JP5558028B2 - Ion exchange resin treatment method and treatment apparatus - Google Patents

Ion exchange resin treatment method and treatment apparatus Download PDF

Info

Publication number
JP5558028B2
JP5558028B2 JP2009114005A JP2009114005A JP5558028B2 JP 5558028 B2 JP5558028 B2 JP 5558028B2 JP 2009114005 A JP2009114005 A JP 2009114005A JP 2009114005 A JP2009114005 A JP 2009114005A JP 5558028 B2 JP5558028 B2 JP 5558028B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
treatment
water
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009114005A
Other languages
Japanese (ja)
Other versions
JP2010261869A (en
Inventor
恒雄 大村
芳恵 赤井
正彦 大崎
政道 小畑
太一 堀本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009114005A priority Critical patent/JP5558028B2/en
Publication of JP2010261869A publication Critical patent/JP2010261869A/en
Application granted granted Critical
Publication of JP5558028B2 publication Critical patent/JP5558028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、原子力発電所の炉水浄化に用いられるイオン交換樹脂の処理技術に係り、特に、そのイオン交換樹脂を水中にて酸化分解する湿式法を採用したイオン交換樹脂の処理方法およびその処理装置に関する。   The present invention relates to a technology for treating an ion exchange resin used for reactor water purification in a nuclear power plant, and in particular, a treatment method for an ion exchange resin employing a wet method in which the ion exchange resin is oxidatively decomposed in water and the treatment thereof. Relates to the device.

原子力発電所で発生する廃棄物の1つとして、使用済みのイオン交換樹脂がある。このイオン交換樹脂は、炉水中を漂う各種イオンのほかクラッド(固形物)を代表する鉄酸化物を補足しているが、これらは何れも中性子照射を受けて放射能を有している。そのため、イオン交換樹脂の処理技術には、処理工程で発生する放射性の排ガスや廃液などが外部に漏れ出ないような措置が要求される。   One of the waste generated at nuclear power plants is used ion exchange resin. This ion exchange resin supplements various ions drifting in the reactor water as well as iron oxides representing the clad (solid matter), all of which have radioactivity upon irradiation with neutrons. For this reason, the ion exchange resin processing technology requires measures to prevent radioactive exhaust gas and waste liquid generated in the processing process from leaking outside.

従来、イオン交換樹脂の処理技術を代表するものとして、乾式法或いは湿式法のいずれかによりイオン交換樹脂を酸化分解するものが提案されている。乾式法では、湿式法と比較して酸化分解に用いられる気体状の酸化剤(例えば空気)が大量になると共に粉体の処理物が生成する。そのため、湿式法に比べ、廃ガスや粉体の厳格なハンドリングが必要となり、イオン交換樹脂の処理装置が大型化・複雑化する傾向がある。   2. Description of the Related Art Conventionally, as a representative technique for treating ion exchange resins, one that oxidatively decomposes ion exchange resins by either a dry method or a wet method has been proposed. In the dry method, a larger amount of a gaseous oxidant (for example, air) used for oxidative decomposition than in the wet method is produced, and a processed powder is generated. Therefore, strict handling of waste gas and powder is required as compared with the wet method, and the ion exchange resin processing apparatus tends to be large and complicated.

これに対し、湿式法では、酸化剤の所要量が抑えられると共に酸化分解で生成する生成物が水中に閉じ込められる。そのため、乾式法に比べ、廃棄物のハンドリングが容易なものとなり、イオン交換樹脂の処理装置の小型化・簡素化が図られる。従来、湿式法に基づくイオン交換樹脂の処理技術として、イオン交換樹脂を触媒の存在下で過酸化水素と共に300℃以上で反応させるものが提案されている(特許文献1参照)。なお、触媒の存在下で酸素含有ガスを圧入供給して酸化分解させるものも提案されている(特許文献2参照)。   On the other hand, in the wet method, the required amount of oxidant is suppressed and the product produced by oxidative decomposition is confined in water. Therefore, it becomes easier to handle the waste than the dry method, and the ion exchange resin processing apparatus can be downsized and simplified. Conventionally, as an ion exchange resin treatment technique based on a wet method, an ion exchange resin is reacted with hydrogen peroxide in the presence of a catalyst at 300 ° C. or higher (see Patent Document 1). In addition, there has also been proposed a method in which an oxygen-containing gas is injected and supplied in the presence of a catalyst for oxidative decomposition (see Patent Document 2).

特開2000−65986号公報JP 2000-65986 A 特開昭59−128499号公報JP 59-128499 A

放射性廃棄物の処理・処分にあっては、減容率を高めて保管ないし処分にかかるコストを抑えることが重要である。従来の湿式法に基づいたイオン交換樹脂の処理技術では、いずれも触媒が用いられることからその触媒の容量だけ減容効果が低下する。例えば、特許文献1に記載の処理方法では、樹脂1g当たりの触媒としての硫酸鉄が0.02g以上必要とされる。   In the treatment and disposal of radioactive waste, it is important to increase the volume reduction rate and reduce the cost for storage and disposal. In any conventional ion exchange resin processing technology based on the wet method, a catalyst is used, so the volume reduction effect is reduced by the capacity of the catalyst. For example, in the treatment method described in Patent Document 1, 0.02 g or more of iron sulfate is required as a catalyst per 1 g of resin.

また、従来のイオン交換樹脂の処理技術では、イオン交換樹脂の酸化分解で生成する酢酸などの有機体炭素(TOC:Total Organic Carbon)が酸化分解の処理液中に残存する。処理液中の放射性物質は、例えば鉄の水酸化物との共沈反応を通じて分離回収できるところ、処理液中にTOCが残存することでその共沈反応が阻害される。   Further, in the conventional ion exchange resin processing technology, organic carbon (TOC: Total Organic Carbon) such as acetic acid generated by oxidative decomposition of the ion exchange resin remains in the oxidative decomposition treatment liquid. The radioactive substance in the treatment liquid can be separated and recovered through, for example, a coprecipitation reaction with iron hydroxide, and the coprecipitation reaction is inhibited by the TOC remaining in the treatment liquid.

本発明は上記事情に鑑みてなされたもので、触媒を用いることなくイオン交換樹脂を分解できると共に処理液中のTOCをも良好に分解でき、もって減容率の向上ならびに放射性物質の良好な分離回収が可能となるイオン交換樹脂の処理方法およびその処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to decompose the ion exchange resin without using a catalyst and also to decompose TOC in the treatment liquid well, thereby improving the volume reduction rate and good separation of radioactive substances. It is an object of the present invention to provide a treatment method of an ion exchange resin and a treatment apparatus thereof that can be recovered.

上述した目的を達成するため、本発明に係るイオン交換樹脂の処理方法では、原子力発電所の炉水浄化に用いられるイオン交換樹脂の処理方法において、前記イオン交換樹脂を水と混合してイオン交換樹脂スラリーとし、このイオン交換樹脂スラリーに触媒を用いることなく過酸化水素を添加して、このイオン交換樹脂スラリーを100℃以上175℃以下の処理温度で且つ水の飽和水蒸気圧以上の処理圧力の下で加熱することを特徴とする。 In order to achieve the above-described object, in the ion exchange resin treatment method according to the present invention, in the ion exchange resin treatment method used for reactor water purification in a nuclear power plant, the ion exchange resin is mixed with water to perform ion exchange. Hydrogen peroxide is added to the ion exchange resin slurry without using a catalyst, and the ion exchange resin slurry is treated at a treatment temperature of 100 ° C. or more and 175 ° C. or less and a treatment pressure of a saturated water vapor pressure or more of water. It is characterized by heating under.

また、本発明に係るイオン交換樹脂の処理装置では、原子力発電所の炉水浄化に用いられるイオン交換樹脂の処理装置において、前記イオン交換樹脂と水の混合物をイオン交換樹脂スラリーとして貯留し、このイオン交換樹脂スラリーに触媒を用いることなく過酸化水素を添加して100℃以上175℃以下の処理温度で且つ水の飽和水蒸気圧以上の処理圧力の下で加熱可能に構成される反応容器を備えることを特徴とする。 Further, in the ion exchange resin treatment apparatus according to the present invention, in the ion exchange resin treatment apparatus used for reactor water purification in a nuclear power plant, the mixture of the ion exchange resin and water is stored as an ion exchange resin slurry. A reaction vessel configured to be able to be heated at a processing temperature of 100 ° C. or higher and 175 ° C. or lower and a processing pressure equal to or higher than the saturated water vapor pressure of water by adding hydrogen peroxide to the ion exchange resin slurry without using a catalyst. It is characterized by that.

本発明によれば、触媒を用いることなくイオン交換樹脂を分解できると共に処理液中のTOCをも良好に分解でき、もって減容率の向上ならびに放射性物質の良好な分離回収が可能となる。   According to the present invention, the ion exchange resin can be decomposed without using a catalyst, and the TOC in the treatment liquid can be decomposed well, so that the volume reduction rate can be improved and the radioactive substance can be separated and recovered.

イオン交換樹脂の分解反応の説明図。Explanatory drawing of the decomposition reaction of an ion exchange resin. 過酸化水素分解率の温度依存性を示す図。The figure which shows the temperature dependence of a hydrogen peroxide decomposition rate. 本発明に係るイオン交換樹脂の処理方法の実証試験結果を示す図。The figure which shows the verification test result of the processing method of the ion exchange resin which concerns on this invention. 本発明に係るイオン交換樹脂の処理装置の第1実施形態を示す図。The figure which shows 1st Embodiment of the processing apparatus of the ion exchange resin which concerns on this invention.

本発明に係るイオン交換樹脂の処理方法およびその処理装置の実施形態について、添付図面を参照して説明する。   DETAILED DESCRIPTION Embodiments of an ion exchange resin processing method and processing apparatus according to the present invention will be described with reference to the accompanying drawings.

原子力発電所の炉水浄化に用いられるイオン交換樹脂は、スチレンとジビニルベンゼンの共重合体にイオン交換基が形成された構造を有する。また、このイオン交換樹脂は、粉末状(平均粒径100μm)のものと、粒状(平均粒径600μm)のものがある。   Ion exchange resins used for reactor water purification in nuclear power plants have a structure in which ion exchange groups are formed on a copolymer of styrene and divinylbenzene. Moreover, this ion exchange resin has a powder form (average particle diameter of 100 micrometers) and a granular form (average particle diameter of 600 micrometers).

湿式法に基づいて処理されるイオン交換樹脂は、図1に示すように、水や酸化剤を含む処理液中に有機物が溶出していく反応過程(A)と、処理液中に溶出した有機物が二酸化炭素へと分解していく反応過程(B)とに分けることができる。反応過程(A)は、処理温度が高いほど迅速に進行するが、反応過程Bは、過酸化水素を生成源とするOHラジカルにより助長されものであり、処理温度に加えて過酸化水素濃度も進行速度に影響を与える。   As shown in FIG. 1, the ion exchange resin processed based on the wet method includes a reaction process (A) in which an organic substance is eluted in a treatment liquid containing water and an oxidizing agent, and an organic substance eluted in the treatment liquid. Can be divided into a reaction process (B) in which is decomposed into carbon dioxide. The reaction process (A) proceeds more rapidly as the treatment temperature is higher, but the reaction process B is promoted by OH radicals using hydrogen peroxide as a generation source, and in addition to the treatment temperature, the hydrogen peroxide concentration is also increased. Affects the speed of progress.

本実施形態のイオン交換樹脂の処理方法では、先ず、イオン交換樹脂を水と混合してイオン交換樹脂スラリーとし、このイオン交換樹脂スラリーに過酸化水素を添加する。この過酸化水素の添加量は、イオン交換樹脂の全量が二酸化炭素と水を生成して分解するのに必要となる最少量の1.15倍以上とする。   In the ion exchange resin treatment method of this embodiment, first, the ion exchange resin is mixed with water to form an ion exchange resin slurry, and hydrogen peroxide is added to the ion exchange resin slurry. The amount of hydrogen peroxide added is at least 1.15 times the minimum amount required for the total amount of ion exchange resin to generate and decompose carbon dioxide and water.

そして、100℃〜175℃好ましくは140℃〜175℃の処理温度で且つ水の飽和蒸気圧以上の圧力のもとで、イオン交換樹脂スラリーと過酸化水素の混合物を加熱する。   Then, the mixture of the ion exchange resin slurry and hydrogen peroxide is heated at a treatment temperature of 100 ° C. to 175 ° C., preferably 140 ° C. to 175 ° C., and a pressure equal to or higher than the saturated vapor pressure of water.

以下、この処理条件の設定理由を説明する。   Hereinafter, the reason for setting this processing condition will be described.

イオン交換樹脂は、その表面から過酸化水素と反応して分解していく。したがって、イオン交換樹脂が分解する速度(半径減少速度)を用いて、酸化処理で用いる処理温度と酸化分解が完了するまでの分解時間との相関を知ることができる。   The ion exchange resin decomposes by reacting with hydrogen peroxide from the surface. Therefore, it is possible to know the correlation between the treatment temperature used in the oxidation treatment and the decomposition time until the oxidative decomposition is completed using the rate at which the ion exchange resin is decomposed (radius reduction rate).

ここで、イオン交換樹脂の「分解」とは、イオン交換樹脂の半径が半分以下になることとされる。したがって、イオン交換樹脂が粉末状(平均粒径100μm)である場合は、半径が50μm以下となるまで、イオン交換樹脂が粒状(平均粒径600μm)である場合は半径が300μm以下となるまで、酸化処理を継続する必要がある。   Here, “decomposition” of the ion exchange resin means that the radius of the ion exchange resin becomes half or less. Therefore, when the ion exchange resin is in a powder form (average particle size 100 μm), the radius is 50 μm or less, and when the ion exchange resin is granular (average particle size 600 μm), the radius is 300 μm or less. It is necessary to continue the oxidation treatment.

表1は、過酸化水素濃度が1.8wt%である処理液中でのイオン交換樹脂の半径減少速度を示すものである。表2は、表1の半径減少速度から推定される処理温度とイオン交換樹脂の分解時間を示すものであり、いずれの温度においても水の飽和水蒸気圧以上の圧力条件を用いている。

Figure 0005558028
Figure 0005558028
Table 1 shows the radius reduction rate of the ion exchange resin in the treatment liquid having a hydrogen peroxide concentration of 1.8 wt%. Table 2 shows the treatment temperature estimated from the radius reduction rate in Table 1 and the decomposition time of the ion exchange resin. Pressure conditions above the saturated water vapor pressure of water are used at any temperature.
Figure 0005558028
Figure 0005558028

表2に示すように、処理温度が150℃の場合、粉末状(平均粒径100μm)のイオン交換樹脂は約90分で分解され、粒状(平均粒径600μm)のイオン交換樹脂は540分〜570分で分解される。処理温度が200℃の場合は、粉末状のイオン交換樹脂は30分で分解され、粒状のイオン交換樹脂は150分〜180分で分解される。すなわち、処理温度が高いほど、イオン交換樹脂の半径減少速度が速くなり、分解の所要時間およびコストを削減できるようになる。しかしながら、イオン交換樹脂の処理装置の健全性を考慮すると、処理温度をできる限り抑えることが好ましい。   As shown in Table 2, when the processing temperature is 150 ° C., the powdered (average particle size 100 μm) ion exchange resin is decomposed in about 90 minutes, and the granular (average particle size 600 μm) ion exchange resin is 540 minutes to Decomposes in 570 minutes. When the treatment temperature is 200 ° C., the powdered ion exchange resin is decomposed in 30 minutes, and the granular ion exchange resin is decomposed in 150 to 180 minutes. That is, the higher the processing temperature, the faster the radius reduction rate of the ion exchange resin, and the time and cost required for decomposition can be reduced. However, considering the soundness of the ion exchange resin processing apparatus, it is preferable to suppress the processing temperature as much as possible.

このような知見に基づいて、先ず、イオン交換樹脂の酸化処理で用いる処理温度の下限値について説明する。   Based on such knowledge, first, the lower limit value of the treatment temperature used in the oxidation treatment of the ion exchange resin will be described.

粒状のイオン交換樹脂が分解するまでの所要時間は、処理温度100℃で8時間、150℃で6時間、175℃で5時間、200℃で4時間となる試算である。なお、粉末状のイオン交換樹脂が分解されるまでの所要時間は、100℃〜200℃の温度範囲で8時間以内となる試算である。   The time required for the granular ion exchange resin to decompose is a trial calculation of a processing temperature of 100 ° C. for 8 hours, 150 ° C. for 6 hours, 175 ° C. for 5 hours, and 200 ° C. for 4 hours. In addition, the time required until a powdery ion exchange resin is decomposed | disassembled is the trial calculation which will be less than 8 hours in the temperature range of 100 to 200 degreeC.

イオン交換樹脂の処理装置の健全性だけに着目すると処理温度は低い方が好ましいが、日中(例えば、9時〜17時)の8時間以内でイオン交換樹脂の分解処理を完了させることで作業者の負担が軽減される点にも着目すれば、イオン交換樹脂の酸化処理で用いる温度を100℃以上とする必要がある。要するに、イオン交換樹脂の酸化処理で用いる温度を100℃とすることで、作業者の負担軽減とイオン交換樹脂の処理装置の健全性の維持との両立が図られる。   Focusing only on the soundness of the ion exchange resin processing equipment, it is preferable that the processing temperature is low, but work can be done by completing the decomposition process of the ion exchange resin within 8 hours during the day (for example, 9:00 to 17:00). If attention is also paid to the fact that the burden on the user is reduced, the temperature used in the oxidation treatment of the ion exchange resin needs to be 100 ° C. or higher. In short, by setting the temperature used in the oxidation treatment of the ion exchange resin to 100 ° C., it is possible to reduce both the burden on the operator and maintain the soundness of the ion exchange resin treatment apparatus.

次に、イオン交換樹脂の酸化処理で用いる処理温度の上限値について説明する。   Next, the upper limit value of the treatment temperature used in the oxidation treatment of the ion exchange resin will be described.

図2は過酸化水素の分解による酸素生成率(過酸化水素分解率)の温度依存性を示す図である。この過酸化水素分解率は、公知の計算式を用いて算出したものであり、各温度で10秒間保持した場合の計算結果である。この計算結果によると、過酸化水素分解率は、温度上昇と共に大きくなり、例えば175℃以下で15%以下である過酸化水素分解率は200℃以上で30%以上となる。   FIG. 2 is a graph showing the temperature dependence of the oxygen production rate (hydrogen peroxide decomposition rate) due to the decomposition of hydrogen peroxide. This hydrogen peroxide decomposition rate is calculated using a well-known calculation formula, and is a calculation result when held at each temperature for 10 seconds. According to this calculation result, the decomposition rate of hydrogen peroxide increases as the temperature rises. For example, the decomposition rate of hydrogen peroxide of 15% or less at 175 ° C. or less is 30% or more at 200 ° C. or more.

一般に、過酸化水素を酸化剤として用いる場合、過酸化水素の無駄使用を抑える観点から過酸化水素分解率が10秒間で15%以下となるように調節することが好ましいとされる。過酸化水素分解率が10秒間で15%以下となるには、イオン交換樹脂の酸化処理の処理温度を175℃以下とする必要がある。この処理温度が、酸化処理における温度上限値となる。   In general, when hydrogen peroxide is used as an oxidizing agent, it is preferable to adjust the hydrogen peroxide decomposition rate to be 15% or less in 10 seconds from the viewpoint of suppressing wasteful use of hydrogen peroxide. In order for the hydrogen peroxide decomposition rate to be 15% or less in 10 seconds, the treatment temperature of the oxidation treatment of the ion exchange resin needs to be 175 ° C. or less. This treatment temperature is the upper temperature limit in the oxidation treatment.

しかし、過酸化水素は175℃において15%が酸素の生成に消費されることを考慮すると、過酸化水素の添加量は、イオン交換樹脂の全量が二酸化炭素と水を生成して分解する必要最少量の15%以上増し(必要最小量の1.15倍以上)とすることが好ましい。   However, considering that 15% of hydrogen peroxide is consumed for oxygen generation at 175 ° C., the amount of hydrogen peroxide added is the most necessary for the total amount of ion exchange resin to decompose by generating carbon dioxide and water. It is preferable to increase the amount by a small amount by 15% or more (1.15 times or more the necessary minimum amount).

図3は本実施形態のイオン交換樹脂の処理方法の実証試験結果を示す図である。この実証試験は、イオン交換樹脂の処理温度とTOCの分解率との相関を確認するために行ったものである。   FIG. 3 is a diagram showing the results of a verification test of the ion exchange resin treatment method of the present embodiment. This demonstration test was conducted in order to confirm the correlation between the treatment temperature of the ion exchange resin and the decomposition rate of TOC.

<試験条件>
150gの水にイオン交換樹脂を16g(イオン交換樹脂は乾燥樹脂とし、陽イオン交換樹脂と陰イオン交換樹脂の重量比を1とした。)を混ぜたイオン交換樹脂スラリーと、原子炉水を漂うクラッドを模擬した酸化鉄(イオン交換樹脂の5wt%)との混合溶液を作成した。
<Test conditions>
Ion exchange resin slurry in which 16 g of ion exchange resin is mixed with 150 g of water (the ion exchange resin is a dry resin, and the weight ratio of the cation exchange resin to the anion exchange resin is 1) and the reactor water are floated. A mixed solution with iron oxide (5 wt% of the ion exchange resin) simulating the cladding was prepared.

また、この混合溶液に、イオン交換樹脂が二酸化炭素へと分解するのに必要な2倍量の過酸化水素を5、6時間かけて少しずつ且つ連続的に供給した。   In addition, twice the amount of hydrogen peroxide necessary for the ion exchange resin to decompose into carbon dioxide was gradually and continuously supplied over 5 to 6 hours.

そして、イオン交換樹脂の酸化分解における処理温度を100℃および140℃とし、その処理圧力として100℃の場合で0.1MPa、140℃の場合で0.5MPaとして何れも水の飽和水蒸気圧以上とした。   And the processing temperature in the oxidative decomposition of the ion exchange resin is 100 ° C. and 140 ° C., and the processing pressure is 0.1 MPa in the case of 100 ° C. and 0.5 MPa in the case of 140 ° C. did.

<試験結果>
図3に示すように、イオン交換樹脂の残渣率(式1参照)は、100℃および140℃で5%以下となった。TOCの残存率(式2参照)は、100℃では27%、140℃では0.1%となった。すなわち、イオン交換樹脂の分解処理で用いる温度を140℃以上とすれば、100℃の場合と比較して、TOCの残渣率が著しく低下することが示された。
イオン交換樹脂の残渣率(%)=(Wf−WFe)/Wi×100 ……(1)
Wf:参加処理後の全残渣の重量
Fe:添加した酸化鉄の重量
Wi:添加したイオン交換樹脂の重量
TOCの残存率(%)=Cfc/ Cic×100 ……(2)
Cic:酸化処理前のイオン交換樹脂の炭素重量
Cfc:酸化処理後の処理液中のTOC重量
<Test results>
As shown in FIG. 3, the ion exchange resin residue rate (see Formula 1) was 5% or less at 100 ° C. and 140 ° C. The residual ratio of TOC (see Formula 2) was 27% at 100 ° C. and 0.1% at 140 ° C. That is, it was shown that when the temperature used in the decomposition treatment of the ion exchange resin is 140 ° C. or higher, the TOC residue rate is significantly reduced as compared with the case of 100 ° C.
Residual rate of ion exchange resin (%) = (Wf−W Fe ) / Wi × 100 (1)
Wf: Weight of all residues after participation treatment W Fe : Weight of added iron oxide Wi: Weight of added ion exchange resin TOC remaining rate (%) = Cfc / Cic × 100 (2)
Cic: Carbon weight of ion exchange resin before oxidation treatment Cfc: TOC weight in treatment solution after oxidation treatment

図4は本発明に係るイオン交換樹脂の処理装置の第1実施形態を示す図である。   FIG. 4 is a diagram showing a first embodiment of the ion exchange resin processing apparatus according to the present invention.

イオン交換樹脂の処理装置1は、高温高圧水(高温高圧状態の水)を用いて使用済みのイオン交換樹脂を酸化反応により分解処理する装置であり、上述のイオン交換樹脂の処理方法の使用に用いられる。この処理装置1は、圧力可変なケース2の内部に、反応容器3、ヒータ4、攪拌器5、過酸化水素タンク6、過酸化水素注入管7、ポンプ8、熱交換器9、冷却器10、ガス抽出管11、気液分離器12、膨張弁13および計測器14を格納する。   The ion exchange resin treatment apparatus 1 is an apparatus for decomposing used ion exchange resin by oxidation reaction using high-temperature and high-pressure water (water in a high-temperature and high-pressure state), and is used for the above-described ion-exchange resin treatment method. Used. The processing apparatus 1 includes a reaction vessel 3, a heater 4, a stirrer 5, a hydrogen peroxide tank 6, a hydrogen peroxide injection pipe 7, a pump 8, a heat exchanger 9, and a cooler 10 in a case 2 having a variable pressure. The gas extraction pipe 11, the gas-liquid separator 12, the expansion valve 13 and the measuring instrument 14 are stored.

反応容器3は、ケースの内圧調節と連動して内圧が変化するように構成され、イオン交換樹脂と水の混合物(イオン交換樹脂スラリー)を貯留する。また、この反応容器3は、着脱自在に構成される。   The reaction vessel 3 is configured such that the internal pressure changes in conjunction with the internal pressure adjustment of the case, and stores a mixture of ion exchange resin and water (ion exchange resin slurry). Moreover, this reaction container 3 is comprised so that attachment or detachment is possible.

ヒータ4は、反応容器3を取り囲むように設けられ、反応容器3に貯留されるイオン交換樹脂スラリーを所要の温度(少なくとも100℃〜175℃)となるよう過熱可能に構成される。攪拌器5は、反応容器3のイオン交換樹脂スラリーに浸漬され、イオン交換樹脂を攪拌する。   The heater 4 is provided so as to surround the reaction vessel 3 and is configured to be capable of being overheated so that the ion exchange resin slurry stored in the reaction vessel 3 has a required temperature (at least 100 ° C. to 175 ° C.). The stirrer 5 is immersed in the ion exchange resin slurry in the reaction vessel 3 to stir the ion exchange resin.

過酸化水素タンク6は、過酸化水素を貯留し、過酸化水素注入管7は過酸化水素タンク6から過酸化水素を引き出して反応容器3に案内する。   The hydrogen peroxide tank 6 stores hydrogen peroxide, and the hydrogen peroxide injection pipe 7 draws the hydrogen peroxide from the hydrogen peroxide tank 6 and guides it to the reaction vessel 3.

ポンプ8は反応容器3の内圧に抗して過酸化水素を圧入するものであり、反応容器3に対する過酸化水素の投入量調節機能を有する。すなわち、ポンプ8は、所要の投入量で且つ連続的に過酸化水素を反応容器3に投入する。なお、過酸化水素が分解して生じる酸素は、同様にして生じるOHラジカルよりも酸化力が弱い。このため、過酸化水素が酸素まで分解することなくOHラジカルとイオン交換樹脂との相互反応が効率的に行われるように、過酸化水素の注入流量を調節することが好ましい。   The pump 8 is for injecting hydrogen peroxide against the internal pressure of the reaction vessel 3 and has a function of adjusting the amount of hydrogen peroxide charged into the reaction vessel 3. That is, the pump 8 continuously inputs hydrogen peroxide into the reaction vessel 3 at a required input amount. Note that oxygen generated by the decomposition of hydrogen peroxide has a lower oxidizing power than OH radicals generated in the same manner. For this reason, it is preferable to adjust the injection flow rate of hydrogen peroxide so that the interaction between the OH radical and the ion exchange resin can be performed efficiently without the hydrogen peroxide being decomposed to oxygen.

熱交換器9は、過酸化水素注入管7の出口側に設けられ、過酸化水素を反応容器3に注入される前に冷却する。   The heat exchanger 9 is provided on the outlet side of the hydrogen peroxide injection pipe 7 and cools the hydrogen peroxide before being injected into the reaction vessel 3.

冷却器10は、反応容器3内で進行するイオン交換樹脂の分解反応で発生する生成物から水分を分離除去し、水が分離除去された生成物をガス抽出管11に案内する。気液分離器12は、ガス抽出管11に案内された生成物をガス成分(二酸化炭素等)と液体とに分離する。ガス成分は、膨張弁13を通過して大気圧に減圧された後、出口流体となる。   The cooler 10 separates and removes moisture from the product generated by the decomposition reaction of the ion exchange resin that proceeds in the reaction vessel 3, and guides the product from which water has been separated and removed to the gas extraction pipe 11. The gas-liquid separator 12 separates the product guided to the gas extraction pipe 11 into a gas component (such as carbon dioxide) and a liquid. The gas component passes through the expansion valve 13 and is decompressed to atmospheric pressure, and then becomes an outlet fluid.

計測器14は、イオン交換樹脂の分解成分であり出口流体となった流体の組成やその濃度ならびに温度や圧力を測定する。例えば、ポンプ8は、この計測器14により測定された一酸化炭素濃度を指標とし、イオン交換樹脂と過酸化水素由来のOHラジカルとの相互反応が効率的に行われるように過酸化水素の供給量を調節する。   The measuring instrument 14 measures the composition, concentration, temperature, and pressure of the fluid that is a decomposition component of the ion exchange resin and becomes the outlet fluid. For example, the pump 8 uses the carbon monoxide concentration measured by the measuring instrument 14 as an index, and supplies hydrogen peroxide so that the interaction between the ion exchange resin and OH radicals derived from hydrogen peroxide can be performed efficiently. Adjust the amount.

次に、本実施形態に係るイオン交換樹脂の処理方法およびその処理装置の効果を説明する。   Next, the effect of the processing method of the ion exchange resin which concerns on this embodiment, and its processing apparatus is demonstrated.

(1)イオン交換樹脂の処理方法にあっては、イオン交換樹脂を水と混合してイオン交換樹脂スラリーとし、イオン交換樹脂スラリーに過酸化水素を添加して、このイオン交換樹脂スラリーを100℃以上の処理温度で且つ水の飽和水蒸気圧以上の処理圧力の下で加熱する。このため、触媒を用いることなくイオン交換樹脂を分解できると共に処理液中のTOCをも良好に分解でき、減容率の向上ならびに放射性物質の良好な分離回収が可能となる。加えて、比較的マイルドな温度条件であるからイオン交換樹脂の処理装置の健全性の維持が図られ、且つ、イオン交換樹脂が8時間以内に分解されることが期待されることで作業負担の軽減も図られる。   (1) In the method for treating an ion exchange resin, the ion exchange resin is mixed with water to form an ion exchange resin slurry, hydrogen peroxide is added to the ion exchange resin slurry, and the ion exchange resin slurry is heated to 100 ° C. Heating is performed at the above treatment temperature and under a treatment pressure equal to or higher than the saturated water vapor pressure of water. For this reason, the ion exchange resin can be decomposed without using a catalyst, and the TOC in the treatment liquid can be decomposed well, so that the volume reduction rate can be improved and the radioactive substance can be separated and recovered. In addition, since the temperature condition is relatively mild, it is possible to maintain the soundness of the ion exchange resin processing apparatus and to expect the ion exchange resin to be decomposed within 8 hours. Mitigation is also possible.

(2)処理温度は、100℃ないし175℃とするため、過酸化水素の無駄使用を抑えることができ、(1)の効果が高められる。   (2) Since the treatment temperature is 100 ° C. to 175 ° C., wasteful use of hydrogen peroxide can be suppressed, and the effect of (1) is enhanced.

(3)処理温度は、140℃ないし175℃とするため、(2)の効果に加えてTOCの分解を著しく高めることができる。   (3) Since the processing temperature is 140 ° C. to 175 ° C., in addition to the effect of (2), the decomposition of TOC can be remarkably enhanced.

(4)処理圧力を水の飽和水上気圧以上の圧力(例えば、0.1MPaないし0.5MPa)とすることにより、(1)〜(3)の効果を得やすいものとなる。   (4) By setting the treatment pressure to a pressure equal to or higher than the saturated water pressure of water (for example, 0.1 MPa to 0.5 MPa), the effects (1) to (3) can be easily obtained.

(5)過酸化水素の添加量は、イオン交換樹脂の全量が二酸化炭素と水を生成して分解する必要最少量の1.15倍以上とする。このため、過酸化水素が酸素へと分解する反応過程を伴っても、イオン交換樹脂を良好に酸化分解できる。   (5) The amount of hydrogen peroxide added is at least 1.15 times the minimum amount required for the total amount of ion exchange resin to generate and decompose carbon dioxide and water. For this reason, even with a reaction process in which hydrogen peroxide is decomposed into oxygen, the ion exchange resin can be satisfactorily oxidized and decomposed.

(6)イオン交換樹脂の処理装置1にあっては、イオン交換樹脂と水の混合物をイオン交換樹脂スラリーとして貯留し、このイオン交換樹脂スラリーを100℃以上の処理温度で且つ水の飽和水蒸気圧以上の処理圧力の下で加熱可能に構成される反応容器3を備える。このため、触媒を用いることなくイオン交換樹脂を分解できると共に処理液中のTOCをも良好に分解でき、減容率の向上ならびに放射性物質の良好な分離回収が可能となる。加えて、比較的マイルドな温度条件であるからイオン交換樹脂の処理装置の健全性の維持が図られ、且つ、イオン交換樹脂が8時間以内に分解されることが期待されることで作業負担の軽減も図られる。   (6) In the ion exchange resin treatment apparatus 1, a mixture of the ion exchange resin and water is stored as an ion exchange resin slurry, and the ion exchange resin slurry is treated at a treatment temperature of 100 ° C. or higher and a saturated water vapor pressure of water. A reaction vessel 3 configured to be heatable under the above processing pressure is provided. For this reason, the ion exchange resin can be decomposed without using a catalyst, and the TOC in the treatment liquid can be decomposed well, so that the volume reduction rate can be improved and the radioactive substance can be separated and recovered. In addition, since the temperature condition is relatively mild, it is possible to maintain the soundness of the ion exchange resin processing apparatus and to expect the ion exchange resin to be decomposed within 8 hours. Mitigation is also possible.

(7)処理装置1は、反応容器3に貯留されるイオン交換樹脂スラリーを攪拌する攪拌器5を備える。すなわち、イオン交換樹脂の表面に過酸化水素が十分且つ効率的に付着すると共に水中でのイオン交換樹脂の分散性が高められ加熱処理も均等に作用する。このため、(6)の効果が高められる。   (7) The processing apparatus 1 includes a stirrer 5 that stirs the ion exchange resin slurry stored in the reaction vessel 3. That is, hydrogen peroxide adheres sufficiently and efficiently to the surface of the ion exchange resin, dispersibility of the ion exchange resin in water is enhanced, and the heat treatment acts equally. For this reason, the effect of (6) is enhanced.

(8)処理装置1は、イオン交換樹脂スラリーが分解成分の組成やその濃度ならびに温度や圧力を測定する計測器14を備える。このため、過酸化水素の注入流量の調節やイオン交換樹脂の酸化処理条件たる温度や圧力の調節を言わば自動的に行うことが可能となる。   (8) The processing apparatus 1 includes a measuring instrument 14 that measures the composition and concentration of the decomposition component, temperature, and pressure of the ion exchange resin slurry. For this reason, it is possible to automatically adjust the flow rate of hydrogen peroxide and the temperature and pressure which are conditions for the oxidation treatment of the ion exchange resin.

(9)処理装置1は、反応容器3を格納し且つ内圧可変に構成されるケース2を備え、このケース2の内圧の変化と連動して反応容器の内圧が変化するように構成される。このため、反応容器3から放射性物質が万一漏れ出てもこの放射性物質の環境中への散逸が防止される。また、このケース2の内圧調節を通じて、イオン交換樹脂の酸化処理条件となる反応容器3の内圧調節を行えるようになる。   (9) The processing apparatus 1 includes a case 2 configured to store the reaction vessel 3 and have a variable internal pressure, and is configured to change the internal pressure of the reaction vessel in conjunction with a change in the internal pressure of the case 2. For this reason, even if a radioactive substance leaks out of the reaction container 3, the dissipation of this radioactive substance into the environment is prevented. Further, through the internal pressure adjustment of the case 2, the internal pressure of the reaction vessel 3 that is an oxidation treatment condition of the ion exchange resin can be adjusted.

(10)反応容器3は、着脱自在に構成されるため、反応容器3の洗浄、廃棄・交換が容易となる。   (10) Since the reaction vessel 3 is configured to be detachable, the reaction vessel 3 can be easily cleaned, discarded and replaced.

以上、本発明に係るイオン交換樹脂の処理方法およびその処理装置を1つの実施形態に基づき説明してきたが、具体的な構成については、本実施形態に限られるものではなく、特許請求の範囲に記載の発明の要旨を逸脱しない限り設計の変更や追加等は許容される。   As mentioned above, although the processing method and the processing apparatus of the ion exchange resin which concern on this invention have been demonstrated based on one embodiment, about a specific structure, it is not restricted to this embodiment, In the claim Design changes and additions are allowed without departing from the spirit of the invention described.

例えば、イオン交換樹脂の分解成分は放射性物質を含むため、この分解成分を液体成分と固体成分とに分離し、固体成分についてはセメントやガラスと混合して固化体にして地層処分する工程を追加できる。   For example, since the decomposition component of ion exchange resin contains radioactive substances, this decomposition component is separated into a liquid component and a solid component, and the solid component is mixed with cement or glass to form a solidified body and added to the geological disposal it can.

1……イオン交換樹脂の処理装置, 2……ケース,3……反応容器, 4……ヒータ, 5……攪拌器, 6……過酸化水素タンク, 7……過酸化水素注入管, 8……ポンプ, 9……熱交換器, 10……冷却器, 11……ガス抽出管, 12……気液分離器, 13……膨張弁, 14……計測器.   DESCRIPTION OF SYMBOLS 1 ... Processing apparatus of ion exchange resin, 2 ... Case, 3 ... Reaction container, 4 ... Heater, 5 ... Stirrer, 6 ... Hydrogen peroxide tank, 7 ... Hydrogen peroxide injection pipe, 8 ...... Pump, 9 ... Heat exchanger, 10 ... Cooler, 11 ... Gas extraction pipe, 12 ... Gas-liquid separator, 13 ... Expansion valve, 14 ... Measurement device.

Claims (9)

原子力発電所の炉水浄化に用いられるイオン交換樹脂の処理方法において、
前記イオン交換樹脂を水と混合してイオン交換樹脂スラリーとし、
前記イオン交換樹脂スラリーに触媒を用いることなく過酸化水素を添加して、このイオン交換樹脂スラリーを100℃以上175℃以下の処理温度で且つ水の飽和水蒸気圧以上の処理圧力の下で加熱することを特徴とするイオン交換樹脂の処理方法。
In the treatment method of ion exchange resin used for reactor water purification of nuclear power plant,
The ion exchange resin is mixed with water to form an ion exchange resin slurry,
Hydrogen peroxide is added to the ion exchange resin slurry without using a catalyst, and the ion exchange resin slurry is heated at a treatment temperature of 100 ° C. or more and 175 ° C. or less and a treatment pressure of a saturated water vapor pressure or more of water. A method for treating an ion-exchange resin.
前記処理温度は、10℃ないし175℃とすることを特徴とする請求項1に記載のイオン交換樹脂の処理方法。 The treatment temperature is, 1 4 0 ° C. to processing method of the ion exchange resin according to claim 1, characterized in that a 175 ° C.. 前記処理圧力は、0.1MPaないし0.5MPaとすることを特徴とする請求項1または請求項2に記載のイオン交換樹脂の処理方法。   The method for treating an ion exchange resin according to claim 1 or 2, wherein the treatment pressure is 0.1 MPa to 0.5 MPa. 前記過酸化水素の添加量は、イオン交換樹脂の全量が二酸化炭素と水を生成して分解する必要最少量の1.15倍以上とすることを特徴とする請求項1ないし請求項3の何れか1項に記載のイオン交換樹脂の処理方法。   4. The hydrogen peroxide is added in an amount of 1.15 times or more of a minimum amount required for the total amount of ion exchange resin to generate and decompose carbon dioxide and water. The processing method of the ion-exchange resin of Claim 1. 前記イオン交換樹脂の分解成分を液体と固形物とに分離し、固形物をセメントと混合して固化体とすることを特徴とする請求項1ないし請求項4の何れか1項に記載のイオン交換樹脂の処理方法。   The ion according to any one of claims 1 to 4, wherein a decomposition component of the ion exchange resin is separated into a liquid and a solid, and the solid is mixed with cement to form a solidified body. Treatment method for exchange resin. 原子力発電所の炉水浄化に用いられるイオン交換樹脂の処理装置において、
前記イオン交換樹脂と水の混合物をイオン交換樹脂スラリーとして貯留し、このイオン交換樹脂スラリーに触媒を用いることなく過酸化水素を添加して100℃以上175℃以下の処理温度で且つ水の飽和水蒸気圧以上の処理圧力の下で加熱可能に構成される反応容器を備えることを特徴とするイオン交換樹脂の処理装置。
In the ion exchange resin treatment equipment used for reactor water purification in nuclear power plants,
A mixture of the ion exchange resin and water is stored as an ion exchange resin slurry , hydrogen peroxide is added to the ion exchange resin slurry without using a catalyst , and the water is saturated with water at a treatment temperature of 100 ° C. or more and 175 ° C. or less. An ion exchange resin processing apparatus comprising a reaction vessel configured to be heatable under a processing pressure equal to or higher than a pressure.
前記反応容器に貯留されるイオン交換樹脂スラリーを攪拌する攪拌器を備えることを特徴とする請求項6に記載のイオン交換樹脂の処理装置。   The processing apparatus of the ion exchange resin of Claim 6 provided with the stirrer which stirs the ion exchange resin slurry stored in the said reaction container. 前記イオン交換樹脂スラリーの分解成分の組成或いはその濃度を測定する計測器を備えることを特徴とする請求項6または請求項7に記載のイオン交換樹脂の処理装置。   The apparatus for treating an ion exchange resin according to claim 6 or 7, further comprising a measuring instrument for measuring a composition of a decomposition component of the ion exchange resin slurry or a concentration thereof. 前記反応容器を格納し且つ内圧可変に構成されるケースを備え、このケースの内圧の変化と連動して反応容器の内圧が変化するように構成されることを特徴とする請求項6ないし請求項8の何れか1項に記載のイオン交換樹脂の処理装置。   7. A case in which the reaction vessel is stored and configured to be variable in internal pressure, and the internal pressure of the reaction vessel is configured to change in conjunction with a change in the internal pressure of the case. The processing apparatus of the ion exchange resin of any one of 8.
JP2009114005A 2009-05-08 2009-05-08 Ion exchange resin treatment method and treatment apparatus Expired - Fee Related JP5558028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009114005A JP5558028B2 (en) 2009-05-08 2009-05-08 Ion exchange resin treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009114005A JP5558028B2 (en) 2009-05-08 2009-05-08 Ion exchange resin treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2010261869A JP2010261869A (en) 2010-11-18
JP5558028B2 true JP5558028B2 (en) 2014-07-23

Family

ID=43360058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009114005A Expired - Fee Related JP5558028B2 (en) 2009-05-08 2009-05-08 Ion exchange resin treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP5558028B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061296A (en) * 2011-09-14 2013-04-04 Toshiba Corp Method and device for processing waste ion exchange resin
RU2685697C1 (en) * 2018-07-12 2019-04-23 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Method of processing spent ion-exchange resins for disposal and device for its implementation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657747B2 (en) * 1996-11-25 2005-06-08 独立行政法人産業技術総合研究所 Decomposition method of ion exchange resin
JP3846820B2 (en) * 1997-08-20 2006-11-15 株式会社東芝 Solid waste treatment method
JP4675521B2 (en) * 2001-08-15 2011-04-27 日揮株式会社 Method and apparatus for treating radioactive organic waste
JP2004025028A (en) * 2002-06-25 2004-01-29 Mitsubishi Materials Corp Reaction treatment apparatus under atmosphere of high temperature and high pressure water
JP2004057925A (en) * 2002-07-29 2004-02-26 Japan Organo Co Ltd Hydrothermal reactor and hydrothermal reaction device
JP4089914B2 (en) * 2005-05-26 2008-05-28 近畿環境興産株式会社 Hydrothermal reactor for workpieces
JP2007297458A (en) * 2006-04-28 2007-11-15 Osaka Prefecture Univ Method for decomposing crosslinked organic polymer
JP2009155388A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Decomposition apparatus for plastic and decomposition method for plastic using the same
JP4977043B2 (en) * 2008-01-11 2012-07-18 株式会社東芝 Ion exchange resin processing apparatus and method

Also Published As

Publication number Publication date
JP2010261869A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP6392431B2 (en) Decontamination method and kit therefor that can greatly reduce radioactive waste
US6875323B2 (en) Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
TWI355003B (en)
TW445459B (en) Method and device for chemical decontaminating for structural part of radiation handling facility
US11443863B2 (en) Method for decontaminating metal surfaces of a nuclear facility
TW200416746A (en) System and method for chemical decontamination of radioactive material
JP2010048609A (en) Method and device for solidifying radioactive waste
JP5558028B2 (en) Ion exchange resin treatment method and treatment apparatus
JP3657747B2 (en) Decomposition method of ion exchange resin
JP4551843B2 (en) Chemical decontamination method
CN107210073B (en) The method of metal surface is purified in the cooling system of nuclear reactor
JP2009109427A (en) Chemical decontamination method and its device
JP2008036591A (en) Method and apparatus for decomposing organic acid in waste liquid
JP2014232016A (en) Dibutyl phosphate decomposition device, and glass solidification device of radioactive effluent
JP2005326361A (en) Treating method and treating device of anticorrosive
Taylor Destruction of ion-exchange resin in waste from the HFIR, T1, and T2 tanks using Fenton’s reagent
TWI825540B (en) Chemical decontamination methods and chemical decontamination devices
KR20140064383A (en) Non-biodegradable materials removing installation and non-biodegradable materials removing method using the same
KR20110117924A (en) Decontamination method of radioactive contaminant-deposited metal using micro bubble, and an apparatus of such a decontamination therefor
JP2009162687A (en) Method for removing radioactive contaminant
CN108780669A (en) The method of waste water for handling the purification from metal surface, the purposes of wastewater treatment equipment and wastewater treatment equipment
JP5591454B2 (en) Reactor water radioactivity reduction method and nuclear power plant
JPH01102396A (en) Direct cycle type nuclear power plant, its operation and fuel rod
JP2000514565A (en) Surface treatment of steel or nickel alloy and treated steel or nickel alloy
JP2006162277A (en) Processing method for chemical decontamination liquid and its system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

LAPS Cancellation because of no payment of annual fees