JP6040699B2 - Glass plate for thin film solar cell - Google Patents

Glass plate for thin film solar cell Download PDF

Info

Publication number
JP6040699B2
JP6040699B2 JP2012232527A JP2012232527A JP6040699B2 JP 6040699 B2 JP6040699 B2 JP 6040699B2 JP 2012232527 A JP2012232527 A JP 2012232527A JP 2012232527 A JP2012232527 A JP 2012232527A JP 6040699 B2 JP6040699 B2 JP 6040699B2
Authority
JP
Japan
Prior art keywords
glass plate
film solar
solar cell
thin film
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012232527A
Other languages
Japanese (ja)
Other versions
JP2014084236A (en
Inventor
寛典 高瀬
寛典 高瀬
喜雄 岩坪
喜雄 岩坪
真人 六車
真人 六車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2012232527A priority Critical patent/JP6040699B2/en
Publication of JP2014084236A publication Critical patent/JP2014084236A/en
Application granted granted Critical
Publication of JP6040699B2 publication Critical patent/JP6040699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は薄膜太陽電池用ガラス板に関し、特にCIS系薄膜太陽電池、CdTe系薄膜太陽電池に好適なガラス板に関する。   The present invention relates to a glass plate for a thin film solar cell, and more particularly to a glass plate suitable for a CIS thin film solar cell and a CdTe thin film solar cell.

薄膜太陽電池、例えばCIS系薄膜太陽電池では、Cu、In、Ga、Seからなるカルコパイライト型化合物半導体、Cu(InGa)Seが光電変換膜としてガラス板上に形成される。 In a thin film solar cell, for example, a CIS thin film solar cell, a chalcopyrite type compound semiconductor made of Cu, In, Ga, and Se, Cu (InGa) Se 2 is formed on a glass plate as a photoelectric conversion film.

多元蒸着法、セレン化法等によりCu、In、Ga、Seをガラス板上に塗布して、カルコパイライト型化合物にするためには、500〜600℃程度の熱処理工程が必要になる。   In order to apply Cu, In, Ga, and Se on a glass plate by a multi-source deposition method, a selenization method, or the like to obtain a chalcopyrite type compound, a heat treatment step of about 500 to 600 ° C. is required.

CdTe系薄膜太陽電池においても、Cd、Teからなる光電変換膜がガラス板上に形成される。この場合も、500℃〜600℃程度の熱処理工程が必要になる。   Also in the CdTe thin film solar cell, a photoelectric conversion film made of Cd and Te is formed on a glass plate. Also in this case, a heat treatment step of about 500 ° C. to 600 ° C. is required.

従来、CIS系薄膜太陽電池、CdTe系薄膜太陽電池等では、ガラス板として、ソーダ石灰ガラスが用いられていた。しかし、ソーダ石灰ガラスは、高温の熱処理工程で熱変形や熱収縮が生じ易い。この問題を解決するために、現在では、ガラス板の歪点を高めることが検討されている(特許文献1参照)。   Conventionally, soda lime glass has been used as a glass plate in CIS thin film solar cells, CdTe thin film solar cells, and the like. However, soda-lime glass is likely to be thermally deformed or shrunk in a high-temperature heat treatment process. In order to solve this problem, increasing the strain point of a glass plate is currently under study (see Patent Document 1).

特開平11−135819号公報JP-A-11-135819

ところで、CIS系薄膜太陽電池、CdTe系薄膜太陽電池では、光電変換膜を高温で成膜すると、光電変換膜の結晶品位が改善されて、光電変換効率が向上すると考えられる。しかしながら、特許文献1に記載のガラス板は、歪点が十分に高くないため、光電変換膜の成膜温度が600超〜650℃の場合に、熱変形や熱収縮が生じ易く、光電変換効率を十分に高めることができなかった。   By the way, in the CIS thin film solar cell and the CdTe thin film solar cell, it is considered that when the photoelectric conversion film is formed at a high temperature, the crystal quality of the photoelectric conversion film is improved and the photoelectric conversion efficiency is improved. However, since the strain point of the glass plate described in Patent Document 1 is not sufficiently high, when the film formation temperature of the photoelectric conversion film is more than 600 to 650 ° C., thermal deformation and thermal contraction are likely to occur, and the photoelectric conversion efficiency Could not be raised sufficiently.

一方、ガラス板の歪点を上昇させると、ガラス板の溶融温度や成形温度が上昇し易くなり、ガラス板の生産効率が低下し易くなる。よって、高歪点とガラス板の生産性を両立させることは非常に困難であった。   On the other hand, when the strain point of the glass plate is raised, the melting temperature and the molding temperature of the glass plate are likely to rise, and the production efficiency of the glass plate is likely to be lowered. Therefore, it is very difficult to achieve both high strain point and glass plate productivity.

更に、ガラス板の反射率が高くなると、薄膜太陽電池の製造工程で、ガラス板の内部に至る熱線の強度が低下し易くなる。この場合、薄膜太陽電池を製造する際に、ガラス板の昇温速度が低下し、薄膜太陽電池の生産効率が低下してしまう。   Furthermore, when the reflectance of a glass plate becomes high, the intensity | strength of the heat ray | wire which reaches the inside of a glass plate will fall easily in the manufacturing process of a thin film solar cell. In this case, when manufacturing a thin film solar cell, the temperature increase rate of a glass plate falls and the production efficiency of a thin film solar cell falls.

本発明は、上記事情に鑑み成されたものであり、その技術的課題は、高歪点とガラス板の生産性を両立可能であり、しかも薄膜太陽電池の生産効率を高め得るガラス板を創案することである。   The present invention has been made in view of the above circumstances, and its technical problem is to create a glass plate that can achieve both a high strain point and the productivity of a glass plate, and can improve the production efficiency of a thin-film solar cell. It is to be.

本発明者等は、鋭意検討した結果、ガラス組成及びガラス特性を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として提案するものである。すなわち、本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜20%、B+LiO 0〜4%、NaO 4.3超〜20%、NaO+KO 4.3超〜30%、MgO+CaO+SrO+BaO 1〜40%を含有し、(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値が−20〜60、(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値が0.27〜0.52であり、且つ歪点が580℃超であることを特徴とする。ここで、「歪点」は、ASTM C336−71に基づいて測定した値を指す。なお、[]内は、明示の成分の質量%の値を指している。また、「Fe」は、価数によらず全Fe量をFe量に換算した値を指している。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by regulating the glass composition and the glass characteristics to a predetermined range, and propose the present invention. That is, the glass plate for a thin-film solar cell of the present invention has a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8.0 super ~20%, B 2 O 3 + Li 2 O 0~4 %, Na 2 O 4.3 to 20%, Na 2 O + K 2 O 4.3 to 30%, MgO + CaO + SrO + BaO 1 to 40%, and (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 O]) is −20 to 60, (0.012 × [MgO] + 0.016 × [CaO] + 0.021 × [SrO] +0 0.023 × [BaO] + 0.021 × [ZrO 2 ] − [Fe 2 O 3 ]) is 0.27 to 0.52 , and the strain point is more than 580 ° C. Here, the “strain point” refers to a value measured based on ASTM C336-71. In addition, [] indicates the mass% value of the explicit component. “Fe 2 O 3 ” indicates a value obtained by converting the total Fe amount into the Fe 2 O 3 amount regardless of the valence.

本発明の薄膜太陽電池用ガラス板は、(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値を所定範囲に規制している。このようにすれば、高歪点とガラス板の生産性を両立し易くなる。具体的には、歪点を高めつつ、溶融温度と成形温度を低下させ易くなる。 The glass plate for a thin film solar cell of the present invention has a value of (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 O]) within a predetermined range. Is regulated. If it does in this way, it will become easy to make a high strain point and the productivity of a glass plate compatible. Specifically, it becomes easy to lower the melting temperature and the molding temperature while increasing the strain point.

また、本発明の薄膜太陽電池用ガラス板は、(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値を所定範囲に規制している。このようにすれば、原料コストの上昇を抑制しつつ、反射率を低下させ易くなり、更には熱線吸収係数を高め易くなる。 The glass plate for a thin-film solar cell of the present invention, (0.012 × [MgO] + 0.016 × [CaO] + 0.021 × [SrO] + 0.023 × [BaO] + 0.021 × [ZrO 2] - the value of [Fe 2 O 3]) is restricted to a predetermined range. If it does in this way, it will become easy to reduce a reflectance, suppressing a raise of raw material cost, and also will become easy to raise a heat ray absorption coefficient.

更に、本発明の薄膜太陽電池用ガラス板は、歪点が580℃超である。このようにすれば、高温で光電変換膜を成膜し易くなり、光電変換膜の結晶品位が改善されると共に、熱処理工程で、ガラス板に熱変形や熱収縮が生じ難くなる。   Furthermore, the glass plate for thin film solar cells of this invention has a strain point exceeding 580 degreeC. If it does in this way, it will become easy to form a photoelectric converting film at high temperature, the crystal quality of a photoelectric converting film will be improved, and it will become difficult to produce a heat deformation and a heat shrink in a glass plate by a heat treatment process.

発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜20%、B+LiO 0〜4%、Na O 4.3超〜20%、NaO+K4.3超〜30%、MgO+CaO+SrO+BaO 1〜40%、Al+ZrO 10.5〜20%、Fe 0.001〜0.2%を含有することが好ましい。ここで、「B+LiO」は、BとLiOの合量である。「NaO+KO」は、NaOとKOの合量である。「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量である。「Al+ZrO」は、AlとZrOの合量である。 The glass plate for a thin-film solar cell of the present invention has, as a glass composition, mass%, SiO 2 45-60%, Al 2 O 3 more than 8.0-20%, B 2 O 3 + Li 2 O 0-4%, Na 2 O 4.3 super ~20%, Na 2 O + K 2 O 4.3 super ~30%, MgO + CaO + SrO + BaO 1~40%, Al 2 O 3 + ZrO 2 10.5~20%, Fe 2 O 3 0.001 It is preferable to contain -0.2%. Here, “B 2 O 3 + Li 2 O” is the total amount of B 2 O 3 and Li 2 O. “Na 2 O + K 2 O” is the total amount of Na 2 O and K 2 O. “MgO + CaO + SrO + BaO” is the total amount of MgO, CaO, SrO and BaO. “Al 2 O 3 + ZrO 2 ” is the total amount of Al 2 O 3 and ZrO 2 .

発明の薄膜太陽電池用ガラス板は、102.5dPa・sにおける温度が1520℃以下であることが好ましい。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法により測定した値を指す。 The glass plate for a thin film solar cell of the present invention preferably has a temperature at 10 2.5 dPa · s of 1520 ° C. or lower. Here, “temperature at 10 2.5 dPa · s” refers to a value measured by a platinum ball pulling method.

発明の薄膜太陽電池用ガラス板は、CIS系薄膜太陽電池に用いることが好ましい。 The glass plate for a thin film solar cell of the present invention is preferably used for a CIS thin film solar cell.

発明の薄膜太陽電池用ガラス板は、CdTe系薄膜太陽電池に用いることが好ましい。 The glass plate for a thin film solar cell of the present invention is preferably used for a CdTe-based thin film solar cell.

本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値が−20〜60、(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値が0.27〜0.52である。 The glass plate for a thin film solar cell of the present invention is (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 ) as a glass composition in mass%. O]) is −20 to 60, (0.012 × [MgO] + 0.016 × [CaO] + 0.021 × [SrO] + 0.023 × [BaO] + 0.021 × [ZrO 2 ] − [ The value of Fe 2 O 3 ]) is 0.27 to 0.52 .

(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値は−20〜60、好ましくは−20〜50、より好ましくは−20〜35、更に好ましくは−18〜20、特に好ましくは−15〜10である。(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値が大き過ぎると、溶融温度や成形温度が上昇して、ガラスを溶融、成形し難くなる。一方、(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値が小さ過ぎると、歪点が低下し易くなる。 The value of (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 O]) is −20 to 60, preferably −20 to 50. Preferably it is -20-35, More preferably, it is -18-20, Most preferably, it is -15-10. If the value of (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 O]) is too large, the melting temperature and the molding temperature increase. It becomes difficult to melt and mold the glass. On the other hand, if the value of (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 O]) is too small, the strain point tends to decrease. .

(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値は0.27〜0.52、好ましくは0.35〜0.52、より好ましくは0.41〜0.52、更に好ましくは0.45〜0.52である。(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値が大き過ぎると、反射率が高くなり、また熱線吸収係数が小さくなり、ガラス板の内部に至る熱線の強度が低下し易くなるため、薄膜太陽電池の生産工程で、ガラス板の昇温速度が低下してしまい、薄膜太陽電池の生産効率が低下し易くなる。更に、原料コストが高騰して、ガラス板の製造コストが上昇し易くなる。一方、(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値が小さ過ぎると、歪点を維持した上で、高温粘性を低下させることが困難になり、更に熱線吸収係数が上昇し過ぎて、溶解窯内部のガラス融液において、熱線の到達度にバラツキが生じ易くなり、ガラスを均質に溶融し難くなる。
The value of (0.012 × [MgO] + 0.016 × [CaO] + 0.021 × [SrO] + 0.023 × [BaO] + 0.021 × [ZrO 2 ] − [Fe 2 O 3 ]) is 0. 27 to 0.52 , preferably 0.35 to 0.52 , more preferably 0.41 to 0.52 , and still more preferably 0.45 to 0.52 . The value of (0.012 × [MgO] + 0.016 × [CaO] + 0.021 × [SrO] + 0.023 × [BaO] + 0.021 × [ZrO 2 ] − [Fe 2 O 3 ]) is too large. And, since the reflectance increases, the heat ray absorption coefficient decreases, and the strength of the heat rays that reach the inside of the glass plate is likely to decrease, the temperature increase rate of the glass plate decreases in the thin film solar cell production process. As a result, the production efficiency of the thin-film solar cell is likely to decrease. Furthermore, the raw material cost increases so that the manufacturing cost of the glass plate is likely to increase. On the other hand, the value of (0.012 × [MgO] + 0.016 × [CaO] + 0.021 × [SrO] + 0.023 × [BaO] + 0.021 × [ZrO 2 ] − [Fe 2 O 3 ]) If it is too small, it will be difficult to lower the high temperature viscosity while maintaining the strain point, and the heat ray absorption coefficient will rise too much, resulting in variations in the degree of reach of the heat ray in the glass melt inside the melting furnace. It becomes easy and it becomes difficult to melt glass uniformly.

以下のように、各成分の含有量を制限することが好ましい。   It is preferable to limit the content of each component as follows.

SiOは、ガラスネットワークを形成する成分である。その含有量は45〜60%、45〜54%、特に48〜52%が好ましい。SiOの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性や成形性が低下し易くなることに加えて、熱膨張係数が低くなり過ぎて、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合させ難くなる。なお、本発明に係るガラス組成系では、SiOの含有量を増加させても、歪点があまり上昇しない。一方、SiOの含有量が少な過ぎると、耐失透性が低下し易くなる。更に、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなり、結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に割れが発生し易くなる。 SiO 2 is a component that forms a glass network. The content is preferably 45 to 60%, 45 to 54%, and particularly preferably 48 to 52%. If the SiO 2 content is too large, the high-temperature viscosity becomes unduly high and the meltability and moldability tend to decrease, and the thermal expansion coefficient becomes too low. It becomes difficult to match the thermal expansion coefficient of the conversion film. In the glass composition system according to the present invention, the strain point does not increase so much even when the content of SiO 2 is increased. On the other hand, if the content of SiO 2 is too small, devitrification resistance is liable to decrease. Furthermore, the thermal expansion coefficient becomes too high, and the thermal shock resistance of the glass plate is likely to be lowered. As a result, the glass plate is likely to be cracked in the heat treatment step when the thin film solar cell is manufactured.

Alは、歪点を高める成分であると共に、耐候性、化学的耐久性を高める成分であり、更にはガラス板の表面硬度を高める成分である。Alの含有量は8.0超〜20%、10〜17%、11.0超〜16%、特に11.5〜15.5%が好ましい。Alの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性や成形性が低下し易くなる。一方、Alの含有量が少な過ぎると、歪点が低下し易くなる。なお、ガラス板の表面硬度が高いと、CIS系薄膜太陽電池のパターニングにおいて、光電変換膜を除去する工程で、ガラス板が破損し難くなる。 Al 2 O 3 is a component that increases the strain point, is a component that increases the weather resistance and chemical durability, and further is a component that increases the surface hardness of the glass plate. The content of Al 2 O 3 is preferably more than 8.0 to 20%, 10 to 17%, more than 11.0 to 16%, particularly preferably 11.5 to 15.5%. When the content of Al 2 O 3 is too large, the high temperature viscosity becomes unduly high, the meltability and the formability tends to decrease. On the other hand, when the content of Al 2 O 3 is too small, the strain point tends to decrease. In addition, when the surface hardness of a glass plate is high, in the process of removing a photoelectric converting film in the patterning of a CIS type thin film solar cell, a glass plate becomes difficult to be damaged.

SiO−Alは、ガラスネットワークを構成する成分の内、主要構成成分のSiOと歪点を高める寄与が大きいAlの差である。SiO−Alが大き過ぎると、歪点が低下し易くなる。一方、SiO−Alが小さ過ぎると、耐失透性が低下し易くなる。よって、SiO−Alの含有量は28〜50%、30〜45%未満、32〜43%、特に34〜40%が好ましい。 SiO 2 —Al 2 O 3 is a difference between SiO 2 as a main component and Al 2 O 3 that greatly contributes to increase the strain point among components constituting the glass network. If SiO 2 —Al 2 O 3 is too large, the strain point tends to decrease. On the other hand, when the SiO 2 -Al 2 O 3 is too small, devitrification resistance is liable to decrease. Therefore, the content of SiO 2 —Al 2 O 3 is preferably 28 to 50%, less than 30 to 45%, 32 to 43%, particularly preferably 34 to 40%.

+LiOは、ガラスの粘度を下げることにより、溶融温度や成形温度を低下させる成分であるが、歪点を極端に低下させる成分であり、また溶融時の成分揮発に伴い、炉耐火物材料を消耗させる成分である。よって、B+LiOは任意成分であり、その含有量は0〜4%、0〜2%、特に0〜1%が好ましい。 B 2 O 3 + Li 2 O is a component that lowers the melting temperature and molding temperature by lowering the viscosity of the glass, but it is a component that extremely lowers the strain point, and along with component volatilization at the time of melting, It is a component that consumes the furnace refractory material. Therefore, B 2 O 3 + Li 2 O is an optional component, and its content is preferably 0 to 4%, 0 to 2%, particularly preferably 0 to 1%.

は、高温粘度を低下させて、溶融性や成形性を高める成分であるが、歪点を低下させる成分であり、また溶融時の成分揮発に伴い、炉耐火物材料を消耗させる成分である。よって、Bは任意成分であり、その含有量は0〜4%未満、0〜1%、特に0〜0.1%未満が好ましい。 B 2 O 3 is a component that lowers the high-temperature viscosity and improves the meltability and moldability, but is a component that lowers the strain point, and consumes the furnace refractory material as the component volatilizes during melting. It is an ingredient. Therefore, B 2 O 3 is an optional component, and its content is preferably 0 to less than 4%, 0 to 1%, particularly preferably 0 to less than 0.1%.

LiOは、カルコパイライト結晶の成長を促進する成分である。また、LiOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。しかし、LiOは、原料コストが高いことに加えて、歪点を大幅に低下させる成分である。よって、LiOは任意成分であり、その含有量は0〜4%未満、0〜1%、特に0〜0.1%未満が好ましい。 Li 2 O is a component that promotes the growth of chalcopyrite crystals. Further, Li 2 O is a component for adjusting the thermal expansion coefficient, also lowers the high temperature viscosity, a component for enhancing the meltability and formability. However, Li 2 O is a component that significantly lowers the strain point in addition to the high raw material cost. Therefore, Li 2 O is an optional component, and its content is preferably 0 to less than 4%, 0 to 1%, particularly preferably 0 to less than 0.1%.

NaO+KOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaO+KOは、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分であり、光電変換効率を高めるために重要な成分である。NaO+KOの含有量は4.3超〜30%、4.3超〜20%、4.3超〜18%、4.3超〜15%、特に7〜12%が好ましい。NaO+KOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。一方、NaO+KOの含有量が少な過ぎると、上記効果を享受し難くなる。 Na 2 O + K 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O + K 2 O is an effective component for the growth of chalcopyrite crystals in a CIS solar cell, and is an important component for increasing the photoelectric conversion efficiency. The content of Na 2 O + K 2 O is preferably more than 4.3 to 30%, more than 4.3 to 20%, more than 4.3 to 18%, more than 4.3 to 15%, and particularly preferably 7 to 12%. When the content of Na 2 O + K 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked. On the other hand, when the content of Na 2 O + K 2 O is too small, it becomes difficult to enjoy the above-mentioned effects.

NaOは、カルコパイライト結晶の成長を促進する成分である。また、NaOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。NaOの含有量は4.3超〜20%、4.3超〜15%、4.3超〜12%、特に4.3超〜9%が好ましい。NaOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。 Na 2 O is a component that promotes the growth of chalcopyrite crystals. Na 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. The content of Na 2 O is 4.3 super 20%, 4.3 ultra 15%, 4.3 ultra 12%, in particular 4.3 super 9% is preferable. When the content of Na 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked.

Oは、カルコパイライト結晶の成長を促進する成分である。また、KOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。KOの含有量は0〜15%、0.1〜10%、特に1〜7%が好ましい。しかし、KOの含有量が多過ぎると、Alを10%超含むガラス系において、KAlSiO系の失透結晶が析出し易くなる。また、KOの含有量が多過ぎると、歪点が低下し易くなり、また熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。 K 2 O is a component that promotes the growth of chalcopyrite crystals. K 2 O is a component that adjusts the coefficient of thermal expansion, and is a component that lowers the high-temperature viscosity and improves meltability and moldability. The content of K 2 O is preferably 0 to 15%, 0.1 to 10%, particularly preferably 1 to 7%. However, if the content of K 2 O is too large, KAlSiO-based devitrified crystals tend to precipitate in a glass system containing more than 10% Al 2 O 3 . If the content of K 2 O is too large, easily strain point is lowered, also too high thermal expansion coefficient, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked.

MgO+CaO+SrO+BaOは、歪点を低下させずに、高温粘度を低下させる成分である。MgO+CaO+SrO+BaOの含有量は1〜40%、12〜37%、15〜35%、17.0超〜32%、18〜30%、特に19〜25%が好ましい。MgO+CaO+SrO+BaOの含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰する。また、MgO+CaO+SrO+BaOの含有量が多過ぎると、アルカリ成分、特にNaOの拡散を抑制し易くなる。一方、MgO+CaO+SrO+BaOの含有量が少な過ぎると、高温粘度が高くなり過ぎる。 MgO + CaO + SrO + BaO is a component that lowers the high temperature viscosity without lowering the strain point. The content of MgO + CaO + SrO + BaO is preferably 1 to 40%, 12 to 37%, 15 to 35%, more than 17.0 to 32%, 18 to 30%, particularly 19 to 25%. When there is too much content of MgO + CaO + SrO + BaO, devitrification resistance will fall easily and raw material cost will rise. If the content of MgO + CaO + SrO + BaO is too large, the alkaline component, tend to particularly suppress the diffusion of Na 2 O. On the other hand, when the content of MgO + CaO + SrO + BaO is too small, the high temperature viscosity becomes too high.

MgOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、MgOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。しかし、MgOは、ZrOと共存する場合に、ZrO系の失透結晶を著しく析出させることにより、液相粘度を著しく低下させる成分である。また、CaOと共存する場合に、CaMgSiO系の失透結晶を析出させ易い成分である。よって、MgOは任意成分であり、その含有量は0〜10%、0〜3.7%未満、0.01〜3%、0.02〜2%、特に0.03〜0.5%が好ましい。 MgO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, MgO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. However, when MgO coexists with ZrO 2 , it is a component that remarkably lowers the liquid phase viscosity by precipitating ZrO 2 -based devitrified crystals. Further, when coexisting with CaO, it is a component that easily deposits a CaMgSiO-based devitrified crystal. Therefore, MgO is an optional component, and its content is 0 to 10%, 0 to less than 3.7%, 0.01 to 3%, 0.02 to 2%, particularly 0.03 to 0.5%. preferable.

CaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、CaOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。CaOの含有量は0〜10%、0.1〜9%、1〜8%、2〜7.5%、特に3〜6%が好ましい。CaOの含有量が多過ぎると、耐失透性が低下し易くなり、ガラス板に成形し難くなる。   CaO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, CaO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. The content of CaO is preferably 0 to 10%, 0.1 to 9%, 1 to 8%, 2 to 7.5%, particularly 3 to 6%. When there is too much content of CaO, devitrification resistance will fall easily and it will become difficult to shape | mold into a glass plate.

質量比CaO/MgOは、アルカリ土類酸化物の内、高温粘度を低下させる効果が大きいMgOとCaOの比である。耐失透性の観点から見ると、ZrO系の失透結晶を特に発生させ易いMgOに対して、MgOと比較してZrO系の失透結晶を発生させ難いCaOの比である。質量比CaO/MgOの値は、ZrO系の失透結晶の析出を抑制しつつ、高温粘度を低下させるために、1超、2超、2.5超、特に3.4超が好ましい。 The mass ratio CaO / MgO is a ratio of MgO and CaO having a large effect of reducing the high temperature viscosity among the alkaline earth oxides. From the point of view of resistance to devitrification, against easy MgO especially to generate devitrification crystals ZrO 2 system, which is the ratio of hard CaO which caused the devitrification crystals ZrO 2 system as compared with MgO. The value of the mass ratio CaO / MgO is preferably more than 1, more than 2, more than 2.5, particularly more than 3.4 in order to reduce the high temperature viscosity while suppressing the precipitation of ZrO 2 -based devitrified crystals.

SrOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、SrOは、ZrOと共存する場合に、ZrO系の失透結晶を析出し難くする成分である。SrOの含有量は0〜20%、0.1〜17%、4.0超〜16%、5〜15%、7.0超〜14%、特に9.2〜13.5%が好ましい。SrOの含有量が多過ぎると、長石族の失透結晶が析出し易くなり、また原料コストが高騰する。 SrO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Also, SrO, when coexisting with ZrO 2, is a component that hardly deposited devitrification crystals ZrO 2 system. The content of SrO is preferably 0 to 20%, 0.1 to 17%, more than 4.0 to 16%, 5 to 15%, more than 7.0 to 14%, particularly preferably 9.2 to 13.5%. If the content of SrO is too large, feldspar group devitrified crystals are likely to precipitate, and the raw material cost increases.

BaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。BaOの含有量は0〜20%、0.1〜15%、2.0超〜14%未満、2.0超〜10%未満、特に2.0超〜8%未満が好ましい。BaOの含有量が多過ぎると、バリウム長石族の失透結晶が析出し易くなり、また原料コストが高騰する。更に、密度が増大して、薄膜太陽電池の支持部材のコストが高騰し易くなる。なお、BaOの含有量が少な過ぎると、高温粘度が高くなり、溶融性や成形性が低下する傾向がある。   BaO is a component that lowers the high-temperature viscosity and improves the meltability and moldability. The BaO content is preferably 0 to 20%, 0.1 to 15%, more than 2.0 to less than 14%, more than 2.0 to less than 10%, particularly preferably more than 2.0 to less than 8%. When there is too much content of BaO, the devitrification crystal | crystallization of a barium feldspar group will become easy to precipitate, and raw material cost will rise. Furthermore, the density increases, and the cost of the support member for the thin-film solar cell is likely to increase. In addition, when there is too little content of BaO, high temperature viscosity will become high and there exists a tendency for a meltability and a moldability to fall.

Al+ZrOは、歪点を高める成分である。その含有量は5〜20%、10.5〜20%、13.0超〜20%、特に17.4〜20%が好ましい。Al+ZrOの含有量が多過ぎると、耐失透性が低下し易くなり、ガラス板に成形し難くなる。一方、Al+ZrOの含有量が少な過ぎると、歪点が低下し易くなる。 Al 2 O 3 + ZrO 2 is a component that increases the strain point. The content is preferably 5 to 20%, 10.5 to 20%, more than 13.0 to 20%, particularly preferably 17.4 to 20%. When the content of Al 2 O 3 + ZrO 2 is too high, devitrification resistance is liable to lower, it becomes difficult to mold the glass sheet. On the other hand, when the content of Al 2 O 3 + ZrO 2 is too small, the strain point tends to decrease.

ZrOは、高温粘度を上げずに、歪点を高める成分である。ZrOの含有量は0.1〜10%、0.5〜8%、1〜6.5%、特に2〜6%が好ましい。ZrOの含有量が多過ぎると、密度が高くなり易く、またガラス板が割れ易くなり、更にはZrO系の失透結晶が析出し易くなり、ガラス板に成形し難くなる。一方、ZrOの含有量が少な過ぎると、歪点が低下し易くなる。 ZrO 2 is a component that increases the strain point without increasing the high-temperature viscosity. The content of ZrO 2 is preferably 0.1 to 10%, 0.5 to 8%, 1 to 6.5%, particularly 2 to 6%. If the content of ZrO 2 is too large, the density tends to be high, the glass plate is easily broken, and ZrO 2 -based devitrified crystals are likely to precipitate, making it difficult to form the glass plate. On the other hand, when the content of ZrO 2 is too small, the strain point tends to decrease.

Feは、熱線吸収係数を上げる成分である。Feの含有量は0.001〜0.2%、0.015〜0.15%、特に0.03〜0.1%未満が好ましい。Feの含有量が多過ぎると、溶解窯内部のガラス融液において、熱線の到達度にバラツキが生じ易くなり、ガラスを均質に溶融し難くなる。一方、Feの含有量が少な過ぎると、高価な高純度原料を使用しなければならず、ガラス板の製造コストが上昇してしまう。また熱線吸収係数が小さくなり、ガラス板の内部に至る熱線の強度が低下し易くなるため、薄膜太陽電池の生産工程で、ガラス板の昇温速度が低下してしまい、薄膜太陽電池の生産効率が低下し易くなる。 Fe 2 O 3 is a component that increases the heat ray absorption coefficient. The content of Fe 2 O 3 is preferably 0.001 to 0.2%, 0.015 to 0.15%, particularly preferably 0.03 to less than 0.1%. When the content of Fe 2 O 3 is too large, the melting furnace the glass melt, it tends to occur variation in the heat ray achievement, difficult to uniformly melt the glass. On the other hand, when the content of Fe 2 O 3 is too small, it is necessary to use expensive high purity source, the production cost of the glass plate increases. Moreover, since the heat ray absorption coefficient becomes small and the strength of the heat ray that reaches the inside of the glass plate is likely to decrease, the temperature increase rate of the glass plate decreases in the production process of the thin film solar cell, and the production efficiency of the thin film solar cell Tends to decrease.

上記成分以外にも、例えば、以下の成分を添加してもよい。なお、以下の成分の添加量は10%以下、5%以下、特に2%以下が好ましい。   In addition to the above components, for example, the following components may be added. In addition, the addition amount of the following components is preferably 10% or less, 5% or less, and particularly preferably 2% or less.

は、耐失透性を高める成分であり、特にZrO系の失透結晶の析出を抑制する成分であり、またガラス板を割れ難くする成分である。しかし、Pの含有量が多過ぎると、ガラスが乳白色に分相し易くなる。よって、Pの含有量は0〜10%、0〜0.5%、特に0〜0.1%未満が好ましい。 P 2 O 5 is a component that enhances devitrification resistance, in particular, a component that suppresses precipitation of ZrO 2 -based devitrification crystals, and a component that makes the glass plate difficult to break. However, when the content of P 2 O 5 is too large, easily glass phase separation milky. Therefore, the content of P 2 O 5 is preferably 0 to 10%, 0 to 0.5%, particularly preferably less than 0 to 0.1%.

ZnOは、高温粘度を低下させる成分である。ZnOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、ZnOの含有量は0〜10%、特に0〜5%が好ましい。   ZnO is a component that lowers the high temperature viscosity. When there is too much content of ZnO, devitrification resistance will fall easily. Therefore, the content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%.

TiOは、紫外線による着色を防止すると共に、耐候性を高める成分である。しかし、TiOの含有量が多過ぎると、ガラスが失透したり、ガラスが茶褐色に着色し易くなる。よって、TiOの含有量は0〜10%、特に0〜1%未満が好ましい。 TiO 2 is a component that prevents coloring by ultraviolet rays and enhances weather resistance. However, when the content of TiO 2 is too large, or glass is devitrified, glass tends colored brown. Therefore, the content of TiO 2 is preferably 0 to 10%, particularly preferably less than 0 to 1%.

SOは、清澄剤として作用する成分であり、その含有量は0〜1%、特に0.01〜1%が好ましい。なお、フロート法でガラス板を成形すると、ガラス板を大量生産し得るが、この場合、清澄剤として芒硝を用いることが好ましい。 SO 3 is a component that acts as a fining agent, and its content is preferably 0 to 1%, particularly preferably 0.01 to 1%. In addition, when a glass plate is shape | molded by the float glass process, a glass plate can be mass-produced. However, in this case, it is preferable to use mirabilite as a clarifier.

Asは、清澄剤として作用する成分であるが、フロート法でガラス板を成形する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Asの含有量は0〜1%、特に0〜0.1%未満が好ましい。 As 2 O 3 is a component that acts as a fining agent. However, when a glass plate is formed by the float process, it is a component that colors the glass and is a component that is concerned about the environmental burden. The content of As 2 O 3 is preferably 0 to 1%, particularly preferably less than 0 to 0.1%.

Sbは、清澄剤として作用する成分であるが、フロート法でガラス板を成形する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Sbの含有量は0〜1%、特に0〜0.1%未満が好ましい。 Sb 2 O 3 is a component that acts as a fining agent. However, when a glass plate is formed by the float process, Sb 2 O 3 is a component that colors the glass and is a component that is concerned about the environmental burden. The content of Sb 2 O 3 is preferably 0 to 1%, particularly preferably less than 0 to 0.1%.

SnOは、清澄剤として作用する成分であるが、耐失透性を低下させる成分である。SnOの含有量は0〜1%、特に0〜0.1%未満が好ましい。 SnO 2 is a component that acts as a fining agent, but is a component that reduces devitrification resistance. The SnO 2 content is preferably 0 to 1%, particularly preferably 0 to less than 0.1%.

上記成分以外にも、溶解性、清澄性、成形性を高めるために、F、Cl、CeOを合量で各々1%まで添加してもよい。また、化学的耐久性を高めるために、Nb、HfO、Ta、Y、Laを各々3%まで添加してもよい。更に、色調の調整のために、上記以外の希土類酸化物、遷移金属酸化物を合量で2%まで添加してもよい。 In addition to the above components, F, Cl, and CeO 2 may be added up to 1% in total in order to enhance solubility, clarity, and moldability. In order to increase chemical durability, Nb 2 O 5 , HfO 2 , Ta 2 O 5 , Y 2 O 3 , and La 2 O 3 may be added up to 3% each. Furthermore, in order to adjust the color tone, a rare earth oxide or transition metal oxide other than the above may be added up to 2% in total.

本発明の薄膜太陽電池用ガラス板において、密度は2.90g/cm以下、特に2.85g/cm以下が好ましい。このようにすれば、薄膜太陽電池の支持部材のコストを低廉化し易くなる。なお、「密度」は、周知のアルキメデス法で測定可能である。 In the glass plate for a thin film solar cell of the present invention, the density is preferably 2.90 g / cm 3 or less, particularly preferably 2.85 g / cm 3 or less. If it does in this way, it will become easy to reduce the cost of the support member of a thin film solar cell. The “density” can be measured by a known Archimedes method.

本発明の薄膜太陽電池用ガラス板において、歪点は580℃超であり、好ましくは600℃以上、600超〜660℃、より好ましくは605超〜650℃、更に好ましくは610超〜645℃である。このようにすれば、高温で光電変換膜を成膜し易くなり、光電変換膜の結晶品位が改善されると共に、熱処理工程で、ガラス板に熱変形や熱収縮が生じ難くなる。   In the glass plate for a thin-film solar cell of the present invention, the strain point is more than 580 ° C, preferably 600 ° C or more, more than 600 to 660 ° C, more preferably more than 605 to 650 ° C, still more preferably more than 610 to 645 ° C. is there. If it does in this way, it will become easy to form a photoelectric converting film at high temperature, the crystal quality of a photoelectric converting film will be improved, and it will become difficult to produce a heat deformation and a heat shrink in a glass plate by a heat treatment process.

本発明の薄膜太陽電池用ガラス板において、104.0dPa・sにおける温度は1200℃以下、特に1180℃以下が好ましい。このようにすれば、低温でガラス板を成形し易くなる。ここで、「104.0dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 In the glass plate for a thin-film solar cell of the present invention, the temperature at 10 4.0 dPa · s is preferably 1200 ° C. or less, particularly preferably 1180 ° C. or less. If it does in this way, it will become easy to shape | mold a glass plate at low temperature. Here, “temperature at 10 4.0 dPa · s” can be measured by a platinum ball pulling method.

本発明の薄膜太陽電池用ガラス板において、102.5dPa・sにおける温度は1520℃以下、特に1460℃以下が好ましい。このようにすれば、低温でガラス原料を溶解し易くなる。 In the glass plate for a thin film solar cell of the present invention, the temperature at 10 2.5 dPa · s is preferably 1520 ° C. or less, particularly preferably 1460 ° C. or less. If it does in this way, it will become easy to melt | dissolve a glass raw material at low temperature.

本発明の薄膜太陽電池用ガラス板において、熱膨張係数は70〜100×10−7/℃、特に80〜90×10−7/℃が好ましい。このようにすれば、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合させ易くなる。なお、熱膨張係数が高過ぎると、ガラス板の耐熱衝撃性が低下し易くなり、結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に割れが発生し易くなる。 In the glass plate for a thin film solar cell of the present invention, the thermal expansion coefficient is preferably 70 to 100 × 10 −7 / ° C., particularly preferably 80 to 90 × 10 −7 / ° C. If it does in this way, it will become easy to match with the thermal expansion coefficient of the electrode film of a thin film solar cell, and a photoelectric conversion film. If the thermal expansion coefficient is too high, the thermal shock resistance of the glass plate tends to be lowered, and as a result, the glass plate is likely to be cracked in the heat treatment step when manufacturing the thin film solar cell.

本発明の薄膜太陽電池用ガラス板において、液相温度は1160℃以下、特に1100℃以下が好ましい。液相温度が上昇すると、成形時にガラスが失透し易くなり、成形性が低下し易くなる。   In the glass plate for a thin film solar cell of the present invention, the liquidus temperature is preferably 1160 ° C. or less, particularly preferably 1100 ° C. or less. When the liquidus temperature rises, the glass tends to devitrify during molding, and the moldability tends to decrease.

本発明の薄膜太陽電池用ガラス板において、液相粘度は104.0dPa・s以上、特に104.3dPa・以上が好ましい。液相粘度が低下すると、成形時にガラスが失透し易くなり、成形性が低下し易くなる。 In the glass plate for a thin-film solar cell of the present invention, the liquid phase viscosity is preferably 10 4.0 dPa · s or more, particularly preferably 10 4.3 dPa · s or more. When the liquid phase viscosity is lowered, the glass is easily devitrified during molding, and the moldability is easily lowered.

本発明の薄膜太陽電池用ガラス板において、ヤング率は78GPa以上、特に80GPa以上が好ましい。また、比ヤング率は、27.5GPa/(g/cm)以上、特に28GPa/(g/cm)以上が好ましい。このようにすれば、ガラス板が撓み難くなるため、搬送工程や梱包工程における取り扱いの際に、ガラス板が揺動し難くなる。ここで、「ヤング率」は、共振法で測定した値を指す。「比ヤング率」は、ヤング率を密度で除した値である。 In the glass plate for a thin film solar cell of the present invention, the Young's modulus is preferably 78 GPa or more, particularly preferably 80 GPa or more. The specific Young's modulus is preferably 27.5 GPa / (g / cm 3 ) or more, and particularly preferably 28 GPa / (g / cm 3 ) or more. If it does in this way, since it will become difficult to bend a glass plate, at the time of handling in a conveyance process or a packing process, it will become difficult to rock a glass plate. Here, “Young's modulus” refers to a value measured by a resonance method. “Specific Young's modulus” is a value obtained by dividing Young's modulus by density.

本発明の薄膜太陽電池用ガラス板は、上記のガラス組成範囲になるように、調合したガラス原料を連続溶融炉に投入し、ガラス原料を加熱溶融した後、得られたガラス融液を脱泡した上で、成形装置に供給し、板状に成形、徐冷することにより、作製することができる。   The glass plate for a thin-film solar cell of the present invention is prepared by putting the prepared glass raw material into a continuous melting furnace so as to be in the above glass composition range, heating and melting the glass raw material, and defoaming the obtained glass melt Then, it can be produced by supplying it to a molding apparatus, molding it into a plate shape, and slowly cooling it.

ガラス板の成形方法としては、フロート法、スロットダウンドロー法、オーバーフローダウンドロー法、リドロー法等を例示できるが、ガラス板を大量生産する場合、フロート法を採用することが好ましい。   Examples of the glass plate forming method include a float method, a slot down draw method, an overflow down draw method, a redraw method, and the like, but when a glass plate is mass-produced, it is preferable to employ the float method.

本発明の薄膜太陽電池用ガラス板は、化学強化処理、特にイオン交換処理が行われていないことが好ましい。薄膜太陽電池には、高温の熱処理工程が存在する。高温の熱処理工程では、強化層(圧縮応力層)が消失し、化学強化処理を行う実益が乏しくなる。また、上記と同様の理由により、風冷強化等の物理強化処理も行われていないことが好ましい。   The glass plate for a thin film solar cell of the present invention is preferably not subjected to chemical strengthening treatment, particularly ion exchange treatment. A thin film solar cell has a high-temperature heat treatment step. In the high-temperature heat treatment process, the strengthening layer (compressive stress layer) disappears, and the actual benefit of performing the chemical strengthening treatment becomes poor. Further, for the same reason as described above, it is preferable that physical strengthening processing such as wind cooling strengthening is not performed.

特に、CIS系薄膜太陽電池の場合、ガラス板をイオン交換処理すると、ガラス表面のNaイオンが減少してしまい、光電変換効率が低下し易くなる。この場合は、別途、Na供給膜をガラス板に形成する方法を採用することが好ましい。   In particular, in the case of a CIS-based thin film solar cell, when the glass plate is subjected to ion exchange treatment, Na ions on the glass surface are reduced, and the photoelectric conversion efficiency is likely to be lowered. In this case, it is preferable to adopt a method of separately forming a Na supply film on a glass plate.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, based on an Example, this invention is demonstrated in detail. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1は、試料No.1〜10を示している。 Table 1, specimen No. 1 to 10 are shown.

次のようにして、試料No.1〜10を作製した。まず表中のガラス組成になるように調合したガラスバッチを白金坩堝に入れて、1550℃で2時間溶融した。次に、得られた溶融ガラスをカーボン板上に流し出して、平板形状に成形した後、徐冷した。その後、各測定に応じて、所定の加工を行った。得られた各試料について、歪点、104.0dPa・sにおける温度、102.5dPa・sにおける温度、熱膨張係数、昇温性を測定した。これらの結果を表1に示す。なお、表中におけるパラメータaは、(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値を指しており、パラメータbは、(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値を指している。 Sample no. 1-10 were produced. First, a glass batch prepared so as to have the glass composition in the table was put in a platinum crucible and melted at 1550 ° C. for 2 hours. Next, the obtained molten glass was poured out on a carbon plate, formed into a flat plate shape, and then gradually cooled. Thereafter, predetermined processing was performed according to each measurement. For each sample obtained, the strain point, the temperature at 10 4.0 dPa · s, the temperature at 10 2.5 dPa · s, the thermal expansion coefficient was measured Atsushi Nobori performance. These results are shown in Table 1. The parameter a in the table indicates a value of (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 O]), The parameter b is (0.012 × [MgO] + 0.016 × [CaO] + 0.021 × [SrO] + 0.023 × [BaO] + 0.021 × [ZrO 2 ] − [Fe 2 O 3 ]) Points to the value.

歪点は、ASTM C336−71に基づいて測定した値である。   The strain point is a value measured based on ASTM C336-71.

104.0dPa・sにおける温度、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、104.0dPa・sにおける温度は成形温度に相当しており、102.5dPa・sにおける温度は溶融温度に相当している。 Temperature at 10 4.0 dPa · s, temperature at 10 2.5 dPa · s is a value measured by a platinum ball pulling method. The temperature at 10 4.0 dPa · s corresponds to the molding temperature, and the temperature at 10 2.5 dPa · s corresponds to the melting temperature.

熱膨張係数は、30〜380℃における平均熱膨張係数であり、ディラトメーターで測定した値である。なお、測定試料として、直径5.0mm、長さ20mmの円柱試料を用いた。   The thermal expansion coefficient is an average thermal expansion coefficient at 30 to 380 ° C., and is a value measured with a dilatometer. A cylindrical sample having a diameter of 5.0 mm and a length of 20 mm was used as a measurement sample.

以下のようにして昇温性を評価した。まず2枚のガラス板(板厚1.8mm)を試料とし、この試料をスーパーカンタル発熱体が両側に付いた電気炉の内部に、屋根形になるように置いた。更に、この屋根の内部に熱電対を設置した。次に、電気炉を10℃/minで昇温し、600℃に昇温された時点で、屋根内部の熱電対で温度を測定した。最後に、600℃と屋根内部の測定温度との差を昇温性として評価した。   The temperature rise property was evaluated as follows. First, two glass plates (plate thickness of 1.8 mm) were used as samples, and the samples were placed in a roof shape inside an electric furnace with superkanthal heating elements on both sides. Furthermore, a thermocouple was installed inside the roof. Next, the temperature of the electric furnace was increased at 10 ° C./min, and when the temperature was increased to 600 ° C., the temperature was measured with a thermocouple inside the roof. Finally, the difference between 600 ° C. and the measured temperature inside the roof was evaluated as the temperature rise property.

表1から明らかなように、試料No.1〜9は、歪点が613℃以上であるため、高い耐熱性を有する。また、試料No.1〜9は、104.0dPa・sにおける温度が1192℃以下、102.5dPa・sにおける温度が1460℃以下であるため、ガラス板の生産性に優れている。更に、試料No.1〜9は、昇温性の評価が良好であった。 As is clear from Table 1, sample No. 1 to 9 have high heat resistance because the strain point is 613 ° C. or higher. Sample No. 1-9 10 4.0 temperature of 1192 ° C. or less in dPa · s, the temperature at 10 2.5 dPa · s of 1460 ° C. or less, is excellent in productivity of the glass plate. Furthermore, sample no. 1 to 9 were good in evaluation of temperature rise.

一方、試料No.10は、ガラス組成が所定範囲外であるため、高歪点とガラス板の生産性の両立が困難であると考えられる。更に、試料No.10は、昇温性の評価が不良であった。   On the other hand, sample No. No. 10 is considered to be difficult to achieve both high strain point and productivity of the glass sheet because the glass composition is outside the predetermined range. Furthermore, sample no. No. 10 was poor in evaluation of temperature rise.

Claims (5)

ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜20%、B+LiO 0〜4%、NaO 4.3超〜20%、NaO+KO 4.3超〜30%、MgO+CaO+SrO+BaO 1〜40%を含有し、(5×[Al]+7.5×[ZrO]−15×[NaO]−5×[KO])の値が−20〜60、(0.012×[MgO]+0.016×[CaO]+0.021×[SrO]+0.023×[BaO]+0.021×[ZrO]−[Fe])の値が0.27〜0.52であり、且つ歪点が580℃超であることを特徴とする薄膜太陽電池用ガラス板。 As a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8.0 super ~20%, B 2 O 3 + Li 2 O 0~4%, Na 2 O 4.3 super 20%, Contains Na 2 O + K 2 O 4.3 to 30%, MgO + CaO + SrO + BaO 1-40%, (5 × [Al 2 O 3 ] + 7.5 × [ZrO 2 ] −15 × [Na 2 O] −5 × [K 2 O] value of) the -20 ~60, (0.012 × [MgO ] + 0.016 × [CaO] + 0.021 × [SrO] + 0.023 × [BaO] + 0.021 × [ZrO 2 ]-[Fe 2 O 3 ]) is 0.27 to 0.52 , and the strain point is higher than 580 ° C. ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜20%、B+LiO 0〜4%、NaO 4.3超〜20%、NaO+KO 4.3超〜30%、MgO+CaO+SrO+BaO 1〜40%、Al+ZrO 10.5〜20%、Fe 0.001〜0.2%を含有することを特徴とする請求項1に記載の薄膜太陽電池用ガラス板。 As a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8.0 super ~20%, B 2 O 3 + Li 2 O 0~4%, Na 2 O 4.3 super 20%, It contains Na 2 O + K 2 O 4.3 to 30%, MgO + CaO + SrO + BaO 1-40%, Al 2 O 3 + ZrO 2 10.5-20%, Fe 2 O 3 0.001-0.2%. The glass plate for thin film solar cells according to claim 1. 102.5dPa・sにおける温度が1520℃以下であることを特徴とする請求項1又は2に記載の薄膜太陽電池用ガラス板。 The glass plate for a thin-film solar cell according to claim 1 or 2, wherein the temperature at 10 2.5 dPa · s is 1520 ° C or lower. CIS系薄膜太陽電池に用いることを特徴とする請求項1〜3の何れか一項に記載の薄膜太陽電池用ガラス板。   It uses for a CIS type thin film solar cell, The glass plate for thin film solar cells as described in any one of Claims 1-3 characterized by the above-mentioned. CdTe系薄膜太陽電池に用いることを特徴とする請求項1〜3の何れか一項に記載の薄膜太陽電池用ガラス板。   It uses for a CdTe type | system | group thin film solar cell, The glass plate for thin film solar cells as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2012232527A 2012-10-22 2012-10-22 Glass plate for thin film solar cell Active JP6040699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232527A JP6040699B2 (en) 2012-10-22 2012-10-22 Glass plate for thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232527A JP6040699B2 (en) 2012-10-22 2012-10-22 Glass plate for thin film solar cell

Publications (2)

Publication Number Publication Date
JP2014084236A JP2014084236A (en) 2014-05-12
JP6040699B2 true JP6040699B2 (en) 2016-12-07

Family

ID=50787651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232527A Active JP6040699B2 (en) 2012-10-22 2012-10-22 Glass plate for thin film solar cell

Country Status (1)

Country Link
JP (1) JP6040699B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201544481A (en) * 2014-05-21 2015-12-01 Asahi Glass Co Ltd Glass plate
WO2016043287A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate, method for producing same, and cigs solar cell
JP5951152B1 (en) * 2014-09-19 2016-07-13 旭硝子株式会社 Glass substrate and CIGS solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same
JP5610563B2 (en) * 2008-11-13 2014-10-22 日本電気硝子株式会社 Glass substrate for solar cell
JP5704500B2 (en) * 2009-12-14 2015-04-22 日本電気硝子株式会社 Manufacturing method of glass plate

Also Published As

Publication number Publication date
JP2014084236A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5915892B2 (en) Glass plate for thin film solar cell
JP6191138B2 (en) Glass
JP2008280189A (en) Glass substrate for solar cell, and method of manufacturing the same
JP2013505889A (en) Aluminosilicate glass with high heat resistance and low working temperature
JP5610563B2 (en) Glass substrate for solar cell
JP6254345B2 (en) Glass substrate for solar cell
JP6774614B2 (en) Tempered glass and tempered glass
KR101554532B1 (en) Glass plate for thin film solar cell
JP6497576B2 (en) Glass plate for solar cell
JP6090705B2 (en) Glass plate for thin film solar cell
JP5850392B2 (en) Glass plate
JP6040699B2 (en) Glass plate for thin film solar cell
JP6128418B2 (en) Glass plate for thin film solar cell
JP2014097916A (en) Glass plate for thin film solar cell and method of producing the same
JP2011088794A (en) Glass plate for solar cell
JP2014084237A (en) Glass plate for thin film solar cell
JP2014094859A (en) Glass plate for thin film solar cell
JP2015231936A (en) Glass for solar battery
JP2013063910A (en) Glass substrate for solar cell
JP6593726B2 (en) Glass plate for solar cell
JP6593724B2 (en) Glass plate for solar cell
JP5648982B2 (en) Glass substrate for solar cell
JP5831850B2 (en) Glass substrate for solar cell
JP5742084B2 (en) Glass substrate for solar cell
JP2016084247A (en) Glass sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R150 Certificate of patent or registration of utility model

Ref document number: 6040699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150