JP2014097916A - Glass plate for thin film solar cell and method of producing the same - Google Patents

Glass plate for thin film solar cell and method of producing the same Download PDF

Info

Publication number
JP2014097916A
JP2014097916A JP2012251808A JP2012251808A JP2014097916A JP 2014097916 A JP2014097916 A JP 2014097916A JP 2012251808 A JP2012251808 A JP 2012251808A JP 2012251808 A JP2012251808 A JP 2012251808A JP 2014097916 A JP2014097916 A JP 2014097916A
Authority
JP
Japan
Prior art keywords
glass plate
sro
solar cell
thin film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012251808A
Other languages
Japanese (ja)
Inventor
Masato Rokusha
真人 六車
Hironori Takase
寛典 高瀬
Yusuke Tomita
佑輔 冨田
Yoshio Iwatsubo
喜雄 岩坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012251808A priority Critical patent/JP2014097916A/en
Publication of JP2014097916A publication Critical patent/JP2014097916A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strain point glass plate which enables formation of a sulfate preventive film which has scratch preventive effect and is easy to be cleaned and removed.SOLUTION: A glass plate for thin film solar cell contains, as a glass composition, SiO45 to 60 mass%, AlOover 8.0 to 18 mass%, BO0 to less than 15.0 mass%, MgO+CaO+SrO+BaO 1 to 40 mass%, SrO 1 to 20 mass%, and NaO+KO 1 to 30 mass%, where the mass ratio SrO/BaO is 1 or more and the strain point is over 590°C.

Description

本発明は薄膜太陽電池用ガラス板に関し、特にCIS系太陽電池、CdTe系太陽電池に好適なガラス板に関する。   The present invention relates to a glass plate for a thin film solar cell, and more particularly to a glass plate suitable for a CIS solar cell and a CdTe solar cell.

薄膜太陽電池、例えばCIS系太陽電池では、Cu、In、Ga、Seからなるカルコパイライト型化合物半導体、Cu(InGa)Seが光電変換膜としてガラス板上に形成される。 In a thin film solar cell, for example, a CIS solar cell, a chalcopyrite compound semiconductor made of Cu, In, Ga, and Se, Cu (InGa) Se 2 is formed on a glass plate as a photoelectric conversion film.

多元蒸着法、セレン化法等によりCu、In、Ga、Seをガラス板上に塗布して、カルコパイライト型化合物半導体を形成するためには、500〜600℃程度の熱処理工程が必要になる。   In order to form a chalcopyrite type compound semiconductor by applying Cu, In, Ga, and Se on a glass plate by a multi-source deposition method, a selenization method, or the like, a heat treatment step of about 500 to 600 ° C. is required.

CdTe系太陽電池においても、Cd、Teからなる光電変換膜がガラス基板上に形成される。この場合も、500℃〜600℃程度の熱処理工程が必要になる。   Also in the CdTe solar cell, a photoelectric conversion film made of Cd and Te is formed on a glass substrate. Also in this case, a heat treatment step of about 500 ° C. to 600 ° C. is required.

従来、CIS系太陽電池、CdTe系太陽電池等では、ガラス基板として、ソーダ石灰ガラスが用いられていた。しかし、ソーダ石灰ガラスは、高温の熱処理工程で熱変形や熱収縮が生じ易い。この問題を解決するために、現在では、高歪点ガラスを用いることが検討されている(特許文献1参照)。   Conventionally, soda lime glass has been used as a glass substrate in CIS solar cells, CdTe solar cells and the like. However, soda-lime glass is likely to be thermally deformed or shrunk in a high-temperature heat treatment process. In order to solve this problem, at present, the use of high strain point glass has been studied (see Patent Document 1).

特開平11−135819号公報JP-A-11-135819

ところで、成形直後のガラス板(ガラスリボン)の表面に硫酸塩保護膜を形成すると、その後の工程(例えば、搬送工程等)でガラス板に傷が付き難くなる。しかし、従来の高歪点ガラス板に対して、一旦、硫酸塩保護膜を形成すると、製品出荷の前に、水洗浄等により硫酸塩保護膜を除去し難くなり、結果として、ガラス板の製造コストが高騰し易くなる。   By the way, if a sulfate protective film is formed on the surface of a glass plate (glass ribbon) immediately after molding, the glass plate is less likely to be damaged in subsequent steps (for example, a conveying step). However, once a sulfate protective film is formed on a conventional high strain point glass plate, it is difficult to remove the sulfate protective film by water washing or the like before product shipment. Costs are likely to rise.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、傷防止効果を有し、且つ洗浄除去し易い硫酸塩保護膜を形成し得る高歪点ガラス板を創案することである。   The present invention has been made in view of the above circumstances, and its technical problem is to devise a high strain point glass plate capable of forming a sulfate protective film that has a scratch-preventing effect and is easy to wash and remove. is there.

本発明者等は、鋭意検討した結果、ガラス板のガラス組成及びガラス特性を所定範囲に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜18%、B 0〜15.0未満%、MgO+CaO+SrO+BaO 1〜40%、SrO 1〜20%、NaO+KO 1〜30%を含有し、質量比SrO/BaOが1以上であり、且つ歪点が590℃超であることを特徴とする。ここで、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を指す。「NaO+KO」は、NaOとKOの合量を指す。「歪点」は、ASTM C336−71に基づいて測定した値を指す。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by regulating the glass composition and glass characteristics of the glass plate within a predetermined range, and propose the present invention. That is, the glass plate for a thin-film solar cell of the present invention has a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8.0 super ~18%, B 2 O 3 less than 0 to 15.0 %, MgO + CaO + SrO + BaO 1-40%, SrO 1-20%, Na 2 O + K 2 O 1-30%, mass ratio SrO / BaO is 1 or more, and strain point is over 590 ° C. And Here, “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO and BaO. “Na 2 O + K 2 O” refers to the total amount of Na 2 O and K 2 O. “Strain point” refers to a value measured based on ASTM C336-71.

本発明の薄膜太陽電池用ガラス板では、SrOの含有量が1〜20質量%、質量比SrO/BaOが1以上に規制されている。ガラス組成中にSrOを導入すると、溶解性、耐熱性、耐失透性を高めることができる。   In the glass plate for a thin film solar cell of the present invention, the SrO content is regulated to 1 to 20% by mass and the mass ratio SrO / BaO is regulated to 1 or more. When SrO is introduced into the glass composition, solubility, heat resistance, and devitrification resistance can be improved.

本発明の調査によると、質量比SrO/BaOを1以上に規制すれば、傷防止効果を有し、且つ洗浄除去し易い硫酸塩保護膜を形成し易くなる。BaOと比較して、SrOの含有量を増加させると、ガラス板の表面に亜硫酸ガス等を吹き付けた場合に、硫酸塩保護膜として、易水溶性のSrSOが優先的に析出し易くなり、製品出荷の前に、水洗浄等により硫酸塩保護膜を除去し易くなる。結果として、ガラス板の製造コストを低廉化し易くなる。一方、SrOと比較して、BaOの含有量を増加させると、ガラス板の表面に亜硫酸ガス等を吹き付けた場合に、硫酸塩保護膜として、難水溶性のBaSOが優先的に析出し易くなる。 According to the investigation of the present invention, if the mass ratio SrO / BaO is restricted to 1 or more, it becomes easy to form a sulfate protective film that has a scratch-preventing effect and is easy to clean and remove. When the content of SrO is increased as compared with BaO, when a sulfurous acid gas or the like is sprayed on the surface of the glass plate, a water-soluble SrSO 4 is easily preferentially precipitated as a sulfate protective film, It becomes easy to remove the sulfate protection film by washing with water before shipping the product. As a result, the manufacturing cost of the glass plate can be easily reduced. On the other hand, when the content of BaO is increased as compared with SrO, when a sulfurous acid gas or the like is sprayed on the surface of the glass plate, a poorly water-soluble BaSO 4 is preferentially precipitated as a sulfate protective film. Become.

また、本発明の薄膜太陽電池用ガラス板では、歪点が590℃超に規制されている。このようにすれば、高温で光電変換膜を成膜し易くなり、光電変換膜の結晶品位が改善されると共に、ガラス板に熱変形や熱収縮が生じ難くなる。結果として、薄膜太陽電池の光電変換効率を十分に高めることができる。   Moreover, in the glass plate for thin film solar cells of this invention, the strain point is controlled above 590 degreeC. If it does in this way, it will become easy to form a photoelectric converting film in high temperature, the crystal quality of a photoelectric converting film will be improved, and it will become difficult to produce thermal deformation and heat contraction to a glass plate. As a result, the photoelectric conversion efficiency of the thin film solar cell can be sufficiently increased.

第二に、本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SrO 3〜20%、BaO 2〜15%を含有し、質量比SrO/BaOが1.2以上であることが好ましい。このようにすれば、傷防止効果を有し、且つ洗浄除去し易い硫酸塩保護膜を更に形成し易くなる。   2ndly, the glass plate for thin film solar cells of this invention is a glass composition by mass%, contains SrO 3-20%, BaO 2-15%, and mass ratio SrO / BaO is 1.2 or more. It is preferable. In this way, it becomes easier to form a sulfate protective film that has an effect of preventing scratches and is easy to clean and remove.

第三に、本発明の薄膜太陽電池用ガラス板は、化学強化処理が行われていることが好ましい。   Thirdly, it is preferable that the glass plate for thin film solar cells of the present invention is subjected to a chemical strengthening treatment.

第四に、本発明の薄膜太陽電池用ガラス板は、化学強化処理が行われていないことが好ましい。   Fourthly, it is preferable that the glass plate for thin film solar cells of the present invention is not subjected to chemical strengthening treatment.

第五に、本発明の薄膜太陽電池用ガラス板は、CIS系太陽電池に用いることが好ましい。   Fifth, the glass plate for thin film solar cell of the present invention is preferably used for a CIS solar cell.

第六に、本発明の薄膜太陽電池用ガラス板は、CdTe系太陽電池に用いることが好ましい。   Sixth, the glass plate for a thin film solar cell of the present invention is preferably used for a CdTe solar cell.

第七に、本発明の薄膜太陽電池用ガラス板は、歪点が590℃超であり、且つ少なくとも一方の表面に硫酸塩保護膜を有し、該硫酸塩保護膜中のモル比Sr/Baが1以上であることを特徴とする。ここで、「モル比Sr/Ba比」は、Sr原子とBa原子のモル比である。   Seventh, the glass plate for a thin film solar cell of the present invention has a strain point of over 590 ° C. and a sulfate protective film on at least one surface, and the molar ratio Sr / Ba in the sulfate protective film. Is 1 or more. Here, the “molar ratio Sr / Ba ratio” is the molar ratio of Sr atoms to Ba atoms.

第八に、本発明の薄膜太陽電池用ガラス板の製造方法は、フロート法により、歪点が590℃超のガラス板を成形した上で、該ガラス板の少なくとも一方の表面に対して、モル比Sr/Baが1以上の硫酸塩保護膜を形成した後、該硫酸塩保護膜を除去することを特徴とする。   Eighth, the method for producing a glass plate for a thin-film solar cell of the present invention comprises forming a glass plate having a strain point of over 590 ° C. by a float process, and then forming a mole with respect to at least one surface of the glass plate. A sulfate protective film having a ratio Sr / Ba of 1 or more is formed, and then the sulfate protective film is removed.

第九に、本発明の硫酸塩保護膜は、歪点590℃超の薄膜太陽電池用ガラス板の表面を保護するための硫酸塩保護膜であって、該硫酸塩保護膜中のモル比Sr/Baが1以上であることを特徴とする。   Ninth, the sulfate protective film of the present invention is a sulfate protective film for protecting the surface of a glass plate for a thin film solar cell having a strain point exceeding 590 ° C., and the molar ratio Sr in the sulfate protective film is / Ba is 1 or more.

本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜18%、B 0〜15.0未満%、MgO+CaO+SrO+BaO 1〜40%、SrO 1〜20%、NaO+KO 1〜30%を含有し、質量比SrO/BaOが1以上である。上記のように、各成分の含有量を規制した理由を下記に示す。 The glass plate for a thin-film solar battery of the present invention has, as a glass composition, mass%, SiO 2 45-60%, Al 2 O 3 more than 8.0-18%, B 2 O 3 0-15.0%, MgO + CaO + SrO + BaO 1~40 %, SrO 1~20%, containing 2 O 1~30% Na 2 O + K, at one or more mass ratio SrO / BaO. The reason why the content of each component is regulated as described above is shown below.

SiOは、ガラスネットワークを形成する成分である。SiOの含有量は45〜60%、45〜54%、特に49〜52%が好ましい。SiOの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性や成形性が低下し易くなることに加えて、熱膨張係数が低くなり過ぎて、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合させ難くなる。なお、本発明に係るガラス組成系では、SiOの含有量を増加させても、歪点があまり上昇しない。一方、SiOの含有量が少な過ぎると、耐失透性が低下し易くなる。更に、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなり、結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に割れが発生し易くなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 45 to 60%, 45 to 54%, particularly 49 to 52%. If the SiO 2 content is too large, the high-temperature viscosity becomes unduly high and the meltability and moldability tend to decrease, and the thermal expansion coefficient becomes too low. It becomes difficult to match the thermal expansion coefficient of the conversion film. In the glass composition system according to the present invention, the strain point does not increase so much even when the content of SiO 2 is increased. On the other hand, if the content of SiO 2 is too small, devitrification resistance is liable to decrease. Furthermore, the thermal expansion coefficient becomes too high, and the thermal shock resistance of the glass plate is likely to be lowered. As a result, the glass plate is likely to be cracked in the heat treatment step when the thin film solar cell is manufactured.

Alは、歪点を高める成分であると共に、耐候性、化学的耐久性を高める成分である。Alの含有量は8.0超〜18%、10.0超〜15%、11.0超〜14.5%、特に11.5〜14%が好ましい。Alの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性や成形性が低下し易くなる。一方、Alの含有量が少な過ぎると、歪点が低下し易くなる。 Al 2 O 3 is a component that increases the strain point and also increases weather resistance and chemical durability. The content of Al 2 O 3 is preferably more than 8.0 to 18%, more than 10.0 to 15%, more than 11.0 to 14.5%, particularly preferably 11.5 to 14%. When the content of Al 2 O 3 is too large, the high temperature viscosity becomes unduly high, the meltability and the formability tends to decrease. On the other hand, when the content of Al 2 O 3 is too small, the strain point tends to decrease.

は、ガラスの粘度を下げることにより、溶融温度や成形温度を低下させる成分であるが、歪点を低下させる成分であり、また溶融時の成分揮発に伴い、炉耐火物材料を消耗させる成分である。よって、Bの含有量は0〜15.0未満%、0〜1.5%、特に0〜0.10未満%が好ましい。 B 2 O 3 is a component that lowers the melting temperature and molding temperature by lowering the viscosity of the glass, but it is a component that lowers the strain point, and with the component volatilization at the time of melting, the furnace refractory material is changed. It is a component to be consumed. Therefore, the content of B 2 O 3 is preferably 0 to less than 15.0%, 0 to 1.5%, particularly preferably 0 to less than 0.10%.

MgO+CaO+SrO+BaOは、歪点を低下させずに、高温粘度を低下させる成分である。MgO+CaO+SrO+BaOの含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰する。一方、MgO+CaO+SrO+BaOの含有量が少な過ぎると、高温粘度が高くなり過ぎる。よって、MgO+CaO+SrO+BaOの含有量は1〜40%、12〜39%、15〜37%、17.0超〜33%、18〜30%、特に19〜25%が好ましい。   MgO + CaO + SrO + BaO is a component that lowers the high temperature viscosity without lowering the strain point. When there is too much content of MgO + CaO + SrO + BaO, devitrification resistance will fall easily and raw material cost will rise. On the other hand, when the content of MgO + CaO + SrO + BaO is too small, the high temperature viscosity becomes too high. Therefore, the content of MgO + CaO + SrO + BaO is preferably 1 to 40%, 12 to 39%, 15 to 37%, more than 17.0 to 33%, 18 to 30%, particularly 19 to 25%.

MgOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、MgOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。しかし、MgOは、ZrOと共存する場合に、ZrO系の失透結晶を著しく析出させることにより、液相粘度を著しく低下させる成分である。また、CaOと共存する場合に、CaMgSiO系の失透結晶を析出させ易い成分である。よって、MgOの含有量は0〜10%、0〜3.7未満%、0.01〜3%、0.02〜2%、特に0.03〜0.5%が好ましい。 MgO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, MgO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. However, when MgO coexists with ZrO 2 , it is a component that remarkably lowers the liquid phase viscosity by precipitating ZrO 2 -based devitrified crystals. Further, when coexisting with CaO, it is a component that easily deposits a CaMgSiO-based devitrified crystal. Therefore, the content of MgO is preferably 0 to 10%, 0 to less than 3.7%, 0.01 to 3%, 0.02 to 2%, particularly 0.03 to 0.5%.

CaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、CaOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。CaOの含有量は0〜10%、0.1〜9%、2.9超〜8%、3〜7.5%、特に4.2〜6%が好ましい。CaOの含有量が多過ぎると、耐失透性が低下し易くなり、ガラス板に成形し難くなる。   CaO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, CaO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. The content of CaO is preferably 0 to 10%, 0.1 to 9%, more than 2.9 to 8%, 3 to 7.5%, and particularly preferably 4.2 to 6%. When there is too much content of CaO, devitrification resistance will fall easily and it will become difficult to shape | mold into a glass plate.

SrOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、SrOは、ZrOと共存する場合に、ZrO系の失透結晶を析出し難くする成分である。SrOの含有量は1〜20%、3〜18%、4.0超〜15%、5〜14%、7.0超〜13%、特に9.2〜12.5%が好ましい。SrOの含有量が多過ぎると、長石族の失透結晶が析出し易くなり、また原料コストが高騰する。 SrO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Also, SrO, when coexisting with ZrO 2, is a component that hardly deposited devitrification crystals ZrO 2 system. The content of SrO is preferably 1 to 20%, 3 to 18%, more than 4.0 to 15%, 5 to 14%, more than 7.0 to 13%, particularly preferably 9.2 to 12.5%. If the content of SrO is too large, feldspar group devitrified crystals are likely to precipitate, and the raw material cost increases.

BaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。BaOの含有量は0〜20%、2〜15%、2.0超〜14.0未満%、2.0超〜8.0未満%、特に2.0超〜5.0未満%が好ましい。BaOの含有量が多過ぎると、バリウム長石族の失透結晶が析出し易くなり、また原料コストが高騰する。更に、密度が増大して、支持部材のコストが高騰し易くなる。なお、BaOの含有量が少な過ぎると、高温粘度が高くなり、溶融性や成形性が低下する傾向がある。   BaO is a component that lowers the high-temperature viscosity and improves the meltability and moldability. The content of BaO is preferably 0 to 20%, 2 to 15%, more than 2.0 to less than 14.0%, more than 2.0 to less than 8.0%, particularly preferably more than 2.0 to less than 5.0%. . When there is too much content of BaO, the devitrification crystal | crystallization of a barium feldspar group will become easy to precipitate, and raw material cost will rise. Furthermore, the density increases, and the cost of the support member is likely to increase. In addition, when there is too little content of BaO, high temperature viscosity will become high and there exists a tendency for a meltability and a moldability to fall.

質量比SrO/BaOを変化させると、硫酸塩保護膜の成分を変化させることが可能になる。質量比SrO/BaOは1以上、1.2以上、1.5以上、2〜10、特に2.2〜8が好ましい。質量比SrO/BaOが小さ過ぎると、硫酸塩保護膜として、難水溶性のBaSOが析出し易くなる。なお、質量比SrO/BaOが大き過ぎると、硫酸塩保護膜として、易水溶性のSrSOが析出し易くなるが、原料コストが高騰し易くなると共に、耐失透性が低下し易くなる。 When the mass ratio SrO / BaO is changed, the components of the sulfate protective film can be changed. The mass ratio SrO / BaO is preferably 1 or more, 1.2 or more, 1.5 or more, 2 to 10, particularly 2.2 to 8. When the mass ratio SrO / BaO is too small, BaSO 4 that is hardly water-soluble is easily deposited as a sulfate protective film. If the mass ratio SrO / BaO is too large, easily water-soluble SrSO 4 is likely to precipitate as a sulfate protective film, but the raw material cost is likely to increase and the devitrification resistance is likely to be reduced.

NaO+KOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaO+KOは、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分であり、変換効率を高めるために重要な成分である。NaO+KOの含有量は1〜30%、2〜20%、4〜18%、4.3超〜15%、特に7〜12%が好ましい。NaO+KOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。一方、NaO+KOの含有量が少な過ぎると、上記効果を享受し難くなる。 Na 2 O + K 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O + K 2 O is an effective component for the growth of chalcopyrite crystals in a CIS solar cell, and is an important component for increasing the conversion efficiency. The content of Na 2 O + K 2 O is preferably 1 to 30%, 2 to 20%, 4 to 18%, more than 4.3 to 15%, and particularly preferably 7 to 12%. When the content of Na 2 O + K 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked. On the other hand, when the content of Na 2 O + K 2 O is too small, it becomes difficult to enjoy the above-mentioned effects.

NaOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaOは、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分であり、変換効率を高めるために重要な成分である。NaOの含有量は0〜20%、0.1〜15%、4〜12%、特に4.3超〜9%が好ましい。NaOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。 Na 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O is an effective component for the growth of chalcopyrite crystals in a CIS solar cell, and is an important component for increasing the conversion efficiency. The content of Na 2 O is preferably 0 to 20%, 0.1 to 15%, 4 to 12%, particularly more than 4.3 to 9%. When the content of Na 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked.

Oは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、KOは、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分であり、変換効率を高めるために重要な成分である。しかし、Alを10%超含むガラス系において、KOの含有量が多過ぎると、KAlSiO系の失透結晶が析出し易くなる。また、KOの含有量が多過ぎると、歪点が低下し易くなり、また熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。よって、KOの含有量は0〜15%、0.1〜10%、特に1〜7%が好ましい。 K 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. K 2 O is an effective component for the growth of chalcopyrite crystals in the CIS solar cell, and is an important component for increasing the conversion efficiency. However, in a glass system containing more than 10% Al 2 O 3 , if the content of K 2 O is too large, KAlSiO-based devitrified crystals are likely to precipitate. If the content of K 2 O is too large, easily strain point is lowered, also too high thermal expansion coefficient, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked. Therefore, the content of K 2 O is preferably 0 to 15%, 0.1 to 10%, particularly preferably 1 to 7%.

更に、下記の成分含有量、成分比を有することが好ましい。   Furthermore, it is preferable to have the following component content and component ratio.

SiO−Alは、ガラスネットワークを構成する成分の内、主要構成成分のSiOと歪点を高める寄与が大きいAlの差である。SiO−Alの含有量が多過ぎると、歪点が低下し易くなる。一方、SiO−Alの含有量が少な過ぎると、耐失透性が低下し易くなる。よって、SiO−Alの含有量は28〜50%、30〜45.0未満%、32〜43%、特に34〜40%が好ましい。なお、「SiO−Al」は、SiOの含有量からAlの含有量を引いた量を指す。 SiO 2 —Al 2 O 3 is a difference between SiO 2 as a main component and Al 2 O 3 that greatly contributes to increase the strain point among components constituting the glass network. When the content of SiO 2 -Al 2 O 3 is too large, the strain point tends to decrease. On the other hand, if the content of SiO 2 -Al 2 O 3 is too small, devitrification resistance is liable to decrease. Therefore, the content of SiO 2 —Al 2 O 3 is preferably 28 to 50%, less than 30 to 45.0%, 32 to 43%, and particularly preferably 34 to 40%. “SiO 2 —Al 2 O 3 ” refers to an amount obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 .

MgO+CaOは、アルカリ土類金属酸化物の中では、高温粘度を低下させることにより、ガラス溶解窯内の上昇流、下降流、バッチ投入口方向への後退流の移動速度を高めて、ガラスを均質化させる2成分の総和である。また、MgO+CaOは、アルカリ土類金属酸化物の中では、ガラス板の割れ難さを最も維持し得ると共に、密度を最も低下させる2成分の総和である。密度を低下させると、薄膜太陽電池の支持部材のコストを低廉化することができる。MgO+CaOの含有量は0〜10%、0.1〜10%、2.9超〜10%、特に3.4超〜9.4未満%が好ましい。MgO+CaOの含有量が多過ぎると、耐失透性、特にZrO系の失透結晶が析出し易くなる。なお、MgO+CaOの含有量が少な過ぎると、ガラス溶解窯内での溶融ガラスの移動速度が低下して、溶融ガラスが均質化されず、結果として、溶融性や成形性が低下する傾向がある。なお、「MgO+CaO」は、MgOとCaOの合量を指す。 MgO + CaO, among alkaline earth metal oxides, increases the moving speed of the upward flow, downward flow, and backward flow toward the batch inlet in the glass melting furnace by reducing the high-temperature viscosity, making the glass homogeneous Is the sum of the two components to be converted. Moreover, MgO + CaO is the total of the two components that can most maintain the difficulty of breaking the glass plate and reduce the density most among the alkaline earth metal oxides. When the density is lowered, the cost of the support member of the thin film solar cell can be reduced. The content of MgO + CaO is preferably 0 to 10%, 0.1 to 10%, more than 2.9 to 10%, and more preferably more than 3.4 to less than 9.4%. When the content of MgO + CaO is too large, devitrification resistance, tends to particularly devitrification crystals ZrO 2 system is deposited. In addition, when there is too little content of MgO + CaO, the moving speed of the molten glass in a glass melting furnace will fall, a molten glass will not be homogenized, and there exists a tendency for a meltability and a moldability to fall as a result. “MgO + CaO” refers to the total amount of MgO and CaO.

質量比CaO/MgOは、アルカリ土類酸化物の内、高温粘度を低下させる効果が大きいMgOとCaOの比である。耐失透性の観点から見ると、ZrO系の失透結晶を特に発生させ易いMgOに対して、MgOと比較してZrO系の失透結晶を発生させ難いCaOの比である。質量比CaO/MgOは、ZrO系の失透結晶の析出を抑制しつつ、高温粘度を低下させるために、1.0超、2.0超、2.5超、特に3.4超が好ましい。 The mass ratio CaO / MgO is a ratio of MgO and CaO having a large effect of reducing the high temperature viscosity among the alkaline earth oxides. From the point of view of resistance to devitrification, against easy MgO especially to generate devitrification crystals ZrO 2 system, which is the ratio of hard CaO which caused the devitrification crystals ZrO 2 system as compared with MgO. The mass ratio CaO / MgO is more than 1.0, more than 2.0, more than 2.5, particularly more than 3.4 in order to reduce the high temperature viscosity while suppressing the precipitation of ZrO 2 -based devitrifying crystals. preferable.

CaO+SrOの含有量は1〜30%、3〜25%、6.92〜23%、8〜21%、特に9〜20%が好ましい。CaO+SrOの含有量が多過ぎると、耐失透性が低下し易くなる。CaO+SrOの含有量が少な過ぎると、ガラス溶解窯内での溶融ガラスの移動速度が低下して、溶融ガラスが均質化されず、結果として、溶融性や成形性が低下する傾向がある。なお、「CaO+SrO」は、CaOとSrOの合量を指す。   The content of CaO + SrO is preferably 1 to 30%, 3 to 25%, 6.92 to 23%, 8 to 21%, particularly preferably 9 to 20%. When there is too much content of CaO + SrO, devitrification resistance will fall easily. When there is too little content of CaO + SrO, the moving speed of the molten glass in a glass melting furnace will fall, a molten glass will not be homogenized, and there exists a tendency for a meltability and a moldability to fall as a result. “CaO + SrO” refers to the total amount of CaO and SrO.

LiOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、LiOは、NaOやKOと同様にして、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分である。しかし、LiOは、原料コストが高いことに加えて、歪点を大幅に低下させる成分である。よって、LiOの含有量は0〜10%、0〜2%、特に0〜0.10未満%が好ましい。 Li 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Further, Li 2 O is an effective component for the growth of chalcopyrite crystals in CIS solar cells in the same manner as Na 2 O and K 2 O. However, Li 2 O is a component that significantly lowers the strain point in addition to the high raw material cost. Therefore, the content of Li 2 O is preferably 0 to 10%, 0 to 2%, particularly preferably 0 to less than 0.10%.

質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)は、高温粘度を低下させる効果が大きい成分の総量(MgO、CaO、SrO、BaO、LiO、NaO、及びKOの総量)に対して、CIS系太陽電池において、カルコパイライト結晶の析出に有用なNaOの含有量の比である。質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)は0.005〜0.5、0.05〜0.4、0.1〜0.38、0.137〜0.355、0.140〜0.300、特に0.158超〜0.250が好ましい。質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が大き過ぎると、高歪点を維持し難くなり、また溶融性や成形性が低下し易くなる。一方、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎると、薄膜太陽電池の変換効率が低下し易くなる。また、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎると、高温粘度を低下させるために、LiOやKOの含有量を増加せざるを得ず、結果として、原料コストが高騰する。なお、KOの含有量を優先的に増加させると、Alを10%超含むガラス系では、KAlSiO系の失透結晶が析出し易くなる。更に、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎても、高歪点を維持し難くなり、また耐失透性が低下して、液相粘度が低下し易くなる。 The mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is the total amount of components (MgO, CaO, SrO, BaO, Li 2 O, Na 2 O, and K 2 O that have a large effect of reducing the high-temperature viscosity. It is the ratio of the content of Na 2 O useful for precipitation of chalcopyrite crystals in the CIS solar cell to the total amount). The mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is 0.005 to 0.5, 0.05 to 0.4, 0.1 to 0.38, 0.137 to 0.355,. 140 to 0.300, especially more than 0.158 to 0.250 are preferable. If the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too large, it will be difficult to maintain a high strain point, and meltability and moldability will tend to be reduced. On the other hand, if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, the conversion efficiency of the thin-film solar cell tends to decrease. In addition, if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, the high-temperature viscosity is lowered, so the content of Li 2 O and K 2 O must be increased, and as a result Raw material costs will soar. Note that when the content of K 2 O is preferentially increased, KAlSiO-based devitrified crystals are likely to precipitate in a glass system containing more than 10% Al 2 O 3 . Furthermore, even if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, it is difficult to maintain a high strain point, and devitrification resistance is lowered, and the liquid phase viscosity is likely to be lowered. .

ZnOは、高温粘度を低下させる成分である。ZnOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、ZnOの含有量は0〜10%、特に0〜5%が好ましい。   ZnO is a component that lowers the high temperature viscosity. When there is too much content of ZnO, devitrification resistance will fall easily. Therefore, the content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%.

ZrOは、高温粘度を上げずに、歪点を高める成分である。しかし、ZrOの含有量が多過ぎると、密度が高くなり易く、またガラス板が割れ易くなり、更にはZrO系の失透結晶が析出し易くなり、ガラス板に成形し難くなる。よって、ZrOの含有量は0〜15%、0〜10%、0〜7%、0.1〜6.5%、特に2〜6%が好ましい。 ZrO 2 is a component that increases the strain point without increasing the high-temperature viscosity. However, if the content of ZrO 2 is too large, the density tends to increase, the glass plate tends to break, ZrO 2 -based devitrified crystals tend to precipitate, and it becomes difficult to form the glass plate. Therefore, the content of ZrO 2 is preferably 0 to 15%, 0 to 10%, 0 to 7%, 0.1 to 6.5%, particularly preferably 2 to 6%.

ガラス中のFeはFe2+又はFe3+の状態で存在するが、両イオンともガラスの着色の原因になる。よって、Feの含有量は0.001〜0.07%、特に0.005〜0.06%が好ましい。なお、「Fe」は、価数によらず全Fe量をFe量に換算した値を指す。 Fe in the glass exists in the state of Fe 2+ or Fe 3+ , but both ions cause glass coloring. Therefore, the content of Fe 2 O 3 is preferably 0.001 to 0.07%, particularly preferably 0.005 to 0.06%. “Fe 2 O 3 ” refers to a value obtained by converting the total Fe amount into the Fe 2 O 3 amount regardless of the valence.

TiOは、紫外線による着色を防止すると共に、耐候性を高める成分である。しかし、TiOの含有量が多過ぎると、ガラスが失透したり、ガラスが茶褐色に着色し易くなる。よって、TiOの含有量は0〜10%、特に0〜0.10未満%が好ましい。 TiO 2 is a component that prevents coloring by ultraviolet rays and enhances weather resistance. However, when the content of TiO 2 is too large, or glass is devitrified, glass tends colored brown. Therefore, the content of TiO 2 is preferably 0 to 10%, particularly preferably 0 to less than 0.10%.

は、耐失透性を高める成分、特にZrO系の失透結晶の析出を抑制する成分であり、またガラス板を割れ難くする成分である。しかし、Pの含有量が多過ぎると、ガラスが乳白色に分相し易くなる。よって、Pの含有量は0〜10%、0〜0.2%、特に0〜0.10未満%が好ましい。 P 2 O 5 is a component that enhances devitrification resistance, particularly a component that suppresses precipitation of ZrO 2 -based devitrification crystals, and a component that makes it difficult to break the glass plate. However, when the content of P 2 O 5 is too large, easily glass phase separation milky. Therefore, the content of P 2 O 5 is preferably 0 to 10%, 0 to 0.2%, particularly preferably 0 to less than 0.10%.

SOは、清澄剤として作用する成分であり、その含有量は0〜1%、特に0.01〜1%が好ましい。なお、フロート法で成形すると、安価にガラス板を大量生産し得るが、この場合、清澄剤として芒硝を用いることが好ましい。 SO 3 is a component that acts as a fining agent, and its content is preferably 0 to 1%, particularly preferably 0.01 to 1%. In addition, when it shape | molds by a float glass process, a glass plate can be mass-produced cheaply, However, In this case, it is preferable to use a salt cake as a clarifier.

Asは、清澄剤として作用する成分であるが、フロート法で製板する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Asの含有量は0〜1%、特に0〜0.10未満%が好ましい。 As 2 O 3 is a component that acts as a fining agent, but is a component that colors glass when it is made by the float process, and is a component that is concerned about the environmental burden. The content of As 2 O 3 is preferably 0 to 1%, particularly preferably 0 to less than 0.10%.

Sbは、清澄剤として作用する成分であるが、フロート法で製板する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Sbの含有量は0〜1%、特に0〜0.10未満%が好ましい。 Sb 2 O 3 is a component that acts as a refining agent, but is a component that colors glass when it is made by a float process, and it is a component that is concerned about the environmental burden. The content of Sb 2 O 3 is preferably 0 to 1%, particularly preferably 0 to less than 0.10%.

SnOは、清澄剤として作用する成分であるが、耐失透性を低下させる成分である。SnOの含有量は0〜1%、特に0〜0.10未満%が好ましい。 SnO 2 is a component that acts as a fining agent, but is a component that reduces devitrification resistance. The SnO 2 content is preferably 0 to 1%, particularly preferably 0 to less than 0.10%.

上記成分以外にも、溶解性、清澄性、成形性を高めるために、F、Cl、CeOを合量で各々1%まで添加してもよい。また、化学的耐久性を高めるために、Nb、HfO、Ta、Y、Laを各々3%まで添加してもよい。 In addition to the above components, F, Cl, and CeO 2 may be added up to 1% in total in order to enhance solubility, clarity, and moldability. In order to increase chemical durability, Nb 2 O 5 , HfO 2 , Ta 2 O 5 , Y 2 O 3 , and La 2 O 3 may be added up to 3% each.

本発明の薄膜太陽電池用ガラス板において、歪点は590℃超、600超〜650℃、605超〜645℃、特に610超〜650℃が好ましい。歪点が低過ぎると、高温で光電変換膜を成膜し難くなると共に、ガラス板に熱変形や熱収縮が生じ易くなる。結果として、薄膜太陽電池の変換効率を高めることが困難になる。なお、歪点が高過ぎると、溶融温度や成形温度が高くなり過ぎて、ガラス板の製造コストが高騰し易くなる。   In the glass plate for a thin-film solar cell of the present invention, the strain point is preferably more than 590 ° C, more than 600 to 650 ° C, more than 605 to 645 ° C, particularly preferably more than 610 to 650 ° C. If the strain point is too low, it becomes difficult to form a photoelectric conversion film at a high temperature, and thermal deformation and thermal shrinkage tend to occur on the glass plate. As a result, it becomes difficult to increase the conversion efficiency of the thin film solar cell. If the strain point is too high, the melting temperature and the molding temperature become too high, and the manufacturing cost of the glass plate tends to increase.

本発明の薄膜太陽電池用ガラス板において、熱膨張係数は70〜100×10−7/℃、特に80〜90×10−7/℃が好ましい。このようにすれば、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合させ易くなる。なお、熱膨張係数が高過ぎると、ガラス板の耐熱衝撃性が低下し易くなり、結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に割れが発生し易くなる。なお、「熱膨張係数」は、ディラトメーターにより30〜380℃における平均熱膨張係数を測定した値である。 In the glass plate for a thin film solar cell of the present invention, the thermal expansion coefficient is preferably 70 to 100 × 10 −7 / ° C., particularly preferably 80 to 90 × 10 −7 / ° C. If it does in this way, it will become easy to match with the thermal expansion coefficient of the electrode film of a thin film solar cell, and a photoelectric conversion film. If the thermal expansion coefficient is too high, the thermal shock resistance of the glass plate tends to be lowered, and as a result, the glass plate is likely to be cracked in the heat treatment step when manufacturing the thin film solar cell. The “thermal expansion coefficient” is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.

本発明の薄膜太陽電池用ガラス板において、104.0dPa・sにおける温度は1200℃以下、特に1180℃以下が好ましい。このようにすれば、低温でガラス板を成形し易くなる。なお、「104.0dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 In the glass plate for a thin-film solar cell of the present invention, the temperature at 10 4.0 dPa · s is preferably 1200 ° C. or less, particularly preferably 1180 ° C. or less. If it does in this way, it will become easy to shape | mold a glass plate at low temperature. The “temperature at 10 4.0 dPa · s” can be measured by a platinum ball pulling method.

本発明の薄膜太陽電池用ガラス板において、102.5dPa・sにおける温度は1520℃以下、特に1460℃以下が好ましい。このようにすれば、低温でガラス原料を溶解し易くなる。なお、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 In the glass plate for a thin film solar cell of the present invention, the temperature at 10 2.5 dPa · s is preferably 1520 ° C. or less, particularly preferably 1460 ° C. or less. If it does in this way, it will become easy to melt | dissolve a glass raw material at low temperature. The “temperature at 10 2.5 dPa · s” can be measured by a platinum ball pulling method.

本発明の薄膜太陽電池用ガラス板は、化学強化処理、特にイオン交換処理が行われていることが好ましい。このようにすれば、薄膜太陽電池の設置後に、雹や降雪等に対する耐衝撃性、耐圧性を高めることができる。なお、生産コストの観点からは、化学強化処理、特にイオン交換処理が行われていないことが好ましい。   The glass plate for a thin film solar cell of the present invention is preferably subjected to chemical strengthening treatment, particularly ion exchange treatment. If it does in this way, after installation of a thin film solar cell, the impact resistance with respect to a hail, snowfall, etc. and pressure | voltage resistance can be improved. From the viewpoint of production cost, it is preferable that chemical strengthening treatment, particularly ion exchange treatment is not performed.

本発明の薄膜太陽電池用ガラス板は、上記のガラス組成範囲になるように、調合したガラス原料を連続溶融炉に投入し、ガラス原料を加熱溶融した後、得られた溶融ガラスを脱泡した上で、フロートバスに供給し、板状に成形した後、ガラス板の表面に対して、硫酸塩保護膜を形成し、更に徐冷を行い、水洗浄等により硫酸塩保護膜を除去することにより、作製することができる。   The glass plate for a thin film solar cell of the present invention was prepared by introducing the prepared glass raw material into a continuous melting furnace so as to be in the above glass composition range, heating and melting the glass raw material, and then defoaming the obtained molten glass. Above, after supplying to the float bath and forming into a plate shape, a sulfate protective film is formed on the surface of the glass plate, further cooling is performed, and the sulfate protective film is removed by washing with water, etc. Can be produced.

硫酸塩保護膜の形成方法は、特に限定されず、ガラス板の表面に亜硫酸ガスを吹き付ける方法、或いはガラス板の表面をスラリーコートした後に焼成する方法等を採用することができる。特に、生産性の観点からは、前者の方法が好ましい。   The method for forming the sulfate protective film is not particularly limited, and a method of spraying sulfurous acid gas on the surface of the glass plate or a method of firing after slurry coating the surface of the glass plate can be employed. In particular, the former method is preferable from the viewpoint of productivity.

製造効率の観点から、硫酸塩保護膜は、ガラス板の成形工程後、且つ徐冷炉投入前に形成されることが好ましい。   From the viewpoint of production efficiency, the sulfate protective film is preferably formed after the glass plate forming step and before the slow cooling furnace is charged.

硫酸塩保護膜は、少なくとも一方のガラス板の表面に形成されることが好ましい。一方の表面のみに硫酸塩保護膜を形成する場合は、硫酸塩保護膜が形成された側の表面を運搬装置や搬送装置に接する側にすればよい。なお、ガラス板の両面に硫酸塩保護膜を形成してもよい。   The sulfate protective film is preferably formed on the surface of at least one glass plate. When the sulfate protective film is formed only on one surface, the surface on which the sulfate protective film is formed may be the side in contact with the transport device or the transport device. In addition, you may form a sulfate protective film on both surfaces of a glass plate.

硫酸塩保護膜中のモル比Sr/Baは1以上、1.0超、1.2以上、1.5以上、特に1.8以上が好ましい。このようにすれば、硫酸塩保護膜が、保護膜としての機能を維持した上で、水等により洗浄除去され易くなる。   The molar ratio Sr / Ba in the sulfate protective film is preferably 1 or more, more than 1.0, 1.2 or more, 1.5 or more, and particularly preferably 1.8 or more. In this way, the sulfate protective film can be easily washed and removed with water or the like while maintaining the function as the protective film.

本発明の薄膜太陽電池用ガラス板の製造方法は、フロート法により、歪点が590℃超のガラス板を成形した上で、該ガラス板の少なくとも一方の表面に対して、モル比Sr/Baが1以上の硫酸塩保護膜を形成した後、該硫酸塩保護膜を除去することを特徴とする。本発明の薄膜太陽電池用ガラス板の製造方法は、原則として、上記の技術的特徴を有する。よって、その重複部分について、詳細な説明を省略する。   The method for producing a glass plate for a thin-film solar cell according to the present invention comprises forming a glass plate having a strain point of over 590 ° C. by a float process and then forming a molar ratio Sr / Ba with respect to at least one surface of the glass plate. After forming one or more sulfate protective films, the sulfate protective film is removed. The manufacturing method of the glass plate for thin film solar cells of this invention has the said technical feature in principle. Therefore, detailed description of the overlapping portion is omitted.

本発明の硫酸塩保護膜は、歪点590℃超の薄膜太陽電池用ガラス板の表面を保護するための硫酸塩保護膜であって、該硫酸塩保護膜中のモル比Sr/Baが1以上であることを特徴とする。本発明の硫酸塩保護膜は、原則として、上記の技術的特徴を有する。よって、その重複部分について、詳細な説明を省略する。   The sulfate protective film of the present invention is a sulfate protective film for protecting the surface of a glass plate for a thin film solar cell having a strain point exceeding 590 ° C., and the molar ratio Sr / Ba in the sulfate protective film is 1 It is the above. The sulfate protective film of the present invention has the above technical features in principle. Therefore, detailed description of the overlapping portion is omitted.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, based on an Example, this invention is demonstrated in detail. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1は、本発明の実施例(試料No.1〜3)、比較例(試料No.4)を示している。   Table 1 shows examples (sample Nos. 1 to 3) and comparative examples (sample No. 4) of the present invention.

次のようにして、試料No.1〜4を作製した。まず表中のガラス組成になるように調合したガラスバッチを溶解窯にて溶融し、フロートバスにて1.8mm厚のガラス板(ガラスリボン)を成形した。次に、フロートバスから搬出されたガラス板に亜硫酸ガスを吹き付けて、一方の表面に硫酸塩保護膜を形成した。続いて、得られたガラス板を所定形状に切断加工した後、各測定に応じて、所定の加工を行った。得られた各試料について、熱膨張係数α、密度d、歪点Ps、104.0dPa・sにおける温度、102.5dPa・sにおける温度、液相温度TL、液相温度における粘度LogηTL、硫酸塩保護膜中のモル比Sr/Baを求めた。これらの結果を表1に示す。 Sample no. 1-4 were produced. First, a glass batch prepared so as to have the glass composition in the table was melted in a melting furnace, and a 1.8 mm thick glass plate (glass ribbon) was formed with a float bath. Next, sulfurous acid gas was sprayed on the glass plate carried out from the float bath to form a sulfate protective film on one surface. Subsequently, the obtained glass plate was cut into a predetermined shape, and then predetermined processing was performed according to each measurement. About each obtained sample, coefficient of thermal expansion α, density d, strain point Ps, temperature at 10 4.0 dPa · s, temperature at 10 2.5 dPa · s, liquidus temperature TL, viscosity LogηTL at liquidus temperature The molar ratio Sr / Ba in the sulfate protective film was determined. These results are shown in Table 1.

熱膨張係数αは、ディラトメーターにより30〜380℃における平均熱膨張係数を測定した値である。なお、測定試料として、直径5.0mm、長さ20mmの円柱試料を用いた。   The thermal expansion coefficient α is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer. A cylindrical sample having a diameter of 5.0 mm and a length of 20 mm was used as a measurement sample.

密度dは、公知のアルキメデス法で測定した値である。   The density d is a value measured by a known Archimedes method.

歪点Psは、ASTM C336−71に基づいて測定した値である。   The strain point Ps is a value measured based on ASTM C336-71.

104.0dPa・sにおける温度、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、104.0dPa・sにおける温度は成形温度に相当し、102.5dPa・sにおける温度は溶融温度に相当している。 Temperature at 10 4.0 dPa · s, temperature at 10 2.5 dPa · s is a value measured by a platinum ball pulling method. The temperature at 10 4.0 dPa · s corresponds to the molding temperature, and the temperature at 10 2.5 dPa · s corresponds to the melting temperature.

液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、この白金ボートを温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。液相粘度logηTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。   The liquid phase temperature TL passes through a standard sieve 30 mesh (500 μm), and after the glass powder remaining in 50 mesh (300 μm) is placed in a platinum boat, the platinum boat is held in a temperature gradient furnace for 24 hours to obtain a crystal It is the value which measured the temperature which deposits. The liquid phase viscosity log ηTL is a value obtained by measuring the viscosity of glass at the liquid phase temperature TL by a platinum ball pulling method.

硫酸塩保護膜中のモル比Sr/Baは、Rigaku製XRD装置SmartLabにて評価した。測定に際し、X線入射角度を0.35度とし、In−plane法にて結晶組成を同定した。同定された結晶組成から、硫酸塩保護膜中のモル比Sr/Baを算出した。   The molar ratio Sr / Ba in the sulfate protective film was evaluated with an XRD apparatus SmartLab manufactured by Rigaku. At the time of measurement, the X-ray incident angle was set to 0.35 degrees, and the crystal composition was identified by the In-plane method. From the identified crystal composition, the molar ratio Sr / Ba in the sulfate protective film was calculated.

表1から明らかなように、試料No.1〜3は、硫酸塩保護膜中のモル比Sr/Baが大きいため、硫酸塩保護膜を洗浄除去し易いと考えられる。一方、試料No.4は、硫酸塩保護膜中のモル比Sr/Baが小さいため、硫酸塩保護膜を洗浄除去し難いと考えられる。   As is clear from Table 1, sample No. Nos. 1 to 3 have a large molar ratio Sr / Ba in the sulfate protective film, so that it is considered that the sulfate protective film can be easily removed by washing. On the other hand, Sample No. No. 4 is considered to be difficult to wash and remove the sulfate protective film because the molar ratio Sr / Ba in the sulfate protective film is small.

Claims (9)

ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜18%、B 0〜15.0未満%、MgO+CaO+SrO+BaO 1〜40%、SrO 1〜20%、NaO+KO 1〜30%を含有し、質量比SrO/BaOが1以上であり、且つ歪点が590℃超であることを特徴とする薄膜太陽電池用ガラス板。 As a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8.0 super ~18%, B 2 O 3 0~15.0 less than%, MgO + CaO + SrO + BaO 1~40%, SrO 1~20% , Na 2 O + K 2 O 1-30%, the mass ratio SrO / BaO is 1 or more, and the strain point is higher than 590 ° C. ガラス組成として、質量%で、SrO 3〜20%、BaO 2〜15%を含有し、質量比SrO/BaOが1.2以上であることを特徴とする請求項1に記載の薄膜太陽電池用ガラス板。   The glass composition contains 3 to 20% SrO and 2 to 15% BaO in terms of mass%, and the mass ratio SrO / BaO is 1.2 or more. Glass plate. 化学強化処理が行われていることを特徴とする請求項1又は2に記載の薄膜太陽電池用ガラス板。   The glass plate for thin film solar cells according to claim 1 or 2, wherein chemical strengthening treatment is performed. 化学強化処理が行われていないことを特徴とする請求項1又は2に記載の薄膜太陽電池用ガラス板。   The glass plate for thin film solar cells according to claim 1 or 2, wherein chemical strengthening treatment is not performed. CIS系太陽電池に用いることを特徴とする請求項1〜4のいずれか一項に記載の薄膜太陽電池用ガラス板。   It uses for a CIS type solar cell, The glass plate for thin film solar cells as described in any one of Claims 1-4 characterized by the above-mentioned. CdTe系太陽電池に用いることを特徴とする請求項1〜4のいずれか一項に記載の薄膜太陽電池用ガラス板。   It uses for a CdTe type | system | group solar cell, The glass plate for thin film solar cells as described in any one of Claims 1-4 characterized by the above-mentioned. 歪点が590℃超であり、且つ少なくとも一方の表面に硫酸塩保護膜を有し、該硫酸塩保護膜中のモル比Sr/Baが1以上であることを特徴とする薄膜太陽電池用ガラス板。   Thin film solar cell glass characterized by having a strain point of over 590 ° C., a sulfate protective film on at least one surface, and a molar ratio Sr / Ba in the sulfate protective film of 1 or more Board. フロート法により、歪点が590℃超のガラス板を成形した上で、該ガラス板の少なくとも一方の表面に対して、モル比Sr/Baが1以上の硫酸塩保護膜を形成した後、該硫酸塩保護膜を除去することを特徴とする薄膜太陽電池用ガラス板の製造方法。   After forming a glass plate having a strain point of more than 590 ° C. by the float process, and forming a sulfate protective film having a molar ratio Sr / Ba of 1 or more on at least one surface of the glass plate, The manufacturing method of the glass plate for thin film solar cells characterized by removing a sulfate protective film. 歪点590℃超の薄膜太陽電池用ガラス板の表面を保護するための硫酸塩保護膜であって、該硫酸塩保護膜中のモル比Sr/Baが1以上であることを特徴とする硫酸塩保護膜。   A sulfate protective film for protecting the surface of a glass plate for a thin film solar cell having a strain point exceeding 590 ° C., wherein the molar ratio Sr / Ba in the sulfate protective film is 1 or more. Salt protective film.
JP2012251808A 2012-11-16 2012-11-16 Glass plate for thin film solar cell and method of producing the same Pending JP2014097916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012251808A JP2014097916A (en) 2012-11-16 2012-11-16 Glass plate for thin film solar cell and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251808A JP2014097916A (en) 2012-11-16 2012-11-16 Glass plate for thin film solar cell and method of producing the same

Publications (1)

Publication Number Publication Date
JP2014097916A true JP2014097916A (en) 2014-05-29

Family

ID=50940283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251808A Pending JP2014097916A (en) 2012-11-16 2012-11-16 Glass plate for thin film solar cell and method of producing the same

Country Status (1)

Country Link
JP (1) JP2014097916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043285A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate and cigs solar cell
WO2016043287A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate, method for producing same, and cigs solar cell
JP2016147792A (en) * 2015-02-13 2016-08-18 旭硝子株式会社 Glass substrate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051767A1 (en) * 2000-12-26 2002-07-04 Nippon Sheet Glass Co.,Ltd. Plate glass with protective film and method of manufacturing the plate glass
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same
WO2009148141A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus and method for producing plate glass
JP2010059038A (en) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd Reinforced glass and method of manufacturing the same
US20100300535A1 (en) * 2009-05-29 2010-12-02 Bruce Gardiner Aitken Fusion formable sodium containing glass
JP2011037683A (en) * 2009-08-14 2011-02-24 Nippon Sheet Glass Co Ltd Glass substrate
JP2011121838A (en) * 2009-12-14 2011-06-23 Nippon Electric Glass Co Ltd Glass substrate
WO2012014854A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR BATTERY, AND SOLAR BATTERY USING SAME
WO2012102346A1 (en) * 2011-01-28 2012-08-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELLS AND SOLAR CELL USING SAME
WO2012153634A1 (en) * 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002051767A1 (en) * 2000-12-26 2002-07-04 Nippon Sheet Glass Co.,Ltd. Plate glass with protective film and method of manufacturing the plate glass
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same
WO2009148141A1 (en) * 2008-06-06 2009-12-10 旭硝子株式会社 Apparatus and method for producing plate glass
JP2010059038A (en) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd Reinforced glass and method of manufacturing the same
US20100300535A1 (en) * 2009-05-29 2010-12-02 Bruce Gardiner Aitken Fusion formable sodium containing glass
JP2012528071A (en) * 2009-05-29 2012-11-12 コーニング インコーポレイテッド Fusion moldable sodium-containing glass
US20120141804A1 (en) * 2009-08-14 2012-06-07 Nippon Sheet Glass Company, Limited Glass substrate
JP2011037683A (en) * 2009-08-14 2011-02-24 Nippon Sheet Glass Co Ltd Glass substrate
JP2011121838A (en) * 2009-12-14 2011-06-23 Nippon Electric Glass Co Ltd Glass substrate
WO2012014854A1 (en) * 2010-07-26 2012-02-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR BATTERY, AND SOLAR BATTERY USING SAME
WO2012102346A1 (en) * 2011-01-28 2012-08-02 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELLS AND SOLAR CELL USING SAME
WO2012153634A1 (en) * 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell
US20140087935A1 (en) * 2011-05-10 2014-03-27 Masato Muguruma Glass plate for thin film solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043285A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate and cigs solar cell
WO2016043287A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate, method for producing same, and cigs solar cell
JP5951152B1 (en) * 2014-09-19 2016-07-13 旭硝子株式会社 Glass substrate and CIGS solar cell
JPWO2016043287A1 (en) * 2014-09-19 2017-06-29 旭硝子株式会社 GLASS SUBSTRATE, ITS MANUFACTURING METHOD, AND CIGS SOLAR CELL
JP2016147792A (en) * 2015-02-13 2016-08-18 旭硝子株式会社 Glass substrate

Similar Documents

Publication Publication Date Title
JP5915892B2 (en) Glass plate for thin film solar cell
JP6925404B2 (en) Solar cell module package
JP5671041B2 (en) Aluminosilicate glass with high heat resistance and low working temperature
TWI548606B (en) Fusion formable alkali-free intermediate thermal expansion coefficient glass
JP6050261B2 (en) Photocell including semiconductor device and photovoltaic module including the photocell
JP5642363B2 (en) Glass substrate
JP5733811B2 (en) Manufacturing method of glass substrate for solar cell
JP5610563B2 (en) Glass substrate for solar cell
KR101554532B1 (en) Glass plate for thin film solar cell
JP6254345B2 (en) Glass substrate for solar cell
JP6497576B2 (en) Glass plate for solar cell
JPWO2013111749A1 (en) Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
JP5850392B2 (en) Glass plate
JP6090705B2 (en) Glass plate for thin film solar cell
JP2014097916A (en) Glass plate for thin film solar cell and method of producing the same
JP6040699B2 (en) Glass plate for thin film solar cell
JP6128418B2 (en) Glass plate for thin film solar cell
JP2014094859A (en) Glass plate for thin film solar cell
JP2016098133A (en) Glass substrate, cigs solar cell, method for manufacturing glass substrate
JP6041004B2 (en) Glass substrate
JP2015231936A (en) Glass for solar battery
JP6593726B2 (en) Glass plate for solar cell
JP6593724B2 (en) Glass plate for solar cell
JP2014084237A (en) Glass plate for thin film solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170216