JP5556947B2 - Tempered glass and method for producing the same - Google Patents

Tempered glass and method for producing the same Download PDF

Info

Publication number
JP5556947B2
JP5556947B2 JP2013218020A JP2013218020A JP5556947B2 JP 5556947 B2 JP5556947 B2 JP 5556947B2 JP 2013218020 A JP2013218020 A JP 2013218020A JP 2013218020 A JP2013218020 A JP 2013218020A JP 5556947 B2 JP5556947 B2 JP 5556947B2
Authority
JP
Japan
Prior art keywords
glass
tempered glass
compressive stress
sro
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013218020A
Other languages
Japanese (ja)
Other versions
JP2014062041A (en
Inventor
隆 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2013218020A priority Critical patent/JP5556947B2/en
Publication of JP2014062041A publication Critical patent/JP2014062041A/en
Application granted granted Critical
Publication of JP5556947B2 publication Critical patent/JP5556947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Description

本発明は、強化ガラスおよびその製造方法に関し、特に薄膜化合物太陽電池の基板(基材、カバーガラスの双方を含む)に好適な強化ガラスおよびその製造方法に関する。 The present invention relates to a tempered glass and a method for producing the same, and more particularly to a tempered glass suitable for a substrate (including both a base material and a cover glass) of a thin film compound solar cell and a method for producing the same.

薄膜化合物太陽電池は、ガラス基板(基材)上に電極層、光電変換層、バッファ層等を積層した太陽電池セルを有しており、太陽電池セルは、ガラス基板(カバーガラス)で保護されている。近年、薄膜化合物太陽電池は、光電変換効率が徐々に向上しているが、単結晶、多結晶シリコン太陽電池の光電変換効率に未だ及んでいないのが実情である。   A thin film compound solar cell has a solar cell in which an electrode layer, a photoelectric conversion layer, a buffer layer, and the like are stacked on a glass substrate (base material), and the solar cell is protected by a glass substrate (cover glass). ing. In recent years, thin film compound solar cells have gradually improved photoelectric conversion efficiency, but the actual situation is that they have not yet reached the photoelectric conversion efficiency of single crystal and polycrystalline silicon solar cells.

薄膜化合物太陽電池として、Cu(In1−x,Ga)Se等のCIS系材料を使用したCIS系太陽電池が有望であり、CIS系太陽電池は、理論的な光電変換効率が単結晶シリコン太陽電池よりも高いことが知られている。また、CIS系太陽電池は、光電変換層の厚さを数μmにすることができるため、部材コストおよび製造コストを低廉化することができる。 As a thin-film compound solar cell, a CIS solar cell using a CIS-based material such as Cu (In 1-x , Ga x ) Se 2 is promising, and the CIS solar cell has a single crystal theoretical photoelectric conversion efficiency. It is known to be higher than silicon solar cells. Moreover, since the thickness of a photoelectric converting layer can be several micrometers in a CIS type solar cell, member cost and manufacturing cost can be reduced.

ところで、500〜550℃の熱処理により、ガラス基板上にCIS系薄膜を製膜すれば、CIS系太陽電池の光電変換効率を高めることができる。   By the way, if a CIS thin film is formed on a glass substrate by heat treatment at 500 to 550 ° C., the photoelectric conversion efficiency of the CIS solar cell can be increased.

一般的に、CIS系太陽電池用ガラス基板には、高い機械的強度が要求される。ガラス基板を強化処理すると、ガラス基板の機械的強度を高めることができる。   Generally, high mechanical strength is required for a glass substrate for a CIS solar cell. When the glass substrate is strengthened, the mechanical strength of the glass substrate can be increased.

しかし、高温で強化ガラスを熱処理すると、圧縮応力が消失し、熱処理前の機械的強度を維持できなくなる。圧縮応力の消失を防止するためには、強化ガラスの耐熱性を向上させる必要があるが、強化ガラスの耐熱性を向上させると、高温粘度が上昇しやすくなり、溶融性が低下しやすくなる。具体的には、ガラスを化学強化するためには、ガラス組成中にアルカリ金属酸化物を導入する必要があるが、アルカリ金属酸化物を導入すると、耐熱性が低下しやすくなる。一方、アルカリ金属酸化物の含有量を低下させると、耐熱性は向上するが、イオン交換性能が低下することに加えて、溶融性が低下しやすくなる。   However, when the tempered glass is heat-treated at a high temperature, the compressive stress disappears and the mechanical strength before the heat treatment cannot be maintained. In order to prevent the disappearance of the compressive stress, it is necessary to improve the heat resistance of the tempered glass. However, when the heat resistance of the tempered glass is improved, the high temperature viscosity tends to increase and the meltability tends to decrease. Specifically, in order to chemically strengthen the glass, it is necessary to introduce an alkali metal oxide into the glass composition. However, when an alkali metal oxide is introduced, the heat resistance tends to be lowered. On the other hand, when the content of the alkali metal oxide is decreased, the heat resistance is improved, but in addition to the decrease in ion exchange performance, the meltability is easily decreased.

そこで、本発明は、高温、例えば500〜550℃で熱処理しても、高い機械的強度を維持することができ、且つ溶融性に優れた強化ガラスを得ることを技術的課題とする。   Then, even if it heat-processes at high temperature, for example, 500-550 degreeC, this invention makes it a technical subject to obtain the tempered glass which can maintain high mechanical strength and was excellent in a meltability.

本発明者は、種々の検討を行った結果、強化ガラスのガラス組成範囲を下記のように規制すれば、高温で熱処理しても、高い機械的強度を維持することができ、且つ溶融性を向上できることを見出し、本発明として、提案するものである。すなわち、本発明の強化ガラスは、圧縮応力層を有する強化ガラスにおいて、ガラス組成として、モル%で、SiO 50〜80%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbOおよびFを含有せず、モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.05〜2であると共に、基板形状であり、その板厚が1.0mm以下であることを特徴とする。 As a result of various studies, the inventor has been able to maintain high mechanical strength even when heat-treated at a high temperature and regulate the meltability by regulating the glass composition range of tempered glass as follows. It has been found that it can be improved, and is proposed as the present invention. That is, the tempered glass of the present invention is a tempered glass having a compressive stress layer, and has a glass composition of mol%, SiO 2 50-80%, Al 2 O 3 7-16%, B 2 O 3 0-5%. , Li 2 O 0~1%, Na 2 O 7.6~20%, K 2 O 3~15%, MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, substantially free of as 2 O 3, Sb 2 O 3 , PbO and F are not contained, the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is 0.05 to 2 , and the substrate shape is 1 mm. 0.0 mm or less.

本発明の強化ガラスは、ガラス組成中のSiO、Al、B、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を所定範囲に規制している。このようにすれば、イオン交換性能、耐熱性、溶融性を高いレベルで両立することができる。 The tempered glass of the present invention regulates the content of SiO 2 , Al 2 O 3 , B 2 O 3 , alkali metal oxide, and alkaline earth metal oxide in the glass composition within a predetermined range. If it does in this way, ion exchange performance, heat resistance, and meltability can be made compatible at a high level.

本発明の強化ガラスは、ガラス組成において、モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値を0.05〜2に規制している。このようにすれば、各種特性の低下を防止した上で、歪点を高めることができる。 The tempered glass of the present invention regulates the value of the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) to 0.05 to 2 in the glass composition. In this way, it is possible to increase the strain point while preventing the deterioration of various characteristics.

本発明の強化ガラスは、ガラス組成中に実質的にAs、Sb、PbOおよびFを含有しない。このようにすれば、近年の環境的要請を満たすことができる。ここで、「実質的にAsを含有しない」とは、ガラス組成中のAsの含有量が0.1質量%以下の場合を指す。「実質的にSbを含有しない」とは、ガラス組成中のSbの含有量が0.1質量%以下の場合を指す。「実質的にPbOを含有しない」とは、ガラス組成中のPbOの含有量が0.1質量%以下の場合を指す。「実質的にFを含有しない」とは、ガラス組成中のFの含有量が0.1質量%以下の場合を指す。 The tempered glass of the present invention contains substantially no As 2 O 3 , Sb 2 O 3 , PbO and F in the glass composition. In this way, environmental demands in recent years can be satisfied. Here, “substantially does not contain As 2 O 3 ” refers to the case where the content of As 2 O 3 in the glass composition is 0.1% by mass or less. “Substantially no Sb 2 O 3 ” refers to the case where the content of Sb 2 O 3 in the glass composition is 0.1% by mass or less. “Substantially no PbO” refers to the case where the content of PbO in the glass composition is 0.1 mass% or less. “Substantially no F” refers to the case where the F content in the glass composition is 0.1% by mass or less.

本発明の強化ガラスは、ガラス組成として、モル%で、SiO 55〜70%、Al 8〜14%、B 0〜5%、LiO 0〜1%、NaO 7.6〜15%、KO 3〜10%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbOおよびFを含有せず、且つモル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.3〜1.5である。ここで、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO、BaOの合量を意味している。また、「LiO+NaO+KO」は、LiO、NaO、KOの合量を意味している。 The tempered glass of the present invention has a glass composition of mol%, SiO 2 55 to 70%, Al 2 O 3 8 to 14%, B 2 O 3 0 to 5%, Li 2 O 0 to 1%, Na 2. O 7.6~15%, K 2 O 3~10 %, MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, substantially free of as 2 O 3, Sb 2 O 3, PbO and F And the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is 0.3 to 1.5. Here, “MgO + CaO + SrO + BaO” means the total amount of MgO, CaO, SrO, and BaO. “Li 2 O + Na 2 O + K 2 O” means the total amount of Li 2 O, Na 2 O, and K 2 O.

本発明の強化ガラスは、歪点が550℃以上であることが好ましい。このようにすれば、強化ガラスの耐熱性が向上する。ここで、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。   The tempered glass of the present invention preferably has a strain point of 550 ° C. or higher. If it does in this way, the heat resistance of tempered glass will improve. Here, the “strain point” refers to a value measured based on the method of ASTM C336.

本発明の強化ガラスは、圧縮応力層の圧縮応力値が300MPa以上、且つ圧縮応力層の厚みが5μm以上であることが好ましい。なお、「圧縮応力層の圧縮応力値」および「圧縮応力層の厚み」は、表面応力計で干渉縞の本数とその間隔を観察することで算出することができる。   In the tempered glass of the present invention, the compressive stress layer preferably has a compressive stress value of 300 MPa or more, and the compressive stress layer has a thickness of 5 μm or more. The “compressive stress value of the compressive stress layer” and “thickness of the compressive stress layer” can be calculated by observing the number of interference fringes and their intervals with a surface stress meter.

本発明の強化ガラスは、500℃30分間の熱処理条件で、圧縮応力層の圧縮応力値の低下率が80%以下であることが好ましい。ここで、「圧縮応力値の低下率」とは、([熱処理前の圧縮応力層の圧縮応力値]−[熱処理後の圧縮応力層の圧縮応力値])/[熱処理前の圧縮応力層の圧縮応力値]で計算される値であり、熱処理に際し、室温から500℃まで5℃/分で昇温し、500℃30分間保持した後、500℃から室温まで10℃/分で降温する。   In the tempered glass of the present invention, the reduction rate of the compressive stress value of the compressive stress layer is preferably 80% or less under a heat treatment condition of 500 ° C. for 30 minutes. Here, the “decrease rate of the compressive stress value” means ([compressive stress value of compressive stress layer before heat treatment] − [compressive stress value of compressive stress layer after heat treatment]) / [compressive stress layer before heat treatment]. Compressive stress value], which is a value calculated at room temperature to 500 ° C. at a rate of 5 ° C./min, held at 500 ° C. for 30 minutes, and then cooled from 500 ° C. to room temperature at a rate of 10 ° C./min.

本発明の強化ガラスは、500℃30分間の熱処理後において、圧縮応力層の圧縮応力値が100MPa以上、且つ圧縮応力層の厚みが5μm以上であることが好ましい。なお、熱処理に際し、室温から500℃まで5℃/分で昇温し、500℃30分間保持した後、500℃から室温まで10℃/分で降温する。   The tempered glass of the present invention preferably has a compressive stress layer having a compressive stress value of 100 MPa or more and a compressive stress layer having a thickness of 5 μm or more after heat treatment at 500 ° C. for 30 minutes. In the heat treatment, the temperature is raised from room temperature to 500 ° C. at 5 ° C./minute, held at 500 ° C. for 30 minutes, and then lowered from 500 ° C. to room temperature at 10 ° C./minute.

本発明の強化ガラスは、熱膨張係数(30〜380℃)が40〜100×10−7/℃であることが好ましい。ここで、「熱膨張係数(30〜380℃)」とは、ディラトメーターを用いて、30〜380℃の温度範囲における平均熱膨張係数を測定した値を指す。このようにすれば、CIS系薄膜等の部材の熱膨張係数に整合しやすくなり、膜剥がれ等の不具合を防止することができる。 The tempered glass of the present invention preferably has a thermal expansion coefficient (30 to 380 ° C.) of 40 to 100 × 10 −7 / ° C. Here, “thermal expansion coefficient (30 to 380 ° C.)” refers to a value obtained by measuring an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. using a dilatometer. If it does in this way, it will become easy to match the coefficient of thermal expansion of members, such as a CIS type thin film, and problems, such as film peeling, can be prevented.

本発明の強化ガラスは、液相温度が1400℃以下であることが好ましい。ここで、「液相温度」とは、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。   The tempered glass of the present invention preferably has a liquidus temperature of 1400 ° C. or lower. Here, “liquid phase temperature” means that glass is crushed, passed through a standard sieve 30 mesh (500 μm sieve opening), and the glass powder remaining in 50 mesh (300 μm sieve sieve) is placed in a platinum boat, and the temperature gradient The temperature at which crystals are precipitated after being kept in the furnace for 24 hours.

本発明の強化ガラスは、液相粘度が103.0dPa・s以上であることが好ましい。ここで、「液相粘度」とは、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。 The tempered glass of the present invention preferably has a liquidus viscosity of 10 3.0 dPa · s or more. Here, “liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.

本発明の強化ガラスは、基板形状を有する。   The tempered glass of the present invention has a substrate shape.

本発明の強化ガラスは、太陽電池の基板に用いることが好ましい。   It is preferable to use the tempered glass of this invention for the board | substrate of a solar cell.

本発明の強化ガラスは、薄膜化合物太陽電池の基板に用いることが好ましい。   It is preferable to use the tempered glass of this invention for the board | substrate of a thin film compound solar cell.

本発明の強化ガラスは、ディスプレイの基板に用いることが好ましい。   The tempered glass of the present invention is preferably used for a display substrate.

本発明のガラスは、ガラス組成として、モル%で、SiO 55〜70%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbOおよびFを含有せず、モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.1〜2であると共に、基板形状であり、その板厚が1.0mm以下であることを特徴とする。 The glass of the present invention, as a glass composition, in mol%, SiO 2 55~70%, Al 2 O 3 7~16%, B 2 O 3 0~5%, Li 2 O 0~1%, Na 2 O 7.6~20%, K 2 O 3~15% , MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, contains substantially no as 2 O 3, Sb 2 O 3, PbO and F The molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is 0.1 to 2 , the substrate is shaped, and the plate thickness is 1.0 mm or less.

本発明の強化ガラスの製造方法は、ガラス組成として、モル%で、SiO 55〜70%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbO、Fを含有せず、且つモル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.1〜2になるように、ガラス原料を溶融し、板厚1.0mm以下の基板形状に成形した後、イオン交換処理を行うことにより、ガラスに圧縮応力層を形成することを特徴とする。なお、イオン交換処理の条件は、特に限定されず、ガラスの粘度特性等を考慮して決定すればよい。特に、KNO溶融塩中のKイオンとガラス基板中のNa成分をイオン交換すると、ガラスの表面に圧縮応力層を効率良く形成することができる。 The method of producing glass of the present invention has a glass composition, in mol%, SiO 2 55~70%, Al 2 O 3 7~16%, B 2 O 3 0~5%, Li 2 O 0~1% , Na 2 O 7.6~20%, K 2 O 3~15%, MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, substantially as 2 O 3, Sb 2 O 3, PbO, F The glass raw material is melted so that the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is 0.1 to 2 , and the substrate shape has a plate thickness of 1.0 mm or less After forming into a glass, a compression stress layer is formed on the glass by performing an ion exchange treatment. The conditions for the ion exchange treatment are not particularly limited, and may be determined in consideration of the viscosity characteristics of the glass. In particular, when the K ions in the KNO 3 molten salt and the Na component in the glass substrate are ion-exchanged, a compressive stress layer can be efficiently formed on the surface of the glass.

本発明の強化ガラスの製造方法は、オーバーフローダウンドロー法で基板形状に成形することが好ましい。   The tempered glass manufacturing method of the present invention is preferably formed into a substrate shape by an overflow down draw method.

本発明の強化ガラスは、その表面近傍に圧縮応力層を有する。ガラスに圧縮応力層を形成する方法には、物理強化法と化学強化法がある。本発明の強化ガラスは、化学強化法で圧縮応力層を形成することが好ましい。化学強化法は、歪点以下の温度でイオン交換することにより、イオン半径の大きいアルカリイオンをガラスの表面近傍に導入する方法である。化学強化法で圧縮応力層を形成すれば、ガラス基板の板厚が薄くても、所望の機械的強度を得ることができる。また、風冷強化法等の物理強化法とは異なり、化学強化法で圧縮応力層を形成すれば、強化処理後にガラス基板を切断しても、ガラス基板が容易に破損することがない。   The tempered glass of the present invention has a compressive stress layer in the vicinity of its surface. As a method for forming a compressive stress layer on glass, there are a physical strengthening method and a chemical strengthening method. The tempered glass of the present invention preferably forms a compressive stress layer by a chemical tempering method. The chemical strengthening method is a method of introducing alkali ions having a large ion radius in the vicinity of the glass surface by ion exchange at a temperature below the strain point. If the compressive stress layer is formed by the chemical strengthening method, a desired mechanical strength can be obtained even if the glass substrate is thin. In addition, unlike the physical strengthening method such as the air cooling strengthening method, if the compressive stress layer is formed by the chemical strengthening method, the glass substrate is not easily damaged even if the glass substrate is cut after the strengthening treatment.

本発明の強化ガラスにおいて、ガラス組成範囲を上記のように規制した理由を下記に示す。なお、以下のガラス組成に関する説明において、%表示は、特に断りがある場合を除き、モル%を指す。   The reason why the glass composition range is regulated as described above in the tempered glass of the present invention is shown below. In addition, in the description regarding the following glass composition,% display points out mol% unless there is particular notice.

SiOは、ガラスのネットワークを形成する成分であり、その含有量は50〜80%、好ましくは55〜75%、より好ましくは58〜70%、更に好ましくは60〜70%である。SiOの含有量が多過ぎると、溶融、成形が困難になることに加えて、熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合し難くなる。一方、SiOの含有量が少な過ぎると、ガラス化し難くなることに加えて、熱膨張係数が高くなり過ぎ、耐熱衝撃性が低下しやすくなる。 SiO 2 is a component forming a glass network, the content thereof is 50-80%, preferably 55-75%, more preferably 58-70%, more preferably 60% to 70%. If the content of SiO 2 is too large, melting and molding become difficult, and in addition, the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the surrounding materials. On the other hand, if the content of SiO 2 is too small, it becomes difficult to vitrify, the thermal expansion coefficient becomes too high, and the thermal shock resistance tends to be lowered.

Alは、イオン交換性能を高める成分であり、また歪点およびヤング率を高くする成分であり、その含有量は7〜16%である。Alの含有量が多過ぎると、ガラスに失透結晶が析出しやすくなり、ガラス基板を成形し難くなる。また、Alの含有量が多過ぎると、熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合し難くなったり、高温粘度が高くなり、ガラスを溶融し難くなる。一方、Alの含有量が少な過ぎると、イオン交換性能を十分に発揮できない虞が生じる。Al含有量の下限範囲は7%以上であり、好ましくは8%以上、9%以上、10%以上、10.5%以上、11%以上であり、上限範囲は16%以下であり、好ましくは15%以下、14%以下、13.5%以下、13%以下である。 Al 2 O 3 is a component that enhances ion exchange performance, and a component that increases the strain point and Young's modulus, and its content is 7 to 16%. When the content of Al 2 O 3 is too large, devitrification crystal glass is easily precipitated, it becomes difficult to mold the glass substrate. If the content of Al 2 O 3 is too large, the thermal expansion coefficient becomes too low, or become difficult to match the thermal expansion coefficient with those of peripheral materials becomes high viscosity at high temperature becomes difficult to melt the glass. On the other hand, when the content of Al 2 O 3 is too small, resulting is a possibility which can not be sufficiently exhibited ion exchange performance. The lower limit range of the Al 2 O 3 content is 7% or more, preferably 8% or more, 9% or more, 10% or more, 10.5% or more, 11% or more, and the upper limit range is 16% or less. , Preferably 15% or less, 14% or less, 13.5% or less, 13% or less.

LiO+NaO+KOは、イオン交換成分であり、高温粘度を低下させて、溶融性や成形性を向上させる成分である。LiO+NaO+KOの含有量が多過ぎると、ガラスが失透しやすくなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。また、LiO+NaO+KOの含有量が多過ぎると、歪点が低下し過ぎて、高い圧縮応力値が得られ難くなる場合があるとともに、高温で熱処理すると、圧縮応力が消失しやすくなる。さらに、LiO+NaO+KOの含有量が多過ぎると、液相温度付近の粘性が低下し、高い液相粘度を確保し難くなる場合がある。よって、LiO+NaO+KOの含有量は25%以下、好ましくは20%以下、より好ましくは18%以下、更に好ましくは15%以下、特に好ましくは14%以下である。一方、LiO+NaO+KOが少な過ぎると、イオン交換性能や溶融性が低下する。よって、LiO+NaO+KOの含有量は、好ましくは8%以上、より好ましくは10%以上である。 Li 2 O + Na 2 O + K 2 O is an ion exchange component, and is a component that lowers the high-temperature viscosity and improves meltability and moldability. If the content of Li 2 O + Na 2 O + K 2 O is too large, the glass tends to devitrify, the thermal expansion coefficient becomes too high, the thermal shock resistance decreases, and the thermal expansion coefficient of the surrounding materials It becomes difficult to match. Further, when the content of Li 2 O + Na 2 O + K 2 O is too large, too lowered strain point, with a high compression stress value may become difficult to obtain, the heat treatment at a high temperature, a compressive stress is liable to disappear Become. Further, when the content of Li 2 O + Na 2 O + K 2 O is too large, there are cases where the viscosity is lowered in the vicinity of the liquidus temperature, it is difficult to ensure a high liquidus viscosity. Therefore, the content of Li 2 O + Na 2 O + K 2 O is 25% or less, preferably 20% or less, more preferably 18% or less, still more preferably 15% or less, and particularly preferably 14% or less. On the other hand, when the Li 2 O + Na 2 O + K 2 O is too small, it decreases the ion exchange performance and meltability. Therefore, the content of Li 2 O + Na 2 O + K 2 O is preferably 8% or more, more preferably 10% or more.

LiOは、イオン交換成分であり、高温粘度を低下させて、溶融性や成形性を向上させる成分である。また、LiOは、ヤング率を向上させる成分である。さらに、LiOは、アルカリ金属酸化物の中では圧縮応力値を高める効果が高い成分である。しかし、LiOの含有量が多過ぎると、液相粘度が低下して、ガラスが失透しやすくなることに加えて、ガラスの熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。さらに、LiOの含有量が多過ぎると、低温粘度が低下し過ぎて、応力緩和が生じやすくなり、逆に圧縮応力値が低下する場合がある。したがって、LiOの含有量は0〜1%であり、好ましくは0〜0.5%、特に好ましくは0〜0.1%である。 Li 2 O is an ion exchange component, and is a component that lowers the high-temperature viscosity and improves meltability and moldability. Li 2 O is a component that improves the Young's modulus. Furthermore, Li 2 O is a component that has a high effect of increasing the compressive stress value among alkali metal oxides. However, if the content of Li 2 O is too large, the liquid phase viscosity decreases and the glass tends to devitrify, and the thermal expansion coefficient of the glass becomes too high, resulting in a decrease in thermal shock resistance. Or it becomes difficult to match the thermal expansion coefficient of the surrounding material. Further, when the content of Li 2 O is too large, too reduced low temperature viscosity, tends to occur stress relaxation, compression stress value conversely may deteriorate. Therefore, the content of Li 2 O is 0 to 1%, preferably 0 to 0.5%, particularly preferably 0 to 0.1%.

NaOは、イオン交換成分であり、高温粘度を低下させて、溶融性や成形性を向上させる成分であるとともに、耐失透性を改善する成分である。NaOの下限範囲は7.6%以上であり、上限範囲は20%以下であり、15%以下、14%以下、13%以下、12%以下、11%以下、10%以下、特に9%以下が好ましい。NaOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。また、NaOの含有量が多過ぎると、歪点が低下し過ぎたり、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下する傾向がある。一方、NaOの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低くなり過ぎたり、イオン交換性能が低下する。 Na 2 O is an ion exchange component, is a component that lowers the high-temperature viscosity and improves meltability and moldability, and is a component that improves devitrification resistance. The lower limit range of Na 2 O is 7.6% or more, the upper limit range is 20% or less, 15% or less, 14% or less, 13% or less, 12% or less, 11% or less, 10% or less, particularly 9 % Or less is preferable. When the content of Na 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is hardly matched to the thermal expansion coefficient of the reduced or peripheral materials. Further, when the content of Na 2 O is too large, or too low the strain point, it is impaired balance of components glass composition, devitrification resistance conversely tends to decrease. On the other hand, if too small content of Na 2 O, lowered the melting property, become too coefficient of thermal expansion is low, decreases the ion exchange performance.

Oは、イオン交換を促進する成分であり、アルカリ金属酸化物の中では圧縮応力層の厚みを大きくする効果が高い成分である。また、KOは、アルカリ金属酸化物の中では歪点を低下させずに高温粘度を低下させて、溶融性や成形性を高める効果が高い成分である。さらに、KOは、耐失透性を改善する成分でもある。しかし、KOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合し難くなる。また、KOの含有量が多過ぎると、歪点が低下し過ぎたり、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下する傾向がある。上記点を考慮すると、KOの含有量の上限範囲は15%以下であり、10%以下、9%以下、8%以下、6%以下、5%以下、特に4%以下が好ましく、下限範囲は3%以上、特に3.5%以上が好ましい。 K 2 O is a component that promotes ion exchange, and is a component that has a high effect of increasing the thickness of the compressive stress layer among alkali metal oxides. Further, K 2 O is a component having a high effect of reducing the high-temperature viscosity without reducing the strain point and improving the meltability and moldability among alkali metal oxides. Furthermore, K 2 O is also a component that improves devitrification resistance. However, if the content of K 2 O is too large, the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding materials. If the content of K 2 O is too large, or too low the strain point, it is impaired balance of components glass composition, devitrification resistance conversely tends to decrease. Considering the above points, the upper limit range of the content of K 2 O is 15% or less, preferably 10% or less, 9% or less, 8% or less, 6% or less, 5% or less, and particularly preferably 4% or less. The range is preferably 3% or more, particularly preferably 3.5% or more.

MgO+CaO+SrO+BaOは、歪点をあまり低下させることなく、高温粘度を低下させる成分であるが、その含有量が多過ぎると、密度や熱膨張係数が高くなったり、耐失透性が低下しやすくなったり、イオン交換性能が低下しやすくなる。したがって、MgO+CaO+SrO+BaOの含有量は〜13%、好ましくは〜12%である。 MgO + CaO + SrO + BaO is a component that lowers the high-temperature viscosity without significantly reducing the strain point. However, if the content is too large, the density and thermal expansion coefficient are increased, and the devitrification resistance is likely to be decreased. , Ion exchange performance tends to decrease. Therefore, the content of MgO + CaO + SrO + BaO is 8 to 13%, preferably 8 to 12 % .

MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、特にアルカリ土類金属酸化物の中では、イオン交換性能を向上させる効果が高い成分であり、その含有量は0〜10%、好ましくは0〜6%、より好ましくは0〜4%、更に好ましくは0〜3%、最も好ましくは0〜2%である。しかし、MgOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、ガラスが失透しやすくなる。   MgO is a component that lowers the viscosity at high temperature to increase the meltability and formability, and increases the strain point and Young's modulus. Especially in alkaline earth metal oxides, the effect of improving ion exchange performance is high. It is a component, and its content is 0 to 10%, preferably 0 to 6%, more preferably 0 to 4%, still more preferably 0 to 3%, and most preferably 0 to 2%. However, when there is too much content of MgO, a density and a thermal expansion coefficient will become high, or it will become easy to devitrify glass.

CaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、特にアルカリ土類金属酸化物の中では、イオン交換性能を向上させる効果が高い成分であり、しかも耐失透性を向上させる成分でもあり、その含有量は0〜13%、好ましくは1〜13%、より好ましくは2〜10%、更に好ましくは3〜10%、特に好ましくは4〜10%である。CaOの含有量が多過ぎると、密度、熱膨張係数が高くなったり、ガラス組成のバランスが損なわれて、ガラスが失透しやすくなったり、更にはイオン交換性能が低下する傾向がある。   CaO is a component that lowers the viscosity at high temperature to increase the meltability and moldability, and increases the strain point and Young's modulus, and is particularly effective in improving ion exchange performance among alkaline earth metal oxides. It is a component and also a component that improves devitrification resistance, and its content is 0 to 13%, preferably 1 to 13%, more preferably 2 to 10%, still more preferably 3 to 10%, particularly preferably. Is 4-10%. When there is too much content of CaO, a density and a thermal expansion coefficient will become high, the balance of a glass composition will be impaired, and it will become easy to devitrify glass, and also there exists a tendency for ion exchange performance to fall.

SrOは、高温粘度を低下させて、溶融性や成形性を向上させたり、歪点やヤング率を高める成分であり、その含有量は0〜%である。SrOの含有量が多過ぎると、イオン交換性能が低下する傾向があることに加えて、密度、熱膨張係数が高くなったり、ガラスが失透しやすくなる。特に、SrOの含有量は1%以下、0.5%以下、特に0.2%以下が望ましい。 SrO is a component that lowers the high-temperature viscosity to improve meltability and moldability, and increases the strain point and Young's modulus, and its content is 0 to 3 %. If the content of SrO is too large, the ion exchange performance tends to decrease, and the density and thermal expansion coefficient increase, and the glass tends to devitrify. In particular, the content of SrO 1% or less is 0.5% or less, particularly desirably 0.2% or less under.

BaOは、高温粘度を低下させて、溶融性や成形性を向上させたり、歪点やヤング率を高める成分であり、特に、Alの含有量が多いガラス組成系において、ガラスを安定化させて、耐失透性を向上させる効果が高い成分である。しかし、BaOの含有量が多過ぎると、イオン交換性能が低下する傾向があることに加えて、密度、熱膨張係数が高くなったり、ガラス組成の成分バランスが損なわれて、逆にガラスが失透しやすくなる。よって、BaOの含有量の下限範囲は0.1%以上、0.5%以上、0.7%以上、1%以上、特に1.5%以上が好ましく、上限範囲は10%以下、8%以下、5%以下、特に3%以下が好ましい。 BaO is a component that lowers the viscosity at high temperature, improves meltability and formability, and increases the strain point and Young's modulus. In particular, it stabilizes glass in a glass composition system with a high content of Al 2 O 3. It is a component having a high effect of improving devitrification resistance. However, if the content of BaO is too large, the ion exchange performance tends to be lowered, and the density and thermal expansion coefficient are increased, the component balance of the glass composition is impaired, and the glass is lost. It becomes easy to see through. Therefore, the lower limit range of the BaO content is preferably 0.1% or more, 0.5% or more, 0.7% or more, 1% or more, particularly preferably 1.5% or more, and the upper limit range is 10% or less, 8%. Below, 5% or less, especially 3% or less is preferred.

本発明者は、モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値を所定範囲に規制すれば、密度の上昇、或いは耐失透性の低下を防止した上で、歪点を高めることができることを見出した。モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値は0.05〜2、好ましくは0.1〜1.8、より好ましくは0.2〜1.5、更に好ましくは0.3〜1、特に好ましくは0.3〜0.9、最も好ましくは0.4〜0.8である。モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が上記範囲外になると、上記効果を得難くなる。 The present inventor, if the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is regulated within a predetermined range, prevents the increase in density or the decrease in devitrification resistance, and the strain point. I found that it can be enhanced. The value of the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is 0.05 to 2, preferably 0.1 to 1.8, more preferably 0.2 to 1.5, still more preferably 0.00. 3 to 1, particularly preferably 0.3 to 0.9, most preferably 0.4 to 0.8. When the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is out of the above range, it is difficult to obtain the above effect.

本発明の強化ガラスは、上記成分のみでガラス組成を構成してもよいが、ガラスの特性を大きく損なわない範囲で他の成分を40%まで添加してもよい。   The tempered glass of the present invention may comprise a glass composition only with the above components, but other components may be added up to 40% within a range that does not significantly impair the properties of the glass.

は、高温粘度、密度を低下させる効果を有し、ガラスを安定化させて、結晶を析出し難くし、液相温度を低下させる効果を有する成分であり、その含有量は0〜5%、好ましくは0〜3%、より好ましくは0〜2%、更に好ましくは0〜1%、最も好ましくは0〜0.1%である。Bの含有量が多過ぎると、歪点が低下したり、イオン交換によってガラスの表面にヤケが発生したり、耐水性が低下したり、圧縮応力層の厚みが小さくなる傾向がある。 B 2 O 3 is a component that has the effect of reducing high temperature viscosity and density, stabilizes glass, makes it difficult to precipitate crystals, and lowers the liquidus temperature, and its content is 0. -5%, preferably 0-3%, more preferably 0-2%, still more preferably 0-1%, most preferably 0-0.1%. When the content of B 2 O 3 is too large, or the strain point is lowered, or generated burnt on the surface of the glass by ion exchange, or water resistance is lowered, the thickness of the compressive stress layer tends to decrease .

TiOは、イオン交換性能を向上させる成分であるとともに、高温粘度を低下させる成分であるが、その含有量が多過ぎると、ガラスが着色したり、失透しやすくなるため、その含有量は0〜5%、好ましくは0〜4%、より好ましくは0〜3%、更に好ましくは0〜0.5%、更に好ましくは0〜0.1%、最も好ましくは0〜0.05%である。 TiO 2 is a component that improves ion exchange performance and is a component that lowers the high-temperature viscosity. However, if the content is too large, the glass tends to be colored or devitrified. 0 to 5%, preferably 0 to 4%, more preferably 0 to 3%, still more preferably 0 to 0.5%, still more preferably 0 to 0.1%, most preferably 0 to 0.05%. is there.

ZrOは、イオン交換性能を顕著に向上させるとともに、液相粘度付近の粘性や歪点を高める成分であり、その含有量は0〜10%(好ましくは0〜8%、0〜3%、0〜2.6%、0〜2%、0.1〜1.7%)である。ZrOの含有量が多過ぎると、耐失透性が極端に低下する場合がある。 ZrO 2 is a component that remarkably improves the ion exchange performance and increases the viscosity and strain point in the vicinity of the liquid phase viscosity, and its content is 0 to 10% (preferably 0 to 8%, 0 to 3%, 0-2.6%, 0-2%, 0.1-1.7%). When the content of ZrO 2 is too high, there are cases where the devitrification resistance is extremely lowered.

ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を高くする効果が大きい成分であるとともに、低温粘度を低下させずに高温粘度を低下させる成分であり、その含有量は0〜6%、好ましくは0〜5%、より好ましくは0〜3%、更に好ましくは0〜1%、最も好ましくは0〜0.1%である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、圧縮応力層の厚みが小さくなる傾向がある。   ZnO is a component that enhances the ion exchange performance, is a component that has a particularly large effect of increasing the compressive stress value, and is a component that decreases the high temperature viscosity without decreasing the low temperature viscosity, and its content is 0-6. %, Preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 1%, and most preferably 0 to 0.1%. However, when the content of ZnO is too large, the glass tends to undergo phase separation, the devitrification resistance decreases, the density increases, or the thickness of the compressive stress layer decreases.

は、イオン交換性能を高める成分であり、特に圧縮応力層の厚みを大きくする効果が高い成分であり、その含有量は0〜10%(好ましくは3%以下、1%以下、0.5%以下、特に0.1%以下)である。しかし、Pの含有量が多過ぎると、ガラスが分相したり、耐水性が低下する。 P 2 O 5 is a component that enhances the ion exchange performance, and is particularly a component that has a high effect of increasing the thickness of the compressive stress layer, and its content is 0 to 10% (preferably 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less). However, when the content of P 2 O 5 is too large, glass or phase separation, the water resistance is lowered.

清澄剤としてSnO、CeO、Cl、SOの群から選択された一種または二種以上を0〜3%、好ましくは0.001〜1%、より好ましくは0.01〜0.5%、より好ましくは0.05〜0.4%添加することができる。特に、SnOは、清澄効果の点で好ましく、その含有量は0〜1%、0.01〜0.5%、特に0.05〜0.4%が好ましい。 One or more selected from the group of SnO 2 , CeO 2 , Cl, SO 3 as a fining agent is 0 to 3%, preferably 0.001 to 1%, more preferably 0.01 to 0.5%. More preferably, 0.05 to 0.4% can be added. In particular, SnO 2 is preferable in terms of a clarification effect, and its content is preferably 0 to 1%, 0.01 to 0.5%, particularly preferably 0.05 to 0.4%.

NbやLa等の希土類酸化物は、ヤング率を高める成分である。しかし、原料自体のコストが高く、また多量に含有させると、耐失透性が低下する。よって、希土類酸化物の含有量は3%以下、好ましくは2%以下、より好ましくは1%以下、更に好ましくは0.5%以下、特に好ましくは0.1%以下である。 Rare earth oxides such as Nb 2 O 5 and La 2 O 3 are components that increase the Young's modulus. However, the cost of the raw material itself is high, and if it is contained in a large amount, the devitrification resistance is lowered. Therefore, the rare earth oxide content is 3% or less, preferably 2% or less, more preferably 1% or less, still more preferably 0.5% or less, and particularly preferably 0.1% or less.

Co、Ni等の遷移金属酸化物は、ガラスを強く着色させ、ガラスの透過率を低下させる。特に、タッチパネルディスプレイや太陽電池用途の場合、遷移金属酸化物の含有量が多いと、タッチパネルディスプレイの視認性が損なわれたり、太陽電池の光電変換効率が低下する。よって、遷移金属酸化物の含有量が0.5%以下(好ましくは0.1%以下、より好ましくは0.05%以下)になるように、ガラス原料の使用量を調製することが望ましい。   Transition metal oxides such as Co and Ni strongly color the glass and reduce the transmittance of the glass. In particular, in the case of a touch panel display or solar battery application, if the content of the transition metal oxide is large, the visibility of the touch panel display is impaired, or the photoelectric conversion efficiency of the solar battery is lowered. Therefore, it is desirable to adjust the amount of the glass raw material used so that the content of the transition metal oxide is 0.5% or less (preferably 0.1% or less, more preferably 0.05% or less).

なお、既述の通り、本発明の強化ガラスは、環境的観点から、ガラス組成中に実質的にAs、Sb、PbOおよびFを含有しない。さらに、本発明の強化ガラスは、環境的観点から、ガラス組成中に実質的にBiを含有しないことが好ましい。「実質的にBiを含有しない」とは、ガラス組成中のBiの含有量が0.1質量%以下の場合を指す。 As described above, the tempered glass of the present invention substantially does not contain As 2 O 3 , Sb 2 O 3 , PbO and F in the glass composition from the environmental viewpoint. Further, the tempered glass of the present invention, from an environmental point of view, it is preferable to contain substantially no Bi 2 O 3 in the glass composition. “Substantially no Bi 2 O 3 ” refers to the case where the content of Bi 2 O 3 in the glass composition is 0.1% by mass or less.

本発明の強化ガラスにおいて、歪点は550℃以上が好ましく、560℃以上がより好ましく、570℃以上がより好ましく、590℃以上がより好ましく、600℃以上が更に好ましく、620℃以上が最も好ましい。歪点は、耐熱性の指標になる特性であり、歪点が高い程、耐熱性に優れ、強化ガラスを熱処理しても、圧縮応力が消失し難くなる。また、歪点が高い程、イオン交換時に応力緩和が生じ難くなるため、高い圧縮応力値を得やすくなる。歪点を高くするためには、ガラス組成中のアルカリ金属酸化物の含有量を低減、或いはアルカリ土類金属酸化物、Al、ZrO、Pの含有量を増加すればよい。 In the tempered glass of the present invention, the strain point is preferably 550 ° C or higher, more preferably 560 ° C or higher, more preferably 570 ° C or higher, more preferably 590 ° C or higher, further preferably 600 ° C or higher, and most preferably 620 ° C or higher. . The strain point is a characteristic that becomes an index of heat resistance. The higher the strain point, the better the heat resistance, and the compressive stress hardly disappears even when the tempered glass is heat-treated. Also, the higher the strain point, the less stress relaxation occurs during ion exchange, making it easier to obtain a high compressive stress value. In order to increase the strain point, if the content of alkali metal oxide in the glass composition is reduced or the content of alkaline earth metal oxide, Al 2 O 3 , ZrO 2 , P 2 O 5 is increased Good.

本発明の強化ガラスにおいて、圧縮応力層の圧縮応力値は300MPa以上(望ましくは400MPa以上、500MPa以上、600MPa以上、特に900MPa以上)が好ましい。圧縮応力層の圧縮応力値が高い程、機械的強度が高くなる。一方、ガラスの表面近傍に極端に大きな圧縮応力が形成されると、表面にマイクロクラックが発生し、逆に機械的強度が低下する虞がある。また、ガラスの表面近傍に極端に大きな圧縮応力が形成されると、内部の引っ張り応力が極端に高くなる虞があるため、圧縮応力層の圧縮応力値は1300MPa以下とするのが好ましい。なお、ガラス組成中のAl、TiO、ZrO、MgO、ZnOの含有量を増加、或いはSrO、BaOの含有量を低減すれば、圧縮応力層の圧縮応力値を高めることができる。また、イオン交換時間を短くしたり、イオン交換温度を下げると、圧縮応力層の圧縮応力値を高めることができる。 In the tempered glass of the present invention, the compressive stress value of the compressive stress layer is preferably 300 MPa or more (desirably 400 MPa or more, 500 MPa or more, 600 MPa or more, particularly 900 MPa or more). The higher the compressive stress value of the compressive stress layer, the higher the mechanical strength. On the other hand, when an extremely large compressive stress is formed in the vicinity of the surface of the glass, microcracks are generated on the surface, and there is a risk that the mechanical strength is reduced. Further, if an extremely large compressive stress is formed in the vicinity of the surface of the glass, the internal tensile stress may become extremely high. Therefore, the compressive stress value of the compressive stress layer is preferably 1300 MPa or less. In addition, if the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO in the glass composition is increased or the content of SrO, BaO is decreased, the compressive stress value of the compressive stress layer can be increased. . Moreover, when the ion exchange time is shortened or the ion exchange temperature is lowered, the compressive stress value of the compressive stress layer can be increased.

本発明の強化ガラスにおいて、圧縮応力層の厚みは、5μm以上が好ましく、10μm以上がより好ましく、15μm以上がより好ましく、20μm以上が更に好ましく、30μm以上が特に好ましく、40μm以上が最も好ましい。圧縮応力層の厚みが大きい程、強化ガラスに深い傷がついても、強化ガラスが破損し難くなる。一方、強化ガラスを切断加工しやすくするために、圧縮応力層の厚みを500μm以下とするのが好ましい。ガラス組成中のKO、Pの含有量を増加、SrO、BaOの含有量を低減すれば、圧縮応力層の厚みを大きくすることができる。また、イオン交換時間を長くしたり、イオン交換温度を上げると、圧縮応力層の厚みを大きくすることができる。 In the tempered glass of the present invention, the thickness of the compressive stress layer is preferably 5 μm or more, more preferably 10 μm or more, more preferably 15 μm or more, further preferably 20 μm or more, particularly preferably 30 μm or more, and most preferably 40 μm or more. As the thickness of the compressive stress layer increases, the tempered glass is less likely to be damaged even if the tempered glass is deeply damaged. On the other hand, in order to make it easy to cut the tempered glass, the thickness of the compressive stress layer is preferably 500 μm or less. If the content of K 2 O and P 2 O 5 in the glass composition is increased and the content of SrO and BaO is decreased, the thickness of the compressive stress layer can be increased. Moreover, when the ion exchange time is lengthened or the ion exchange temperature is raised, the thickness of the compressive stress layer can be increased.

本発明の強化ガラスは、500℃30分間の熱処理条件で、圧縮応力層の圧縮応力値の低下率が80%以下、60%以下、30%以下、特に10%以下になるのが好ましい。500℃−30分間の熱処理条件で、圧縮応力値の低下率が80%より高いと、500〜550℃の熱処理で機械的強度が低下しやすくなる。   In the tempered glass of the present invention, the reduction rate of the compressive stress value of the compressive stress layer is preferably 80% or less, 60% or less, 30% or less, particularly 10% or less under the heat treatment conditions at 500 ° C. for 30 minutes. If the reduction rate of the compressive stress value is higher than 80% under the heat treatment conditions of 500 ° C. for 30 minutes, the mechanical strength tends to be lowered by the heat treatment at 500 to 550 ° C.

本発明の強化ガラスは、500℃30分間の熱処理後において、圧縮応力層の圧縮応力値が100MPa以上(好ましくは130MPa以上、300MPa以上、500MPa以上、特に800MPa以上)、且つ圧縮応力層の厚みが5μm以上(好ましくは10μm以上、15μm以上、20μm以上、30μm以上、特に40μm以上)になるのが好ましい。熱処理後に、圧縮応力層の圧縮応力値と厚みが上記範囲外になると、機械的衝撃等により強化ガラスが破損しやすくなる。   In the tempered glass of the present invention, after the heat treatment at 500 ° C. for 30 minutes, the compressive stress value of the compressive stress layer is 100 MPa or more (preferably 130 MPa or more, 300 MPa or more, 500 MPa or more, particularly 800 MPa or more), and the thickness of the compressive stress layer is It is preferable to be 5 μm or more (preferably 10 μm or more, 15 μm or more, 20 μm or more, 30 μm or more, particularly 40 μm or more). If the compressive stress value and thickness of the compressive stress layer are out of the above ranges after the heat treatment, the tempered glass tends to be damaged by mechanical impact or the like.

本発明の強化ガラスにおいて、密度は2.7g/cm以下が好ましく、2.65g/cm以下がより好ましく、2.6g/cm以下が更に好ましく、2.55g/cm以下が特に好ましい。密度が小さい程、ガラスを軽量化することができる。ここで、「密度」とは、周知のアルキメデス法で測定した値を指す。密度を低下させるには、ガラス組成中のSiO、P、Bの含有量を増加、或いはアルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO、TiOの含有量を低減すればよい。 The tempered glass of the present invention, the density is preferably 2.7 g / cm 3 or less, more preferably 2.65 g / cm 3 or less, 2.6 g / cm 3 more preferably less, 2.55 g / cm 3 or less is particularly preferable. The smaller the density, the lighter the glass. Here, “density” refers to a value measured by the well-known Archimedes method. In order to reduce the density, the content of SiO 2 , P 2 O 5 , B 2 O 3 in the glass composition is increased, or alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 What is necessary is just to reduce content.

本発明の強化ガラスにおいて、熱膨張係数(30〜380℃)は45〜100×10−7/℃が好ましく、75〜100×10−7/℃がより好ましく、80〜100×10−7/℃がより好ましく、80〜96×10−7/℃が更に好ましく、80〜90×10−7/℃が特に好ましい。熱膨張係数を上記範囲とすれば、CIS系薄膜等の部材の熱膨張係数に整合しやすくなり、膜剥がれ等を防止することができる。熱膨張係数を上昇させるには、ガラス組成中のアルカリ金属酸化物、アルカリ土類金属酸化物の含有量を増加すればよく、逆に低下させるには、ガラス組成中のアルカリ金属酸化物、アルカリ土類金属酸化物の含有量を低減すればよい。 The tempered glass of the present invention, the thermal expansion coefficient (30 to 380 ° C.) is preferably from 45 to 100 × 10 -7 / ° C., more preferably 75~100 × 10 -7 / ℃, 80~100 × 10 -7 / ° C is more preferable, 80 to 96 × 10 −7 / ° C. is further preferable, and 80 to 90 × 10 −7 / ° C. is particularly preferable. When the thermal expansion coefficient is within the above range, it becomes easy to match the thermal expansion coefficient of a member such as a CIS-based thin film, and film peeling or the like can be prevented. In order to increase the coefficient of thermal expansion, the content of alkali metal oxides and alkaline earth metal oxides in the glass composition should be increased. What is necessary is just to reduce content of an earth metal oxide.

本発明の強化ガラスにおいて、高温粘度102.5dPa・sにおける温度は1650℃以下、1620℃以下、1600℃以下、1570℃以下、1540℃以下、1500℃以下、特に1450℃以下が好ましい。高温粘度102.5dPa・sにおける温度は、ガラスの溶融温度に相当しており、高温粘度102.5dPa・sにおける温度が低い程、低温でガラスを溶融することができる。また、高温粘度102.5dPa・sにおける温度が低い程、溶融炉等の製造設備に与える負荷が小さくなるとともに、ガラスの泡品位を向上させることができ、結果として、強化ガラスを安価に製造することができる。高温粘度102.5dPa・sにおける温度を低下させるには、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B、TiOの含有量を増加、或いはSiO、Alの含有量を低減すればよい。 In the tempered glass of the present invention, the temperature at a high temperature viscosity of 10 2.5 dPa · s is preferably 1650 ° C. or lower, 1620 ° C. or lower, 1600 ° C. or lower, 1570 ° C. or lower, 1540 ° C. or lower, 1500 ° C. or lower, particularly 1450 ° C. or lower. The temperature at the high temperature viscosity of 10 2.5 dPa · s corresponds to the melting temperature of the glass, and the lower the temperature at the high temperature viscosity of 10 2.5 dPa · s, the more the glass can be melted. In addition, the lower the temperature at a high temperature viscosity of 10 2.5 dPa · s, the smaller the load applied to manufacturing equipment such as a melting furnace, and the glass foam quality can be improved. Can be manufactured. In order to decrease the temperature at a high temperature viscosity of 10 2.5 dPa · s, the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 is increased, or SiO 2 , Al 2 the content of O 3 may be reduced.

本発明の強化ガラスにおいて、液相温度は1400℃以下、1300℃以下、1200℃以下、1150℃以下、特に1100℃以下が好ましい。液相温度を低下させるには、ガラス組成中のNaO、KO、Bの含有量を増加、或いはAl、LiO、MgO、ZnO、TiO、ZrOの含有量を低減すればよい。なお、液相温度が低い程、耐失透性や成形性が向上する。 In the tempered glass of the present invention, the liquidus temperature is preferably 1400 ° C. or lower, 1300 ° C. or lower, 1200 ° C. or lower, 1150 ° C. or lower, particularly 1100 ° C. or lower. To lower the liquidus temperature, the content of Na 2 O, K 2 O, B 2 O 3 in the glass composition is increased, or Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2. The content of can be reduced. In addition, devitrification resistance and a moldability improve, so that liquidus temperature is low.

本発明の強化ガラスにおいて、液相粘度は103.0dPa・s以上、104.0dPa・s以上、特に105.0dPa・s以上が好ましい。液相粘度を上昇させるには、ガラス組成中のNaO、KOの含有量を増加、或いはAl、LiO、MgO、ZnO、TiO、ZrOの含有量を低減すればよい。なお、液相粘度が高い程、耐失透性や成形性が向上する。 In the tempered glass of the present invention, the liquid phase viscosity is preferably 10 3.0 dPa · s or more, 10 4.0 dPa · s or more, particularly preferably 10 5.0 dPa · s or more. To increase the liquid phase viscosity, increase the content of Na 2 O, K 2 O in the glass composition, or decrease the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 do it. In addition, devitrification resistance and a moldability improve, so that liquid phase viscosity is high.

本発明の強化ガラスは、ガラス基板として用いる場合、未研磨の表面を有することが好ましく、未研磨の表面の平均表面粗さ(Ra)は10Å以下、5Å以下、特に2Å以下が好ましい。ここで、「表面の平均表面粗さ(Ra)」は、SEMI D7−97「FPDガラス基板の表面粗さの測定方法」に準拠した方法で測定した値を指す。ガラスの理論強度は、本来非常に高いのであるが、理論強度よりも遥かに低い応力でも破損に至ることが多い。これは、ガラス基板の表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス基板の表面を未研磨とすれば、本来のガラス基板の機械的強度を損ない難くなり、ガラス基板が破損し難くなる。また、ガラス基板の表面を未研磨とすれば、研磨工程を省略できるため、ガラス基板の製造コストを低廉化することができる。本発明の強化ガラスにおいて、ガラス基板の両面全体を未研磨とすれば、ガラス基板が更に破損し難くなる。さらに、本発明の強化ガラスにおいて、ガラス基板の切断面から破損に至る事態を防止するため、ガラス基板の切断面に面取り加工等を施してもよい。なお、オーバーフローダウンドロー法で成形すれば、未研磨で表面精度が良好なガラス基板を得ることができる。   When used as a glass substrate, the tempered glass of the present invention preferably has an unpolished surface, and the average surface roughness (Ra) of the unpolished surface is preferably 10 mm or less, 5 mm or less, and particularly preferably 2 mm or less. Here, “average surface roughness (Ra) of the surface” refers to a value measured by a method based on SEMI D7-97 “Measurement Method of Surface Roughness of FPD Glass Substrate”. The theoretical strength of glass is inherently very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass substrate in a post-molding process such as a polishing process. Therefore, if the surface of the glass substrate is unpolished, the mechanical strength of the original glass substrate is hardly impaired, and the glass substrate is hardly damaged. Further, if the surface of the glass substrate is unpolished, the polishing step can be omitted, so that the manufacturing cost of the glass substrate can be reduced. In the tempered glass of the present invention, if both surfaces of the glass substrate are unpolished, the glass substrate is further hardly damaged. Furthermore, in the tempered glass of the present invention, a chamfering process or the like may be applied to the cut surface of the glass substrate in order to prevent a situation where the glass substrate is damaged. In addition, if it shape | molds by the overflow downdraw method, the glass substrate with favorable surface accuracy can be obtained without polishing.

本発明の強化ガラスは、ガラス基板として用いる場合、板厚が1.0mm以下(望ましくは0.7mm以下、0.5mm以下、特に0.3mm以下)である。ガラス基板の板厚が薄い程、ガラス基板を軽量化することできる。また、本発明の強化ガラスは、板厚を薄くしても、破損し難い利点を有している。つまり、ガラス基板の板厚が薄い程、本発明の効果を享受しやすくなる。なお、オーバーフローダウンドロー法で成形すれば、研磨処理等を省略しても、表面精度が良好で、且つ薄いガラス基板を得ることができる。 Glass of the present invention, when used as a glass substrate, plate thickness 1.0 mm or less (preferably 0 .7Mm less, 0.5 mm or less, particularly 0.3mm or less). The thinner the glass substrate, the lighter the glass substrate. Further, the tempered glass of the present invention has an advantage that it is difficult to break even if the plate thickness is reduced. That is, the thinner the glass substrate is, the easier it is to enjoy the effects of the present invention. In addition, if it shape | molds by the overflow downdraw method, even if it abbreviate | omits grinding | polishing processing etc., a surface accuracy is favorable and a thin glass substrate can be obtained.

本発明の強化ガラスは、太陽電池の基板、特に薄膜化合物太陽電池の基板、更にはCIS系太陽電池の基板に好適である。既述の通り、本発明の強化ガラスは、500〜550℃で熱処理しても、高い機械的強度を維持することができ、且つ溶融性に優れているため、本用途に好適である。さらに、本発明の強化ガラスは、CIS系薄膜等の部材の熱膨張係数に整合しやすく、膜剥がれ等が生じ難いため、本用途に好適である。   The tempered glass of the present invention is suitable for a substrate of a solar cell, particularly a substrate of a thin film compound solar cell, and further a substrate of a CIS solar cell. As described above, the tempered glass of the present invention is suitable for this application because it can maintain high mechanical strength even when heat-treated at 500 to 550 ° C. and has excellent meltability. Furthermore, the tempered glass of the present invention is suitable for this application because it easily matches the thermal expansion coefficient of a member such as a CIS-based thin film and hardly causes film peeling.

本発明の強化ガラスは、ディスプレイの基板、特にタッチパネルディスプレイのカバーガラス、携帯電話のカバーガラスに用いることが好ましい。本発明の強化ガラスは、機械的強度に優れるとともに、生産性に優れているため、本用途に好適である。   The tempered glass of the present invention is preferably used for a display substrate, particularly a cover glass for a touch panel display and a cover glass for a mobile phone. The tempered glass of the present invention is excellent in mechanical strength and productivity, and is suitable for this application.

本発明のガラスは、430℃のKNO溶融中でイオン交換したとき、圧縮応力層の圧縮応力値が300MPa以上(好ましくは500MPa以上、特に600MPa以上)、且つ圧縮応力層の厚みが10μm以上(好ましくは30μm以上、特に40μm以上)になることが好ましい。このような圧縮応力層を得るには、KNOの温度を400〜550℃、イオン交換時間を2〜10時間(好ましくは4〜8時間)に調製すればよい。 When the glass of the present invention is ion-exchanged in KNO 3 melt at 430 ° C., the compressive stress layer has a compressive stress value of 300 MPa or more (preferably 500 MPa or more, particularly 600 MPa or more), and the compressive stress layer has a thickness of 10 μm or more ( It is preferably 30 μm or more, particularly 40 μm or more. In order to obtain such a compressive stress layer, the temperature of KNO 3 may be adjusted to 400 to 550 ° C. and the ion exchange time to 2 to 10 hours (preferably 4 to 8 hours).

本発明のガラスは、ガラス組成として、モル%で、SiO 55〜70%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbOおよびFを含有せず、モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.1〜2であると共に、基板形状であり、その板厚が1.0mm以下であることを特徴とする。本発明のガラスの技術的特徴(好適な数値範囲、好適な態様等)は、本発明の強化ガラスの説明の欄に既に記載されている通りである。例えば、本明細書の段落[0029]〜[0051]、[0056]、[0064]における本発明の強化ガラスの説明は、本発明のガラスの説明に読み替えることができる。 The glass of the present invention, as a glass composition, in mol%, SiO 2 55~70%, Al 2 O 3 7~16%, B 2 O 3 0~5%, Li 2 O 0~1%, Na 2 O 7.6~20%, K 2 O 3~15% , MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, contains substantially no as 2 O 3, Sb 2 O 3, PbO and F The molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is 0.1 to 2 , the substrate is shaped, and the plate thickness is 1.0 mm or less. The technical features (preferable numerical ranges, preferred embodiments, etc.) of the glass of the present invention are as already described in the description of the tempered glass of the present invention. For example, the description of the tempered glass of the present invention in paragraphs [0029] to [0051], [0056], and [0064] of this specification can be read as the description of the glass of the present invention.

本発明の強化ガラスは、所定のガラス組成となるように調合したガラス原料を連続溶融炉に投入し、ガラス原料を1500〜1600℃で加熱溶融し、清澄した後、成形装置に供給した上で溶融ガラスを成形し、徐冷することにより製造することができる。   In the tempered glass of the present invention, a glass raw material prepared to have a predetermined glass composition is put into a continuous melting furnace, the glass raw material is heated and melted at 1500 to 1600 ° C., clarified, and then supplied to a molding apparatus. It can be produced by forming molten glass and slowly cooling it.

本発明の強化ガラスの製造方法は、ガラス組成として、モル%で、SiO 55〜70%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbO、Fを含有せず、且つモル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.1〜2になるように、ガラス原料を溶融し、板厚1.0mm以下の基板形状に成形した後、イオン交換処理を行うことにより、ガラスに圧縮応力層を形成することを特徴とする。本発明の強化ガラスの製造方法の技術的特徴(好適な数値範囲、好適な態様等)は、既述、或いは後述の通りであり、ここでは、便宜上、その記載を省略する。 The method of producing glass of the present invention has a glass composition, in mol%, SiO 2 55~70%, Al 2 O 3 7~16%, B 2 O 3 0~5%, Li 2 O 0~1% , Na 2 O 7.6~20%, K 2 O 3~15%, MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, substantially as 2 O 3, Sb 2 O 3, PbO, F The glass raw material is melted so that the molar ratio (MgO + CaO + SrO + BaO) / (Li 2 O + Na 2 O + K 2 O) is 0.1 to 2 , and the substrate shape has a plate thickness of 1.0 mm or less After forming into a glass, a compression stress layer is formed on the glass by performing an ion exchange treatment. The technical characteristics (preferable numerical range, preferable aspect, etc.) of the method for producing tempered glass of the present invention are as described above or described later, and the description thereof is omitted here for convenience.

本発明の強化ガラスの製造方法は、オーバーフローダウンドロー法で基板形状に成形することが好ましい。このようにすれば、未研磨で表面品位が良好なガラス基板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。ここで、オーバーフローダウンドロー法は、溶融ガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス基板を製造する方法である。樋状構造物の構造や材質は、ガラス基板の寸法や表面精度を所望の状態とし、ガラス基板に使用できる品位を実現できるものであれば、特に限定されない。また、下方への延伸成形を行うためにガラス基板に対してどのような方法で力を印加するものであってもよい。例えば、充分に大きい幅を有する耐熱性ロールをガラス基板に接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラス基板の端面近傍のみに接触させて延伸する方法を採用してもよい。本発明の強化ガラスは、耐失透性に優れるとともに、成形に適した粘度特性を有しているため、オーバーフローダウンドロー法でガラス基板を成形しやすい性質を有している。   The tempered glass manufacturing method of the present invention is preferably formed into a substrate shape by an overflow down draw method. In this way, a glass substrate that is unpolished and has good surface quality can be produced. The reason is that, in the case of the overflow downdraw method, the surface to be the surface of the glass substrate is not in contact with the bowl-like refractory and is molded in a free surface state. Here, the overflow down draw method is a method in which molten glass is overflowed from both sides of a heat-resistant bowl-shaped structure, and the overflowed molten glass is stretched and formed downward while joining at the lower end of the bowl-shaped structure. It is a method of manufacturing. The structure and material of the bowl-shaped structure are not particularly limited as long as the dimensions and surface accuracy of the glass substrate can be set to a desired state and the quality usable for the glass substrate can be realized. Moreover, in order to perform the downward extending | stretching shaping | molding, you may apply force with what kind of method with respect to a glass substrate. For example, a method may be employed in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass substrate, or a plurality of pairs of heat-resistant rolls are only near the end face of the glass substrate. You may employ | adopt the method of making it contact and extending | stretching. The tempered glass of the present invention is excellent in devitrification resistance and has a viscosity characteristic suitable for molding, and therefore has a property of easily molding a glass substrate by an overflow downdraw method.

オーバーフローダウンドロー法以外にも、種々の成形方法を採用することができる。例えば、ダウンドロー法(スロットダウン法、リドロー法等)、フロート法、ロールアウト法、プレス法等の成形方法を採用することができる。例えば、プレス法でガラス基板を成形すれば、小型のガラス基板を効率良く製造することができる。   In addition to the overflow downdraw method, various molding methods can be employed. For example, a molding method such as a downdraw method (slot down method, redraw method, etc.), a float method, a rollout method, or a press method can be employed. For example, if a glass substrate is formed by a pressing method, a small glass substrate can be efficiently produced.

本発明の強化ガラスの製造方法は、強化処理をイオン交換処理で行う。イオン交換処理は、例えば400〜550℃のKNO溶融塩中にガラスを1〜8時間浸漬することで行うことができる。イオン交換条件は、ガラスの粘度特性や、用途、板厚、内部の引っ張り応力等を考慮して最適な条件を選択すればよい。 In the method for producing tempered glass of the present invention, the tempering treatment is performed by ion exchange treatment. The ion exchange treatment can be performed, for example, by immersing the glass in KNO 3 molten salt at 400 to 550 ° C. for 1 to 8 hours. What is necessary is just to select optimal conditions for the ion exchange conditions in consideration of the viscosity characteristics of glass, application, plate thickness, internal tensile stress, and the like.

強化処理前にガラスを切断加工してもよいが、製造コストの観点から、強化処理後に強化ガラスを切断加工することが好ましい。   Although the glass may be cut before the tempering treatment, it is preferable to cut the tempered glass after the tempering treatment from the viewpoint of manufacturing cost.

以下、本発明を実施例に基づいて説明する。   Hereinafter, the present invention will be described based on examples.

表1〜3は、試料No.1〜12を示している。なお、表中の「未」の表示は、その特性が未測定であることを意味している。   Tables 1-3 show sample No. 1 to 12 are shown. In addition, the display of “not yet” in the table means that the characteristic is not measured.

表1〜3の各試料は次のようにして作製した。まず、表中のガラス組成となるように、ガラス原料を調合し、白金ポットを用いて1580℃で8時間溶融した。その後、溶融ガラスをカーボン板の上に流し出して基板形状に成形した。得られたガラス基板について、種々の特性を評価した。   Each sample of Tables 1-3 was produced as follows. First, the glass raw material was prepared so that it might become the glass composition in a table | surface, and it melted at 1580 degreeC for 8 hours using the platinum pot. Thereafter, the molten glass was poured out on the carbon plate and formed into a substrate shape. Various characteristics were evaluated about the obtained glass substrate.

密度は、周知のアルキメデス法によって測定した値である。   The density is a value measured by a well-known Archimedes method.

熱膨張係数は、ディラトメーターを用いて、30〜380℃の温度範囲における平均熱膨張係数を測定した値である。   A thermal expansion coefficient is the value which measured the average thermal expansion coefficient in the temperature range of 30-380 degreeC using the dilatometer.

歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336の方法に基づいて測定した値である。   The strain point Ps, the annealing point Ta, and the softening point Ts are values measured based on the method of ASTM C336.

高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperature at a high temperature viscosity of 10 4.0 dPa · s, 10 3.0 dPa · s, and 10 2.5 dPa · s is a value measured by a platinum ball pulling method.

液相温度は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。   The liquid phase temperature is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 μm), putting the glass powder remaining at 50 mesh (a sieve opening of 300 μm) in a platinum boat, and keeping it in a temperature gradient furnace for 24 hours. The value at which the temperature at which crystals precipitate is measured.

液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。   The liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.

なお、未強化ガラスと強化ガラスは、ガラスの表層において微視的にガラス組成が異なっているものの、全体としてガラス組成が実質的に相違していない。したがって、密度、粘度等の特性値は、未強化ガラスと強化ガラスで実質的に相違しない。   In addition, although the glass composition differs microscopically in the surface layer of glass, the glass composition as a whole is not substantially different between untempered glass and tempered glass. Therefore, characteristic values such as density and viscosity are not substantially different between untempered glass and tempered glass.

試料No.1〜12の両表面に光学研磨を施した後、イオン交換処理を行った。イオン交換処理は、試料No.1については455℃-2時間、試料No.2〜5、11、12については410℃−4時間、試料No.6〜10については440℃-6時間の条件で、KNO溶融塩中に各試料を浸漬することで行った。次に、各試料の表面を洗浄した後、表面応力計(株式会社東芝製FSM−6000)で干渉縞の本数とその間隔を観察し、ガラス表面近傍の圧縮応力層の圧縮応力値と圧縮応力層の厚みを算出した。算出に際し、各試料の屈折率を1.52、光学弾性定数を28[(nm/cm)/MPa]とした。 Sample No. After subjecting both surfaces 1 to 12 to optical polishing, ion exchange treatment was performed. The ion exchange treatment is performed using sample no. 1 for 455 ° C. for 2 hours, sample no. 2 to 5, 11 and 12, 410 ° C. for 4 hours, sample No. Under the condition of 440 ° C. -6 hours for 6-10, it was performed by immersing each sample in a KNO 3 molten salt. Next, after cleaning the surface of each sample, the number of interference fringes and their spacing were observed with a surface stress meter (FSM-6000 manufactured by Toshiba Corporation), and the compressive stress value and compressive stress of the compressive stress layer in the vicinity of the glass surface. The layer thickness was calculated. In the calculation, the refractive index of each sample was 1.52, and the optical elastic constant was 28 [(nm / cm) / MPa].

熱処理した後に、上記方法でガラス表面近傍の圧縮応力層の圧縮応力値と厚みを算出した。なお、熱処理に際し、室温から500℃まで5℃/分で昇温し、500℃30分間保持した後、500℃から室温まで10℃/分で降温した。   After the heat treatment, the compressive stress value and thickness of the compressive stress layer near the glass surface were calculated by the above method. In the heat treatment, the temperature was raised from room temperature to 500 ° C. at 5 ° C./minute, held at 500 ° C. for 30 minutes, and then lowered from 500 ° C. to room temperature at 10 ° C./minute.

表1、2から明らかなように、試料No.1〜10は、熱処理前の圧縮応力層の圧縮応力値が300MPa以上であり、圧縮応力層の厚みが10μm以上であった。また、試料No.1〜10は、歪点が571℃以上と高いため、熱処理しても、圧縮応力層の圧縮応力値が低下し難く、CIS系太陽電池等の基板を作製する際に圧縮応力が消失し難いと考えられる。さらに、試料No.1〜10は、高温粘度102.5dPa・sにおける温度が1650℃以下であるため、溶融性に優れている。 As apparent from Tables 1 and 2, Sample No. In Nos. 1 to 10, the compressive stress value of the compressive stress layer before the heat treatment was 300 MPa or more, and the thickness of the compressive stress layer was 10 μm or more. Sample No. Nos. 1 to 10 have a high strain point of 571 ° C. or higher, so that even when heat-treated, the compressive stress value of the compressive stress layer is difficult to decrease, and the compressive stress is not easily lost when a substrate such as a CIS solar cell is manufactured. it is conceivable that. Furthermore, sample no. Nos. 1 to 10 have excellent meltability because the temperature at a high temperature viscosity of 10 2.5 dPa · s is 1650 ° C. or lower.

一方、試料No.11は、歪点が高いものの、高温粘度102.5dPa・sにおける温度が1747℃であるため、溶融性が劣っていた。試料No.12は、歪点が460℃であるため、熱処理すると、圧縮応力が消失しやすいと考えられる。 On the other hand, sample No. Although No. 11 had a high strain point, the melt viscosity was inferior because the temperature at a high temperature viscosity of 10 2.5 dPa · s was 1747 ° C. Sample No. Since No. 12 has a strain point of 460 ° C., it is considered that compressive stress easily disappears after heat treatment.

以上の説明から明らかなように、本発明の強化ガラスは、太陽電池の基板、特に薄膜化合物太陽電池の基板、更にはCIS系太陽電池の基板に好適である。また、本発明の強化ガラスは、これらの用途以外にも、携帯電話、デジタルカメラ、携帯端末(PDA)、タッチパネルディスプレイ等のカバーガラスに好適である。さらに、本発明の強化ガラスは、高い機械的強度が要求される用途、例えば、窓ガラス、磁気ディスク基板、フラットパネルディスプレイ用基板、固体撮像素子用カバーガラス、食器への応用が期待できる。   As is clear from the above description, the tempered glass of the present invention is suitable for a substrate of a solar cell, particularly a substrate of a thin film compound solar cell, and further a substrate of a CIS solar cell. Moreover, the tempered glass of this invention is suitable for cover glasses, such as a mobile telephone, a digital camera, a portable terminal (PDA), a touch panel display, besides these uses. Furthermore, the tempered glass of the present invention can be expected to be applied to applications requiring high mechanical strength, for example, window glass, magnetic disk substrates, flat panel display substrates, cover glass for solid-state image sensors, and tableware.

Claims (16)

圧縮応力層を有する強化ガラスにおいて、
ガラス組成として、モル%で、SiO 50〜80%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbOおよびFを含有せず、モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.05〜2であると共に、基板形状であり、その板厚が1.0mm以下であることを特徴とする強化ガラス。
In tempered glass having a compressive stress layer,
As a glass composition, in mol%, SiO 2 50~80%, Al 2 O 3 7~16%, B 2 O 3 0~5%, Li 2 O 0~1%, Na 2 O 7.6~20% , K 2 O 3~15%, MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, contains substantially no as 2 O 3, Sb 2 O 3, PbO and F, the molar ratio (MgO + CaO + SrO + BaO ) / (Li 2 O + Na 2 O + K 2 O) is a tempered glass characterized by having a substrate shape and a plate thickness of 1.0 mm or less while having a value of 0.05-2.
ル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.3〜0.9であることを特徴とする請求項1に記載の強化ガラス。 Molar ratio (MgO + CaO + SrO + BaO ) / tempered glass according to claim 1, the value of (Li 2 O + Na 2 O + K 2 O) is characterized in that it is a from 0.3 to 0.9. 歪点が550℃以上であることを特徴とする請求項1または2に記載の強化ガラス。   The tempered glass according to claim 1 or 2, wherein a strain point is 550 ° C or more. 圧縮応力層の圧縮応力値が300MPa以上、且つ圧縮応力層の厚みが5μm以上であることを特徴とする請求項1〜3のいずれかに記載の強化ガラス。   The tempered glass according to claim 1, wherein the compressive stress layer has a compressive stress value of 300 MPa or more, and the compressive stress layer has a thickness of 5 μm or more. 500℃30分間の熱処理条件で、圧縮応力層の圧縮応力値の低下率が80%以下であることを特徴とする請求項1〜4のいずれかに記載の強化ガラス。   The tempered glass according to any one of claims 1 to 4, wherein a reduction rate of the compressive stress value of the compressive stress layer is 80% or less under a heat treatment condition of 500 ° C for 30 minutes. 500℃30分間の熱処理後において、圧縮応力層の圧縮応力値が100MPa以上、且つ圧縮応力層の厚みが5μm以上であることを特徴とする請求項1〜5のいずれかに記載の強化ガラス。   6. The tempered glass according to claim 1, wherein after the heat treatment at 500 ° C. for 30 minutes, the compression stress value of the compression stress layer is 100 MPa or more and the thickness of the compression stress layer is 5 μm or more. 熱膨張係数(30〜380℃)が40〜100×10−7/℃であることを特徴とする請求項1〜6のいずれかに記載の強化ガラス。 A thermal expansion coefficient (30-380 degreeC) is 40-100 * 10 < -7 > / degreeC, The tempered glass in any one of Claims 1-6 characterized by the above-mentioned. 液相温度が1400℃以下であることを特徴とする請求項1〜7のいずれかに記載の強化ガラス。   Liquid phase temperature is 1400 degrees C or less, Tempered glass in any one of Claims 1-7 characterized by the above-mentioned. 液相粘度が103.0dPa・s以上であることを特徴とする請求項1〜8のいずれかに記載の強化ガラス。 Liquid phase viscosity is 10 < 3.0 > dPa * s or more, Tempered glass in any one of Claims 1-8 characterized by the above-mentioned. 板厚が0.5mm以下であることを特徴とする請求項1〜9のいずれかに記載の強化ガラス。   Plate thickness is 0.5 mm or less, Tempered glass in any one of Claims 1-9 characterized by the above-mentioned. 太陽電池の基板に用いること特徴とする請求項10に記載の強化ガラス。   It uses for the board | substrate of a solar cell, The tempered glass of Claim 10 characterized by the above-mentioned. 薄膜化合物太陽電池の基板に用いること特徴とする請求項10に記載の強化ガラス。   It uses for the board | substrate of a thin film compound solar cell, Tempered glass of Claim 10 characterized by the above-mentioned. ディスプレイの基板に用いることを特徴とする請求項10に記載の強化ガラス。   It uses for the board | substrate of a display, Tempered glass of Claim 10 characterized by the above-mentioned. ガラス組成として、モル%で、SiO 55〜70%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbOおよびFを含有せず、モル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.1〜2であると共に、基板形状であり、その板厚が1.0mm以下であることを特徴とするガラス。 As a glass composition, in mol%, SiO 2 55~70%, Al 2 O 3 7~16%, B 2 O 3 0~5%, Li 2 O 0~1%, Na 2 O 7.6~20% , K 2 O 3~15%, MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, contains substantially no as 2 O 3, Sb 2 O 3, PbO and F, the molar ratio (MgO + CaO + SrO + BaO ) / (Li 2 O + Na 2 O + K 2 O) has a value of 0.1 to 2 , a substrate shape, and a plate thickness of 1.0 mm or less. ガラス組成として、モル%で、SiO 55〜70%、Al 7〜16%、B 0〜5%、LiO 0〜1%、NaO 7.6〜20%、KO 3〜15%、MgO+CaO+SrO+BaO 〜13%、SrO 0〜3%を含有し、実質的にAs、Sb、PbO、Fを含有せず、且つモル比(MgO+CaO+SrO+BaO)/(LiO+NaO+KO)の値が0.1〜2になるように、ガラス原料を溶融し、板厚1.0mm以下の基板形状に成形した後、イオン交換処理を行うことにより、ガラスに圧縮応力層を形成することを特徴とする強化ガラスの製造方法。 As a glass composition, in mol%, SiO 2 55~70%, Al 2 O 3 7~16%, B 2 O 3 0~5%, Li 2 O 0~1%, Na 2 O 7.6~20% , K 2 O 3~15%, MgO + CaO + SrO + BaO 8 ~13%, containing 0 to 3% SrO, substantially contains no as 2 O 3, Sb 2 O 3, PbO, F, and the molar ratio (MgO + CaO + SrO + BaO ) / (Li 2 O + Na 2 O + K 2 O) is melted so that the glass raw material has a value of 0.1 to 2 , and after forming into a substrate shape having a plate thickness of 1.0 mm or less, an ion exchange treatment is performed. A method for producing tempered glass, characterized in that a compressive stress layer is formed on the glass. フロート法で基板形状に成形することを特徴とする請求項15に記載の強化ガラスの製造方法。   The method for producing tempered glass according to claim 15, wherein the glass is formed into a substrate shape by a float process.
JP2013218020A 2008-08-04 2013-10-21 Tempered glass and method for producing the same Active JP5556947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218020A JP5556947B2 (en) 2008-08-04 2013-10-21 Tempered glass and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008200330 2008-08-04
JP2008200330 2008-08-04
JP2013218020A JP5556947B2 (en) 2008-08-04 2013-10-21 Tempered glass and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009022999A Division JP5614607B2 (en) 2008-08-04 2009-02-03 Tempered glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014062041A JP2014062041A (en) 2014-04-10
JP5556947B2 true JP5556947B2 (en) 2014-07-23

Family

ID=42186299

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009022999A Active JP5614607B2 (en) 2008-08-04 2009-02-03 Tempered glass and method for producing the same
JP2013218020A Active JP5556947B2 (en) 2008-08-04 2013-10-21 Tempered glass and method for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009022999A Active JP5614607B2 (en) 2008-08-04 2009-02-03 Tempered glass and method for producing the same

Country Status (1)

Country Link
JP (2) JP5614607B2 (en)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050988B3 (en) * 2009-05-12 2010-11-04 Schott Ag Thin film solar cell
US8647995B2 (en) 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
WO2011049146A1 (en) * 2009-10-20 2011-04-28 旭硝子株式会社 Glass sheet for cu-in-ga-se solar cells, and solar cells using same
CN102092940A (en) * 2009-12-11 2011-06-15 肖特公开股份有限公司 Aluminum silicate glass for touch screen
KR101204697B1 (en) * 2010-04-14 2012-11-26 (주)보원종합기술 Manufacturing process of tempered glass and tempered glass thereby
CN102473426B (en) * 2010-04-27 2015-04-15 旭硝子株式会社 Method for producing magnetic disk and method for producing glass substrate for information recording medium
US8778820B2 (en) 2010-05-27 2014-07-15 Corning Incorporated Glasses having low softening temperatures and high toughness
DE102010031114B4 (en) * 2010-07-08 2014-06-05 Schott Ag Glass with excellent resistance to surface damage and use of alkaline earth phosphates to increase the surface resistance of glass
JP2012036074A (en) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd Glass plate
KR20130100244A (en) * 2010-07-26 2013-09-10 아사히 가라스 가부시키가이샤 Glass substrate for cu-in-ga-se solar battery, and solar battery using same
US9434644B2 (en) 2010-09-30 2016-09-06 Avanstrate Inc. Cover glass and method for producing cover glass
WO2012053549A1 (en) * 2010-10-20 2012-04-26 旭硝子株式会社 Glass substrate for cu-in-ga-se solar cells and solar cell using same
CN102464448B (en) * 2010-11-11 2013-10-09 中国南玻集团股份有限公司 Glass plate used for film solar battery and its preparation method
JP5834793B2 (en) * 2010-12-24 2015-12-24 旭硝子株式会社 Method for producing chemically strengthened glass
JP5612233B1 (en) * 2010-12-24 2014-10-22 旭硝子株式会社 Glass for chemical strengthening
CN102531384B (en) 2010-12-29 2019-02-22 安瀚视特股份有限公司 Cover glass and its manufacturing method
JP5896338B2 (en) * 2011-01-18 2016-03-30 日本電気硝子株式会社 Method for producing tempered glass and method for producing tempered glass plate
JP5839338B2 (en) * 2011-01-18 2016-01-06 日本電気硝子株式会社 Method for producing tempered glass sheet
JP2012148909A (en) * 2011-01-18 2012-08-09 Nippon Electric Glass Co Ltd Tempered glass and tempered glass plate
US8835007B2 (en) 2011-01-19 2014-09-16 Nippon Electric Glass Co., Ltd. Tempered glass and tempered glass sheet
JP5850401B2 (en) * 2011-02-10 2016-02-03 日本電気硝子株式会社 Tempered glass plate
JP5915892B2 (en) * 2011-05-10 2016-05-11 日本電気硝子株式会社 Glass plate for thin film solar cell
US9133052B2 (en) 2011-05-10 2015-09-15 Nippon Electric Glass Co., Ltd. Glass plate for thin film solar cell
TWI591039B (en) * 2011-07-01 2017-07-11 康寧公司 Ion exchangeable glass with high compressive stress
JP6410108B2 (en) * 2011-07-19 2018-10-24 日本電気硝子株式会社 Glass substrate
JP2013043795A (en) * 2011-08-23 2013-03-04 Nippon Electric Glass Co Ltd Tempered glass and method of manufacturing the same
JP5850392B2 (en) * 2011-09-20 2016-02-03 日本電気硝子株式会社 Glass plate
JP2013086989A (en) * 2011-10-14 2013-05-13 Nippon Electric Glass Co Ltd Glass plate, method for producing the same, and tempered glass plate
US9517966B2 (en) 2011-10-25 2016-12-13 Corning Incorporated Glass compositions with improved chemical and mechanical durability
CA2966274C (en) 2011-10-25 2020-02-18 Corning Incorporated Glass compositions with improved chemical and mechanical durability
US10350139B2 (en) 2011-10-25 2019-07-16 Corning Incorporated Pharmaceutical glass packaging assuring pharmaceutical sterility
MX366947B (en) * 2011-10-25 2019-07-30 Corning Inc Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability.
EP2771300B1 (en) 2011-10-25 2017-12-20 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
CN104024171A (en) * 2011-10-31 2014-09-03 旭硝子株式会社 Glass substrate and method for producing same
KR20190122267A (en) 2011-11-16 2019-10-29 코닝 인코포레이티드 Ion exchangeable glass with high crack initiation threshold
CN106746602A (en) 2011-11-18 2017-05-31 旭硝子株式会社 Chemical enhanced use glass and chemically reinforced glass
MX2014010334A (en) 2012-02-28 2014-09-22 Corning Inc Glass articles with low-friction coatings.
US11497681B2 (en) 2012-02-28 2022-11-15 Corning Incorporated Glass articles with low-friction coatings
US10737973B2 (en) 2012-02-28 2020-08-11 Corning Incorporated Pharmaceutical glass coating for achieving particle reduction
US9701580B2 (en) * 2012-02-29 2017-07-11 Corning Incorporated Aluminosilicate glasses for ion exchange
WO2013181122A2 (en) * 2012-05-31 2013-12-05 Corning Incorporated Ion exchangeable transition metal-containing glasses
US10273048B2 (en) 2012-06-07 2019-04-30 Corning Incorporated Delamination resistant glass containers with heat-tolerant coatings
US20150004390A1 (en) * 2012-06-08 2015-01-01 Nippon Electric Glass Co., Ltd. Tempered glass, tempered glass plate, and glass for tempering
JP6168288B2 (en) * 2012-06-13 2017-07-26 日本電気硝子株式会社 Tempered glass and tempered glass plate
US9034442B2 (en) 2012-11-30 2015-05-19 Corning Incorporated Strengthened borosilicate glass containers with improved damage tolerance
KR102159763B1 (en) * 2012-08-17 2020-09-25 코닝 인코포레이티드 Ultra-thin strengthened glasses
JP2014097916A (en) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd Glass plate for thin film solar cell and method of producing the same
US10117806B2 (en) 2012-11-30 2018-11-06 Corning Incorporated Strengthened glass containers resistant to delamination and damage
JP2015061808A (en) * 2012-12-21 2015-04-02 日本電気硝子株式会社 Strengthened glass, strengthened glass plate, strengthened glass container, and glass for strengthening
WO2014166250A1 (en) * 2013-04-10 2014-10-16 Schott Glass Technologies (Suzhou) Co. Ltd. Chemically toughened glass
WO2014168219A1 (en) * 2013-04-11 2014-10-16 旭硝子株式会社 Fire-preventing multilayer glass
US9603775B2 (en) 2013-04-24 2017-03-28 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707155B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9713572B2 (en) 2013-04-24 2017-07-25 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9839579B2 (en) 2013-04-24 2017-12-12 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707154B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9700485B2 (en) 2013-04-24 2017-07-11 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9707153B2 (en) 2013-04-24 2017-07-18 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9700486B2 (en) 2013-04-24 2017-07-11 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9717648B2 (en) 2013-04-24 2017-08-01 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9717649B2 (en) 2013-04-24 2017-08-01 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
US9849066B2 (en) 2013-04-24 2017-12-26 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
JP5704767B2 (en) * 2013-04-26 2015-04-22 日本電気硝子株式会社 Tempered glass and manufacturing method thereof
JP2014240346A (en) * 2013-05-15 2014-12-25 日本電気硝子株式会社 Glass plate for tempering and tempered glass plate
WO2014189118A1 (en) * 2013-05-24 2014-11-27 日本電気硝子株式会社 Method for producing toughened glass plate
JP6597950B2 (en) * 2013-07-24 2019-10-30 日本電気硝子株式会社 Tempered glass and tempered glass
US10941071B2 (en) * 2013-08-02 2021-03-09 Corning Incorporated Hybrid soda-lime silicate and aluminosilicate glass articles
WO2015127583A1 (en) * 2014-02-25 2015-09-03 Schott Ag Chemically toughened glass article with low coefficient of thermal expansion
US9902644B2 (en) * 2014-06-19 2018-02-27 Corning Incorporated Aluminosilicate glasses
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
KR102270650B1 (en) 2014-09-05 2021-06-30 코닝 인코포레이티드 Glass Articles and Methods for Improving the Reliability of Glass Articles
CN107001102A (en) 2014-11-26 2017-08-01 康宁股份有限公司 Method for production enhancement and durable glass container
CN107810110B (en) * 2015-06-26 2020-03-10 康宁股份有限公司 Glass with high surface strength
EP3150564B1 (en) 2015-09-30 2018-12-05 Corning Incorporated Halogenated polyimide siloxane chemical compositions and glass articles with halogenated polylmide siloxane low-friction coatings
BR112018008744B1 (en) 2015-10-30 2022-09-06 Corning Incorporated GLASS ARTICLES WITH METALLIC OXIDE AND MIXED POLYMER COATING
CN108698922B (en) 2016-01-12 2020-02-28 康宁股份有限公司 Thin thermally and chemically strengthened glass-based articles
US20170320769A1 (en) * 2016-05-06 2017-11-09 Corning Incorporated Glass compositions that retain high compressive stress after post-ion exchange heat treatment
KR102515600B1 (en) * 2016-11-07 2023-03-29 코닝 인코포레이티드 lithium-containing glass
US10065880B2 (en) 2016-11-07 2018-09-04 Corning Incorporated Lithium containing glasses
JP7303482B2 (en) * 2017-12-26 2023-07-05 日本電気硝子株式会社 cover glass
DE102018116464A1 (en) * 2018-07-06 2020-01-09 Schott Ag Chemically toughened, corrosion-resistant glasses
CN109437555B (en) * 2018-11-07 2021-09-28 中国南玻集团股份有限公司 Aluminosilicate glass, preparation method thereof, cover plate and display device
JP7445186B2 (en) 2018-12-07 2024-03-07 日本電気硝子株式会社 glass
CN109836037A (en) * 2019-03-22 2019-06-04 科立视材料科技有限公司 A kind of phosphorus alumina silicate glass with low cost high-voltage stress under compression layer
CN115072992A (en) * 2019-04-29 2022-09-20 成都光明光电股份有限公司 Glass suitable for chemical strengthening and chemically strengthened glass
KR20220044538A (en) 2019-08-06 2022-04-08 코닝 인코포레이티드 Glass laminate with buried stress spikes to arrest cracks and method of making same
WO2024043194A1 (en) * 2022-08-24 2024-02-29 日本電気硝子株式会社 Strengthened glass plate, strengthened glass plate production method, and glass plate to be strengthened

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3212612C2 (en) * 1982-04-05 1985-12-19 Schott Glaswerke, 6500 Mainz Chemically hardenable watch glass with high Knoop hardness in the system SiO &darr; 2 &darr; -Al &darr; 2 &darr; O &darr; 3 &darr; -MgO-Na &darr; 2 &darr; O-K &darr; 2 &darr; O (-B &darr; 2 &darr; O &darr; 3 &darr; La &darr; 2 &darr; O &darr; 3 &darr;)
JPS60180936A (en) * 1984-02-27 1985-09-14 Nippon Electric Glass Co Ltd Production of heat resistant glass product having high strength
JPS63230536A (en) * 1987-03-18 1988-09-27 Nippon Sheet Glass Co Ltd Thallium-containing optical glass
JPS63252938A (en) * 1987-04-10 1988-10-20 Asahi Glass Co Ltd High expansive glass composition
US5674790A (en) * 1995-12-15 1997-10-07 Corning Incorporated Strengthening glass by ion exchange
JP3573649B2 (en) * 1999-03-25 2004-10-06 セントラル硝子株式会社 Press molding glass and substrate glass for information recording media
JP2002265233A (en) * 2001-03-05 2002-09-18 Nippon Sheet Glass Co Ltd Glass preform for laser beam machining and glass for laser beam machining
JP2004099370A (en) * 2002-09-10 2004-04-02 Nippon Electric Glass Co Ltd Fire prevention glass
JP2004131314A (en) * 2002-10-09 2004-04-30 Asahi Glass Co Ltd Chemically strengthened glass substrate with transparent conductive film and its manufacturing process
CN104591536B (en) * 2006-06-08 2018-08-28 Hoya株式会社 The glass and chemically reinforced glass used for substrate for information recording medium
JP5396859B2 (en) * 2006-11-22 2014-01-22 旭硝子株式会社 Glass for information recording medium substrate
US7666511B2 (en) * 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate

Also Published As

Publication number Publication date
JP5614607B2 (en) 2014-10-29
JP2010059038A (en) 2010-03-18
JP2014062041A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5556947B2 (en) Tempered glass and method for producing the same
JP5825703B2 (en) Chemically tempered glass
JP5875133B2 (en) Tempered glass substrate
JP5589252B2 (en) Tempered glass substrate
JP5743125B2 (en) Tempered glass and tempered glass substrate
JP5904426B2 (en) Tempered glass and method for producing the same
JP5365974B2 (en) Tempered glass substrate and manufacturing method thereof
JP5920554B1 (en) Method for producing tempered glass substrate
JP5867574B2 (en) Tempered glass substrate and manufacturing method thereof
JP5339173B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate
JP5294150B2 (en) Method for producing tempered glass
JP5429684B2 (en) Tempered glass substrate and manufacturing method thereof
WO2012099053A1 (en) Tempered glass, and tempered glass plate
JP5796905B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate
JP5664939B2 (en) Method for producing tempered glass
JP5413817B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate
JP5648945B1 (en) Method for producing tempered glass

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150