JP5561577B2 - 光学活性3’−フルオロサリドマイド誘導体の製造方法 - Google Patents

光学活性3’−フルオロサリドマイド誘導体の製造方法 Download PDF

Info

Publication number
JP5561577B2
JP5561577B2 JP2009157231A JP2009157231A JP5561577B2 JP 5561577 B2 JP5561577 B2 JP 5561577B2 JP 2009157231 A JP2009157231 A JP 2009157231A JP 2009157231 A JP2009157231 A JP 2009157231A JP 5561577 B2 JP5561577 B2 JP 5561577B2
Authority
JP
Japan
Prior art keywords
group
formula
optically active
fluoro
isoindoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009157231A
Other languages
English (en)
Other versions
JP2011012014A (ja
Inventor
哲男 柴田
剛嗣 山本
Original Assignee
国立大学法人 名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 名古屋工業大学 filed Critical 国立大学法人 名古屋工業大学
Priority to JP2009157231A priority Critical patent/JP5561577B2/ja
Publication of JP2011012014A publication Critical patent/JP2011012014A/ja
Application granted granted Critical
Publication of JP5561577B2 publication Critical patent/JP5561577B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は,光学活性3’−フルオロサリドマイド誘導体の製造方法に関する。
50年ほど前,当時西ドイツのグリュンネルタール社が開発した催眠鎮静剤サリドマイドは,過剰服用によっても致死量に達しないなど,極めて安全な睡眠薬として大衆化された大ヒット医薬品である。しかし,販売開始後,多くの国で胎児に奇形を起こすことが判明し,5年後に販売が中止された。一旦抹消されたサリドマイドだが,その後の研究で,らい病,エイズ,がん,アフタ性口内炎,ベーチェット病といった難病に有効であることがわかり,FDAは,オーファンドラッグとして認定した(非特許文献1乃至4)。
現在はセルジーン社,藤本製薬が製造販売している。しかし,サリドマイドは,広範囲の難病に高い活性を示すという特徴を有し期待されながらも,そのラセミ体の服用により,催奇形性を併発する重篤な副作用が見られるため,その使用にあたっては賛否両論がある。このような諸問題を回避するためには,光学活性体を薬剤として使用する必要がある(非特許文献5)。しかしながら,サリドマイドは投与後,体内でラセミ化してしまうため,たとえ光学活性体を使用しても副作用を回避できないという問題点がある(非特許文献6乃至8)。
これまでにこの問題を回避するため,ラセミ化しないサリドマイドとして不斉中心の水素原子をメチル基で置換したメチルサリドマイド(非特許文献9乃至10)が報告されている。また水素原子のイソスターであるフッ素原子で置換した3’−フルオロサリドマイドが合成されている(非特許文献11乃至12)。しかし,この3’−フルオロサリドマイドはラセミ体の合成法しか報告されておらず,不斉合成の報告例はない。
Randall, T. J. Am. Med. Assoc. 1990, 263, 1467. Skolnick, A. J. Am. Med. Assoc. 1990, 263, 1468. Randall, T. J. Am. Med. Assoc. 1990, 263, 1474. Muller, G. W. Chemtech 1997, 27, 21. Blaschke, G.; Kraft, H. P.; Fickentscher, K.; Kohler, F. Arzneim.-Forsch., 1979, 29, 1640. Knoche B.; Blaschke, G. J. Chromatogr. 1994, 2, 183. Wnendt, S.; Finkam, M.; Winter, W.; Ossing, J.; Rabbe, G.; Zwingenberger, K. Chirality1996, 8, 390. Winter, W.; Frankus, E. Lancet 1992, 339, 365. Nishimura, K.; Hashimoto, Y.; Iwasaki, S. Chem. Pharm. Bull. 1994, 42, 1157 Miyachi, H.; Azuma, A.; Hiroki, E.; Iwasaki, S.;Kobayashi, Y.; Hashimoto, Y. Biochem. Biophys. Res. Comm. 1996, 226, 439. Takeuchi, Y.; Shiragami, T.; Kimura, K.; Suzuki, E.; Shibata, N. Org. Lett. 1999, 1, 1571. Man, H. W.; Corral, L. G.; Stirling, D. I.; Muller, G.. W. Bioorg. Med. Chem. Lett. 2003, 13, 3415.
本発明は、上記問題点に鑑みて,サリドマイドよりも高い生理活性を有する3’−フルオロサリドマイドの光学活性体を合成できる製造方法を提供することを目的とする。
上記目的を達成するため、本発明者らは,2−(2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体と有機金属試薬によって生じる金属エノラートに対して,シンコナアルカロイドとフッ素化剤より容易に調製できる,シンコナアルカロイド・フルオロアンモニウム塩を反応させ,次いで,酸化反応を行うことで光学活性3’−フルオロサリドマイドの製造法の開発に成功した。
すなわち請求項1に記載の発明は,下記の式(1)又は式(1’)で表される光学活性2−(3−フルオロ−2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体
(式中,R1,R2,R3,R4,R5,及びR6はそれぞれ独立に水素原子,低級アルキル基,低級アルコキシ基,ハロゲン原子,ハロゲン化低級アルキル基,置換基を有していてもよいアリール基,置換基を有していてもよいアミノ基,ヒドロキシル基,低級アルキルチオ基,低級アルコキシカルボニル基,置換基を有していてもよいカルバモイル基,シアノ基,ニトロ基,低級アルケニル基,又は低級アルキニル基を示し,R1乃至R4のうち隣接する2つの基は一緒になって置換基を有していてもよい5乃至7員環を形成してもよく;R7は水素原子又はアミノ基の保護基を示す。)の製造法であって,下記の式(2)で表される2−(2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体

(式中,R1,R2,R3,R4,R5,R6,及びR7は式(1)又は式(1’)記載の通りである。)に対して,塩基存在下,下記の式(3)又は(4)で表されるシンコナアルカロイド誘導体
(式中,R8,R9,及びR10はそれぞれ独立に水素原子,低級アルキル基,低級アルコキシ基,ハロゲン原子,ハロゲン化低級アルキル基,置換基を有していてもよいアリール基,置換基を有していてもよいアミノ基,ヒドロキシル基,低級アルキルチオ基,低級アルコキシカルボニル基,置換基を有していてもよいカルバモイル基,シアノ基,ニトロ基,低級アルケニル基,又は低級アルキニル基を示す。)とフッ素化剤より調製される光学活性フルオロアンモニウム塩を反応させる工程を備え,フッ素化剤として,N−フルオロベンゼンスルホンイミドを用いることを特徴としている。
請求項2に記載の発明は,請求項1に記載の化合物の製造方法において,前記反応の添加剤として,テトラメチルエチレンジアミンを用いることを特徴としている。
請求項3に記載の発明は,請求項1に記載の化合物の製造方法において,前記反応の添加剤として,アセチルアセトン銅(II)およびビピリジンを用いることを特徴としている。
請求項に記載の発明は,下記の式(5)又は式(5’)で表される光学活性2−(3−フルオロ−2,6−ジオキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体
(式中,R1,R2,R3,R4,R5,R6,及びR7は式(1)又は式(1’)記載の通りである。)の製造法であって,請求項1ないし3のいずれか1つに記載の製造方法によって得られた前記の式(1)又は式(1’)で表される化合物に対して,酸化剤による酸化する工程を備えることを特徴としている。この製造法の開発により,高い薬理活性を有するラセミ化しないサリドマイドを提供することができる。サリドマイドは現在でもラセミ体で販売されており,催奇形性の問題がいつ引き起こされてもおかしくない状態である。3’−フルオロサリドマイドはラセミ化の問題を払拭しただけでなく,サリドマイドよりも高い薬理活性を有した化合物である,しかし,最も重要な不斉合成法が存在せず,これまでラセミ体の合成法しか報告がなかった。この製造法の開発により,3’−フルオロサリドマイドを副作用のない安全な医薬品へと展開できる可能性が高い。
本明細書において,アルキル基又はアルキル部分を含む置換基(例えば,アルコキシ基,アルキルチオ基,アルコキシカルボニル基など)のアルキル部分は,直鎖状,分枝鎖状,環状,又はそれらの組み合わせいずれでもよい。R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示す低級アルキル基としては,例えば,炭素数1乃至6程度のアルキル基を用いることができる。より具体的には,メチル基,エチル基,n−プロピル基,イソプロピル基,シクロプロピル基,n−ブチル基,sec−ブチル基,イソブチル基,tert−ブチル基,シクロブチル基,シクロプロピルメチル基,n−ペンチル基,n−ヘキシル基,シクロヘキシル基などを用いることができる。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示す低級アルコキシ基としては,例えば,炭素数1乃至6程度のアルコキシ基を用いることができる。より具体的には,メトキシ基,エトキシ基,n−プロポキシ基,イソプロポキシ基,n−ブトキシ基,sec−ブトキシ基,tert−ブトキシ基,シクロプロピルメチルオキシ基,n−ペントキシ基,n−ヘキソキシ基などを挙げることができる。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すハロゲン原子はフッ素原子,塩素原子,臭素原子,又はヨウ素原子のいずれでもよい。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すハロゲン化低級アルキル基としては,上記に説明した炭素数1乃至6程度のアルキル基にフッ素原子,塩素原子,臭素原子,及びヨウ素原子からなる群から選ばれる1又は2個以上のハロゲン原子が置換した基を挙げることができる。2個以上のハロゲン原子が置換している場合には,それらは同一でも異なっていてもよい。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すアリール基としては,ヘテロアリール基も含有し,具体例としては,例えば炭素数2〜30のアリール基,具体的にはフェニル基,ナフチル基,アンスラニル基,ピレニル基,ビフェニル基,インデニル基,テトラヒドロナフチル基,ピリジル基,ピリミジニル基,ピラジニル基,ピリダニジル基,ピペラジニル基,ピラゾリル基,イミダゾリル基,キニリル基,ピロリル基,インドリル基,フリル基などが挙げることができる。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すアリール基が置換基を有する場合,置換基として,例えば,上記に説明した炭素数1乃至6程度のアルキル基又はハロゲン化アルキル基等を有していてもよい。より具体的には,炭素数1乃至6程度のアルキル基で置換されたモノアルキルアリール基,又は炭素数1乃至6程度の2個のアルキル基で置換されたジアルキルアリール基(2個のアルキル基は同一でも異なっていてもよい)などを挙げることができる。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すアミノ基が置換基を有する場合,置換基として,例えば,上記に説明した炭素数1乃至6程度のアルキル基又はハロゲン化アルキル基,アリール基等を有していてもよい。より具体的には,炭素数1乃至6程度のアルキル基で置換されたモノアルキルアミノ基,又は炭素数1乃至6程度の2個のアルキル基で置換されたジアルキルアミノ基(2個のアルキル基は同一でも異なっていてもよい)などを挙げることができる。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すアルキルチオ基としては,例えば,メチルチオ基,エチルチオ基などを挙げることができる。R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すアルコキシカルボニル基としては,メトキシカルボニル基,エトキシカルボニル基などを挙げることができる。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すカルバモイル基が置換基を有する場合,置換基として,例えば,上記に説明した炭素数1乃至6程度のアルキル基又はハロゲン化アルキル基等を有していてもよい。カルバモイル基が2個の置換基を有する場合には,それらは同一でも異なっていてもよい。例えば,ジアルキルカルバモイル基などを好適に用いることができる。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10が示すアルケニル基又はアルキニル基に含まれる不飽和結合の数は特に限定されないが,好ましくは1乃至2個程度である。該アルケニル基又はアルキニル基は,直鎖状又は分枝鎖状のいずれでもよい。
R7示すアミノ基の保護基としては,特に限定されないが,上記に説明した炭素数1乃至6程度のアルキル基又はハロゲン化アルキル基,アリール基,置換基を有してもよいベンジル基,ホルミル基,アセチル(Ac)基,トリフルオロアセチル基,置換基を有しても良いベンゾイル基,tert−ブトキシカルボニル(Boc)基,ベンジルオキシカルボニル(Cbz)基,9−フルオレニルメチルオキシカルボニル(Fmoc)基,2,2,2−トリクロロエトキシカルボニル(Troc)基,アリルオキシカルボニル(Alloc)基などが挙げられるが,Boc基が最も好ましい。
R1,R2,R3,R4,R5,R6,R8,R9,及びR10はそれぞれ独立に上記に定義されたいずれかの置換基を示すが,全部が同一の置換基であってもよい。また,R1,R2,R3,R4,及びR5のうちの隣接する2つの基は一緒になって5〜7員環を形成していてもよく,環は炭化水素環又は複素環のいずれでもよい。なお,該環は置換基を有していてもよい。置換基の種類,個数,置換位置は特に限定されないが,置換基として,例えば,炭素数1〜6程度のアルキル基などを好適に用いることができる。例えば,上記の環は,1個のアルキル基,又は同一若しくは異なる2〜4個のアルキル基を有していてもよい。なお,R1,R2,R3,R4,R5,R6,R8,R9,及びR10が全て水素原子である化合物は本発明の好ましい態様である。
本発明の3’−フルオロサリドマイド誘導体の製造方法は特に限定されないが,例えば,非特許文献11などによって合成される上記式(2)に対して,溶媒中,塩基を作用させることでエノラートイオンを発生させ,そこに公知又は市販されているシンコナアルカロイド誘導体,上記式(3)又は(4)とフッ素化剤より調製されるシンコナアルカロイド・フルオロアンモニウム塩を反応させることで,式(1)又は(1’)を製造することができる。また,上記反応にルイス酸等の金属塩,配位子を添加することで式(1)又は(1’)を製造することもできる。上記反応で得られた式(1)又は(1’)の化合物を,例えば,酸化剤としてルテニウム化合物を使用し酸化することにより,式(5),又は(5’)を製造することができる。また,適宜の共酸化剤存在下で酸化することによりルテニウム化合物の量を触媒量まで減少させることができる。また,電解酸化あるいは酵素酸化によりアルコキシ基やカルボキシ基を導入後,さらに酸化を行って式(6),又は(6’)の化合物を製造することができる。
用いる塩基は無機塩基,有機塩基,有機金属試薬等が使用できるが,例えば,炭酸カリウム,炭酸セシウム等の炭酸塩;水酸化ナトリウム,水酸化カリウム等の水酸化物;ナトリウム メトキシド,セシウム tert−ブトキシド等のアルコキシド化合物;DABCO,トリエチルアミン,N,N−ジメチルアミノピリジン等の有機塩基;n−ブチルリチウム,sec−ブチルリチウム,tert−ブチルリチウム,リチウムジイソプロピルアミド,ヘキサメチルジシラザン リチウム塩,ヘキサメチルジシラザン ナトリウム塩,ヘキサメチルジシラザン カリウム塩などが挙げられるが,好ましくはヘキサメチルジシラザン リチウム塩である。使用量は一般的に式(2)に対して,1〜10当量で,好ましくは1〜5当量,さらに好ましくは1.5当量である。
用いる上記式(3)又は(4)のシンコナアルカロイド誘導体は種々挙げられるが,例えばキニン,キニジン,シンコニン,シンコニジン,ヒドロキニン,ヒドロキニジン,ヒドロシンコニン,ヒドロシンコニジン,ジヒドロキニン 4−クロロベンゾエート,ジヒドロキニン アセテート,1−ナフトイルキニン,1−ナフトイルキニジン,1−ナフトイルシンコニン,1−ナフトイルシンコニジン,2−ナフトイルキニン,2−ナフトイルキニジン,2−ナフトイルシンコニン,2−ナフトイルシンコニジン,ジヒドロキニン 9−フェナンチルエーテル,(DHQ)AQN,(DHQD)AQN,(DHQD)PYR,(DHQD)PYR,(DHQ)PHAL,(DHQD)PHAL,β−ICDなどである。その使用量は一般的に式(2)に対して,0.01〜10当量で,好ましくは0.3〜5当量,さらに好ましくは1.5当量である。
本発明で用いるフッ素化剤は,特に限定されないが,市販又は公知のフッ素化剤を用いることができ,例えば,分子状フッ素,セレクトフロアー,N−フルオロベンゼンスルホンイミド類,梅本試薬に代表されるフルオロピリジニウム塩,フッ化過クロリル等が挙げられるが,好ましくはN−フルオロベンゼンスルホンイミド(NFSI)である。その使用量は一般的に式(2)に対して,1〜10当量で,好ましくは1〜5当量,さらに好ましくは1.5当量である。
本発明の反応系には添加剤として,ルイス酸等の金属塩と配位子を添加することで,収率,不斉収率の向上が見られる場合がある。用いることができる金属塩は種々挙げられるが,具体的には塩化銅(II),塩化銅(I),臭化銅(II),アセチルアセトン銅(II),塩化亜鉛,硫酸マグネシウム,過塩素酸ニッケル等が挙げられる。また,用いることができる配位子としては,テトラメチルエチレンジアミン,ビピリジン,ビピコリン,フェナントロリン,ジフェニルホスフィノエタン,ヘキサメチルリン酸トリアミド,クラウンエーテル類,ビスオキサゾリン類等が挙げられる。
溶媒の種類は特に限定されないが,ジエチルエーテル,ジイソプロピルエーテル,n−ブチルメチルエーテル,tert−ブチルメチルエーテル,テトラヒドロフラン(THF),ジオキサン等のエーテル系溶媒;ヘプタン,ヘキサン,シクロペンタン,シクロヘキサン等の炭化水素系溶媒;クロロホルム,四塩化炭素,塩化メチレン,ジクロロエタン,トリクロロエタン等のハロゲン化炭化水素系溶媒;ベンゼン,トルエン,キシレン,クメン,シメン,メシチレン,ジイソプロピルベンゼン等の芳香族炭化水素系溶媒;酢酸エチル等のエステル系溶媒;アセトン,メチルエチルケトン等のケトン系溶媒;ジメチルスルホキシド,ジメチルホルムアミド等の溶媒;超臨界二酸化炭素,イオン性液体が挙げられるが,THFが最も好ましい。
式(2)又は(2’)の製造は加圧下に行うこともできるが,通常は常圧で行う。反応温度は−100℃から溶媒の沸点までの間で行うことができるが,好ましくは−90℃乃至60℃であり,特に好ましくは−80℃である。
式(6)又は(6’)を製造する酸化反応は,通常,溶媒中で適宜の酸化剤を用いて,室温〜200℃程度の加温下に行うことができる。溶媒の種類は特に限定されないが,例えば,酢酸エチルなどのエステル系溶媒,塩化メチレンなどのハロゲン化炭化水素系溶媒,アセトン,アセトニトリル,またはそれらの混合物などを用いることができる。また,共酸化剤を用いる場合には,それらの溶媒の他に水を加えることが望ましい。酸化剤としては,四酸化ルテニウム,二酸化ルテニウム,三塩化ルテニウムおよびそれらの水和物,ルテニウム−ホスフィン錯体,ルテニウム−一酸化炭素錯体などのルテニウム化合物が好ましい。また,過マンガン酸カリウムなどの過マンガン酸塩,アセチルアセトンマンガンなどのマンガン塩,m−クロロ過安息香酸などを用いることができる。
共酸化剤としては,過ヨウ素酸ナトリウムなどの過ヨウ素酸塩;過ヨウ素酸;過塩素酸ナトリウムなどの過塩素酸塩;臭素酸ナトリウムなどの臭素酸塩;次亜塩素酸ナトリウムなどの次亜塩素酸塩;過硫酸カリウムなどの過硫酸塩;フェリシアン化カリウム,四酢酸鉛,過酸化水素やtert−ブチルヒドロペルオキシドなどの過酸化物,過酢酸,m−クロロ過安息香酸,ヨードシルベンゼンなどの高原子価ヨウ素化合物,アミンN−オキシド,酸素などを用いることができ,また,電気化学的な方法で発生させた高原子価の塩素種なども用いることができる。
式(6)又は(6’)を製造する酸化反応において,用いる式(1)又は(1’)のアミド基が保護基によって保護されている場合,保護体のまま酸化反応を行うこともできるが,酸化前に脱保護にすることによって保護基を除去することが好ましい。
以下,実施形態により本発明をさらに具体的に説明するが,本発明の範囲は下記の実施形態に限定されることはない。
(第1実施形態)
非特許文献11によって合成した1−tert−ブトキシカルボニル−3−フタルイミドピペリジン−2−オン 20mg(0.058mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF 1.0mLに溶解させた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.087mL(0.087mmol)を加え,−20℃に昇温し,30分攪拌した。30分後,−50℃に冷却し,調製したキニン・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,キニン28.2mg(0.087mmol)とセレクトフロアー 30.8mg(0.087mmol)を取り,アセトニトリル1.0mL中で30分攪拌した。)を滴下し,一晩攪拌した。クエン酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量3.8mg,収率21%,不斉収率52%eeでR体を得た(下記式(化4))。

(第2実施形態)
非特許文献11によって合成した1−tert−ブトキシカルボニル−3−フタルイミドピペリジン−2−オン 20mg(0.058mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF 1.0mLに溶解させた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.087mL(0.087mmol)を加え,−20℃に昇温し,30分攪拌した。30分後,−50℃に冷却し,調製したヒドロキニン・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,ヒドロキニン28.4mg(0.087mmol)とセレクトフロアー 30.8mg(0.087mmol)を取り,アセトニトリル1.0mL中で30分攪拌した。)を滴下し,一晩攪拌した。1N塩酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量7.7mg,収率37%,不斉収率44%eeでR体を得た(下記式(化5))。

(第3実施形態)
非特許文献11によって合成した1−tert−ブトキシカルボニル−3−フタルイミドピペリジン−2−オン 20mg(0.058mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF 1.0mLに溶解させた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.087mL(0.087mmol)を加え,−20℃に昇温し,30分攪拌した。30分後,テトラメチルエチレンジアミン0.013mL(0.087mmol)を加え,更に30分攪拌した。−80℃に冷却し,調製した(DHQD)PYR・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,(DHQD)PYR 76.7mg(0.087mmol)とNFSI 27.4mg(0.087mmol)を取り,THF2.0mL中で1時間攪拌した。)を滴下し,1時間攪拌した。1N塩酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量17.2mg,収率82%,不斉収率81%eeでS体を得た(下記式(化6))。

(第4実施形態)
非特許文献11によって合成した1−tert−ブトキシカルボニル−3−フタルイミドピペリジン−2−オン 20mg(0.058mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF 1.0mLに溶解させ,テトラメチルエチレンジアミン 0.013mL(0.087mmol)を加えた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.087mL(0.087mmol)を加え,30分攪拌した。調製したキニン・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,キニン28.2mg(0.087mmol)とNFSI 27.4mg(0.087mmol)を取り,THF2.0mL中で1時間攪拌した。)を滴下し,一晩攪拌した。1N塩酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量17.0mg,収率81%,不斉収率54%eeでR体を得た(下記式(化7))。

(第5実施形態)
非特許文献11によって合成した1−tert−ブトキシカルボニル−3−フタルイミドピペリジン−2−オン 20mg(0.058mmol),塩化銅(II)7.8mg(0.058mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF 1.0mLに溶解させ,テトラメチルエチレンジアミン 0.013mL(0.087mmol)を加えた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.087mL(0.087mmol)を加え,30分攪拌した。調製したキニン・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,キニン28.2mg(0.087mmol)とNFSI 27.4mg(0.087mmol)を取り,THF2.0mL中で1時間攪拌した。)を滴下し,一晩攪拌した。1N塩酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量13.7mg,収率65%,不斉収率75%eeでS体を得た(下記式(化8))。

(第6実施形態)
非特許文献11によって合成した1−tert−ブトキシカルボニル−3−フタルイミドピペリジン−2−オン 20mg(0.058mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF 1.0mLに溶解させ,テトラメチルエチレンジアミン 0.013mL(0.087mmol)を加えた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.087mL(0.087mmol)を加え,30分攪拌した。調製したヒドロキニン・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,ヒドロキニン28.4mg(0.087mmol)とNFSI 27.4mg(0.087mmol)を取り,THF2.0mL中で1時間攪拌した。)を滴下し,一晩攪拌した。1N塩酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量14.3mg,収率68%,不斉収率72%eeでR体を得た(下記式(化9))。

以下に(R)−1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンの化合物データを示す。
1H NMR (200 MHz, CDCl3) 1.57 (s, 9H), 1.83-1.94 (m, 1H), 2.02-2.17 (m, 1H), 2.30-2.47 (m, 1H), 3.15-3.33(m, 1H), 3.51-3.65 (m, 1H), 3.92-4.05 (m, 1H), 7.73-7.81 (m, 2H), 7.84-7.90(m, 2H); 19F NMR (188 MHz, CDCl3) -125.78 (s, 1F); HPLC (DAICEL CHIRALCEL OJ-H, 4.6×250 mm, EtOH=100, flow rate 0.5 ml/min, l=254 nm), tR=11.08 min(minor), 15.12 min(major), 72% ee

(第7実施形態)
非特許文献11によって合成した1−tert−ブトキシカルボニル−3−フタルイミドピペリジン−2−オン 20mg(0.058mmol),アセチルアセトン銅(II)15.2mg(0.058mmol),2,2’−ビピリジン 13.6mg(0.087mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF1.0mLに溶解させた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.087mL(0.087mmol)を加え,30分攪拌した。調製したヒドロキニン・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,ヒドロキニン28.4mg(0.087mmol)とNFSI 27.4mg(0.087mmol)を取り,THF2.0mL中で1時間攪拌した。)を滴下し,一晩攪拌した。1N塩酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量6.5mg,収率31%,不斉収率87%eeでS体を得た(下記式(化10))。

以下に(S)−1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オンの化合物データを示す。
1H NMR (200 MHz, CDCl3) 1.57 (s, 9H), 1.83-1.94 (m, 1H), 2.02-2.17 (m, 1H), 2.30-2.47 (m, 1H), 3.15-3.33(m, 1H), 3.51-3.65 (m, 1H), 3.92-4.05 (m, 1H), 7.73-7.81 (m, 2H), 7.84-7.90(m, 2H); 19F NMR (188 MHz, CDCl3) -125.78 (s, 1F); HPLC (DAICEL CHIRALCEL OJ-H, 4.6×250 mm, EtOH=100, flow rate 0.5 ml/min, l=254 nm), tR=10.93 min(major), 15.01 min(minor), 87% ee
(第8実施形態)
3−フタルイミドピペリジン−2−オン 500mg(2.05mmol)を窒素置換した10mLナスフラスコに取り,1,2−ジクロロエタン15mLに溶解させた。この溶液にN,N−ジメチルアミノピリジン300mg(2.46mmol),塩化ベンゾイル 0.27mL(2.29mmol)を加え,一晩還流した。1N 塩酸水溶液によって反応を停止させ,塩化メチレンで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−ベンゾイル−3−フタルイミドピペリジン−2−オンを収量256.7mg,収率36%で得た(下記式(化11))。


以下に1−ベンゾイル−3−フルオロ−3−フタルイミドピペリジン−2−オンの化合物データを示す。
1H NMR (200 MHz, CDCl3) 2.04-2.33 (m, 3H), 2.58 (dt, J=4.0, 19.2 Hz, 1H), 3.88 (dt, J=2.0, 12.2 Hz, 1H), 4.02-4.15 (m, 1H), 5.02 (q, 6.2 Hz, 1H), 7.29-7.53 (m, 3H), 7.54-7.57 (m, 2H), 7.65-7.69 (m, 2H), 7.76-7.82 (m, 2H)

(第9実施形態)
第8実施形態で合成した1−ベンゾイル−3−フタルイミドピペリジン−2−オン 20mg(0.057mmol)をアルゴン置換し,乾燥した10mLナスフラスコに取り,THF 1.0mLに溶解させた。−80℃に冷却し,ヘキサメチルジシラザン リチウム塩 1.0mol/L THF溶液 0.086mL(0.086mmol)を加え,30分攪拌した。テトラメチルエチレンジアミン0.013mL(0.086mmol)を加え,更に30分攪拌した。調製したキニン・フルオロアンモニウム塩(アルゴン置換し,乾燥させた試験管に,キニン27.9mg(0.086mmol)とNFSI 27.1mg(0.086mmol)を取り,THF2.0mL中で1時間攪拌した。)を滴下し,一晩攪拌した。1N塩酸水溶液によって反応を停止させ,酢酸エチルで抽出し,飽和食塩水にて洗浄後,硫酸ナトリウムで乾燥させた。硫酸ナトリウムをろ過後,濃縮し,フラッシュシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=7/3)にて精製し,1−ベンゾイル−3−フルオロ−3−フタルイミドピペリジン−2−オンを収量5.7mg,収率27%,不斉収率21%eeで得た(下記式(化12))。

以下に光学活性1−ベンゾイル−3−フルオロ−3−フタルイミドピペリジン−2−オンの化合物データを示す。
1H NMR (200 MHz, CDCl3) 2.01-2.35 (m, 3H), 3.12-3.35 (m, 1H), 3.71-3.95 (m, 1H), 4.03-4.26 (m, 1H), 7.30-7.57 (m, 5H), 7.67-7.89 (m, 4H); 19F NMR (188 MHz, CDCl3) -129.23 (dd, J=13.2, 26.9 Hz, 1F); HPLC (DAICEL CHIRALPAK AD-H, 4.6×250 mm, EtOH=100, flow rate 0.5 ml/min, l=254 nm), tR=21.51 min(minor), 28.23 min(major), 21% ee

(第10実施形態)
(S)−1−tert−ブトキシカルボニル−3−フルオロ−3−フタルイミドピペリジン−2−オン20mg(0.055mmol,81% ee)を10mLナスフラスコに取り,塩化メチレン3mLに溶解した。トリフルオロ酢酸0.084mL(1.0104mmol)を滴下し,室温で1時間攪拌した。溶媒を留去し,トルエンを加え,トリフルオロ酢酸を共沸させ除去し,真空ポンプで乾燥させることで,(S)−3−フルオロ−3−フタルイミドピペリジン−2−オンを定量的に収量14.5mgで得た(下記式(化13))。

以下に(S)−3−フルオロ−3−フタルイミドピペリジン−2−オンの化合物データを示す。
1H NMR (200 MHz, CDCl3) 1.79-1.99 (m, 1H), 2.00-2.19 (m, 1H), 2.42-2.62 (m, 1H), 2.75-2.98 (m, 1H), 3.42-3.54 (m, 2H), 6.80 (bs, 1H), 7.26-7.89 (m, 4H); 19F NMR (188 MHz, CDCl3) -135 (dd, J=18.4, 13.2 Hz, 1F)
(第11実施形態)
30mLナスフラスコに10%メタ過ヨウ素酸ナトリウム水溶液1mLを取り,酸化ルテニウム2.8mg(0.021mmol)を加えると溶液の色は黄変した。10mLナシフラスコに第10実施形態で得た(S)−3−フルオロ−3−フタルイミドピペリジン−2−オン11mg(0.042mmol)を取り,1,2−ジクロロエタン0.25mL,酢酸エチル1mLの混合溶媒に溶解させ,さきの30mLナスフラスコに加え,2時間還流させた。反応が終了したことをTLCで確認した後,系内に少量の2-プロパノールを加え,室温で30分攪拌すると溶液は黒く変色した。酢酸エチルで希釈したのち,沈殿を桐山ロートで濾去し,濾液を酢酸エチルで抽出を行い,有機相を蒸留水,10%チオ硫酸ナトリウム水溶液,飽和食塩水で洗い,硫酸ナトリウムで乾燥させ,濾去した。溶媒を留去し,真空ポンプで乾燥させ,(S)−3’−フルオロサリドマイドを収量9.3mg,収率80%,不斉収率80%eeで得た(下記式(化14))。

以下に(S)−3’−フルオロサリドマイドの化合物データを示す。
1H NMR (200 MHz, CDCl3) 2.38-2.98 (m, 3H), 3.51-3.65 (m, 1H), 7.24-7.94 (m, 4H), 8.01 (s, 1H); 19F NMR (188 MHz, CDCl3) -130 (s, 1F); HPLC (DAICEL CHIRALPAK AD-H, 4.6×250 mm, EtOH=100, flow rate 0.5 ml/min, l=254 nm), tR=26.73 min(major), 46.80 min(minor), 80% ee

Claims (4)

  1. 下記の式(1)又は式(1’)で表される光学活性2−(3−フルオロ−2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体

    (式中,R1,R2,R3,R4,R5,及びR6はそれぞれ独立に水素原子,低級アルキル基,低級アルコキシ基,ハロゲン原子,ハロゲン化低級アルキル基,置換基を有していてもよいアリール基,置換基を有していてもよいアミノ基,ヒドロキシル基,低級アルキルチオ基,低級アルコキシカルボニル基,置換基を有していてもよいカルバモイル基,シアノ基,ニトロ基,低級アルケニル基,又は低級アルキニル基を示し,R1乃至R4のうち隣接する2つの基は一緒になって置換基を有していてもよい5乃至7員環を形成してもよく;R7は水素原子又はアミノ基の保護基を示す。)の製造法であって,下記の式(2)で表される2−(2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体

    (式中,R1,R2,R3,R4,R5,R6,及びR7は式(1)又は式(1’)記載の通りである。)に対して,塩基存在下,下記の式(3)又は(4)で表されるシンコナアルカロイド誘導体

    (式中,R8,R9,及びR10はそれぞれ独立に水素原子,低級アルキル基,低級アルコキシ基,ハロゲン原子,ハロゲン化低級アルキル基,置換基を有していてもよいアリール基,置換基を有していてもよいアミノ基,ヒドロキシル基,低級アルキルチオ基,低級アルコキシカルボニル基,置換基を有していてもよいカルバモイル基,シアノ基,ニトロ基,低級アルケニル基,又は低級アルキニル基を示す。)とフッ素化剤より調製される光学活性フルオロアンモニウム塩を反応させる工程を備え
    前記フッ素化剤として,N−フルオロベンゼンスルホンイミドを用いることを特徴とする光学活性2−(3−フルオロ−2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体の製造方法。
  2. 前記反応の添加剤として,テトラメチルエチレンジアミンを用いることを特徴とする請求項1に記載の光学活性2−(3−フルオロ−2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体の製造方法。
  3. 前記反応の添加剤として,アセチルアセトン銅(II)およびビピリジンを用いることを特徴とする請求項1に記載の光学活性2−(3−フルオロ−2−オキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体の製造方法。
  4. 下記の式(5)又は式(5’)で表される光学活性2−(3−フルオロ−2,6−ジオキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体

    (式中,R1,R2,R3,R4,R5,R6,及びR7請求項1の式(1)又は式(1’)記載の通りである。)の製造法であって,請求項1ないし3のいずれか1つに記載の製造方法により、請求項1記載の式(1)または(1’)で表される化合物を得て、さらに酸化剤により酸化する工程を備えることを特徴とする光学活性2−(3−フルオロ−2,6−ジオキソピペリジン−3−イル)イソインドリン−1,3−ジオン誘導体の製造方法。
JP2009157231A 2009-07-01 2009-07-01 光学活性3’−フルオロサリドマイド誘導体の製造方法 Expired - Fee Related JP5561577B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157231A JP5561577B2 (ja) 2009-07-01 2009-07-01 光学活性3’−フルオロサリドマイド誘導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157231A JP5561577B2 (ja) 2009-07-01 2009-07-01 光学活性3’−フルオロサリドマイド誘導体の製造方法

Publications (2)

Publication Number Publication Date
JP2011012014A JP2011012014A (ja) 2011-01-20
JP5561577B2 true JP5561577B2 (ja) 2014-07-30

Family

ID=43591259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157231A Expired - Fee Related JP5561577B2 (ja) 2009-07-01 2009-07-01 光学活性3’−フルオロサリドマイド誘導体の製造方法

Country Status (1)

Country Link
JP (1) JP5561577B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020102195A1 (en) 2018-11-13 2020-05-22 Biotheryx, Inc. Substituted isoindolinones
CA3158976A1 (en) 2019-11-19 2021-05-27 Bristol-Myers Squibb Company Compounds useful as inhibitors of helios protein
IL307343A (en) 2021-04-06 2023-11-01 Bristol Myers Squibb Co Pyridinyl substituted oxisoisoindoline compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159761A (ja) * 1998-11-30 2000-06-13 Yoshio Takeuchi フルオロサリドマイド

Also Published As

Publication number Publication date
JP2011012014A (ja) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
CN111233829A (zh) 一种具有光学活性的尼古丁的制备方法
JP5561577B2 (ja) 光学活性3’−フルオロサリドマイド誘導体の製造方法
EP2172443B1 (en) Method for producing optically active amine
JP2008184398A (ja) キラルなイリジウムアクア錯体およびそれを用いた光学活性ヒドロキシ化合物の製造方法
US20080319195A1 (en) Enantioselective Preparation of Benzimidazole Derivatives and Their Salts
DK2746250T3 (en) Intermediates and Processes for Preparation of 18F-Labeled Amino Acids
JP5271503B2 (ja) 有機ホウ素化合物の製造方法
JPWO2008140074A1 (ja) 光学活性カルボン酸エステルを製造する方法
JP6547087B1 (ja) 光学活性な2,3−ビスホスフィノピラジン誘導体、その製造方法、遷移金属錯体及び有機ホウ素化合物の製造方法
EP1608649A2 (fr) Procede de preparation enantioselective de derives de sulfoxydes.
US11174275B2 (en) Methods for the preparation of cyclopentaoxasilinones and cyclopentaoxaborininones and their use
WO2007000918A1 (ja) ベンジルアミン誘導体、ベンジルアミン誘導体の光学分割方法、ベンジルアミン誘導体の製造方法、光学活性ベンジルアミン誘導体の製造方法、及び(1r,2s)-2-アミノ-1-(4-ヒドロキシフェニル)プロパン-1-オールの製造方法
JP2014520796A5 (ja)
JPWO2011118625A1 (ja) 光学活性なn−モノアルキル−3−ヒドロキシ−3−アリールプロピルアミン化合物の製造方法
JP4829152B2 (ja) フェブリフジン及びイソフェブリフジンの新規製造方法
JP5263732B2 (ja) 光学活性1,2−ジアミン化合物の製造方法及び光学活性触媒
KR20030039371A (ko) 키랄 화합물의 제조방법
JP2021127332A (ja) 5−ブロモ−2−アルキル安息香酸の製造方法
Ladouceur et al. 4-Phenylpyridine glucagon receptor antagonists: synthetic approaches to the sterically hindered chiral hydroxy group
JPH11279159A (ja) 光学活性なピペラジンカルボン酸エステルの製造方法
JP4686701B2 (ja) 金属−ジアミン錯体及びそれを用いた不斉カップリング方法
JP4617457B2 (ja) ラセミ体オクタヒドロビスイソキノリンの製造方法及び光学活性オクタヒドロビスイソキノリンの製造方法並びに光学活性オクタヒドロビスイソキノリン
JP4855196B2 (ja) 置換光学活性ジホスフィン化合物
JP4060718B2 (ja) エノールエーテルの新規製造法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent or registration of utility model

Ref document number: 5561577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees