JP2007297458A - Method for decomposing crosslinked organic polymer - Google Patents

Method for decomposing crosslinked organic polymer Download PDF

Info

Publication number
JP2007297458A
JP2007297458A JP2006125100A JP2006125100A JP2007297458A JP 2007297458 A JP2007297458 A JP 2007297458A JP 2006125100 A JP2006125100 A JP 2006125100A JP 2006125100 A JP2006125100 A JP 2006125100A JP 2007297458 A JP2007297458 A JP 2007297458A
Authority
JP
Japan
Prior art keywords
organic polymer
crosslinked organic
crosslinked
strongly acidic
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125100A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshida
弘之 吉田
Hiroaki Takayanagi
弘昭 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Mitsubishi Chemical Corp
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Osaka University NUC, Osaka Prefecture University PUC filed Critical Mitsubishi Chemical Corp
Priority to JP2006125100A priority Critical patent/JP2007297458A/en
Publication of JP2007297458A publication Critical patent/JP2007297458A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decomposing a crosslinked organic polymer having a strongly acidic group by decomposing the polymer under a mild decomposition condition while reducing energy consumption and recovering the isolated component constituting the functional group to enable the reuse of the component together with the crosslinked organic polymer used as the substrate. <P>SOLUTION: A crosslinked organic polymer having a strongly acidic group is brought into contact with an aqueous medium at 200-370°C and/or under ≥0.1 MPa and <22 MPa pressure to convert the strongly acidic group to a free low-molecule and the molecule is separated from the crosslinked organic polymer to complete the decomposition of the polymer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、強酸性基を有する架橋有機高分子の分解方法に関する。詳しくは、強酸性基を有する架橋有機高分子を、臨界温度よりも低い温度、臨界圧力よりも低い圧力下で、水媒と接触させることにより、前記強酸性基を遊離低分子化し、前記架橋有機高分子よりこれを分離させることを特徴とする架橋有機高分子の分解方法に関する。   The present invention relates to a method for decomposing a crosslinked organic polymer having a strongly acidic group. Specifically, the cross-linked organic polymer having a strongly acidic group is brought into contact with an aqueous medium at a temperature lower than the critical temperature and a pressure lower than the critical pressure, thereby reducing the strongly acidic group to a low molecular weight, and The present invention relates to a method for decomposing a crosslinked organic polymer, characterized by separating the organic polymer from an organic polymer.

強酸性基を持つ架橋有機高分子は、強酸性陽イオン交換体として幅広い用途に使用されているが、化学的に安定であり、その効率的な分解方法或いは物質再利用の方法が確立されていない。このような強酸性基を持つ架橋有機高分子の使用後の処置方法としては、固化法、焼却法、埋立法等が知られているが、このうち、固化法や埋立法は物質の循環再利用の点で望ましくなく、焼却法では多量の熱エネルギーを消費する上に窒素酸化物や環境汚染化合物の発生の懸念がある。   Cross-linked organic polymers having strongly acidic groups are used in a wide range of applications as strongly acidic cation exchangers, but they are chemically stable, and an efficient decomposition method or material recycling method has been established. Absent. Solidification methods, incineration methods, landfill methods, etc. are known as treatment methods after use of such crosslinked organic polymers having strongly acidic groups. Among these, solidification methods and landfill methods are used for recycling of substances. In terms of utilization, the incineration method consumes a large amount of heat energy, and there are concerns about the generation of nitrogen oxides and environmental pollutants.

また、臨界点以上の温度圧力下の水中で酸化剤により処理して分解する方法(特公平1−38532号公報)や、非酸化雰囲気の超臨界水中で処理してオイル状物を生成させる方法(特開平11−49889号公報)も提案されているが、特殊な耐圧性反応器や加温加圧のために大量のエネルギーを必要とする、或いは、強酸性基を予め鉱酸で処理して再生し、遊離する硫酸を含む酸性処理液を単離中和するために別途薬剤が必要となるなど、省資源、省エネルギーの観点から満足なものではなかった。
特公平1−38532号公報 特開平11−49889号公報
In addition, a method of decomposing by treating with an oxidizing agent in water at a temperature or pressure higher than the critical point (Japanese Patent Publication No. 1-38532), or a method of producing an oily product by treating in supercritical water in a non-oxidizing atmosphere. (Japanese Patent Laid-Open No. 11-49889) has also been proposed, but it requires a large amount of energy for a special pressure-resistant reactor or heating and pressurizing, or a strongly acidic group is previously treated with a mineral acid. Therefore, a separate chemical is required to isolate and neutralize the acidic treatment solution containing sulfuric acid that is regenerated and liberated, which is not satisfactory from the viewpoint of resource saving and energy saving.
Japanese Patent Publication No. 1-38532 JP 11-49889 A

以上のように、強酸性基を持つ架橋有機高分子の物質再利用は、既知の方法では実現が難しいという問題があった。   As described above, there is a problem that the material reuse of the crosslinked organic polymer having a strongly acidic group is difficult to realize by a known method.

本発明はかかる問題を解決すべくなされたもので、その目的は、エネルギー消費を低減しつつ、該架橋有機高分子を緩和された条件下で分解して官能基構成成分を分解遊離させ、基体の架橋有機高分子とともにその再利用を可能とする架橋有機高分子の分解方法を提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to decompose the crosslinked organic polymer under a relaxed condition to reduce the energy consumption and to decompose and release the functional group constituent component, thereby reducing the energy consumption. Another object of the present invention is to provide a method for decomposing a crosslinked organic polymer that can be reused together with the crosslinked organic polymer.

本発明者らは、鋭意検討の結果、強酸性基を有する架橋有機高分子について、臨界温度よりも低い温度、臨界圧力よりも低い圧力下で水媒と接触させることにより、前記強酸性基を効率よく遊離低分子化させ、該低分子化合物を水媒側に放出させることによって前記架橋有機高分子より分離回収することが出来ることを見出した。
本発明はこのような知見に基いてなされたものであり、以下を要旨とする。
As a result of intensive studies, the inventors of the present invention have made the strongly acidic group by bringing the crosslinked organic polymer having a strongly acidic group into contact with an aqueous medium at a temperature lower than the critical temperature and a pressure lower than the critical pressure. It has been found that separation and recovery from the crosslinked organic polymer can be achieved by efficiently reducing the free molecular weight and releasing the low molecular weight compound to the aqueous medium side.
This invention is made | formed based on such knowledge, and makes the following a summary.

(1) 強酸性基を有する架橋有機高分子を、200℃以上370℃以下、及び/又は0.1MPa以上22MPa未満の雰囲気下で、水媒と接触させることにより、前記強酸性基を遊離低分子化し、前記架橋有機高分子よりこれを分離させることを特徴とする架橋有機高分子の分解方法。
(2) 強酸性基がスルホン酸基である(1)に記載の架橋有機高分子の分解方法。
(3) スルホン酸基の一部または全部がアルカリ金属塩形および/またはアルカリ土類金属塩形である(2)に記載の架橋有機高分子の分解方法。
(4) 架橋有機高分子が架橋ポリスチレン骨格を有する(1)〜(3)の何れかに記載の架橋有機高分子の分解方法。
(5) 架橋ポリスチレン骨格が、ジビニルベンゼンで架橋されたポリスチレンであり、架橋ポリスチレンにおけるジビニルベンゼンの配合量が3重量%以上16重量%以下である(4)に記載の架橋有機高分子の分解方法。
(1) A crosslinked organic polymer having a strongly acidic group is brought into contact with a water medium in an atmosphere of 200 ° C. or more and 370 ° C. or less and / or 0.1 MPa or more and less than 22 MPa to release the strongly acidic group. A method for decomposing a crosslinked organic polymer, characterized by molecularization and separation from the crosslinked organic polymer.
(2) The method for decomposing a crosslinked organic polymer according to (1), wherein the strongly acidic group is a sulfonic acid group.
(3) The method for decomposing a crosslinked organic polymer according to (2), wherein a part or all of the sulfonic acid groups are in an alkali metal salt form and / or an alkaline earth metal salt form.
(4) The method for decomposing a crosslinked organic polymer according to any one of (1) to (3), wherein the crosslinked organic polymer has a crosslinked polystyrene skeleton.
(5) The method for decomposing a crosslinked organic polymer according to (4), wherein the crosslinked polystyrene skeleton is polystyrene crosslinked with divinylbenzene, and the blending amount of divinylbenzene in the crosslinked polystyrene is 3 wt% or more and 16 wt% or less. .

本発明によれば、超臨界水のような高エネルギー処理を経ることなく、強酸性基を持つ架橋有機高分子を効率的に分解することができる。これにより、強酸性基から水媒側へ遊離低分子化された硫黄化合物等の強酸性基由来の化合物は、pHを調節することにより無害化・資化可能であると共に、強酸性基部分が除去された架橋有機高分子骨格は回収、又はさらに分解して、燃料或いは各種合成原料用モノマー等として再利用することが可能となる。   According to the present invention, a crosslinked organic polymer having a strongly acidic group can be efficiently decomposed without undergoing high energy treatment such as supercritical water. As a result, a compound derived from a strongly acidic group such as a sulfur compound that has been reduced in molecular weight from the strongly acidic group to the aqueous medium side can be rendered harmless and assimilated by adjusting the pH, and the strongly acidic group portion is The removed crosslinked organic polymer skeleton can be recovered or further decomposed and reused as a fuel or a monomer for various synthetic raw materials.

以下、本発明の架橋有機高分子の分解方法の実施の形態を詳細に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
なお、以下において、「(メタ)アクリル」とは「アクリル」と「メタクリル」の両方をさす。
Hereinafter, embodiments of the method for decomposing a crosslinked organic polymer of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications may be made within the scope of the gist thereof. Can be implemented.
In the following, “(meth) acryl” refers to both “acryl” and “methacryl”.

[1]架橋有機高分子
本発明にかかる架橋有機高分子は、強酸性基を有することを必須とする。以下、本発明にかかる架橋有機高分子について説明する。
[1] Crosslinked organic polymer It is essential that the crosslinked organic polymer according to the present invention has a strongly acidic group. Hereinafter, the crosslinked organic polymer according to the present invention will be described.

[1−1]架橋有機高分子
本発明にかかる架橋有機高分子は、粒状または適宜裁断または粉砕された任意の形状の固体であり、その基体の化学構造としては、種々のものが適用可能である。
[1-1] Cross-linked organic polymer The cross-linked organic polymer according to the present invention is a solid or a solid having an arbitrary shape that is granulated or appropriately cut or pulverized, and various chemical structures of the substrate are applicable. is there.

基体架橋有機高分子の化学構造としては、例えば架橋ポリスチレンやポリ(メタ)アクリル酸、架橋ポリ(メタ)アクリル酸エステルなどの合成高分子や、セルロースなど天然に生産される多糖類の架橋体などが挙げられる。これらの中では、合成高分子が好ましく、架橋ポリスチレンが更に好ましい。   Examples of the chemical structure of the substrate-crosslinked organic polymer include synthetic polymers such as crosslinked polystyrene, poly (meth) acrylic acid, and crosslinked poly (meth) acrylate, and crosslinked polysaccharides produced in nature such as cellulose. Is mentioned. Among these, synthetic polymers are preferable, and crosslinked polystyrene is more preferable.

架橋ポリスチレンとしては、ジビニルベンゼンで架橋されたポリスチレンが好ましい。ジビニルベンゼンで架橋されたポリスチレンのジビニルベンゼンの配合量は、ポリスチレンに対して通常3重量%以上、通常16重量%以下、好ましくは14重量%以下である。   As the cross-linked polystyrene, polystyrene cross-linked with divinylbenzene is preferable. The blending amount of polystyrene divinylbenzene crosslinked with divinylbenzene is usually 3% by weight or more, usually 16% by weight or less, and preferably 14% by weight or less based on polystyrene.

本発明にかかる架橋有機高分子は、粒状、繊維状、膜状等、その形状や形態、大きさに特に制限はないが、例えば吸着材料、並びにイオン交換体およびキレート剤などの加工用中間材料として利用される粒状の樹脂が挙げられ、その大きさは粒子径が通常5mm以下、好ましくは1mm以下であり、通常0.1mm以上、好ましくは0.2mm以上である。   The cross-linked organic polymer according to the present invention is not particularly limited in shape, form, size, etc., such as granular, fibrous, membrane, etc., but, for example, adsorbing materials, and intermediate materials for processing such as ion exchangers and chelating agents The particle size is usually 5 mm or less, preferably 1 mm or less, and usually 0.1 mm or more, preferably 0.2 mm or more.

[1−2]強酸性基
本発明にかかる架橋有機高分子が有する強酸性基とは、塩酸、硫酸などの鉱酸と同様に解離して強酸性を示す交換基をいい、例えばスルホン酸基、硫酸エステル基、亜硫酸エステル基等が挙げられる。中でも実用性の観点よりスルホン酸基が好ましい。
[1-2] Strongly acidic group The strongly acidic group of the crosslinked organic polymer according to the present invention refers to an exchange group that is dissociated and exhibits strong acidity like mineral acids such as hydrochloric acid and sulfuric acid. , Sulfate ester group, sulfite ester group and the like. Of these, sulfonic acid groups are preferred from the viewpoint of practicality.

架橋有機高分子が有する強酸性基の量には特に制限はないが、通常基体の架橋有機高分子に対する強酸性基の重量割合で1ミリ当量以上、好ましくは2ミリ当量以上で、10ミリ当量以下、好ましくは7ミリ当量以下である。   The amount of the strongly acidic group possessed by the crosslinked organic polymer is not particularly limited, but is usually 1 milliequivalent or more, preferably 2 milliequivalent or more and 10 milliequivalent by weight ratio of the strongly acidic group to the crosslinked organic polymer of the substrate. Hereinafter, it is preferably 7 meq or less.

また、これらの強酸性基は水素形であってもよいが、一部、または全部がアルカリ金属イオン形および/またはアルカリ土類金属イオン形となっていてもよく、鉱酸による再生処理が不要である点より、一部、または全部がナトリウムイオン形或いはカルシウムイオン形となっているものが更に好ましい。   These strongly acidic groups may be in the hydrogen form, but part or all of them may be in the form of alkali metal ions and / or alkaline earth metal ions, and no regeneration treatment with mineral acid is required. In view of the above, it is more preferable that a part or the whole is in the form of sodium ion or calcium ion.

強酸性基の一部がアルカリ金属イオン形やアルカリ土類金属イオン形となっている場合、架橋有機高分子中の全強酸性基のうちの50モル%以上がアルカリ金属イオン形やアルカリ土類金属イオン形となっていることが好ましい。この割合が低過ぎると、十分な分解効果を得ることができない。   When some strongly acidic groups are in the form of alkali metal ions or alkaline earth metal ions, 50 mol% or more of all strongly acidic groups in the crosslinked organic polymer are in alkali metal ion form or alkaline earth form. The metal ion form is preferred. If this ratio is too low, a sufficient decomposition effect cannot be obtained.

[1−3]架橋有機高分子の分解の態様
本発明の架橋有機高分子の分解方法の実施により、架橋有機高分子中の強酸性基が遊離低分子され、架橋有機高分子から分離される。これにより、含硫黄官能基を含む強酸性基が除去され、基体の架橋有機高分子の物質循環やエネルギー源としての再利用が可能となる。
[1-3] Mode of Decomposition of Crosslinked Organic Polymer By carrying out the method for decomposing a crosslinked organic polymer of the present invention, strongly acidic groups in the crosslinked organic polymer are released to low molecular weight and separated from the crosslinked organic polymer. . As a result, the strongly acidic group including the sulfur-containing functional group is removed, and the cross-linked organic polymer of the substrate can be reused as a material circulation or energy source.

なお、本発明において、「分解」とは、置換基のみならず、架橋有機高分子の基体としての主骨格までも熱分解する場合があることを意味する。   In the present invention, “decomposition” means that not only the substituent but also the main skeleton as a substrate of the crosslinked organic polymer may be thermally decomposed.

[2]架橋有機高分子の分解方法
本発明では、架橋有機高分子を、臨界温度よりも低い温度、臨界圧力よりも低い圧力下で水媒と接触させることを必須とする。ここで、本発明における臨界温度とは、気−液平衡で気体と液体の区別がなくなる点をいい、例えば純水の臨界温度は374℃である。尚、臨界圧力は純水の場合、22MPa(220気圧)である。
[2] Method for Decomposing Crosslinked Organic Polymer In the present invention, it is essential to bring the crosslinked organic polymer into contact with a water medium at a temperature lower than the critical temperature and a pressure lower than the critical pressure. Here, the critical temperature in the present invention refers to a point where there is no distinction between gas and liquid in gas-liquid equilibrium. For example, the critical temperature of pure water is 374 ° C. In the case of pure water, the critical pressure is 22 MPa (220 atm).

本発明の架橋有機高分子の分解は、かかる臨界温度より低い雰囲気下で行われるが、その雰囲気温度は200℃以上、好ましくは230℃以上、更に好ましくは250℃以上であり、370℃以下である。雰囲気温度が高すぎると消費エネルギー過多であり、装置の耐久性を低下させる。雰囲気温度が低すぎると反応時間が長くなるか、十分な反応が行われない。   The decomposition of the crosslinked organic polymer of the present invention is performed under an atmosphere lower than the critical temperature, and the atmospheric temperature is 200 ° C. or higher, preferably 230 ° C. or higher, more preferably 250 ° C. or higher, and 370 ° C. or lower. is there. If the ambient temperature is too high, too much energy is consumed and the durability of the apparatus is lowered. If the ambient temperature is too low, the reaction time becomes long or sufficient reaction is not performed.

また、上記臨界温度で実施する場合の雰囲気圧力は、0.1MPa以上、好ましくは1MPa以上、更に好ましくは5MPa以上であり、22MPa未満、好ましくは21MPa以下、更に好ましくは20MPa以下である。雰囲気圧力が高すぎると消費エネルギー過多であり、装置の耐久性を低下させる。雰囲気圧力が低すぎると反応時間が長くなるか、十分な反応が行われない。   Moreover, the atmospheric pressure in the case of implementing at the said critical temperature is 0.1 Mpa or more, Preferably it is 1 Mpa or more, More preferably, it is 5 Mpa or more, Less than 22 Mpa, Preferably it is 21 Mpa or less, More preferably, it is 20 Mpa or less. If the atmospheric pressure is too high, too much energy is consumed and the durability of the apparatus is lowered. If the atmospheric pressure is too low, the reaction time becomes long or sufficient reaction is not performed.

また、上記雰囲気中には水蒸気のほか、窒素等の安定な気体基体物質が存在しても良いが、必須ではない。   In addition to water vapor, a stable gas substrate material such as nitrogen may be present in the atmosphere, but this is not essential.

強酸性基を有する架橋有機高分子を水媒と接触させる方法としては、通常、架橋有機高分子を上記雰囲気中で水媒中に浸漬する方法等が挙げられ、具体的には[2−3]に記載の方法が挙げられる。   As a method of bringing the crosslinked organic polymer having a strongly acidic group into contact with the aqueous medium, there is usually mentioned a method of immersing the crosslinked organic polymer in the aqueous medium in the above atmosphere. Specifically, [2-3 The method of description is mentioned.

また、分解は短時間で進行するが、所望の分解率(強酸性基の分解除去率)に相当する処理時間を設定することで、分解結果を制御することができる。処理時間としては通常3分以上、好ましくは5分以上であり、通常300分以下、好ましくは120分以下である。処理時間は対象となる架橋有機高分子の分解性・化学性状に応じて適宜設定される。   Although the decomposition proceeds in a short time, the decomposition result can be controlled by setting a treatment time corresponding to a desired decomposition rate (decomposition and removal rate of strong acidic group). The treatment time is usually 3 minutes or longer, preferably 5 minutes or longer, usually 300 minutes or shorter, preferably 120 minutes or shorter. The treatment time is appropriately set according to the decomposability and chemical properties of the target crosslinked organic polymer.

[2−2]分解処理用水媒
本発明の分解方法に使用される水媒としては、純水または塩類水溶液が用いられる。
[2-2] Water medium for decomposition treatment As an aqueous medium used in the decomposition method of the present invention, pure water or an aqueous salt solution is used.

また、水媒として塩類水溶液を用いる場合、その塩類としては、塩化ナトリウム、塩化カリウム、塩化カルシウム等が挙げられる。   Moreover, when using salt aqueous solution as a water medium, sodium chloride, potassium chloride, calcium chloride etc. are mentioned as the salts.

また、本発明の分解方法に使用される水媒は、固体である強酸性基を有する架橋有機高分子の内部の水分子の物質移動を促進することを目的として、界面活性剤などの両親媒性物質を含むものであってもよい。その際の両親媒性物質の含有量は通常0重量%以上、通常1重量%以下である。   Further, the aqueous medium used in the decomposition method of the present invention is an amphiphile such as a surfactant for the purpose of promoting mass transfer of water molecules inside the crosslinked organic polymer having a strongly acidic group that is a solid. It may contain a sexual substance. In this case, the content of the amphiphilic substance is usually 0% by weight or more and usually 1% by weight or less.

本発明の分解方法に使用される水媒の使用量は、強酸性基を有する架橋有機高分子の重量に対して通常50重量%以上、好ましくは100重量%以上であり、通常1000重量%以下、好ましくは500重量%以下である。水媒の使用量が少なすぎると反応未完結となる場合があり、多すぎると水媒量やエネルギー利用効率が下がり、不経済である。   The amount of the aqueous medium used in the decomposition method of the present invention is usually 50% by weight or more, preferably 100% by weight or more, and usually 1000% by weight or less, based on the weight of the crosslinked organic polymer having a strongly acidic group. It is preferably 500% by weight or less. If the amount of the aqueous medium used is too small, the reaction may be incomplete. If the amount is too large, the amount of the aqueous medium and the energy utilization efficiency are lowered, which is uneconomical.

[2−3]分解方法の態様
本発明にかかる分解処理は回分法或いは流通法のいずれの方式でも可能であり、既知の装置をそのまま或いは組み合わせて使用することができる。すなわち、密閉式の耐圧容器中に、規定量の強酸性基を有する架橋有機高分子と水媒を入れ、所定温度に加温後所定の圧力で保持して処理を完了する、或いは、強酸性基を有する架橋有機高分子物を充填した筒状反応管の一方よりポンプ等で水媒を送入させ、他方より分解後の混合物を排出させる、などの方法が採用される。
[2-3] Aspect of decomposition method The decomposition treatment according to the present invention can be performed by either a batch method or a distribution method, and a known apparatus can be used as it is or in combination. That is, in a sealed pressure vessel, a predetermined amount of a crosslinked organic polymer having a strongly acidic group and a water medium are placed, heated to a predetermined temperature and then held at a predetermined pressure to complete the treatment, or strongly acidic A method is adopted in which the aqueous medium is fed in by a pump or the like from one of the cylindrical reaction tubes filled with the cross-linked organic polymer having a group, and the decomposed mixture is discharged from the other.

[3]分解後の処理
本発明による架橋有機高分子の分解により、架橋有機高分子の強酸性基部分は遊離低分子化されて水媒中に溶解する。
この処理済の水媒は生物分解等の公知の方法により資化ないし無害化される。
一方、分解により強酸性基部分が分離された架橋有機高分子は、強酸性基部分が除去されることによりその化学組成が単純化され、必要に応じて更に分解して燃料源としての活用或いは各種合成原料のモノマーとして再利用が可能となる。
[3] Treatment after decomposition Due to the decomposition of the crosslinked organic polymer according to the present invention, the strongly acidic group portion of the crosslinked organic polymer is free-degraded and dissolved in the aqueous medium.
This treated aqueous medium is assimilated or detoxified by a known method such as biodegradation.
On the other hand, the cross-linked organic polymer from which the strongly acidic group portion has been separated by decomposition has a simplified chemical composition by removing the strong acid group portion, and can be further decomposed as necessary for use as a fuel source or It can be reused as a monomer for various synthetic raw materials.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
内径8mm、長さ150mmのステンレス管に、強酸性基を有する架橋有機高分子である、市販の強酸性陽イオン交換樹脂「ダイヤイオンUBK555(カルシウム形);ポリスチレンに対するジビニルベンゼンの含有量8重量%のスチレン−ジビニルベンゼン架橋共重合体を基体とし、この樹脂1gあたり2.3ミリ当量のスルホン酸基を有し、その100%がカルシウム塩形とされているもの。)」(三菱化学(株)製)0.4gと純水2.5gを加えて両端を密栓し、330℃、12.9MPaで30分間保持した。
Example 1
A commercially available strong acid cation exchange resin “Diaion UBK555 (calcium form), which is a crosslinked organic polymer having a strong acidic group, in a stainless steel tube having an inner diameter of 8 mm and a length of 150 mm; content of divinylbenzene relative to polystyrene is 8% by weight. Styrene-divinylbenzene cross-linked copolymer, having 2.3 milliequivalent sulfonic acid groups per gram of the resin, 100% of which is in the calcium salt form. ”(Mitsubishi Chemical Corporation )) 0.4 g and 2.5 g of pure water were added, both ends were sealed, and held at 330 ° C. and 12.9 MPa for 30 minutes.

冷却後、固層を回収して元素分析したところ硫黄含有率は4重量%であり、処理前のイオン交換樹脂の硫黄含有率14重量%に対して大幅に低減されており、スルホン酸基がイオン交換樹脂の樹脂基体から遊離除去されたことが確認された。   After cooling, the solid layer was collected and subjected to elemental analysis. As a result, the sulfur content was 4% by weight, which was greatly reduced with respect to the sulfur content of 14% by weight of the ion-exchange resin before treatment. It was confirmed that the ion exchange resin was liberated and removed from the resin substrate.

Claims (5)

強酸性基を有する架橋有機高分子を、200℃以上370℃以下、及び/又は0.1MPa以上22MPa未満の雰囲気下で、水媒と接触させることにより、前記強酸性基を遊離低分子化し、前記架橋有機高分子よりこれを分離させることを特徴とする架橋有機高分子の分解方法。   By bringing the crosslinked organic polymer having a strongly acidic group into contact with a water medium under an atmosphere of 200 ° C. or more and 370 ° C. or less and / or 0.1 MPa or more and less than 22 MPa, the strongly acidic group is freed and reduced in molecular weight, A method for decomposing a crosslinked organic polymer, comprising separating the crosslinked organic polymer from the crosslinked organic polymer. 強酸性基がスルホン酸基である請求項1に記載の架橋有機高分子の分解方法。   The method for decomposing a crosslinked organic polymer according to claim 1, wherein the strongly acidic group is a sulfonic acid group. スルホン酸基の一部または全部がアルカリ金属塩形および/またはアルカリ土類金属塩形である請求項2に記載の架橋有機高分子の分解方法。   The method for decomposing a crosslinked organic polymer according to claim 2, wherein a part or all of the sulfonic acid groups are in an alkali metal salt form and / or an alkaline earth metal salt form. 架橋有機高分子が架橋ポリスチレン骨格を有する請求項1乃至3の何れか1項に記載の架橋有機高分子の分解方法。   The method for decomposing a crosslinked organic polymer according to any one of claims 1 to 3, wherein the crosslinked organic polymer has a crosslinked polystyrene skeleton. 架橋ポリスチレン骨格が、ジビニルベンゼンで架橋されたポリスチレンであり、架橋ポリスチレンにおけるジビニルベンゼンの配合量が3重量%以上16重量%以下である請求項4に記載の架橋有機高分子の分解方法。   The method for decomposing a crosslinked organic polymer according to claim 4, wherein the crosslinked polystyrene skeleton is polystyrene crosslinked with divinylbenzene, and the blending amount of divinylbenzene in the crosslinked polystyrene is 3 wt% or more and 16 wt% or less.
JP2006125100A 2006-04-28 2006-04-28 Method for decomposing crosslinked organic polymer Pending JP2007297458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125100A JP2007297458A (en) 2006-04-28 2006-04-28 Method for decomposing crosslinked organic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125100A JP2007297458A (en) 2006-04-28 2006-04-28 Method for decomposing crosslinked organic polymer

Publications (1)

Publication Number Publication Date
JP2007297458A true JP2007297458A (en) 2007-11-15

Family

ID=38767230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125100A Pending JP2007297458A (en) 2006-04-28 2006-04-28 Method for decomposing crosslinked organic polymer

Country Status (1)

Country Link
JP (1) JP2007297458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297456A (en) * 2006-04-28 2007-11-15 Osaka Prefecture Univ Modification method of crosslinked organic polymer
JP2010261869A (en) * 2009-05-08 2010-11-18 Toshiba Corp Method for processing ion exchange resin and processing apparatus of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149889A (en) * 1997-08-07 1999-02-23 Tokyo Electric Power Co Inc:The Treatment of waste ion-exchange resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149889A (en) * 1997-08-07 1999-02-23 Tokyo Electric Power Co Inc:The Treatment of waste ion-exchange resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297456A (en) * 2006-04-28 2007-11-15 Osaka Prefecture Univ Modification method of crosslinked organic polymer
JP2010261869A (en) * 2009-05-08 2010-11-18 Toshiba Corp Method for processing ion exchange resin and processing apparatus of the same

Similar Documents

Publication Publication Date Title
US8758484B2 (en) Removal of carbon dioxide from flue gas with ammonia comprising medium
EP3153224A1 (en) Process and device for desulphurization and denitration of flue gas
JP2007297458A (en) Method for decomposing crosslinked organic polymer
EP2825660B1 (en) Enzyme enhanced production of bicarbonate compounds using carbon dioxide
JP4696287B2 (en) Method for degrading crosslinked organic polymers
JP4931043B2 (en) Modification method of cross-linked organic polymer
JP4931044B2 (en) Modification method of cross-linked organic polymer
JP2012200654A (en) Method and apparatus for removing ammonia in liquid
JPH1149889A (en) Treatment of waste ion-exchange resin
JP2006247580A (en) Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid
CN114477558A (en) Ammonia-removing treatment method for ammonia nitrogen wastewater
JP4239006B2 (en) Nitric acid waste liquid treatment method
JP6132203B2 (en) Method and apparatus for treating highly humid waste
JP2010195978A (en) Method for modifying crosslinked polymer
JP2004195400A (en) Method for producing mixed salt from waste in gasification modification process
JPH0521610B2 (en)
US11827544B2 (en) Catalyst-free method for degrading dioxane in alkyl ether sulfate vacuum removal water
CN113213673B (en) Method for treating heptenone tar wastewater
JP2002035159A (en) Method for treating oil contaminated with organic halogen compound and apparatus for treating it
CN116459810B (en) Underwater microplastic treatment method based on Ru-based difunctional aerogel
RU2306261C1 (en) Process of local extractive purification of phenol-polluted spent solutions
TWI602784B (en) A regeneration method for high-hardness wastewater containing heavy metal
RU2538843C2 (en) Using solid waste-quicklime membrane treatment process to produce sodium hydroxide
JP2007160271A (en) Regeneration method of boron adsorbent
JPH0483586A (en) Treatment of waste water of wet exhaust gas desulfurization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208