS43に戻る。   That is, Steps S31 to S37 in FIG. 6 are the same as Steps S1 to S7 in the first embodiment (FIG. 4), and after performing failure diagnosis based only on the second point P2 in Steps S35 to S37, constant in Step S38. The process waits until the time elapses, and returns to step S31 when a predetermined time elapses. Further, steps S41 to S51 in FIG. 7 are the same as steps 11 to S21 in the first embodiment (FIG. 5), and after performing failure diagnosis based only on the second point P2 in steps S48 to S51, constant in step S52. The system waits until the time elapses, and returns to step S43 when a predetermined time elapses.

この第2実施例では、COガスのCO濃度が所定レベル以上の場合すなわちCOガスが存在していても、一定時間経過してCOガスが存在しなくなった場合に、第1〜第3ポイントで故障診断を行うので、故障検知精度が高まる。なお、この場合の故障診断では、第2ポイントによる診断は行わなくてもよい。   In the second embodiment, when the CO concentration of the CO gas is equal to or higher than a predetermined level, that is, even when the CO gas is present, the CO gas does not exist after a certain period of time. Since fault diagnosis is performed, the fault detection accuracy is increased. In the failure diagnosis in this case, the diagnosis based on the second point may not be performed.

以上のように、出荷モード解除時及び通常モード時に、COガスのCO濃度が所定レベル以上の場合(COガスが存在する場合)、第1ポイントP1及び第3ポイントP3による故障診断を行わない(処理をスキップする)ので、誤判定を防止することができる。また、COガスに依存しないポイント(第2ポイント)で故障診断を行うことが可能なため、出荷モード解除を停止する必要がなく、機能が低下した状態でCO濃度に対する報知等を行わないまま放置されてしまうようなことを回避することができる。   As described above, when the CO concentration of the CO gas is equal to or higher than a predetermined level when the shipping mode is canceled and during the normal mode (when CO gas is present), the failure diagnosis based on the first point P1 and the third point P3 is not performed ( Since the process is skipped), erroneous determination can be prevented. In addition, failure diagnosis can be performed at a point that does not depend on CO gas (second point), so there is no need to stop the release of the shipping mode, and the function is deteriorated and the CO concentration is not notified without being notified. It is possible to avoid such a situation.

また、第2実施例のように、COガスが存在する場合、第2ポイントで故障診断を行った後、例えば1時間経過してCO濃度が低下した時点で再診断を行うことで、故障状態で放置されることを回避することができるとともに、故障検知精度が高まる。   Also, as in the second embodiment, when CO gas is present, after performing failure diagnosis at the second point, for example, by performing re-diagnosis when the CO concentration decreases after 1 hour, a failure state Can be avoided, and the accuracy of failure detection is increased.

1 COセンサ(ガスセンサ)
10a CPU(スイッチ制御手段、自己診断手段)
33 電流源(電源)
40 電流/電圧変換回路
SW1 切替スイッチ
1 CO sensor (gas sensor)
10a CPU (switch control means, self-diagnosis means)
33 Current source (power supply)
40 Current / voltage conversion circuit SW1 selector switch

Claims (2)

水を収容する水容器からの水蒸気と対象ガスとの反応によってプロトン導電体膜を挟む検知極と対極との間に流れる電流が対象ガスのガス濃度に応じて変化する電気化学式ガスセンサと、前記ガスセンサに接続された放電抵抗と、前記ガスセンサの検知極と対極に電流を供給して該ガスセンサを充電するための電源と、前記電源−前記ガスセンサ間に設けられて前記ガスセンサの充電及び放電を切り替える切替スイッチと、前記切替スイッチをオンして前記ガスセンサを充電した後に前記切替スイッチをオフして前記ガスセンサを放電させるスイッチ制御手段と、前記ガスセンサに流れる電流を電圧に変換する電流/電圧変換回路と、前記スイッチ制御手段による前記ガスセンサの充電及び放電を行って前記電流/電圧変換回路の出力電圧に基づいてガスセンサの故障診断を行う自己診断手段と、を有する警報器において、
前記自己診断手段は、前記ガスセンサの充電中の第1ポイントで故障診断を行う第1診断機能と、前記ガスセンサの放電開始直後の定電圧時の第2ポイントで故障診断を行う第2診断機能と、前記ガスセンサの放電後の第3ポイントで故障診断を行う第3診断機能とを有し、
該自己診断手段は、
前記ガスセンサで検出される対象ガス濃度が所定レベル未満の場合は、前記第2診断機能と前記第1診断機能または前記第3診断機能により、または、前記第2診断機能と前記第1診断機能及び前記第3診断機能により、前記ガスセンサの故障診断を行い、
前記ガスセンサで検出される対象ガス濃度が所定レベル以上の場合は、前記第2診断機能のみにより前記ガスセンサの故障診断を行う
ことを特徴とする警報器。
An electrochemical gas sensor in which a current flowing between a detection electrode and a counter electrode sandwiching a proton conductor film due to a reaction between water vapor from a water container containing water and the target gas changes according to the gas concentration of the target gas, and the gas sensor A discharge resistor connected to the gas sensor, a power source for charging the gas sensor by supplying a current to a detection electrode and a counter electrode of the gas sensor, and a switch provided between the power source and the gas sensor to switch charging and discharging of the gas sensor A switch, a switch control unit that turns on the changeover switch and charges the gas sensor and then turns off the changeover switch to discharge the gas sensor; a current / voltage conversion circuit that converts a current flowing through the gas sensor into a voltage; The gas sensor is charged and discharged by the switch control means to obtain an output voltage of the current / voltage conversion circuit. In alarm with a self-diagnosis means for performing a fault diagnosis of the gas sensor Zui,
The self-diagnosis means includes a first diagnosis function for performing a failure diagnosis at a first point during charging of the gas sensor, and a second diagnosis function for performing a failure diagnosis at a second point at a constant voltage immediately after the discharge of the gas sensor. A third diagnostic function for performing a fault diagnosis at a third point after the gas sensor discharges,
The self-diagnosis means includes
When the target gas concentration detected by the gas sensor is less than a predetermined level, the second diagnostic function and the first diagnostic function or the third diagnostic function, or the second diagnostic function and the first diagnostic function and The third diagnosis function performs failure diagnosis of the gas sensor,
When the target gas concentration detected by the gas sensor is equal to or higher than a predetermined level, a failure diagnosis of the gas sensor is performed only by the second diagnosis function.
前記自己診断手段が、前記ガスセンサで検出される対象ガス濃度が所定レベル以上の場合で、前記第2診断機能のみにより前記ガスセンサの故障診断を行った後、所定時間経過後に少なくとも前記第1診断機能または第3診断機能による前記ガスセンサの故障診断を行うことを特徴とする請求項1に記載の警報器。   When the target gas concentration detected by the gas sensor is equal to or higher than a predetermined level, the self-diagnosis unit performs at least the first diagnostic function after a predetermined time has elapsed after performing a fault diagnosis of the gas sensor only by the second diagnostic function. The alarm device according to claim 1, wherein a failure diagnosis of the gas sensor is performed by a third diagnosis function.
JP2009237650A 2009-10-14 2009-10-14 Alarm Expired - Fee Related JP5198403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009237650A JP5198403B2 (en) 2009-10-14 2009-10-14 Alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237650A JP5198403B2 (en) 2009-10-14 2009-10-14 Alarm

Publications (2)

Publication Number Publication Date
JP2011085455A JP2011085455A (en) 2011-04-28
JP5198403B2 true JP5198403B2 (en) 2013-05-15

Family

ID=44078508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237650A Expired - Fee Related JP5198403B2 (en) 2009-10-14 2009-10-14 Alarm

Country Status (1)

Country Link
JP (1) JP5198403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206383A1 (en) * 2015-06-26 2016-12-29 中航泰德(深圳)海洋工程有限公司 Gas detector and alarming method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594704B2 (en) * 2015-08-26 2019-10-23 矢崎エナジーシステム株式会社 Gas alarm
JP6725173B2 (en) 2016-08-12 2020-07-15 アズビル株式会社 Interface circuit
CN114965655A (en) * 2022-06-27 2022-08-30 北京理工大学 Lithium ion battery thermal runaway fault diagnosis system based on gas signal
JP7514999B1 (en) 2023-12-27 2024-07-11 新コスモス電機株式会社 Gas detection device and method for diagnosing a gas detection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200443B1 (en) * 1998-09-29 2001-03-13 Atwood Industries, Inc. Gas sensor with a diagnostic device
US6948352B2 (en) * 2002-02-07 2005-09-27 Walter Kidde Portable Equipment, Inc. Self-calibrating carbon monoxide detector and method
JP4834616B2 (en) * 2007-06-15 2011-12-14 矢崎総業株式会社 Alarm
JP2008309712A (en) * 2007-06-15 2008-12-25 Yazaki Corp Alarm
JP4834617B2 (en) * 2007-06-15 2011-12-14 矢崎総業株式会社 Alarm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206383A1 (en) * 2015-06-26 2016-12-29 中航泰德(深圳)海洋工程有限公司 Gas detector and alarming method therefor

Also Published As

Publication number Publication date
JP2011085455A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5198403B2 (en) Alarm
JP3285720B2 (en) Method and apparatus for detecting deterioration of assembled battery
JP4194085B2 (en) Self-diagnosis method and gas detector for proton conductor gas sensor
US20120025844A1 (en) Connection diagnostic apparatus for ground fault detector
JP4996190B2 (en) Voltage detector
JP5541743B2 (en) Contactor welding detector
US9411004B2 (en) Continuous leakage detection circuit with integrated robustness check and balanced fault detection
JP4834616B2 (en) Alarm
JP4834617B2 (en) Alarm
JP5481153B2 (en) Alarm
US9091736B2 (en) Systems and methods of battery cell anomaly detection
JP5059394B2 (en) Gas alarm
JP2008309712A (en) Alarm
JP2004125738A (en) Apparatus for detecting abnormality of oxygen sensor
JP2013068452A (en) Current sensor failure diagnosis equipment
JP5115992B2 (en) Carbon monoxide gas measuring device and alarm
JP4367904B2 (en) Electrochemical gas sensor device
JP2004245743A (en) Flying capacitor type voltage detection circuit
JP5566420B2 (en) Gas alarm
JP5297969B2 (en) Alarm
JP5065332B2 (en) Carbon monoxide gas measuring device and alarm
JP5135283B2 (en) Carbon monoxide gas measuring device and alarm
JPH09227050A (en) Battery residual capacity measuring device for elevator emergency power supply device
JP7534573B1 (en) Gas sensor diagnostic method
KR100442996B1 (en) Method for checking lifetime of battery and malfunction in electronic appliance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees