JP4834616B2 - Alarm - Google Patents

Alarm Download PDF

Info

Publication number
JP4834616B2
JP4834616B2 JP2007159153A JP2007159153A JP4834616B2 JP 4834616 B2 JP4834616 B2 JP 4834616B2 JP 2007159153 A JP2007159153 A JP 2007159153A JP 2007159153 A JP2007159153 A JP 2007159153A JP 4834616 B2 JP4834616 B2 JP 4834616B2
Authority
JP
Japan
Prior art keywords
gas sensor
current
sensor
failure
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007159153A
Other languages
Japanese (ja)
Other versions
JP2008309711A (en
Inventor
一茂 笹崎
和行 守谷
鋭博 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2007159153A priority Critical patent/JP4834616B2/en
Publication of JP2008309711A publication Critical patent/JP2008309711A/en
Application granted granted Critical
Publication of JP4834616B2 publication Critical patent/JP4834616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、警報器に係り、特に、水を収容する水容器からの水蒸気と対象ガスとの反応によって対象ガス濃度を検出する電気化学式ガスセンサに故障があるか否かを自己診断する警報器に関するものである。   The present invention relates to an alarm device, and more particularly, to an alarm device that self-diagnose whether there is a failure in an electrochemical gas sensor that detects a target gas concentration by a reaction between water vapor from a water container that contains water and the target gas. Is.

燃焼機器の不完全燃焼等によるCOガスを検出し警報するCO警報器のように、周辺雰囲気中のCO濃度を測定する装置として、従来から、電気化学式COセンサ(=ガスセンサ)を内蔵したものが知られている。   As a device for measuring the CO concentration in the ambient atmosphere, such as a CO alarm device that detects and alarms CO gas due to incomplete combustion of combustion equipment, etc., a device that has conventionally incorporated an electrochemical CO sensor (= gas sensor) Are known.

図7に断面図で示すように、この電気化学式COセンサ1は、内部に水5が収容された金属缶2(=水容器)の上部開口4にプロトン導電体膜3を設置して、その対極32を金属缶2内に露出させると共に、反対側の検知極31にガス吸着フィルタ8cを内蔵した金属キャップ8を重ねて金属缶2の上部開口4にかしめ固定して構成されている。   As shown in a sectional view in FIG. 7, this electrochemical CO sensor 1 has a proton conductor film 3 installed in an upper opening 4 of a metal can 2 (= water container) in which water 5 is accommodated. The counter electrode 32 is exposed in the metal can 2, and the metal cap 8 including the gas adsorption filter 8 c is overlapped on the opposite detection electrode 31 and is caulked and fixed to the upper opening 4 of the metal can 2.

上述した構成の電気化学式のCOセンサ1では、周辺雰囲気中のCO(=対象ガス)が、金属キャップ8の導入孔8aから内部に導入されて、活性炭やシリカゲル、ゼオライト等からなるガス吸着フィルタ8cや導出孔8b、そして、金属キャップ8とプロトン導電体膜3との間に介設した金属製の拡散防止板7の拡散制御孔7aを通過して検知極31に到達し、ここで、対極32側からプロトン導電体膜3に供給される金属缶2内の水5の水分を利用した酸化反応を起こして、検知極31にプロトン(2H+ )と電子(2e- )を発生させる。 In the electrochemical CO sensor 1 having the above-described configuration, CO (= target gas) in the ambient atmosphere is introduced into the inside through the introduction hole 8a of the metal cap 8, and the gas adsorption filter 8c made of activated carbon, silica gel, zeolite, or the like. Through the diffusion control hole 7a of the metal diffusion prevention plate 7 interposed between the metal cap 8 and the proton conductor film 3, and reaches the detection electrode 31, where the counter electrode Oxidation reaction using the water 5 in the metal can 2 supplied to the proton conductor film 3 from the 32 side is caused to generate protons (2H + ) and electrons (2e ) at the detection electrode 31.

検知極31に発生した電子(2e- )はプロトン導電体膜3の内部を通過できないので検知極31に滞留し、一方、プロトン(2H+ )は、プロトン導電体膜3の内部を通過して対極32に移動し、ここで、金属缶2内の酸素と還元反応を起こして、対極32に水(H2 O)を生成する。 The electrons (2e ) generated in the detection electrode 31 cannot pass through the proton conductor film 3 and therefore stay in the detection electrode 31, while the proton (2H + ) passes through the proton conductor film 3. It moves to the counter electrode 32, where it causes a reduction reaction with oxygen in the metal can 2 to generate water (H 2 O) at the counter electrode 32.

したがって、検知極31と電気的に接続されてそのターミナルとして機能する金属キャップ8と、拡散防止板7を介して対極32と電気的に接続されてそのターミナルとして機能する金属缶2との間に負荷(図示せず)を接続すると、検知極31に滞留した電子(2e- )の対極32に向かう流れが負荷に生じ、これにより対極32から負荷を経て検知極31に向かう短絡電流の流れが生じるので、この負荷に流れる短絡電流を電流−電圧変換することで、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号が得られる(例えば特許文献1,2)。   Therefore, between the metal cap 8 that is electrically connected to the detection electrode 31 and functions as its terminal, and the metal can 2 that is electrically connected to the counter electrode 32 via the diffusion prevention plate 7 and functions as its terminal. When a load (not shown) is connected, a flow of electrons (2e−) staying at the detection electrode 31 toward the counter electrode 32 is generated in the load, whereby a short-circuit current flows from the counter electrode 32 to the detection electrode 31 through the load. Therefore, a CO concentration signal having a voltage value corresponding to the CO concentration in the ambient atmosphere can be obtained by current-voltage conversion of the short-circuit current flowing through the load (for example, Patent Documents 1 and 2).

また、上記同様に水容器からの水蒸気と対象ガスとの反応を利用するガスセンサとして、2つの電極間にイオン伝導固体電解膜を備えるとともに、イオン伝導固体電解膜に一定の相対湿度を維持するように水を充填した水容器を備えたガスセンサがある(例えば特許文献3)。   Further, as described above, as a gas sensor that utilizes the reaction between water vapor from a water container and a target gas, an ion conductive solid electrolytic membrane is provided between two electrodes, and a constant relative humidity is maintained in the ion conductive solid electrolytic membrane. There is a gas sensor including a water container filled with water (for example, Patent Document 3).

前記COセンサ1は、それ自身では、周囲雰囲気中のCO濃度に応じた電圧値のCO濃度信号を生成するために外部からの電力供給を必要としないことから、電池によって長期間駆動する必要のあるCO警報器での利用に適している。   The CO sensor 1 itself does not require an external power supply in order to generate a CO concentration signal having a voltage value corresponding to the CO concentration in the ambient atmosphere. Suitable for use with certain CO alarms.

ところで、上述したCO警報器は、従来より、金属缶2中の水が減少する「水なし」、「断線」、「短絡」といった故障を検出する自己診断を行っている(例えば特許文献3)。COセンサ1の自己診断は、このCOセンサ1を一種のコンデンサとみなし、その放電時の電流波形が「水なし」、「断線」、「短絡」といった故障によって正常時とは異なることを利用して行っている。   By the way, the above-mentioned CO alarm device has conventionally performed self-diagnosis for detecting failures such as “no water”, “disconnection”, and “short circuit” in which water in the metal can 2 is reduced (for example, Patent Document 3). . The self-diagnosis of the CO sensor 1 regards this CO sensor 1 as a kind of capacitor, and uses the fact that the current waveform at the time of discharge differs from the normal state due to failures such as “no water”, “disconnection”, and “short circuit”. Is going.

しかしながら、「水なし」、「断線」、「短絡」は何れも放電時の電流波形が同じとなる。よって、従来のように、放電時の電流波形のみで自己診断を行うと、故障であることは分かるが、その故障理由が「水なし」や「断線」なのか、それとも「短絡」なのかまでは分からず、故障発生後の故障解析を迅速に行うことができない、という問題があった。
特開2004−170101号公報 特開2004−279293号公報 特開2000−146908号公報
However, “no water”, “disconnection”, and “short circuit” all have the same current waveform during discharge. Therefore, if the self-diagnosis is performed only with the current waveform at the time of discharge as in the past, it can be understood that it is a failure, but whether the reason for the failure is "no water" or "disconnection" or "short circuit" As a result, there was a problem that failure analysis after failure occurred could not be performed quickly.
JP 2004-170101 A JP 2004-279293 A JP 2000-146908 A

そこで、本発明は、上記のような問題点に着目し、故障理由を判定することにより、故障発生後の故障解析を迅速に行うことができる警報器を提供することを課題とする。   Accordingly, an object of the present invention is to provide an alarm device that can quickly analyze a failure after the occurrence of a failure by paying attention to the above problems and determining the reason for the failure.

上記課題を解決するためになされた請求項1記載の発明は、水を収容する水容器からの水蒸気または大気中の水蒸気と対象ガスとの反応によって前記対象ガス濃度を検出する電気化学式ガスセンサと、前記ガスセンサに接続された放電抵抗と、前記ガスセンサに電流を供給して前記ガスセンサを充電するための電源と、前記電源−前記ガスセンサ間に設けられて前記ガスセンサの充電及び放電を切り替える切替スイッチと、前記切替スイッチをオンして前記ガスセンサを充電した後に前記切替スイッチをオフして前記ガスセンサを放電させるスイッチ制御手段と、前記スイッチ制御手段による前記ガスセンサの放電中に流れる放電電流に基づいてガスセンサの故障を検出する第1自己診断手段と、を有する警報器において、前記第1自己診断手段による前記ガスセンサの故障検出に応じて、前記スイッチ制御手段による前記ガスセンサの充電中に前記ガスセンサに流れる充電電流が0とみなせると断線又は水なし故障であると判定し、そして、前記スイッチ制御手段による前記ガスセンサの充電中に前記放電抵抗に流れる電流が0とみなせると短絡故障であると判定するように設定されている第2自己診断手段を有することを特徴とする警報器に存する。   Invention of Claim 1 made | formed in order to solve the said subject, The electrochemical gas sensor which detects the said object gas concentration by reaction with the water vapor | steam from the water container which accommodates water, or the water vapor | steam in air | atmosphere, and object gas, A discharge resistor connected to the gas sensor; a power source for supplying current to the gas sensor to charge the gas sensor; and a changeover switch provided between the power source and the gas sensor to switch charging and discharging of the gas sensor; Switch control means for turning off the changeover switch to charge the gas sensor after turning on the changeover switch and discharging the gas sensor, and failure of the gas sensor based on a discharge current flowing during discharge of the gas sensor by the switch control means And a first self-diagnosis means for detecting the first self-diagnosis. In response to the detection of the failure of the gas sensor by the stage, if the charging current flowing through the gas sensor during charging of the gas sensor by the switch control means can be regarded as 0, it is determined that there is a disconnection or no water failure, and the switch control means According to the present invention, there is provided an alarm device comprising second self-diagnosis means set so as to determine that a short-circuit fault has occurred when the current flowing through the discharge resistor can be regarded as 0 during charging of the gas sensor.

請求項2記載の発明は、前記ガスセンサに流れる放電電流を電圧に変換する電流/電圧変換回路を備え、前記放電抵抗が、前記電流/電圧変換回路の入力抵抗で構成されていることを特徴とする請求項1に記載の警報器に存する。   The invention according to claim 2 is provided with a current / voltage conversion circuit for converting a discharge current flowing through the gas sensor into a voltage, and the discharge resistor is constituted by an input resistance of the current / voltage conversion circuit. It exists in the alarm device of Claim 1.

請求項3記載の発明は、前記第2自己診断手段が、前記スイッチ制御手段による前記ガスセンサの充電中に前記電流/電圧変換回路の出力が前記ガスセンサに流れる充電電流が0とみなせる第1所定範囲内であれば断線又は水なし故障と判定し、前記スイッチ制御手段による前記ガスセンサの充電中に前記電流/電圧変換回路の出力が前記入力抵抗に流れる電流が0とみなせる第2所定範囲内であれば短絡故障と判定し、そして、前記スイッチ制御手段による前記ガスセンサの充電中に前記電流/電圧変換回路の出力が前記第1所定範囲及び前記第2所定範囲の何れでもなければ回路故障と判定するように設定されている
ことを特徴とする請求項2に記載の警報器に存する。
The invention according to claim 3 is a first predetermined range in which the second self-diagnostic means can assume that the charging current flowing through the gas sensor is 0 as the output of the current / voltage conversion circuit while the gas sensor is charged by the switch control means. If it is within the range, it is determined that there is a disconnection or no water failure, and the output of the current / voltage conversion circuit is within a second predetermined range in which the current flowing through the input resistance can be regarded as 0 during charging of the gas sensor by the switch control means. If the output of the current / voltage conversion circuit is not in the first predetermined range or the second predetermined range during charging of the gas sensor by the switch control means, it is determined as a circuit failure. It is set as follows, It exists in the alarm device of Claim 2 characterized by the above-mentioned.

以上説明したように請求項1記載の発明によれば、第2自己診断手段により故障の理由が断線又は水なしか、短絡なのかを判定することができるので、故障発生後の故障解析を迅速に行うことができる。   As described above, according to the first aspect of the invention, the second self-diagnostic means can determine whether the reason for the failure is disconnection, water, or short-circuit, so that the failure analysis after the failure occurs can be performed quickly. Can be done.

請求項2記載の発明によれば、電流/電圧変換回路とは別に放電抵抗を設ける必要がないので、構成が簡単となりコストダウンを図ることができる。   According to the second aspect of the present invention, since it is not necessary to provide a discharge resistor separately from the current / voltage conversion circuit, the configuration is simplified and the cost can be reduced.

請求項3記載の発明によれば、第2自己診断手段により故障理由が回路故障なのかを判定することができるので、より一層、故障発生後の故障解析を迅速に行うことができる。   According to the invention described in claim 3, since it is possible to determine whether the reason for the failure is a circuit failure by the second self-diagnostic means, the failure analysis after the occurrence of the failure can be further quickly performed.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明の実施形態に係る警報器としてのガス警報器の一実施の形態を示す回路図である。同図に示すように、ガス警報器は、ガスセンサとしてのCOセンサ1、マイクロコンピュータ(以下、マイコンという)10、自己診断回路30、電流/電圧変換回路40、音声警報出力回路50及び当該ガス警報器の各部に電源を供給する電池60を備えている。なお、COセンサ1は、例えば前掲の図7に示す電気化学式COセンサ1であり、CO濃度に応じた短絡電流Iを電流/電圧変換回路40に出力する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a gas alarm device as an alarm device according to an embodiment of the present invention. As shown in the figure, the gas alarm device includes a CO sensor 1 as a gas sensor, a microcomputer (hereinafter referred to as a microcomputer) 10, a self-diagnosis circuit 30, a current / voltage conversion circuit 40, a sound alarm output circuit 50, and the gas alarm. A battery 60 for supplying power to each part of the vessel is provided. The CO sensor 1 is, for example, the electrochemical CO sensor 1 shown in FIG. 7 described above, and outputs a short-circuit current I corresponding to the CO concentration to the current / voltage conversion circuit 40.

電流/電圧変換回路40は、COセンサ1の検知極31が−入力端に、対極32が+入力端に接続された演算増幅器41と、演算増幅器41の−入力端及び出力端間に設けられた帰還抵抗Rとから構成されていて、短絡電流Iに応じた電圧信号をマイコン10に出力する。COセンサ1の検知極31と、演算増幅器41の−入力端との間には、抵抗Rsが設けられている。そして、この抵抗Rsと並列にスイッチSW2が設けられている。このスイッチSW2は、マイコン10によってオンオフが制御されている。   The current / voltage conversion circuit 40 is provided between the operational amplifier 41 having the detection electrode 31 of the CO sensor 1 connected to the negative input terminal and the counter electrode 32 connected to the positive input terminal, and between the negative input terminal and the output terminal of the operational amplifier 41. A voltage signal corresponding to the short-circuit current I is output to the microcomputer 10. A resistor Rs is provided between the detection electrode 31 of the CO sensor 1 and the negative input terminal of the operational amplifier 41. A switch SW2 is provided in parallel with the resistor Rs. The switch SW2 is controlled to be turned on / off by the microcomputer 10.

マイコン10は、処理プログラムに従って各種の処理を行うCPU10aと、CPU10aが行う処理のプログラムなどを格納したROM10bと、CPU10aでの各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有するRAM10c、所定のレジスタに設定された時間の計測あるいは日時、時刻等を計測するためのタイマ10d等で構成されており、これらの各要素はバスラインによって接続されている。そして、マイコン10は、所定のサンプリング周期により、電流/電圧変換回路40から出力される電圧信号をサンプリングしてCOのガス濃度を計測し、そのガス濃度が警報設定点以上となった時に音声警報出力回路50から警報を発し、警報解除設定点以下になった時に警報を停止する。   The microcomputer 10 includes a CPU 10a that performs various processes according to a processing program, a ROM 10b that stores a program for processing performed by the CPU 10a, a work area that is used in various processes in the CPU 10a, a data storage area that stores various data, and the like. The RAM 10c has a timer 10d for measuring the time set in a predetermined register or the date, time, etc., and these elements are connected by a bus line. The microcomputer 10 samples the voltage signal output from the current / voltage conversion circuit 40 at a predetermined sampling period and measures the CO gas concentration. When the gas concentration reaches or exceeds the alarm set point, a sound alarm is issued. An alarm is issued from the output circuit 50, and the alarm is stopped when the alarm becomes below the alarm release set point.

なお、COは、燃焼器具を正常な状態で使用しても発生することが知られており、特に、鍋、やかん等の調理器具を用いて、お湯を沸かす場合に、冷たい調理器具が暖まるまでの間にCOが発生するので、CO濃度(ガス濃度)が警報設定点を超えてもすぐには警報の発生を行わず、予め定めた遅延時間経過後も警報設定点を越えている状態が継続した場合に、警報を発生するようにしてもよい。   Note that CO is known to be generated even when the combustion utensil is used in a normal state, and in particular, when boiling hot water using a cooking utensil such as a pan or a kettle, until the cold cooking utensil warms up. Since CO occurs during this period, even if the CO concentration (gas concentration) exceeds the alarm set point, an alarm is not generated immediately, and the alarm set point is exceeded even after a predetermined delay time has elapsed. If it continues, an alarm may be generated.

自己診断回路30は、マイコン10からの指示によりCOセンサ1の自己診断を実行する回路である。自己診断回路30によるCOセンサ1の自己診断は、このCOセンサ1を一種のコンデンサとみなして行われる。この自己診断回路30について図2を参照して説明する。図2は、図1に示すガス警報器の等価回路図である。   The self-diagnosis circuit 30 is a circuit that executes a self-diagnosis of the CO sensor 1 in accordance with an instruction from the microcomputer 10. The self-diagnosis of the CO sensor 1 by the self-diagnosis circuit 30 is performed by regarding the CO sensor 1 as a kind of capacitor. The self-diagnosis circuit 30 will be described with reference to FIG. FIG. 2 is an equivalent circuit diagram of the gas alarm shown in FIG.

図2中、Rdは、電流/電圧変換回路40の入力抵抗Rdである。入力抵抗Rdは、COセンサ1の両端に接続されていて、放電抵抗として働く。また、自己診断回路30は、COセンサ1に電流を供給してCOセンサ1を充電するための電源としての電流源33と、電流源33−COセンサ1間に設けられてCOセンサ1の充電及び放電を切り替える切替スイッチSW1と、を備えている。上記切替スイッチSW1は、マイコン10によってオンオフが制御される。   In FIG. 2, Rd is the input resistance Rd of the current / voltage conversion circuit 40. The input resistance Rd is connected to both ends of the CO sensor 1 and functions as a discharge resistance. The self-diagnosis circuit 30 is provided between the current source 33 and the CO sensor 1 as a power source for supplying current to the CO sensor 1 to charge the CO sensor 1 and charging the CO sensor 1. And a changeover switch SW1 for switching between discharges. The changeover switch SW1 is controlled to be turned on / off by the microcomputer 10.

次に、ガス警報器の上記自己診断回路30を用いた自己診断時の動作について説明する。マイコン10からの指示により切替スイッチSW1をオン、スイッチSW2をオフすると、電流源33からCOセンサ1が充電される。また、このときスイッチSW2がオフであるため、COセンサ1と電流/電圧変換回路40との間に抵抗Rsが挿入されて、電流/電圧変換回路40の入力抵抗はRs+Rdと大きくなるため、電流/電圧変換回路40にはほとんど充電電流が流れずにCOセンサ1を効率的に充電することができる。   Next, the operation at the time of self-diagnosis using the self-diagnosis circuit 30 of the gas alarm will be described. When the changeover switch SW1 is turned on and the switch SW2 is turned off according to an instruction from the microcomputer 10, the CO sensor 1 is charged from the current source 33. At this time, since the switch SW2 is off, the resistor Rs is inserted between the CO sensor 1 and the current / voltage conversion circuit 40, and the input resistance of the current / voltage conversion circuit 40 is increased to Rs + Rd. The CO sensor 1 can be efficiently charged with almost no charging current flowing through the / voltage conversion circuit 40.

その後、切替スイッチSW1をオフ、スイッチSW2をオンすると、電流源33からCOセンサ1への充電が遮断され、COセンサ1に蓄積された電荷が入力抵抗Rdを介して放電される。た、このとき、スイッチSW2がオンであるため、抵抗Rsが短絡されて、電流/電圧変換回路40の入力抵抗はRdのみとなり小さくなる。このため、時定数が小さくなり、COセンサ1の放電を速やかに終わらせることができる。電流/電圧変換回路40は、入力抵抗Rdに流れる電流を電圧信号に変換してマイコン10に出力する。マイコン10は、上述したCOセンサ1の充電時及び放電時に電流/電圧変換回路40から出力される電圧信号に基づいて自己診断を行う。   Thereafter, when the changeover switch SW1 is turned off and the switch SW2 is turned on, the charging from the current source 33 to the CO sensor 1 is interrupted, and the electric charge accumulated in the CO sensor 1 is discharged via the input resistor Rd. At this time, since the switch SW2 is on, the resistor Rs is short-circuited, and the input resistance of the current / voltage conversion circuit 40 becomes only Rd and becomes small. For this reason, the time constant becomes small, and the discharge of the CO sensor 1 can be terminated quickly. The current / voltage conversion circuit 40 converts the current flowing through the input resistor Rd into a voltage signal and outputs it to the microcomputer 10. The microcomputer 10 performs self-diagnosis based on the voltage signal output from the current / voltage conversion circuit 40 when the CO sensor 1 is charged and discharged.

次に、正常時におけるCOセンサ1の充電時及び放電時に電流/電圧変換回路40から出力される電圧信号について図3を参照して説明する。図3(A)に示すように、切替スイッチSW1をオンして充電を開始した直後では、電流源33からの電流のほとんどはCOセンサ1に流れる。その後、COセンサ1に流れる電流は、COセンサ1の容量に応じた時定数で0に向かって過渡的に減少する。電流/電圧変換回路40の入力抵抗Rdに流れる電流は、図3(B)に示すようにCOセンサ1に流れる電流とは逆に、充電開始直後は0であり、その後一定電流に向かって過渡的に増加する。   Next, voltage signals output from the current / voltage conversion circuit 40 during charging and discharging of the CO sensor 1 at normal time will be described with reference to FIG. As shown in FIG. 3A, most of the current from the current source 33 flows to the CO sensor 1 immediately after the changeover switch SW1 is turned on and charging is started. Thereafter, the current flowing through the CO sensor 1 decreases transiently toward 0 with a time constant corresponding to the capacity of the CO sensor 1. The current flowing through the input resistor Rd of the current / voltage conversion circuit 40 is 0 immediately after the start of charging, contrary to the current flowing through the CO sensor 1 as shown in FIG. Increase.

次に、切替スイッチSW1をオフして充電を停止し、スイッチSW2をオンして放電を開始すると、図3(A)に示すように、COセンサ1には充電時とは逆向きの放電電流が流れて、その後COセンサ1の容量及び入力抵抗Rdに応じた時定数で0まで過渡的に減少する。図3(B)に示すように、電流/電圧変換回路40の入力抵抗Rdに流れる電流は、充電時と同じ向きの放電電流が流れてその後0に向かって過渡的に減少する。なお、電流/電圧変換回路40は、入力抵抗Rdに流れる、即ち電流/電圧変換回路40に流れる電流が0のとき2.6V〜2.7Vの基準電圧を出力し、入力抵抗Rdに流れる電流が増加するほど小さくなる電圧信号を出力する。よって、図3(C)に示すように、電圧信号は、充電開始に応じて2.6V〜2.7Vから徐々に減少し、充電から放電に切り替わると約25ms後に0.2V付近まで一気に減少した後に増加して再び2.6V〜2.7Vに戻る波形となる。   Next, when the changeover switch SW1 is turned off to stop charging and the switch SW2 is turned on to start discharging, as shown in FIG. 3A, the CO sensor 1 has a discharging current in a direction opposite to that during charging. And then transiently decreases to 0 with a time constant corresponding to the capacitance of the CO sensor 1 and the input resistance Rd. As shown in FIG. 3B, the current flowing through the input resistor Rd of the current / voltage conversion circuit 40 flows in the same direction as during charging, and thereafter decreases transiently toward zero. The current / voltage conversion circuit 40 outputs a reference voltage of 2.6V to 2.7V when the current flowing through the input resistor Rd, that is, the current flowing through the current / voltage conversion circuit 0 is 0, and the current flowing through the input resistor Rd. A voltage signal that decreases as the value increases is output. Therefore, as shown in FIG. 3 (C), the voltage signal gradually decreases from 2.6V to 2.7V in response to the start of charging, and decreases rapidly to about 0.2V after about 25 ms when switching from charging to discharging. After that, the waveform increases and returns to 2.6V to 2.7V again.

次に、短絡故障時におけるCOセンサ1の充電時及び放電時に電流/電圧変換回路40から出力される電圧信号について図4を参照して説明する。図4(A)、(B)に示すように、COセンサ1が短絡すると、電流源33からの電流は短絡されたCOセンサ1のみに流れ、電流/電圧変換回路40にはほとんど流れない。短絡故障時はCOセンサ1に電荷がたまらないので、次に、切替スイッチSW1をオンして放電を開始させても、COセンサ1、電流/電圧変換回路40には電流が流れない。よって、図4(C)に示すように、電圧信号は、充電時も放電時も2.6V〜2.7Vの基準電圧付近をキープする波形となる。   Next, voltage signals output from the current / voltage conversion circuit 40 during charging and discharging of the CO sensor 1 at the time of a short circuit failure will be described with reference to FIG. As shown in FIGS. 4A and 4B, when the CO sensor 1 is short-circuited, the current from the current source 33 flows only to the shorted CO sensor 1 and hardly flows to the current / voltage conversion circuit 40. Since no electric charge is accumulated in the CO sensor 1 at the time of a short circuit failure, no current flows through the CO sensor 1 and the current / voltage conversion circuit 40 even when the changeover switch SW1 is turned on to start discharging. Therefore, as shown in FIG. 4C, the voltage signal has a waveform that keeps the vicinity of the reference voltage of 2.6 V to 2.7 V during charging and discharging.

次に、断線又は水なし故障時におけるCOセンサ1の充電時及び放電時に電流/電圧変換回路40から出力される電圧信号について図5を参照して説明する。断線、水なし故障の場合、両者ともCOセンサ1のコンデンサ成分がなく、オープン状態となるため、図5(A)及び(B)に示すように、切替スイッチSW1をオンして充電を開始しても、電流源33からの電流はCOセンサ1には流れずに、その全てが電流/電圧変換回路40に流れる。   Next, a voltage signal output from the current / voltage conversion circuit 40 when the CO sensor 1 is charged and discharged when a disconnection or waterless failure occurs will be described with reference to FIG. In the case of a disconnection or waterless failure, both of them have no capacitor component of the CO sensor 1 and are in an open state. Therefore, as shown in FIGS. 5A and 5B, the changeover switch SW1 is turned on to start charging. However, the current from the current source 33 does not flow to the CO sensor 1 but all flows to the current / voltage conversion circuit 40.

断線故障、水なし故障は、COセンサ1に電荷がたまらないので、次に、切替スイッチSW1をオンして放電を開始しても、COセンサ1、電流/電圧変換回路40には電流が流れない。よって、図5(C)に示すように、電圧信号は、充電時は2.6V〜2.7Vの基準電圧よりも低い電圧で一定となり、充電から放電に切り替わると2.6V〜2.7Vの基準電圧に戻る波形となる。   In the case of the disconnection failure or the failure without water, the electric charge does not accumulate in the CO sensor 1, so that no current flows through the CO sensor 1 and the current / voltage conversion circuit 40 even if the changeover switch SW1 is turned on to start discharging. . Therefore, as shown in FIG. 5C, the voltage signal is constant at a voltage lower than the reference voltage of 2.6 V to 2.7 V during charging, and 2.6 V to 2.7 V when switching from charging to discharging. The waveform returns to the reference voltage.

マイコン10は、図3〜図5に示すように、正常時、短絡時、断線又は水なし時で電流/電圧変換回路40から出力される電圧信号が異なることに着目して、自己診断を行う。具体的には、マイコン10は、下記に示す(1)、(2)の条件を満たしていれば正常であると判定する。   As shown in FIGS. 3 to 5, the microcomputer 10 performs self-diagnosis by paying attention to the fact that the voltage signal output from the current / voltage conversion circuit 40 is different during normal operation, short circuit, disconnection, or no water. . Specifically, the microcomputer 10 determines that it is normal if the following conditions (1) and (2) are satisfied.

(1)放電開始後25msに電圧信号が0.2V以下であり、放電開始後にCOセンサ1に放電電流が流れている。(2)放電開始後10s後に電圧信号が基準電圧付近の2.3V〜2.8Vであり、放電開始から十分時間がたてばCOセンサ1に流れる放電電流が0になる。一方、マイコン10は、(1)、(2)の条件の1つでも満たしていなければ、故障であると判定する。   (1) The voltage signal is 0.2 V or less 25 ms after the start of discharge, and a discharge current flows through the CO sensor 1 after the start of discharge. (2) The voltage signal is 2.3 V to 2.8 V near the reference voltage 10 s after the start of discharge, and the discharge current flowing through the CO sensor 1 becomes 0 after a sufficient time has elapsed from the start of discharge. On the other hand, the microcomputer 10 determines that a failure has occurred unless one of the conditions (1) and (2) is satisfied.

マイコン10は、放電時の電圧信号により故障を検出すると、充電時の電圧信号により故障理由の判定を行う。故障理由の判定においてマイコン10は、充電終了直前の電圧信号が基準電圧付近の2.3V〜2.8V(=第1所定範囲)であり、電流/電圧変換回路40の入力抵抗Rdに流れる電流が0とみなせる場合に短絡故障と判定する。また、マイコン10は、充電終了直前の電圧信号が0.2V〜2.3V(=第2所定範囲)であり、COセンサ1に流れる充電電流が0とみなせる場合に断線又は水なし故障と判定する。また、たとえCOセンサ1が故障しても、自己診断回路30や、電流/電圧変換回路40などの回路が正常に動作する限り、電圧信号が2.3V〜2.8V、0.2V〜2.3Vの範囲を外れることはありえない。そこで、マイコン10は、充電終了直前の電圧信号が2.3V〜2.8Vでも、0.2V〜2.3Vの何れでもなければ回路故障と判定する。   When the microcomputer 10 detects a failure from the voltage signal at the time of discharging, the microcomputer 10 determines the reason for the failure from the voltage signal at the time of charging. In determining the reason for the failure, the microcomputer 10 determines that the voltage signal immediately before the end of charging is 2.3 V to 2.8 V (= first predetermined range) near the reference voltage, and the current flowing through the input resistor Rd of the current / voltage conversion circuit 40. Is judged as a short-circuit fault. Further, the microcomputer 10 determines that the disconnection or water-free failure occurs when the voltage signal immediately before the end of charging is 0.2 V to 2.3 V (= second predetermined range) and the charging current flowing through the CO sensor 1 can be regarded as 0. To do. Even if the CO sensor 1 fails, as long as the self-diagnosis circuit 30 and the current / voltage conversion circuit 40 operate normally, the voltage signals are 2.3 V to 2.8 V, 0.2 V to 2 It is impossible to get out of the 3V range. Therefore, the microcomputer 10 determines that a circuit failure has occurred unless the voltage signal immediately before the end of charging is either 2.3 V to 2.8 V or 0.2 V to 2.3 V.

上記概略で説明した自己診断時のガス警報器の動作の詳細を図6に示すフローチャートを参照して以下説明する。CPU10aは、例えば1時間毎に自己診断処理を行う。自己診断処理においてCPU10aは、切替スイッチSW1をオンし(ステップS1)、スイッチSW2をオフしてCOセンサ1を充電する(ステップS2)。   Details of the operation of the gas alarm device during the self-diagnosis described above will be described below with reference to the flowchart shown in FIG. The CPU 10a performs a self-diagnosis process every hour, for example. In the self-diagnosis process, the CPU 10a turns on the changeover switch SW1 (step S1), turns off the switch SW2, and charges the CO sensor 1 (step S2).

充電開始後、5秒が経過すると(ステップS3でY)、CPU10aは、その時の電圧信号を充電終了直前の電圧信号として取り込んだ後(ステップS4)、切替スイッチSW1をオフ、スイッチSW2をオンして、COセンサ1の放電を開始する(ステップS5)。次に、CPU10aは、放電開始してから25ms経過後と、10s経過後の電圧信号を取り込んだ後に(ステップS6)、スイッチSW2をオフする(ステップS7)。   When 5 seconds have elapsed after the start of charging (Y in step S3), the CPU 10a captures the voltage signal at that time as a voltage signal immediately before the end of charging (step S4), and then turns off the switch SW1 and turns on the switch SW2. Then, discharging of the CO sensor 1 is started (step S5). Next, the CPU 10a turns off the switch SW2 (step S7) after 25 ms from the start of discharge and after taking in the voltage signal after 10 s (step S6).

CPU10aは、放電開始してから25ms後の電圧信号が0.2V以下であり、かつ、放電開始してから10s後の電圧信号が2.3V〜2.8Vであれば(ステップS8でY、かつ、ステップS9でY)、正常であると判定した後(ステップS10)、自己診断処理を終了する。   If the voltage signal 25 ms after the start of discharge is 0.2 V or less and the voltage signal 10 seconds after the start of discharge is 2.3 V to 2.8 V (Y in step S8, And after determining with it being normal (Y in step S9) (step S10), a self-diagnosis process is complete | finished.

これに対して、CPU10aは、放電開始してから25ms後の電圧信号が0.2Vよりも大きい(ステップS8でN)、又は、放電開始してから10s後の電圧信号が2.3V〜2.8Vでなければ(ステップS9でN)、故障であると判定する(ステップS11)。そして、CPU10aは、ステップS4で取り込んだ充電終了直前の電圧信号が2.3V〜2.8Vの範囲内であれば(ステップS12でY)、短絡故障と判定した後(ステップS13)、自己診断処理を終了する。   On the other hand, in the CPU 10a, the voltage signal 25 ms after the start of discharge is greater than 0.2V (N in step S8), or the voltage signal 10 seconds after the start of discharge is 2.3V-2. If it is not .8V (N in step S9), it is determined that there is a failure (step S11). Then, if the voltage signal immediately before the end of charging taken in step S4 is in the range of 2.3V to 2.8V (Y in step S12), the CPU 10a determines that a short-circuit fault has occurred (step S13), and then performs self-diagnosis. The process ends.

一方、CPU10aは、ステップS4で取り込んだ放電終了直前の電圧信号が0.2V〜2.3Vの範囲内であれば(ステップS14でY)、断線又は水なし故障と判定した後(ステップS15)、自己診断処理を終了する。また、CPU10aは、ステップS4で取り込んだ充電終了直前の電圧信号が、2.3V〜2.8Vの範囲でも、0.2V〜2.3Vの範囲でもなければ(ステップS14でN)、回路故障と判定した後(ステップS16)、自己診断処理を終了する。   On the other hand, if the voltage signal immediately before the end of the discharge taken in step S4 is within the range of 0.2V to 2.3V (Y in step S14), the CPU 10a determines that a disconnection or a waterless failure (step S15). The self-diagnosis process is terminated. Further, the CPU 10a determines that a circuit failure has occurred if the voltage signal immediately before the end of charging taken in step S4 is neither in the range of 2.3V to 2.8V nor in the range of 0.2V to 2.3V (N in step S14). (Step S16), the self-diagnosis process is terminated.

以上の動作から明らかなように、CPU10aは、ステップS2、S5においてスイッチ制御手段として働く。また、ステップS8〜S11において第1自己診断手段として働き、ステップS12〜S16において第2自己診断手段として働く。   As is apparent from the above operation, the CPU 10a functions as a switch control unit in steps S2 and S5. Moreover, it functions as a first self-diagnosis unit in steps S8 to S11, and functions as a second self-diagnosis unit in steps S12 to S16.

上述したガス警報器によれば、CPU10aが、COセンサ1の故障を検出すると、COセンサ1の充電中に電流/電圧変換回路40の電圧信号がCOセンサ1に流れる充電電流が0とみなせる0.2V〜2.3Vの範囲内であれば断線又は水なし故障と判定し、COセンサ1の充電中に電流/電圧変換回路40の電圧信号が入力抵抗Rdに流れる電流が0とみなせる2.3V〜2.8Vの範囲内であれば短絡故障と判定する。これにより、故障の理由が断線又は水なしか、短絡なのかを判定することができるので、故障発生後の故障解析を迅速に行うことができる。   According to the gas alarm device described above, when the CPU 10a detects the failure of the CO sensor 1, the charging current that the voltage signal of the current / voltage conversion circuit 40 flows to the CO sensor 1 during charging of the CO sensor 1 can be regarded as 0. If it is within the range of .2V to 2.3V, it is determined that there is a disconnection or a waterless failure, and the current that the voltage signal of the current / voltage conversion circuit 40 flows through the input resistor Rd during charging of the CO sensor 1 can be regarded as zero If it is within the range of 3V to 2.8V, it is determined as a short circuit failure. Thereby, it can be determined whether the reason for the failure is a disconnection, water, or a short circuit, so that failure analysis after the occurrence of failure can be performed quickly.

また、上述したガス警報器によれば、放電抵抗が、電流/電圧変換回路40の入力抵抗Rdで構成されているので、電流/電圧変換回路40とは別に放電抵抗を設ける必要がなく、構成が簡単となりコストダウンを図ることができる。   Further, according to the gas alarm device described above, since the discharge resistance is configured by the input resistance Rd of the current / voltage conversion circuit 40, it is not necessary to provide a discharge resistance separately from the current / voltage conversion circuit 40, and the configuration Can be simplified and the cost can be reduced.

また、上述したガス警報器によれば、COセンサ1の充電中に電流/電圧変換回路40の電圧信号が0.2V〜2.3Vの範囲及び2.3V〜2.8Vの範囲の何れでもなければ回路故障と判定する。これにより、故障理由が回路故障なのかを判定することができるので、より一層、故障発生後の故障解析を迅速に行うことができる。   Further, according to the gas alarm device described above, the voltage signal of the current / voltage conversion circuit 40 is either in the range of 0.2V to 2.3V or in the range of 2.3V to 2.8V while the CO sensor 1 is being charged. If not, it is determined that there is a circuit failure. Thereby, since it can be determined whether the reason for the failure is a circuit failure, the failure analysis after the occurrence of the failure can be further quickly performed.

なお、上述した実施形態によれば、COセンサ1の放電を開始させてから25ms後、10s後の電圧信号に基づいてCOセンサ1の故障を検出していたが、本発明はこれに限ったものではない。COセンサ1の放電開始からの電圧信号に基づいてCOセンサ1の故障を検出する方法は、上述した実施形態に限定されるものではない。例えば、COセンサ1の放電開始からの電圧信号をサンプリングして、予め定めた正常時や、短絡故障時、断線、水なし故障時の電圧信号の波形と比較してCOセンサ1の故障を検出してもよい。つまり、COセンサ1の放電時に流れる放電電流に基づいていればよい。   According to the above-described embodiment, the failure of the CO sensor 1 is detected based on the voltage signal 10 ms after 25 ms after starting the discharge of the CO sensor 1, but the present invention is limited to this. It is not a thing. The method for detecting the failure of the CO sensor 1 based on the voltage signal from the start of discharge of the CO sensor 1 is not limited to the above-described embodiment. For example, the voltage signal from the start of discharge of the CO sensor 1 is sampled, and the failure of the CO sensor 1 is detected by comparing with the waveform of the voltage signal at the time of predetermined normality, short circuit failure, disconnection, waterless failure May be. That is, it may be based on the discharge current that flows when the CO sensor 1 is discharged.

また、上述した実施形態によれば、電流/電圧変換回路40からの電圧信号が0.2V〜2.3VのときCOセンサ1に流れる充電電流を0とみなしていたが、本発明はこれに限ったものではない。COセンサ1に流れる充電電流が0とみなせる電圧信号の範囲は、電流/電圧変換回路40やCOセンサ1の構成などにより製品ごとに適宜決めればよい。   Further, according to the above-described embodiment, the charging current flowing through the CO sensor 1 is regarded as 0 when the voltage signal from the current / voltage conversion circuit 40 is 0.2 V to 2.3 V. It is not limited. The range of the voltage signal in which the charging current flowing through the CO sensor 1 can be regarded as 0 may be appropriately determined for each product depending on the configuration of the current / voltage conversion circuit 40 and the CO sensor 1.

また、電流/電圧変換回路40からの電圧信号が2.3V〜2.8Vのとき入力抵抗Rdに流れる電流を0とみなしていたが、本発明はこれに限ったものではない。入力抵抗Rdに流れる電流が0とみなせる電圧信号の範囲は、電流/電圧変換回路40やCOセンサ1の構成などにより製品ごとに適宜決めればよい。   Further, when the voltage signal from the current / voltage conversion circuit 40 is 2.3 V to 2.8 V, the current flowing through the input resistor Rd is regarded as 0, but the present invention is not limited to this. The range of the voltage signal in which the current flowing through the input resistor Rd can be regarded as 0 may be appropriately determined for each product depending on the configuration of the current / voltage conversion circuit 40 and the CO sensor 1.

また、上述した実施形態によれば、短絡故障、断線又は水なし故障、回路故障の3つの故障理由を判定していたが、本発明はこれに限ったものではない。例えば、短絡故障、断線又は水なし故障の2つの故障理由を判定するようにしてもよい。   Further, according to the above-described embodiment, the three failure reasons of the short circuit failure, the disconnection or waterless failure, and the circuit failure are determined, but the present invention is not limited to this. For example, two failure reasons such as a short circuit failure, a disconnection, or a waterless failure may be determined.

また、上述した実施形態では、電気化学式のCOセンサ1は、金属缶2を備えていたが、本発明はこれに限ったものではない。例えば、給湯器の排気筒内などのある程度の水蒸気が発生する場所にCOセンサ1を配置できる場合は金属缶2がなくても対象ガスの検出が可能である。金属缶2がない場合でも、上述した実施形態と同様に、断線、短絡などの故障を行うことができる。   In the embodiment described above, the electrochemical CO sensor 1 includes the metal can 2, but the present invention is not limited to this. For example, if the CO sensor 1 can be disposed in a place where a certain amount of water vapor is generated, such as in the exhaust pipe of a water heater, the target gas can be detected without the metal can 2. Even when the metal can 2 is not present, failure such as disconnection or short circuit can be performed as in the above-described embodiment.

また、上述した実施形態では、本発明の警報器を、CO濃度を検出するガス警報器に適用した例について説明したが、本発明はこれに限ったものではない。例えば、本発明の警報器を、煙+CO濃度で火災を検出する火災警報器に適用するようにしてもよい。   Moreover, although embodiment mentioned above demonstrated the example which applied the alarm device of this invention to the gas alarm device which detects CO density | concentration, this invention is not limited to this. For example, the alarm device of the present invention may be applied to a fire alarm device that detects a fire with smoke + CO concentration.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

本発明の実施形態に係る警報器としてのガス警報器の一実施の形態を示す回路図である。It is a circuit diagram showing one embodiment of a gas alarm as an alarm according to an embodiment of the present invention. 図1に示すガス警報器の等価回路図である。It is an equivalent circuit schematic of the gas alarm device shown in FIG. (A)〜(C)は各々、正常時におけるCOセンサに流れる電流、電流/電圧変換回路に流れる電流、電流/電圧変換回路からの電圧信号のタイムチャートである。(A) to (C) are time charts of the current flowing through the CO sensor, the current flowing through the current / voltage conversion circuit, and the voltage signal from the current / voltage conversion circuit in a normal state. (A)〜(C)は各々、短絡故障時におけるCOセンサに流れる電流、電流/電圧変換回路に流れる電流、電流/電圧変換回路からの電圧信号のタイムチャートである。(A) to (C) are time charts of the current flowing through the CO sensor, the current flowing through the current / voltage conversion circuit, and the voltage signal from the current / voltage conversion circuit when a short circuit failure occurs. (A)〜(C)は各々、断線又は水なし故障時におけるCOセンサに流れる電流、電流/電圧変換回路に流れる電流、電流/電圧変換回路からの電圧信号のタイムチャートである。(A) to (C) are time charts of the current flowing through the CO sensor, the current flowing through the current / voltage conversion circuit, and the voltage signal from the current / voltage conversion circuit when a disconnection or waterless failure occurs. 図1に示すCPUの自己診断処理における処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the self-diagnosis process of CPU shown in FIG. 本発明に係る電気化学式COセンサの一例を示す断面図である。It is sectional drawing which shows an example of the electrochemical CO sensor which concerns on this invention.

符号の説明Explanation of symbols

1 COセンサ(ガスセンサ)
2 金属缶(水容器)
10a CPU(スイッチ制御手段、第1自己診断手段、第2自己診断手段)
33 電流源(電源)
40 電流/電圧変換回路
Rd 入力抵抗(放電抵抗)
SW2 切替スイッチ
1 CO sensor (gas sensor)
2 Metal can (water container)
10a CPU (switch control means, first self-diagnosis means, second self-diagnosis means)
33 Current source (power supply)
40 Current / voltage conversion circuit Rd Input resistance (discharge resistance)
SW2 selector switch

Claims (3)

水を収容する水容器からの水蒸気または大気中の水蒸気と対象ガスとの反応によって前記対象ガス濃度を検出する電気化学式ガスセンサと、前記ガスセンサに接続された放電抵抗と、前記ガスセンサに電流を供給して前記ガスセンサを充電するための電源と、前記電源−前記ガスセンサ間に設けられて前記ガスセンサの充電及び放電を切り替える切替スイッチと、前記切替スイッチをオンして前記ガスセンサを充電した後に前記切替スイッチをオフして前記ガスセンサを放電させるスイッチ制御手段と、前記スイッチ制御手段による前記ガスセンサの放電中に流れる放電電流に基づいてガスセンサの故障を検出する第1自己診断手段と、を有する警報器において、
前記第1自己診断手段による前記ガスセンサの故障検出に応じて、前記スイッチ制御手段による前記ガスセンサの充電中に前記ガスセンサに流れる充電電流が0とみなせると断線又は水なし故障であると判定し、そして、前記スイッチ制御手段による前記ガスセンサの充電中に前記放電抵抗に流れる電流が0とみなせると短絡故障であると判定するように設定されている第2自己診断手段を有する
ことを特徴とする警報器。
An electrochemical gas sensor that detects the concentration of the target gas by a reaction between water vapor from a water container containing water or water vapor in the atmosphere and the target gas, a discharge resistance connected to the gas sensor, and a current to the gas sensor A power supply for charging the gas sensor, a changeover switch provided between the power supply and the gas sensor for switching between charging and discharging of the gas sensor, and turning on the changeover switch to charge the gas sensor and then changing the changeover switch. An alarm device comprising: switch control means for turning off and discharging the gas sensor; and first self-diagnosis means for detecting a failure of the gas sensor based on a discharge current flowing during discharge of the gas sensor by the switch control means.
In response to detecting the failure of the gas sensor by the first self-diagnostic means, if the charging current flowing through the gas sensor during charging of the gas sensor by the switch control means can be regarded as 0, it is determined that there is a disconnection or waterless failure, and And a second self-diagnosis unit set to determine that a short-circuit fault has occurred when the current flowing through the discharge resistor can be regarded as 0 during charging of the gas sensor by the switch control unit. .
前記ガスセンサに流れる放電電流を電圧に変換する電流/電圧変換回路を備え、
前記放電抵抗が、前記電流/電圧変換回路の入力抵抗で構成されている
ことを特徴とする請求項1に記載の警報器。
A current / voltage conversion circuit for converting a discharge current flowing through the gas sensor into a voltage;
The alarm device according to claim 1, wherein the discharge resistance is configured by an input resistance of the current / voltage conversion circuit.
前記第2自己診断手段が、前記スイッチ制御手段による前記ガスセンサの充電中に前記電流/電圧変換回路の出力が前記ガスセンサに流れる充電電流が0とみなせる第1所定範囲内であれば断線又は水なし故障と判定し、前記スイッチ制御手段による前記ガスセンサの充電中に前記電流/電圧変換回路の出力が前記入力抵抗に流れる電流が0とみなせる第2所定範囲内であれば短絡故障と判定し、そして、前記スイッチ制御手段による前記ガスセンサの充電中に前記電流/電圧変換回路の出力が前記第1所定範囲及び前記第2所定範囲の何れでもなければ回路故障と判定するように設定されている
ことを特徴とする請求項2に記載の警報器。
If the second self-diagnosis means is within a first predetermined range in which the charging current flowing through the gas sensor can be regarded as 0 during the charging of the gas sensor by the switch control means, no disconnection or no water A failure is determined, and if the output of the current / voltage conversion circuit is within a second predetermined range in which the current flowing through the input resistor can be regarded as 0 during charging of the gas sensor by the switch control means, a short-circuit failure is determined; and When the output of the current / voltage conversion circuit is not in either the first predetermined range or the second predetermined range during charging of the gas sensor by the switch control means, it is determined that a circuit failure is determined. The alarm device according to claim 2, characterized in that:
JP2007159153A 2007-06-15 2007-06-15 Alarm Active JP4834616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159153A JP4834616B2 (en) 2007-06-15 2007-06-15 Alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159153A JP4834616B2 (en) 2007-06-15 2007-06-15 Alarm

Publications (2)

Publication Number Publication Date
JP2008309711A JP2008309711A (en) 2008-12-25
JP4834616B2 true JP4834616B2 (en) 2011-12-14

Family

ID=40237436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159153A Active JP4834616B2 (en) 2007-06-15 2007-06-15 Alarm

Country Status (1)

Country Link
JP (1) JP4834616B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065332B2 (en) * 2009-05-15 2012-10-31 矢崎総業株式会社 Carbon monoxide gas measuring device and alarm
JP5135283B2 (en) * 2009-05-15 2013-02-06 矢崎エナジーシステム株式会社 Carbon monoxide gas measuring device and alarm
JP5115992B2 (en) * 2009-05-15 2013-01-09 矢崎エナジーシステム株式会社 Carbon monoxide gas measuring device and alarm
JP5198403B2 (en) * 2009-10-14 2013-05-15 矢崎エナジーシステム株式会社 Alarm
JP5308312B2 (en) * 2009-11-04 2013-10-09 大阪瓦斯株式会社 Electrochemical sensor diagnostic method and electrochemical sensor diagnostic apparatus
JP5822566B2 (en) * 2011-07-05 2015-11-24 大阪瓦斯株式会社 Method of using electrochemical sensor and alarm device using electrochemical sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142359A (en) * 1980-04-09 1981-11-06 Hitachi Ltd Turbo refrigerating machine
US6200443B1 (en) * 1998-09-29 2001-03-13 Atwood Industries, Inc. Gas sensor with a diagnostic device
JP4194085B2 (en) * 2003-03-18 2008-12-10 フィガロ技研株式会社 Self-diagnosis method and gas detector for proton conductor gas sensor
JP4367904B2 (en) * 2003-07-08 2009-11-18 根本特殊化学株式会社 Electrochemical gas sensor device

Also Published As

Publication number Publication date
JP2008309711A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP4834616B2 (en) Alarm
JP4194085B2 (en) Self-diagnosis method and gas detector for proton conductor gas sensor
EP0990895B1 (en) Gas sensor with electrically conductive hydrophobic membranes
KR100968350B1 (en) Apparatus and Method for sensing leakage current of battery
JP3285720B2 (en) Method and apparatus for detecting deterioration of assembled battery
EP1806576B1 (en) Gas detecting device provided with electochemical gas sensor and capable of self-diagnosis
JP4834617B2 (en) Alarm
JP2016524789A (en) Estimating the charge state of the positive electrolyte solution in a working redox flow battery cell without a reference electrode
JP2009178040A (en) Battery group controller and battery power supply system
JP5059394B2 (en) Gas alarm
JP4894776B2 (en) Battery monitoring device
JP2008309712A (en) Alarm
JP5481153B2 (en) Alarm
JP5198403B2 (en) Alarm
JP4898550B2 (en) Gas alarm
JP5115992B2 (en) Carbon monoxide gas measuring device and alarm
JP5566420B2 (en) Gas alarm
JP4943887B2 (en) Gas alarm
JP4367904B2 (en) Electrochemical gas sensor device
JP5065332B2 (en) Carbon monoxide gas measuring device and alarm
KR20230052763A (en) Battery diagnosis apparatus, battery pack, electric vehicle, and battery diagnosis method
JP5135283B2 (en) Carbon monoxide gas measuring device and alarm
JP5297969B2 (en) Alarm
CN108426937B (en) Formaldehyde sensor module, self-diagnosis method and computer-readable storage medium
JP2004170123A (en) Insulation detector for non-grounded power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Ref document number: 4834616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250