JP5065332B2 - Carbon monoxide gas measuring device and alarm - Google Patents

Carbon monoxide gas measuring device and alarm Download PDF

Info

Publication number
JP5065332B2
JP5065332B2 JP2009118492A JP2009118492A JP5065332B2 JP 5065332 B2 JP5065332 B2 JP 5065332B2 JP 2009118492 A JP2009118492 A JP 2009118492A JP 2009118492 A JP2009118492 A JP 2009118492A JP 5065332 B2 JP5065332 B2 JP 5065332B2
Authority
JP
Japan
Prior art keywords
current
gas sensor
sensor
electrochemical gas
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009118492A
Other languages
Japanese (ja)
Other versions
JP2010266354A (en
Inventor
唯宣 中島
和宏 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Yazaki Corp
Original Assignee
Tokyo Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Yazaki Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2009118492A priority Critical patent/JP5065332B2/en
Publication of JP2010266354A publication Critical patent/JP2010266354A/en
Application granted granted Critical
Publication of JP5065332B2 publication Critical patent/JP5065332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対象ガスの電気化学反応によって対象ガス濃度を検出する電気化学式ガスセンサに故障があるか否かを自己診断する一酸化炭素ガス計測装置及び警報器に関するものである。   The present invention relates to a carbon monoxide gas measuring device and an alarm device that self-diagnose whether or not there is a failure in an electrochemical gas sensor that detects a target gas concentration by an electrochemical reaction of the target gas.

燃焼機器の不完全燃焼等によるCOガスを検出し警報するCO警報器のように、周辺雰囲気中のCO濃度を測定する装置として、従来から、電気化学式COセンサ(=ガスセンサ)を内蔵したものが知られている。   As a device for measuring the CO concentration in the ambient atmosphere, such as a CO alarm device that detects and alarms CO gas due to incomplete combustion of combustion equipment, etc., a device that has conventionally incorporated an electrochemical CO sensor (= gas sensor) Are known.

図6に断面図で示すように、この電気化学式COセンサ1は、内部に水5が収容された金属缶2(=水容器)の上部開口4にプロトン導電体膜3を設置して、その対極32を金属缶2内に露出させると共に、反対側の検知極31にガス吸着フィルタ8cを内蔵した金属キャップ8を重ねて金属缶2の上部開口4にかしめ固定して構成されている。   As shown in a cross-sectional view in FIG. 6, this electrochemical CO sensor 1 has a proton conductor film 3 installed in an upper opening 4 of a metal can 2 (= water container) in which water 5 is accommodated. The counter electrode 32 is exposed in the metal can 2, and the metal cap 8 including the gas adsorption filter 8 c is overlapped on the opposite detection electrode 31 and is caulked and fixed to the upper opening 4 of the metal can 2.

上述した構成の電気化学式のCOセンサ1では、周辺雰囲気中のCO(=対象ガス)が、金属キャップ8の導入孔8aから内部に導入されて、活性炭やシリカゲル、ゼオライト等からなるガス吸着フィルタ8cや導出孔8b、そして、金属キャップ8とプロトン導電体膜3との間に介設した金属製の拡散制御板7の拡散制御孔7aを通過して検知極31に到達し、ここで、対極32側からプロトン導電体膜3に供給される金属缶2内の水5の水分を利用した酸化反応を起こして、検知極31にプロトン(2H+)と電子(2e-)を発生させる。 In the electrochemical CO sensor 1 having the above-described configuration, CO (= target gas) in the ambient atmosphere is introduced into the inside through the introduction hole 8a of the metal cap 8, and the gas adsorption filter 8c made of activated carbon, silica gel, zeolite, or the like. And through the diffusion control hole 7a of the metal diffusion control plate 7 interposed between the metal cap 8 and the proton conductor film 3, and reaches the detection electrode 31, where the counter electrode Oxidation reaction using the water 5 in the metal can 2 supplied to the proton conductor film 3 from the 32 side is caused to generate protons (2H + ) and electrons (2e ) at the detection electrode 31.

検知極31に発生した電子(2e-)はプロトン導電体膜3の内部を通過できないので検知極31に滞留し、一方、プロトン(2H+)は、プロトン導電体膜3の内部を通過して対極32に移動し、ここで、金属缶2内の酸素と還元反応を起こして、対極32に水(H2O)を生成する。 The electrons (2e ) generated in the detection electrode 31 cannot pass through the proton conductor film 3 and therefore stay in the detection electrode 31, while the proton (2H + ) passes through the proton conductor film 3. It moves to the counter electrode 32, where it causes a reduction reaction with oxygen in the metal can 2 to generate water (H 2 O) at the counter electrode 32.

したがって、検知極31と拡散制御板7を介して電気的に接続されてそのターミナルとして機能する金属キャップ8と、対極32とワッシャー9を介して電気的に接続されてそのターミナルとして機能する金属缶2との間に電流/電圧変換回路(図示せず)を接続すると、検知極31に滞留した電子(2e-)の対極32に向かう流れが電流/電圧変換回路の入力抵抗に生じ、これにより対極32から上記入力抵抗を経て検知極31に向かう電流の流れが生じるので、この電流を電流/電圧変換回路が、電流/電圧変換することで、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号が得られる(例えば特許文献1,2)。 Accordingly, a metal cap 8 that is electrically connected to the detection electrode 31 via the diffusion control plate 7 and functions as its terminal, and a metal can that is electrically connected to the counter electrode 32 and the washer 9 and functions as its terminal. When a current / voltage conversion circuit (not shown) is connected between the current and voltage, a flow of electrons (2e ) staying in the detection electrode 31 toward the counter electrode 32 is generated in the input resistance of the current / voltage conversion circuit. Since a current flows from the counter electrode 32 to the detection electrode 31 through the input resistance, the current / voltage conversion circuit converts this current into current / voltage so that a voltage value corresponding to the CO concentration in the ambient atmosphere can be obtained. A CO concentration signal is obtained (for example, Patent Documents 1 and 2).

また、上記同様に水容器からの水蒸気と対象ガスとの反応を利用するガスセンサとして、2つの電極間にイオン伝導固体電解膜を備えるとともに、イオン伝導固体電解膜に一定の相対湿度を維持するように水を充填した水容器を備えたガスセンサがある(例えば特許文献3)。   Further, as described above, as a gas sensor that utilizes the reaction between water vapor from a water container and a target gas, an ion conductive solid electrolytic membrane is provided between two electrodes, and a constant relative humidity is maintained in the ion conductive solid electrolytic membrane. There is a gas sensor including a water container filled with water (for example, Patent Document 3).

前記COセンサ1は、それ自身では、周囲雰囲気中のCO濃度に応じた電圧値のCO濃度信号を生成するために外部からの電力供給を必要としないことから、電池によって長期間駆動する必要のあるCO警報器での利用に適している。   The CO sensor 1 itself does not require an external power supply in order to generate a CO concentration signal having a voltage value corresponding to the CO concentration in the ambient atmosphere. Suitable for use with certain CO alarms.

ところで、上述したCO警報器は、従来より、金属缶2中の水が減少する「水なし」、「断線」、「短絡」といった故障を検出する自己診断を行っている(例えば特許文献3)。COセンサ1の自己診断は、このCOセンサ1を一種のコンデンサとみなし、その放電時の電流波形が「水なし」、「断線」、「短絡」といった故障によって正常時とは異なることを利用して行っている。   By the way, the above-mentioned CO alarm device has conventionally performed self-diagnosis for detecting failures such as “no water”, “disconnection”, and “short circuit” in which water in the metal can 2 is reduced (for example, Patent Document 3). . The self-diagnosis of the CO sensor 1 regards this CO sensor 1 as a kind of capacitor, and uses the fact that the current waveform at the time of discharge differs from the normal state due to failures such as “no water”, “disconnection”, and “short circuit”. Is going.

特開2004−170101号公報JP 2004-170101 A 特開2004−279293号公報JP 2004-279293 A 特開2000−146908号公報JP 2000-146908 A

電気化学式ガスセンサを用いた従来の警報器は、警報器の作り込みの際に、電気化学式ガスセンサの感度調整を行っていたが、その後ガスセンサの感度が低下する可能性があることが分かった。上述したようにガスセンサは大きなコンデンサと考えられていたが、警報器の振動、衝撃などにより、導電性疎水膜と電解質との間に積層ズレが生じると、その積層ズレにより直列抵抗が生成されることが分かった。そして、ガスセンサの直流抵抗の大きさによってはガスセンサの感度低下に繋がってしまうため、早急な対応が求められていた。   In the conventional alarm device using the electrochemical gas sensor, the sensitivity of the electrochemical gas sensor is adjusted when the alarm device is built. However, it has been found that the sensitivity of the gas sensor may decrease thereafter. As described above, the gas sensor was considered to be a large capacitor. However, when a misalignment occurs between the conductive hydrophobic film and the electrolyte due to vibration or impact of the alarm, a series resistance is generated by the misalignment. I understood that. And depending on the magnitude | size of DC resistance of a gas sensor, since it will lead to the sensitivity fall of a gas sensor, the quick response was calculated | required.

しかしながら、従来の感度調整はガスセンサ個々の直列抵抗のバラツキを含んだ調整となっていたため、その直列抵抗の大きさによってはガスセンサの感度低下に繋がる可能性があった。ところが、上述したように、ガスセンサに充電を行い電荷を貯め、その後電荷を放電させて、その充放電特性を確認する方法では、ガスセンサがコンデンサとして動作しうるか、つまり断線、短絡、水の枯渇を検出することはできたが、それとは異なる積層ズレの発生を検出することができなかった。   However, since the conventional sensitivity adjustment is an adjustment including variations in the series resistance of each gas sensor, there is a possibility that the sensitivity of the gas sensor may be lowered depending on the magnitude of the series resistance. However, as described above, in the method of charging the gas sensor to store the charge and then discharging the charge to check the charge / discharge characteristics, the gas sensor can operate as a capacitor, that is, disconnection, short circuit, and water depletion. Although it could be detected, it was not possible to detect the occurrence of a stacking deviation different from that.

よって本発明は、上述した問題点に鑑み、電気化学式ガスセンサにおける積層ズレの発生を検出することができる一酸化炭素ガス計測装置及び警報器を提供することを課題としている。   Therefore, in view of the above-described problems, an object of the present invention is to provide a carbon monoxide gas measuring device and an alarm device that can detect the occurrence of stacking misalignment in an electrochemical gas sensor.

上記課題を解決するためになされた請求項1記載の発明は、検知極と電解質膜と対極とを順次積層し且つ固体又は液体の電解質と対象ガスとの反応によって対象ガス濃度に応じた電流を、前記検知極と前記対極との間に発生する電気化学式ガスセンサと、前記電気化学式ガスセンサに流れる前記電流を電圧に変換する電流/電圧変換回路と、前記電気化学式ガスセンサに充電電流を供給して前記電気化学式ガスセンサを充電する電源と、前記電源から前記電気化学式ガスセンサへの供給路と前記電流/電圧変換回路の入力端との間に設けられ、且つ、前記電気化学式ガスセンサの充電開始時の等価回路が有する直列内部抵抗成分の抵抗値の変化に応じて前記電源から流れ込む電流が変化する抵抗値に設定された抵抗と、前記電気化学式ガスセンサの充電開始時における前記電流/電圧変換回路からの出力電圧と前記抵抗の抵抗値に基づいて前記直列内部抵抗成分の抵抗値を算出し、該直列内部抵抗成分の抵抗値に基づいて前記電気化学式ガスセンサの積層ズレを検出する自己診断手段と、を有することを特徴とする。   The invention according to claim 1, which has been made to solve the above-described problem, sequentially stacks a detection electrode, an electrolyte membrane, and a counter electrode, and generates a current corresponding to the concentration of the target gas by a reaction between the solid or liquid electrolyte and the target gas. An electrochemical gas sensor generated between the detection electrode and the counter electrode; a current / voltage conversion circuit that converts the current flowing through the electrochemical gas sensor into a voltage; and a charging current supplied to the electrochemical gas sensor A power source for charging the electrochemical gas sensor, an equivalent circuit provided between the supply path from the power source to the electrochemical gas sensor and the input terminal of the current / voltage conversion circuit, and at the start of charging of the electrochemical gas sensor A resistance set to a resistance value at which a current flowing from the power source changes in accordance with a change in the resistance value of the series internal resistance component of the A resistance value of the series internal resistance component is calculated based on an output voltage from the current / voltage conversion circuit and a resistance value of the resistor at the start of charging, and the electrical resistance is calculated based on the resistance value of the series internal resistance component. And self-diagnosis means for detecting a stacking deviation of the chemical gas sensor.

請求項1記載の発明によれば、電源から電気化学式ガスセンサへの充電電流への供給を開始すると、電流/電圧変換回路が出力した出力電圧と抵抗の抵抗値に基づいて、電気化学式ガスセンサの等価回路における直列内部抵抗成分の抵抗値を算出することができるため、その抵抗値の変化に基づいて自己診断手段が電気化学式ガスセンサの積層ズレを検出することができる。   According to the first aspect of the present invention, when supply of the charging current from the power source to the electrochemical gas sensor is started, the equivalent of the electrochemical gas sensor is determined based on the output voltage output from the current / voltage conversion circuit and the resistance value of the resistance. Since the resistance value of the series internal resistance component in the circuit can be calculated, the self-diagnosis means can detect the stacking deviation of the electrochemical gas sensor based on the change in the resistance value.

上記課題を解決するためになされた請求項2記載の発明は、請求項1記載の一酸化炭素ガス計測装置と、前記一酸化炭素ガス計測装置によって検出された前記電気化学式ガスセンサの積層ズレを通知する通知手段と、を有することを特徴とする。   The invention according to claim 2, which has been made to solve the above-described problem, notifies the stacking misalignment between the carbon monoxide gas measuring device according to claim 1 and the electrochemical gas sensor detected by the carbon monoxide gas measuring device. And notifying means.

請求項2の本発明によれば、一酸化炭素ガス計測装置によって一酸化炭素ガスの積層ズレを検出すると、それを通知手段によって通知することができる。   According to the present invention of claim 2, when the carbon monoxide gas stacking deviation is detected by the carbon monoxide gas measuring device, it can be notified by the notification means.

以上説明したように請求項1記載の本発明によれば、電源から電気化学式ガスセンサへの充電電流への供給の開始に応じて、電流/電圧変換回路が出力した出力電圧に基づいて電気化学式ガスセンサの等価回路における直列内部抵抗成分を算出し、その直列内部抵抗成分に基づいて積層ズレを検出するようにしたことから、調整・出荷後に振動、衝撃などで電気化学式ガスセンサの積層ズレが生じた場合に、充電開始に応じて電流/電圧変換回路が出力した出力電圧からその積層ズレの発生を検出できるため、計測した対象ガス濃度の精度低下の防止に貢献することができる。また、出力電圧に基づいて積層ズレを検出するだけなので、定期的に自己診断を行うことが可能となり、積層ズレを迅速に検出することができるため、メンテナンス性の向上を図ることができる。従って、使用上問題のない範囲の内部抵抗値の電気化学式ガスセンサを、故障として判定することもなくなるので、従来の断線、短絡、水の枯渇等の故障と区別することが可能となり、メンテナンスを適切に行うことができる。   As described above, according to the present invention, the electrochemical gas sensor is based on the output voltage output from the current / voltage conversion circuit in response to the start of supply of the charging current from the power source to the electrochemical gas sensor. When the internal displacement of the electrochemical gas sensor occurs due to vibration, impact, etc. after adjustment and shipment, because the internal internal resistance component in the equivalent circuit is calculated and the stacking displacement is detected based on the internal resistance component. In addition, since the occurrence of the stacking deviation can be detected from the output voltage output from the current / voltage conversion circuit in response to the start of charging, it is possible to contribute to prevention of a decrease in accuracy of the measured target gas concentration. Further, since only the stacking misalignment is detected based on the output voltage, self-diagnosis can be performed periodically, and the stacking misalignment can be detected quickly, so that the maintainability can be improved. Therefore, an electrochemical gas sensor with an internal resistance value in a range that does not cause a problem in use is no longer determined as a failure, so it can be distinguished from conventional failures such as disconnection, short circuit, water depletion, etc. Can be done.

以上説明したように請求項2記載の本発明によれば、一酸化炭素ガス計測装置が一酸化炭素ガスの積層ズレを検出すると、それを通知手段によって通知するようにしたことから、積層ズレの発生を速やかに利用者、作業者等に通知することができるため、電気化学式ガスセンサに故障が生じたままの状態で使用され続けることを防止できる。また、一酸化炭素ガス計測装置が定期的に自己診断を行うことができるため、正常な状態で計測した対象ガス濃度に対する警報を行うことができる。従って、計測精度の低下を防止できるため、安全性の向上に貢献することができる。   As described above, according to the second aspect of the present invention, when the carbon monoxide gas measuring device detects the stacking misalignment of the carbon monoxide gas, the notification means notifies it. Since the occurrence can be promptly notified to the user, the worker, etc., it is possible to prevent the electrochemical gas sensor from being continuously used in a state where a failure has occurred. In addition, since the carbon monoxide gas measuring device can periodically perform self-diagnosis, an alarm can be given for the target gas concentration measured in a normal state. Accordingly, it is possible to prevent a decrease in measurement accuracy, thereby contributing to an improvement in safety.

本発明の実施形態に係る警報器としてのガス警報器の一実施の形態を示す回路図である。It is a circuit diagram showing one embodiment of a gas alarm as an alarm according to an embodiment of the present invention. 図1に示すガス警報器中の電気化学式ガスセンサの等価回路図である。It is an equivalent circuit schematic of the electrochemical gas sensor in the gas alarm device shown in FIG. 図2に示す電気化学式ガスセンサの充電した瞬間の等価回路図である。FIG. 3 is an equivalent circuit diagram at the moment when the electrochemical gas sensor shown in FIG. 2 is charged. 電気化学式ガスセンサに電圧値と時間との関係を示すグラフである。It is a graph which shows the relationship between a voltage value and time in an electrochemical gas sensor. 図1のCPUが実行する自己診断処理の一例を示すフローチャートである。It is a flowchart which shows an example of the self-diagnosis process which CPU of FIG. 1 performs. 本発明に係る電気化学式COセンサの一例を示す断面図である。It is sectional drawing which shows an example of the electrochemical CO sensor which concerns on this invention.

以下、本発明に係る一酸化炭素ガス計測装置を有する警報器の一例を、図1〜図5の図面を参照して以下に説明する。なお、従来の技術のところで説明したものと同一あるいは相当する部分には同一符号を付してその詳細な説明は省略する。   Hereinafter, an example of an alarm device having a carbon monoxide gas measuring device according to the present invention will be described with reference to the drawings of FIGS. In addition, the same code | symbol is attached | subjected to the part which is the same as that of what was demonstrated in the prior art, or the detailed description is abbreviate | omitted.

図1において、ガス警報器100は、電気化学式ガスセンサ(以下、COセンサという)1と、マイクロコンピュータ(以下、マイコンという)10と、自己診断回路30と、電流/電圧変換回路40と、抵抗R1と、音声警報出力部50と、当該ガス警報器の各部に電力を供給する電池60と、を有して構成している。   In FIG. 1, a gas alarm device 100 includes an electrochemical gas sensor (hereinafter referred to as a CO sensor) 1, a microcomputer (hereinafter referred to as a microcomputer) 10, a self-diagnosis circuit 30, a current / voltage conversion circuit 40, and a resistor R1. And a sound alarm output unit 50 and a battery 60 that supplies power to each unit of the gas alarm device.

COセンサ1は、例えば前掲の図6に示す電気化学式COセンサ1となっている。COセンサ1は、水を収容する水容器からの水蒸気または大気中の水蒸気と対象ガスとの反応によって対象ガス濃度に応じた電流Iを発生し、該電流Iを電流/電圧変換回路40に出力する。COセンサ1の検知極31と、演算増幅器41の−入力端との間には、抵抗R1が設けられている。   The CO sensor 1 is, for example, the electrochemical CO sensor 1 shown in FIG. The CO sensor 1 generates a current I corresponding to the target gas concentration by a reaction between water vapor from a water container containing water or water vapor in the atmosphere and the target gas, and outputs the current I to the current / voltage conversion circuit 40. To do. A resistor R1 is provided between the detection electrode 31 of the CO sensor 1 and the negative input terminal of the operational amplifier 41.

電流/電圧変換回路40は、抵抗R1を介してCOセンサ1の検知極31及び第1スイッチSW1が−入力端に、対極32及び電流源33が+入力端にそれぞれ接続された演算増幅器41と、演算増幅器41の−入力端及び出力端間に設けられた帰還抵抗R2とから構成されていて、電流Iに応じた電圧信号をマイコン10に出力する。   The current / voltage conversion circuit 40 includes an operational amplifier 41 having a detection electrode 31 and a first switch SW1 of the CO sensor 1 connected to a negative input terminal and a counter electrode 32 and a current source 33 connected to a positive input terminal via a resistor R1. And a feedback resistor R2 provided between the negative input terminal and the output terminal of the operational amplifier 41, and outputs a voltage signal corresponding to the current I to the microcomputer 10.

マイコン10は、処理プログラムに従って各種の処理を行うCPU10aと、CPU10aが行う処理のプログラムなどを格納したROM10bと、CPU10aでの各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有するRAM10c、所定のレジスタに設定された時間の計測あるいは日時、時刻等を計測するためのタイマ10d等で構成されており、これらの各要素はバスラインによって接続されている。そして、マイコン10は、所定のサンプリング周期により、電流/電圧変換回路40から出力される電圧信号をサンプリングしてCOのガス濃度を計測し、そのガス濃度が警報設定点以上となった時に音声警報出力部50から警報を発し、警報解除設定点以下になった時に警報を停止する。   The microcomputer 10 includes a CPU 10a that performs various processes according to a processing program, a ROM 10b that stores a program for processing performed by the CPU 10a, a work area that is used in various processes in the CPU 10a, a data storage area that stores various data, and the like. The RAM 10c has a timer 10d for measuring the time set in a predetermined register or the date, time, etc., and these elements are connected by a bus line. The microcomputer 10 samples the voltage signal output from the current / voltage conversion circuit 40 at a predetermined sampling period and measures the CO gas concentration. When the gas concentration reaches or exceeds the alarm set point, a sound alarm is issued. An alarm is issued from the output unit 50, and the alarm is stopped when the alarm is below the alarm release set point.

なお、COは、燃焼器具を正常な状態で使用しても発生することが知られており、特に、鍋、やかん等の調理器具を用いて、お湯を沸かす場合に、冷たい調理器具が暖まるまでの間にCOが発生するので、CO濃度(ガス濃度)が警報設定点を超えてもすぐには警報の発生を行わず、予め定めた遅延時間経過後も警報設定点を越えている状態が継続した場合に、警報を発生するようにしてもよい。   Note that CO is known to be generated even when the combustion utensil is used in a normal state. In particular, when boiling hot water using a cooking utensil such as a pan or a kettle, the cold cooking utensil is warmed up. Since CO occurs during this period, even if the CO concentration (gas concentration) exceeds the alarm set point, an alarm is not generated immediately, and the alarm set point is exceeded even after a predetermined delay time has elapsed. If it continues, an alarm may be generated.

自己診断回路30は、マイコン10からの指示によりCOセンサ1の自己診断を実行する回路である。自己診断回路30は、COセンサ1に充電電流を供給してCOセンサ1を充電するための請求項中の電源としての電流源33と、電流源33−COセンサ1間に設けられてCOセンサ1の充電及び放電を切り替える第1スイッチSW1と、を有している。   The self-diagnosis circuit 30 is a circuit that executes a self-diagnosis of the CO sensor 1 in accordance with an instruction from the microcomputer 10. The self-diagnosis circuit 30 is provided between the current source 33 and the CO sensor 1 as a power source for charging the CO sensor 1 by supplying a charging current to the CO sensor 1 and the CO sensor 1. 1 and a first switch SW1 for switching between charging and discharging.

COセンサ1は、電流源33から充電されると、図2に示す等価回路となる。COセンサ1の等価回路は、電流源33と抵抗R1と電気的に接続された直列抵抗(直列内部抵抗成分に相当)Rsと、該直列抵抗Rsに直列接続された抵抗Rpと、抵抗Rpに並列接続されたコンデンサCと、を有して構成している。そして、直列抵抗Rsと抵抗Rpとの関係は、抵抗Rp>>直列抵抗Rsとなっている。なお、抵抗R1の抵抗値は1kΩ、帰還抵抗R2の抵抗値は100kΩとする。   When the CO sensor 1 is charged from the current source 33, the equivalent circuit shown in FIG. The equivalent circuit of the CO sensor 1 includes a series resistor (corresponding to a series internal resistance component) Rs electrically connected to the current source 33 and the resistor R1, a resistor Rp connected in series to the series resistor Rs, and a resistor Rp. And a capacitor C connected in parallel. The relationship between the series resistance Rs and the resistance Rp is resistance Rp >> series resistance Rs. The resistance value of the resistor R1 is 1 kΩ, and the resistance value of the feedback resistor R2 is 100 kΩ.

図4はCOセンサ1の電圧値と時間の関係を、充電及び放電に対応させて示している。なお、図4において、縦軸は電圧値、横軸は時間をそれぞれ示している。そして、そのCOセンサ1の充電開始時STは、過渡的にCOセンサ1の容量成分は無視でき、インピーダンスは0Ωと見なすことができる。すると、COセンサ1は、図3に示す等価回路と考えることができる。   FIG. 4 shows the relationship between the voltage value of the CO sensor 1 and time corresponding to charging and discharging. In FIG. 4, the vertical axis indicates the voltage value, and the horizontal axis indicates time. Then, at the start of charging ST of the CO sensor 1, the capacitance component of the CO sensor 1 can be ignored transiently, and the impedance can be regarded as 0Ω. Then, the CO sensor 1 can be considered as an equivalent circuit shown in FIG.

図3における充電電流Iは、COセンサ1の直列抵抗Rsに流れる電流Iaと抵抗R1に流れる電流Ibとに分流される。よって、直列抵抗Rsの抵抗値が大きくなればなるほど、1kΩの抵抗R1側に流れる電流は大きくなる。その電流Ibが電流/電圧変換回路40で電圧出力に変換されるので、その電圧値に基づいて、COセンサ1の直流抵抗Rsの抵抗値を算出することができる。   The charging current I in FIG. 3 is divided into a current Ia flowing through the series resistor Rs of the CO sensor 1 and a current Ib flowing through the resistor R1. Therefore, the larger the resistance value of the series resistor Rs, the larger the current flowing to the 1 kΩ resistor R1 side. Since the current Ib is converted into a voltage output by the current / voltage conversion circuit 40, the resistance value of the DC resistance Rs of the CO sensor 1 can be calculated based on the voltage value.

例えば、上述した構成において、直流抵抗Rsが500Ω、充電電流Iが1μAとする。このとき、直流抵抗Rsと抵抗R1に流れる電流比は、500Ω:1kΩ=1:2から、直列抵抗Rs側の電流:抵抗R1側の電流=2:1となる。そして、抵抗R1に流れる電流値をXとして出力電圧を求める場合、1:2=X:(1μA−X)となり、X=1/3μAとなる。   For example, in the configuration described above, the DC resistance Rs is 500Ω and the charging current I is 1 μA. At this time, the ratio of the current flowing through the DC resistor Rs and the resistor R1 is changed from 500Ω: 1 kΩ = 1: 2 to the current on the series resistor Rs side: current on the resistor R1 = 2: 1. When the output voltage is obtained by setting the value of the current flowing through the resistor R1 to X, 1: 2 = X: (1 μA−X), and X = 1/3 μA.

よって、電流/電圧変換回路40の出力電圧は、1/3μA*100kΩ=100/3mV≒33.3mVとなる。即ち、上述した逆の計算を行うことで、直列抵抗Rsの抵抗値を求めることができる。   Therefore, the output voltage of the current / voltage conversion circuit 40 is 1/3 μA * 100 kΩ = 100/3 mV≈33.3 mV. That is, the resistance value of the series resistor Rs can be obtained by performing the reverse calculation described above.

例えば、電流/電圧変換回路40の出力電圧が25mVとすると、25mV/100kΩ=0.25μAとなり、0.25μA:(1−0.25)μA=1:3となる。よって、1:3=直列抵抗Rs:1kΩから、直列抵抗Rs=1000/3Ω=333.3Ωと求めることができる。   For example, if the output voltage of the current / voltage conversion circuit 40 is 25 mV, 25 mV / 100 kΩ = 0.25 μA, and 0.25 μA: (1-0.25) μA = 1: 3. Therefore, from 1: 3 = series resistance Rs: 1 kΩ, it can be determined that series resistance Rs = 1000 / 3Ω = 333.3Ω.

このように電流/電圧変換回路40の出力電圧に基づいて直列抵抗Rsを算出し、その直列抵抗Rsの大きさにより、使用上問題のない範囲、閾値、等を積層ズレ判定条件としてROM10b等に予め記憶しておくことで、COセンサ1の積層ズレを検出することができる。よって、本発明では、COセンサ1の充電時に、一種のコンデンサと見なすのではなく、その等価回路の直列抵抗Rsに着目することで、COセンサ1における積層ズレを検出できるようにしたものである。   In this way, the series resistance Rs is calculated based on the output voltage of the current / voltage conversion circuit 40. Depending on the magnitude of the series resistance Rs, the ROM 10b or the like has a range, threshold value, etc. that are not problematic in use as a stacking deviation determination condition. By storing in advance, the stacking deviation of the CO sensor 1 can be detected. Therefore, in the present invention, when the CO sensor 1 is charged, it is not regarded as a kind of capacitor, but by focusing on the series resistance Rs of the equivalent circuit, the stacking deviation in the CO sensor 1 can be detected. .

抵抗R1は、電流/電圧変換回路40の入力抵抗となっている。抵抗R1は、その一旦が電流源33(電源)からCOセンサ1への供給路、且つ、他端が上述した演算増幅器41の−入力端にそれぞれ電気的に接続されている。抵抗R1は、上述したCOセンサ1の等価回路における直列抵抗Rsの抵抗値の増加(変化)に応じて電流源33から流れ込む電流Ibが増加(変化)する抵抗値に設定されている。   The resistor R1 is an input resistor of the current / voltage conversion circuit 40. The resistor R1 is once electrically connected to the supply path from the current source 33 (power supply) to the CO sensor 1, and the other end is electrically connected to the negative input terminal of the operational amplifier 41 described above. The resistance R1 is set to a resistance value at which the current Ib flowing from the current source 33 increases (changes) in accordance with the increase (change) in the resistance value of the series resistance Rs in the equivalent circuit of the CO sensor 1 described above.

音声警報出力部50は、請求項中の通知手段に相当し、マイコン10と電気的に接続されている。音声警報出力部50は、CPU10aからの要求に応じて例えば音声、表示、等による各種出力が可能な構成となっている。なお、本実施形態では、音声警報出力部50が音声出力回路によって音声による通知、警報を行う場合について説明するが、本発明はこれに限定するものではなく、表示のみで通知するなど種々異なる実施形態とすることができる。   The voice alarm output unit 50 corresponds to a notification unit in the claims, and is electrically connected to the microcomputer 10. The voice alarm output unit 50 is configured to be capable of various outputs such as voice, display, etc. in response to a request from the CPU 10a. In this embodiment, the case where the voice alarm output unit 50 performs voice notification and warning by the voice output circuit will be described. However, the present invention is not limited to this, and various implementations such as notification only by display are provided. It can be in the form.

次に、ガス警報器100のCPU10aが実行する本発明に係る自己診断処理の一例を、図5に示すフローチャートを参照して以下に説明する。   Next, an example of the self-diagnosis process according to the present invention executed by the CPU 10a of the gas alarm device 100 will be described below with reference to the flowchart shown in FIG.

CPU10aによってROM10bに記憶している自己診断処理プログラムが実行されると、ステップS11において、予め定められた診断タイミング(例えば、24時間毎、1週間毎、等)であるか否かが判定される。診断タイミングではないと判定された場合(S11でN)、この判定処理を繰り返すことで、診断タイミングを待つ。一方、診断タイミングであると判定された場合(S11でY)、ステップS12に進む。   When the self-diagnosis processing program stored in the ROM 10b is executed by the CPU 10a, it is determined in step S11 whether or not it is a predetermined diagnosis timing (for example, every 24 hours, every week, etc.). . When it is determined that it is not the diagnosis timing (N in S11), this determination process is repeated to wait for the diagnosis timing. On the other hand, when it is determined that it is the diagnosis timing (Y in S11), the process proceeds to step S12.

ステップS12において、第1スイッチSW1がオンされ、ステップS13において、演算増幅器41から電圧信号が取り込まれ、その電圧値がRAM10cに記憶され、ステップS14において、上述したように電圧値に基づいてCOセンサ1の直列抵抗Rsの抵抗値が算出されてRAM10cに記憶され、ステップS15において、タイマ10dに基づいて、第1スイッチSW1をONしてから所定時間が経過した後に第1スイッチSW1がオフされ、その後ステップS16に進む。   In step S12, the first switch SW1 is turned on. In step S13, a voltage signal is taken from the operational amplifier 41, and the voltage value is stored in the RAM 10c. In step S14, the CO sensor is based on the voltage value as described above. The resistance value of the first series resistor Rs is calculated and stored in the RAM 10c. In step S15, the first switch SW1 is turned off after a predetermined time elapses after the first switch SW1 is turned on based on the timer 10d. Thereafter, the process proceeds to step S16.

ステップS16において、RAM10cの抵抗値とROM10bに予め記憶している積層ズレ判定条件(例えば、判定閾値、判定範囲、等)とに基づいて、COセンサ1に積層ズレが発生しているか否かが判定される。積層ズレが発生していないと判定された場合(S15でN)、ステップS11に戻り、一連の処理が繰り返される。   In step S16, based on the resistance value of the RAM 10c and the stacking shift determination condition (for example, determination threshold, determination range, etc.) stored in advance in the ROM 10b, whether or not stacking shift has occurred in the CO sensor 1 is determined. Determined. When it is determined that no stacking error has occurred (N in S15), the process returns to step S11 and a series of processes is repeated.

また、ステップS16で積層ズレが発生していると判定された場合(S16でY)、ステップS17において、積層ズレの発生を利用者、作業者等に通知するための通知情報がRAM10cに作成され、コンデンサCの放電が終了した後、その通知情報が音声警報出力部50に出力されることで、音声警報出力部50によって積層ズレの発生が音声によって通知され、その後処理を終了する。   If it is determined in step S16 that stacking misalignment has occurred (Y in S16), in step S17, notification information for notifying the user, worker, etc. of the occurrence of stacking misalignment is created in the RAM 10c. After the discharge of the capacitor C is completed, the notification information is output to the audio alarm output unit 50, so that the audio alarm output unit 50 notifies the occurrence of the stacking deviation by audio, and then ends the processing.

以上の説明からも明らかなように、CPU10aが自己診断処理プログラムを実行することで、請求項中の自己診断手段として機能することから、本実施形態ではCPU10aが前記自己診断手段に相当している。   As is clear from the above description, the CPU 10a functions as the self-diagnosis unit in the claims by executing the self-diagnosis processing program. In this embodiment, the CPU 10a corresponds to the self-diagnosis unit. .

次に、上述したガス警報器100の本発明に係る自己診断時における動作(作用)の一例を以下に説明する。   Next, an example of the operation (action) of the gas alarm device 100 described above during self-diagnosis according to the present invention will be described below.

ガス警報器100は、診断タイミングになると、第1スイッチSW1をオンさせて、電流源33から充電電流をCOセンサ1に供給することで、COセンサ1を充電する。また、その電流源33から分流された電流は抵抗R1を介して電流/電圧変換回路40に入力され、電流/電圧変換回路40で電圧に変換して出力する。   The gas alarm device 100 charges the CO sensor 1 by turning on the first switch SW1 and supplying a charging current from the current source 33 to the CO sensor 1 at the diagnosis timing. The current shunted from the current source 33 is input to the current / voltage conversion circuit 40 via the resistor R1, converted into a voltage by the current / voltage conversion circuit 40, and output.

そして、ガス警報器100は、その電流/電圧変換回路40からの電圧値と抵抗R1とに基づいて、COセンサ1に充電を開始した瞬間の直列抵抗Rsの抵抗値を算出し、該直列抵抗Rsの抵抗値と積層ズレ判定条件との比較結果に基づいて、COセンサ1に積層ズレが発生しているか否かを判定する。   Then, the gas alarm device 100 calculates the resistance value of the series resistance Rs at the moment when the CO sensor 1 starts to be charged based on the voltage value from the current / voltage conversion circuit 40 and the resistance R1. Based on the comparison result between the resistance value of Rs and the stacking shift determination condition, it is determined whether or not stacking shift has occurred in the CO sensor 1.

ガス警報器100は、積層ズレが発生していないと判定した場合、第1スイッチSW1をオフさせて、通常状態に復帰する。その後は、上述した点検処理を定期的に行う。また、ガス警報器100は、積層ズレが発生していると判定した場合、通知情報を音声警報出力部50に出力することで、COセンサ1における積層ズレの発生を通知する。よって、その通知によって作業者等は積層ズレの発生を認識することができるため、感度調整等によって対応することができる。   If the gas alarm device 100 determines that the stacking error has not occurred, the gas alarm device 100 turns off the first switch SW1 and returns to the normal state. Thereafter, the above-described inspection process is periodically performed. In addition, when the gas alarm device 100 determines that the stacking error has occurred, the gas alarm device 100 outputs notification information to the sound alarm output unit 50 to notify the occurrence of the stacking error in the CO sensor 1. Therefore, since the operator can recognize the occurrence of the stacking deviation by the notification, it can cope with the sensitivity adjustment.

以上説明したガス警報器100によれば、電流源33からCOセンサ1への充電電流への供給の開始に応じて、電流/電圧変換回路40が出力した出力電圧に基づいてCOセンサ1の等価回路における直列抵抗(直列内部抵抗成分)Rsを算出し、その直列抵抗Rsに基づいて積層ズレを検出するようにしたことから、調整・出荷後に振動、衝撃などでCOセンサ1の積層ズレが生じた場合に、充電開始に応じて電流/電圧変換回路40が出力した出力電圧からその積層ズレの発生を検出できるため、計測した対象ガス濃度の精度低下の防止に貢献することができる。また、出力電圧に基づいて積層ズレを検出するだけなので、定期的に自己診断を行うことが可能となり、積層ズレを迅速に検出することができるため、メンテナンス性の向上を図ることができる。従って、使用上問題のない範囲の直列抵抗Rsの抵抗値の電気化学式ガスセンサを、故障として判定することもなくなるので、従来の断線、短絡、水の枯渇等の故障と区別することが可能となり、メンテナンスを適切に行うことができる。   According to the gas alarm device 100 described above, the equivalent of the CO sensor 1 based on the output voltage output from the current / voltage conversion circuit 40 in response to the start of supply of the charging current from the current source 33 to the CO sensor 1. Since the series resistance (series internal resistance component) Rs in the circuit is calculated and the stacking deviation is detected based on the series resistance Rs, the stacking deviation of the CO sensor 1 occurs due to vibration, impact, etc. after adjustment and shipment. In this case, the occurrence of the stacking deviation can be detected from the output voltage output from the current / voltage conversion circuit 40 in response to the start of charging, which can contribute to prevention of a decrease in accuracy of the measured target gas concentration. Further, since only the stacking misalignment is detected based on the output voltage, self-diagnosis can be performed periodically, and the stacking misalignment can be detected quickly, so that the maintainability can be improved. Therefore, the electrochemical gas sensor having a resistance value of the series resistance Rs in a range where there is no problem in use is not determined as a failure, so that it can be distinguished from conventional failures such as disconnection, short circuit, water depletion, Maintenance can be performed appropriately.

また、ガス警報器100によれば、COセンサ1の積層ズレを検出すると、それを通知手段である音声警報出力部50によって通知するようにしたことから、積層ズレの発生を速やかに利用者、作業者等に通知することができるため、COセンサ1に故障が生じたままの状態で使用され続けることを防止できる。また、ガス警報器100が定期的に自己診断を行うことができるため、正常な状態で計測した対象ガス濃度に対する警報を行うことができる。従って、計測精度の低下を防止できるため、安全性の向上に貢献することができる。   In addition, according to the gas alarm device 100, when the stacking deviation of the CO sensor 1 is detected, it is notified by the voice alarm output unit 50 which is a notification means. Since it is possible to notify an operator or the like, it is possible to prevent the CO sensor 1 from being continuously used in a state where a failure has occurred. Moreover, since the gas alarm device 100 can perform a self-diagnosis periodically, an alarm can be given to the target gas concentration measured in a normal state. Accordingly, it is possible to prevent a decrease in measurement accuracy, thereby contributing to an improvement in safety.

なお、上述した実施形態において、ガス警報器100が積層ズレ判定条件を正常か否かを判定する条件とした場合について説明したが、本発明はこれに限定するものではなく、積層ズレ判定条件を段階的に設定して、段階的に通知、警報を行うなど種々異なる実施形態とすることができる。   In the embodiment described above, the gas alarm device 100 has been described as a condition for determining whether or not the stacking deviation determination condition is normal. However, the present invention is not limited to this, and the stacking shift determination condition is not limited to this. Various embodiments can be made, such as setting in stages and performing notifications and alarms in stages.

また、上述した実施形態では、本発明の一酸化炭素ガス計測装置を警報器100に適用した場合について説明したが、本発明はこれに限定するものではなく、例えば、一酸化炭素ガス計測装置を燃焼器具、火災警報器、等の各種機器に組み込む、一酸化炭素ガス計測装置を単独の計測器具として用いるなど種々異なる実施形態とすることができる。   In the above-described embodiment, the case where the carbon monoxide gas measuring device of the present invention is applied to the alarm device 100 has been described. However, the present invention is not limited to this, and for example, the carbon monoxide gas measuring device is Various embodiments can be made such as incorporating a carbon monoxide gas measuring apparatus as a single measuring instrument incorporated in various devices such as a combustion instrument and a fire alarm.

さらに、上述した自己診断の方式は、水を収容する水容器からの水蒸気または大気中の水蒸気を電解質とし、該水蒸気と対象ガスとの反応によって前記対象ガス濃度に応じた電流をCOセンサ1が発生する場合について説明した。これに代えて、電解質に硫酸を用いた2極ないし3極で構成される電気化学式センサなどにも適用することができる。例えば、固体又は液体の電解質に接触する一対の電極を備え、検知対象ガスが反応する検知極ともう一方の電極との間に流れる電流又は当該電流に対応する電圧に基づいて、前記検知対象ガスの濃度を検知する電気化学式ガスセンサに適用することもできる。   Further, in the self-diagnosis method described above, water vapor from a water container containing water or water vapor in the atmosphere is used as an electrolyte, and the CO sensor 1 generates a current corresponding to the target gas concentration by the reaction between the water vapor and the target gas. The case where it occurs is explained. Instead, it can be applied to an electrochemical sensor composed of two or three electrodes using sulfuric acid as an electrolyte. For example, the detection target gas includes a pair of electrodes in contact with a solid or liquid electrolyte, and the detection target gas based on a current flowing between the detection electrode to which the detection target gas reacts and the other electrode or a voltage corresponding to the current. The present invention can also be applied to an electrochemical gas sensor that detects the concentration of the gas.

このように上述した実施例は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   As described above, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

1 COセンサ(電気化学式ガスセンサ)
2 金属缶(水容器)
10a CPU(自己診断手段)
31 検知極
32 対極
33 電流源(電源)
40 電流/電圧変換回路
50 音声警報出力部(通知手段)
R1 抵抗
Rs 直列抵抗(直列内部抵抗成分)
SW1 第1スイッチ
1 CO sensor (electrochemical gas sensor)
2 Metal can (water container)
10a CPU (self-diagnosis means)
31 Detection electrode 32 Counter electrode 33 Current source (power supply)
40 Current / voltage conversion circuit 50 Voice alarm output section (notification means)
R1 resistance Rs series resistance (series internal resistance component)
SW1 1st switch

Claims (2)

検知極と電解質膜と対極とを順次積層し且つ固体又は液体の電解質と対象ガスとの反応によって対象ガス濃度に応じた電流を、前記検知極と前記対極との間に発生する電気化学式ガスセンサと、
前記電気化学式ガスセンサに流れる前記電流を電圧に変換する電流/電圧変換回路と、
前記電気化学式ガスセンサに充電電流を供給して前記電気化学式ガスセンサを充電する電源と、
前記電源から前記電気化学式ガスセンサへの供給路と前記電流/電圧変換回路の入力端との間に設けられ、且つ、前記電気化学式ガスセンサの充電開始時の等価回路が有する直列内部抵抗成分の抵抗値の変化に応じて前記電源から流れ込む電流が変化する抵抗値に設定された抵抗と、
前記電気化学式ガスセンサの充電開始時における前記電流/電圧変換回路からの出力電圧と前記抵抗の抵抗値に基づいて前記直列内部抵抗成分の抵抗値を算出し、該直列内部抵抗成分の抵抗値に基づいて前記電気化学式ガスセンサの積層ズレを検出する自己診断手段と、
を有することを特徴とする一酸化炭素ガス計測装置。
An electrochemical gas sensor in which a detection electrode, an electrolyte membrane, and a counter electrode are sequentially stacked, and a current corresponding to a target gas concentration is generated between the detection electrode and the counter electrode by a reaction between a solid or liquid electrolyte and the target gas; ,
A current / voltage conversion circuit for converting the current flowing through the electrochemical gas sensor into a voltage;
A power source for charging the electrochemical gas sensor by supplying a charging current to the electrochemical gas sensor;
A resistance value of a series internal resistance component that is provided between the supply path from the power source to the electrochemical gas sensor and the input terminal of the current / voltage conversion circuit and that the equivalent circuit at the start of charging of the electrochemical gas sensor has A resistance set to a resistance value at which the current flowing from the power source changes according to the change of
The resistance value of the series internal resistance component is calculated based on the output voltage from the current / voltage conversion circuit and the resistance value of the resistor at the start of charging of the electrochemical gas sensor, and based on the resistance value of the series internal resistance component Self-diagnostic means for detecting stacking misalignment of the electrochemical gas sensor;
A carbon monoxide gas measuring device comprising:
請求項1記載の一酸化炭素ガス計測装置と、
前記一酸化炭素ガス計測装置によって検出された前記電気化学式ガスセンサの積層ズレを通知する通知手段と、
を有することを特徴とする警報器。
A carbon monoxide gas measuring device according to claim 1;
A notification means for notifying a stacking deviation of the electrochemical gas sensor detected by the carbon monoxide gas measuring device;
An alarm device comprising:
JP2009118492A 2009-05-15 2009-05-15 Carbon monoxide gas measuring device and alarm Expired - Fee Related JP5065332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118492A JP5065332B2 (en) 2009-05-15 2009-05-15 Carbon monoxide gas measuring device and alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118492A JP5065332B2 (en) 2009-05-15 2009-05-15 Carbon monoxide gas measuring device and alarm

Publications (2)

Publication Number Publication Date
JP2010266354A JP2010266354A (en) 2010-11-25
JP5065332B2 true JP5065332B2 (en) 2012-10-31

Family

ID=43363454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118492A Expired - Fee Related JP5065332B2 (en) 2009-05-15 2009-05-15 Carbon monoxide gas measuring device and alarm

Country Status (1)

Country Link
JP (1) JP5065332B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834617B2 (en) * 2007-06-15 2011-12-14 矢崎総業株式会社 Alarm
JP2008309712A (en) * 2007-06-15 2008-12-25 Yazaki Corp Alarm
JP4834616B2 (en) * 2007-06-15 2011-12-14 矢崎総業株式会社 Alarm

Also Published As

Publication number Publication date
JP2010266354A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP4194085B2 (en) Self-diagnosis method and gas detector for proton conductor gas sensor
JP2000146908A (en) Gas sensor with electrically conductive, hydrophobic membrane
JP4834616B2 (en) Alarm
JP4834617B2 (en) Alarm
JP2008309712A (en) Alarm
JP2008109742A (en) Charging system, battery, and charger
JP5059394B2 (en) Gas alarm
JP5481153B2 (en) Alarm
JP5198403B2 (en) Alarm
JP5115992B2 (en) Carbon monoxide gas measuring device and alarm
JP4898550B2 (en) Gas alarm
JP5065332B2 (en) Carbon monoxide gas measuring device and alarm
JP5566420B2 (en) Gas alarm
JP5135283B2 (en) Carbon monoxide gas measuring device and alarm
JP4943887B2 (en) Gas alarm
JP4367904B2 (en) Electrochemical gas sensor device
JP4573514B2 (en) Constant potential electrolytic gas measurement method
JP2008164309A (en) Co detector for combustor, and co alarm device
JP2011043370A (en) Alarm device
JP5276604B2 (en) Electrochemical sensor diagnostic method and electrochemical sensor
US8736274B2 (en) Method and apparatus for diagnosing electrochemical sensor
JP2004279063A (en) Calibration method of contact combustion type hydrogen sensor
JP2011099717A (en) Method of diagnosing electrochemical sensor, and diagnosis device of electrochemical sensor
JP5297969B2 (en) Alarm
JP2004093203A (en) State determination device for gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5065332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees