JP5915892B2 - Glass plate for thin film solar cell - Google Patents

Glass plate for thin film solar cell Download PDF

Info

Publication number
JP5915892B2
JP5915892B2 JP2012030287A JP2012030287A JP5915892B2 JP 5915892 B2 JP5915892 B2 JP 5915892B2 JP 2012030287 A JP2012030287 A JP 2012030287A JP 2012030287 A JP2012030287 A JP 2012030287A JP 5915892 B2 JP5915892 B2 JP 5915892B2
Authority
JP
Japan
Prior art keywords
glass plate
solar cell
film solar
cao
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012030287A
Other languages
Japanese (ja)
Other versions
JP2012250902A (en
Inventor
真人 六車
真人 六車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012030287A priority Critical patent/JP5915892B2/en
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to CN201280020325.5A priority patent/CN103492332A/en
Priority to PCT/JP2012/061014 priority patent/WO2012153634A1/en
Priority to US14/116,511 priority patent/US9133052B2/en
Priority to EP12783053.7A priority patent/EP2708518A4/en
Priority to KR1020137024255A priority patent/KR101554532B1/en
Priority to TW101116200A priority patent/TWI543952B/en
Publication of JP2012250902A publication Critical patent/JP2012250902A/en
Application granted granted Critical
Publication of JP5915892B2 publication Critical patent/JP5915892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Description

本発明は薄膜太陽電池用ガラス板に関し、特にCIS系太陽電池、CdTe系太陽電池に好適なガラス板に関する。   The present invention relates to a glass plate for a thin film solar cell, and more particularly to a glass plate suitable for a CIS solar cell and a CdTe solar cell.

薄膜太陽電池、例えばCIS系太陽電池では、Cu、In、Ga、Seからなるカルコパイライト型化合物半導体、Cu(InGa)Seが光電変換膜としてガラス板上に形成される。 In a thin film solar cell, for example, a CIS solar cell, a chalcopyrite compound semiconductor made of Cu, In, Ga, and Se, Cu (InGa) Se 2 is formed on a glass plate as a photoelectric conversion film.

多元蒸着法、セレン化法等によりCu、In、Ga、Seをガラス板上に塗布して、カルコパイライト型化合物にするためには、500〜600℃程度の熱処理工程が必要になる。   In order to apply Cu, In, Ga, and Se on a glass plate by a multi-source deposition method, a selenization method, or the like to obtain a chalcopyrite type compound, a heat treatment step of about 500 to 600 ° C. is required.

CdTe系太陽電池においても、Cd、Teからなる光電変換膜がガラス基板上に形成される。この場合も、500℃〜600℃程度の熱処理工程が必要になる。   Also in the CdTe solar cell, a photoelectric conversion film made of Cd and Te is formed on a glass substrate. Also in this case, a heat treatment step of about 500 ° C. to 600 ° C. is required.

従来、CIS系太陽電池、CdTe系太陽電池等では、ガラス基板として、ソーダ石灰ガラスが用いられていた。しかし、ソーダ石灰ガラスは、高温の熱処理工程で熱変形や熱収縮が生じ易い。この問題を解決するために、現在では、高歪点ガラスを用いることが検討されている(特許文献1参照)。   Conventionally, soda lime glass has been used as a glass substrate in CIS solar cells, CdTe solar cells and the like. However, soda-lime glass is likely to be thermally deformed or shrunk in a high-temperature heat treatment process. In order to solve this problem, at present, the use of high strain point glass has been studied (see Patent Document 1).

特開平11−135819号公報JP-A-11-135819 特開2005−89286号公報JP 2005-89286 A 特許第2987523号公報Japanese Patent No. 29987523

CIS系太陽電池、CdTe系太陽電池では、光電変換膜を高温で成膜すると、光電変換膜の結晶品位が改善されて、光電変換効率が向上すると考えられる。しかしながら、特許文献1に記載の高歪点ガラスは、歪点が十分に高くないため、光電変換膜の成膜温度が600超〜650℃の場合に、熱変形や熱収縮が生じ易く、光電変換効率を十分に高めることができなかった。   In the CIS solar cell and the CdTe solar cell, it is considered that when the photoelectric conversion film is formed at a high temperature, the crystal quality of the photoelectric conversion film is improved and the photoelectric conversion efficiency is improved. However, since the strain point glass described in Patent Document 1 does not have a sufficiently high strain point, when the film formation temperature of the photoelectric conversion film is more than 600 to 650 ° C., thermal deformation and thermal contraction are likely to occur. The conversion efficiency could not be increased sufficiently.

一方、特許文献2には、600超〜650℃の歪点を有するガラス板が開示されているが、このガラス板は、熱膨張係数が低過ぎるため、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合せず、膜剥がれ等の不具合を惹起させ易い。更に、このガラス板は、高温粘度が高過ぎるため、溶融温度、成形温度が高くなり、結果として、ガラス板の製造コストを低廉化することができない。   On the other hand, Patent Document 2 discloses a glass plate having a strain point of more than 600 to 650 ° C. However, since this glass plate has a coefficient of thermal expansion that is too low, an electrode film of a thin film solar cell, a photoelectric conversion film The thermal expansion coefficient does not match, and problems such as film peeling are likely to occur. Furthermore, since this glass plate has a high temperature viscosity that is too high, the melting temperature and the molding temperature increase, and as a result, the production cost of the glass plate cannot be reduced.

更に、CIS系太陽電池では、ガラス基板からアルカリ成分、特にNaOが拡散すると、カルコパイライト結晶が析出し易くなる。しかし、アルカリ成分、特にNaOの含有量が少な過ぎると、高品位の光電変換膜を成膜できず、光電変換効率を高めることができないという問題がある(特許文献3参照)。 Further, in the CIS solar cell, when an alkali component, particularly Na 2 O, diffuses from the glass substrate, chalcopyrite crystals are likely to be precipitated. However, alkaline components, particularly too small content of Na 2 O, can not be deposited photoelectric conversion film of high quality, it is not possible to increase the photoelectric conversion efficiency (see Patent Document 3).

そこで、本発明は、歪点が十分に高く、且つ周辺部材の熱膨張係数に整合し、しかも高品位の光電変換膜を成膜し得るガラス板を創案することを技術的課題とする。   Accordingly, it is a technical object of the present invention to devise a glass plate that has a sufficiently high strain point, matches the thermal expansion coefficient of the peripheral member, and can form a high-quality photoelectric conversion film.

本発明者は、鋭意検討した結果、ガラス組成、ガラス特性を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として提案するものである。すなわち、本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜18%、B 0〜15%(但し、15%を含まず)、MgO+CaO+SrO+BaO 1〜40%、Na O 4.5〜12%、NaO+K4.512%を含有し、且つ歪点が580℃超であることを特徴とする。ここで、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO、及びBaOの合量を指す。「NaO+KO」は、NaOとKOの合量を指す。「歪点」は、ASTM C336−71に基づいて測定した値を指す。 As a result of intensive studies, the present inventor has found that the above technical problem can be solved by regulating the glass composition and the glass characteristics within a predetermined range, and proposes the present invention. That is, the glass plate for a thin film solar cell of the present invention has, as a glass composition, mass%, SiO 2 45-60%, Al 2 O 3 more than 8.0-18%, B 2 O 3 0-15% (however, , not including 15%), MgO + CaO + SrO + BaO 1~40%, Na 2 O 4.5~12%, containing 2 O 4.5 ~ 12% Na 2 O + K, and the strain point is 580 ° C. greater Features. Here, “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO, and BaO. “Na 2 O + K 2 O” refers to the total amount of Na 2 O and K 2 O. “Strain point” refers to a value measured based on ASTM C336-71.

本発明の薄膜太陽電池用ガラス板は、上記のようにガラス組成範囲を規制している。このようにすれば、歪点が上昇し易くなり、また周辺部材の熱膨張係数に整合し易くなる。更に、104.0dPa・sにおける温度が1200℃未満、液相粘度が104.0dPa・s以上となり易い。 The glass plate for thin film solar cells of the present invention regulates the glass composition range as described above. If it does in this way, a strain point will rise easily and it will become easy to match with a thermal expansion coefficient of a peripheral member. Furthermore, 10 4.0 dPa · Temperature in s is less than 1200 ° C., liquidus viscosity likely to become 10 4.0 dPa · s or more.

また、本発明の薄膜太陽電池用ガラス板は、歪点が580℃超である。このようにすれば、高温で光電変換膜を成膜し易くなり、光電変換膜の結晶品位が改善されると共に、ガラス板に熱変形や熱収縮が生じ難くなる。結果として、薄膜太陽電池の光電変換効率を十分に高めることが可能になる。   Moreover, the glass plate for thin film solar cells of this invention has a strain point exceeding 580 degreeC. If it does in this way, it will become easy to form a photoelectric converting film in high temperature, the crystal quality of a photoelectric converting film will be improved, and it will become difficult to produce thermal deformation and heat contraction to a glass plate. As a result, the photoelectric conversion efficiency of the thin film solar cell can be sufficiently increased.

発明の薄膜太陽電池用ガラス板は、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が0.05〜0.5であることが好ましい。ここで、「MgO+CaO+SrO+BaO+LiO+NaO+KO」は、MgO、CaO、SrO、BaO、LiO、NaO、及びKOの合量を指す。 The glass plate for a thin film solar cell of the present invention preferably has a mass ratio of Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) of 0.05 to 0.5. Here, “MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O” refers to the total amount of MgO, CaO, SrO, BaO, Li 2 O, Na 2 O, and K 2 O.

発明の薄膜太陽電池用ガラス板は、SiO−Alが28〜50%、MgO+CaO+SrO+BaOが15〜40%、MgO+CaOが0〜10%、質量比CaO/MgOが1.0超、CaO+SrOが0〜30%であることが好ましい。ここで、「SiO−Al」は、SiOの含有量からAlの含有量を引いた値を指す。「MgO+CaO」は、MgOとCaOの合量を指す。「CaO+SrO」は、CaOとSrOの合量を指す。 The glass plate for a thin-film solar cell of the present invention has SiO 2 —Al 2 O 3 of 28-50%, MgO + CaO + SrO + BaO of 15-40%, MgO + CaO of 0-10%, mass ratio CaO / MgO of over 1.0, CaO + SrO. Is preferably 0 to 30%. Here, “SiO 2 —Al 2 O 3 ” refers to a value obtained by subtracting the content of Al 2 O 3 from the content of SiO 2 . “MgO + CaO” refers to the total amount of MgO and CaO. “CaO + SrO” refers to the total amount of CaO and SrO.

発明の薄膜太陽電池用ガラス板は、更に、Feを0.01〜1%含むことが好ましい。 Glass plate for thin-film solar cell of the present invention preferably further comprises an Fe 2 O 3 0.01~1%.

発明の薄膜太陽電池用ガラス板は、更に、SOを0.01〜1%含み、且つフロート法で成形されてなることが好ましい。 The glass plate for a thin film solar cell of the present invention preferably further comprises 0.01 to 1% SO 3 and is formed by a float process.

発明の薄膜太陽電池用ガラス板は、歪点が600超〜650℃であることが好ましい。 The glass plate for a thin film solar cell of the present invention preferably has a strain point of more than 600 to 650 ° C.

発明の薄膜太陽電池用ガラス板は、30〜380℃における平均熱膨張係数が70〜100×10−7/℃であることが好ましい。ここで、「30〜380℃における平均熱膨張係数」は、ディラトメーターにより測定した値を指す。 The glass plate for thin film solar cell of the present invention preferably has an average coefficient of thermal expansion at 30 to 380 ° C. of 70 to 100 × 10 −7 / ° C. Here, the "average thermal expansion coefficient at 30~380 ℃" refers to a'll Rihaka boss was value in the dilatometer.

発明の薄膜太陽電池用ガラス板は、104.0dPa・sにおける温度が1200℃以下であることが好ましい。ここで、「104.0dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。 The glass plate for thin film solar cell of the present invention preferably has a temperature at 10 4.0 dPa · s of 1200 ° C. or lower. Here, “temperature at 10 4.0 dPa · s” refers to a value measured by a platinum ball pulling method.

発明の薄膜太陽電池用ガラス板は、液相粘度が104.0dPa・s以上であることが好ましい。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、この白金ボートを温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値を指す。 The glass plate for a thin film solar cell of the present invention preferably has a liquidus viscosity of 10 4.0 dPa · s or more. Here, “liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method. “Liquid phase temperature” is obtained by passing glass powder remaining on 50 mesh (300 μm) through a standard sieve 30 mesh (500 μm) into a platinum boat, and then holding the platinum boat in a temperature gradient furnace for 24 hours. The value at which the temperature at which crystals precipitate is measured.

発明の薄膜太陽電池用ガラス板は、30〜380℃における平均熱膨張係数が60〜120×10−7/℃の膜が成膜されており、且つ該膜の成膜温度が500〜700℃であることが好ましい。このようにすれば、光電変換膜の結晶品位が改善されて、薄膜太陽電池の光電変換効率を高めることが可能になる。更に、ガラス板と膜の熱膨張係数が整合し易くなる。 In the glass plate for a thin film solar cell of the present invention, a film having an average coefficient of thermal expansion at 30 to 380 ° C. of 60 to 120 × 10 −7 / ° C. is formed, and the film forming temperature of the film is 500 to 700. It is preferable that it is ° C. If it does in this way, the crystal quality of a photoelectric conversion film will be improved and it will become possible to raise the photoelectric conversion efficiency of a thin film solar cell. Furthermore, it becomes easy to match | combine the thermal expansion coefficient of a glass plate and a film | membrane.

発明の薄膜太陽電池用ガラス板は、化学強化処理が行われていないことが好ましい。 The glass plate for a thin film solar cell of the present invention is preferably not subjected to chemical strengthening treatment.

発明の薄膜太陽電池用ガラス板は、CIS系太陽電池に用いることが好ましい。 The glass plate for a thin film solar cell of the present invention is preferably used for a CIS solar cell.

発明の薄膜太陽電池用ガラス板は、CdTe系太陽電池に用いることが好ましい。 The glass plate for a thin film solar cell of the present invention is preferably used for a CdTe solar cell.

本発明の薄膜太陽電池用ガラス板は、ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜18%、B 0〜15%(但し、15%を含まず)、MgO+CaO+SrO+BaO 1〜40%、Na O 4.5〜12%、NaO+K4.512%を含有することを特徴とする。上記のように、各成分の含有量を規制した理由を下記に示す。 The glass plate for a thin-film solar cell of the present invention has, as a glass composition, mass%, SiO 2 45-60%, Al 2 O 3 more than 8.0-18%, B 2 O 3 0-15% (however, 15 % not including), MgO + CaO + SrO + BaO 1~40%, Na 2 O 4.5~12%, characterized by containing Na 2 O + K 2 O 4.5 ~ 12%. The reason why the content of each component is regulated as described above is shown below.

SiOは、ガラスネットワークを形成する成分である。その含有量は45〜60%、好ましくは45〜54%、より好ましくは49〜52%である。SiOの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性、成形性が低下し易くなることに加えて、熱膨張係数が低くなり過ぎて、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合させ難くなる。なお、本発明に係るガラス組成系では、SiOの含有量を増加させても、歪点があまり上昇しない。一方、SiOの含有量が少な過ぎると、耐失透性が低下し易くなる。更に、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなり、結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に割れが発生し易くなる。 SiO 2 is a component that forms a glass network. Its content is 45-60%, preferably 45-54%, more preferably 49-52%. If the SiO 2 content is too large, the high-temperature viscosity becomes unduly high and the meltability and moldability tend to decrease, and the thermal expansion coefficient becomes too low, so that the electrode film of the thin film solar cell, photoelectric It becomes difficult to match the thermal expansion coefficient of the conversion film. In the glass composition system according to the present invention, the strain point does not increase so much even when the content of SiO 2 is increased. On the other hand, if the content of SiO 2 is too small, devitrification resistance is liable to decrease. Furthermore, the thermal expansion coefficient becomes too high, and the thermal shock resistance of the glass plate is likely to be lowered. As a result, the glass plate is likely to be cracked in the heat treatment step when the thin film solar cell is manufactured.

Alは、歪点を高める成分であると共に、耐候性、化学的耐久性を高める成分であり、更にはガラス板の表面硬度を高める成分である。その含有量は8.0超〜18%、好ましくは10.0超〜15%、より好ましくは11.0超〜14.5%、更に好ましくは11.5〜14%である。Alの含有量が多過ぎると、高温粘度が不当に高くなり、溶融性、成形性が低下し易くなる。一方、Alの含有量が少な過ぎると、歪点が低下し易くなる。なお、ガラス板の表面硬度が高いと、CIS系太陽電池のパターニングにおいて、光電変換膜を除去する工程で、ガラス板が破損し難くなる。 Al 2 O 3 is a component that increases the strain point, is a component that increases the weather resistance and chemical durability, and further is a component that increases the surface hardness of the glass plate. The content is more than 8.0 to 18%, preferably more than 10.0 to 15%, more preferably more than 11.0 to 14.5%, still more preferably 11.5 to 14%. When the content of Al 2 O 3 is too large, the high temperature viscosity becomes unduly high, meltability, moldability tends to decrease. On the other hand, when the content of Al 2 O 3 is too small, the strain point tends to decrease. In addition, when the surface hardness of a glass plate is high, it will become difficult to damage a glass plate in the process of removing a photoelectric converting film in patterning of a CIS type solar cell.

は、ガラスの粘度を下げることにより、溶融温度、成形温度を低下させる成分であるが、歪点を低下させる成分であり、また溶融時の成分揮発に伴い、炉耐火物材料を消耗させる成分である。よって、Bは任意成分であり、その含有量は0〜15%未満、好ましくは0〜1.5%、より好ましくは0〜0.1%未満である。 B 2 O 3 is a component that lowers the melting temperature and the molding temperature by lowering the viscosity of the glass, but is a component that lowers the strain point, and with the component volatilization at the time of melting, the furnace refractory material is changed. It is a component to be consumed. Therefore, B 2 O 3 is an optional component, and its content is 0 to less than 15%, preferably 0 to 1.5%, more preferably 0 to less than 0.1%.

MgO+CaO+SrO+BaOは、歪点を低下させずに、高温粘度を低下させる成分である。MgO+CaO+SrO+BaOの含有量が多過ぎると、耐失透性が低下し易くなり、また原料コストが高騰する。また、MgO+CaO+SrO+BaOの含有量が多過ぎると、アルカリ成分、特にNaOの拡散を抑制し易くなる。一方、MgO+CaO+SrO+BaOの含有量が少な過ぎると、高温粘度が高くなり過ぎる。よって、MgO+CaO+SrO+BaOの含有量は1〜40%、15〜40%、17.0超〜40%、18〜30%、特に19〜25%が好ましい。 MgO + CaO + SrO + BaO is a component that lowers the high temperature viscosity without lowering the strain point. When there is too much content of MgO + CaO + SrO + BaO, devitrification resistance will fall easily and raw material cost will rise. If the content of MgO + CaO + SrO + BaO is too large, the alkaline component, tend to particularly suppress the diffusion of Na 2 O. On the other hand, when the content of MgO + CaO + SrO + BaO is too small, the high temperature viscosity becomes too high. Therefore, the content of MgO + CaO + SrO + BaO is preferably 1 to 40%, 15 to 40%, more than 17.0 to 40%, 18 to 30%, particularly 19 to 25%.

MgOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、MgOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。しかし、MgOは、ZrOと共存する場合に、ZrO系の失透結晶を著しく析出させることにより、液相粘度を著しく低下させる成分である。また、CaOと共存する場合に、CaMgSiO系の失透結晶を析出させ易い成分である。よって、MgOは任意成分であり、その含有量は0〜10%、0〜3.7%未満、0.01〜3%、0.02〜2%、特に0.03〜0.5%が好ましい。 MgO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, MgO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. However, when MgO coexists with ZrO 2 , it is a component that remarkably lowers the liquid phase viscosity by precipitating ZrO 2 -based devitrified crystals. Further, when coexisting with CaO, it is a component that easily deposits a CaMgSiO-based devitrified crystal. Therefore, MgO is an optional component, and its content is 0 to 10%, 0 to less than 3.7%, 0.01 to 3%, 0.02 to 2%, particularly 0.03 to 0.5%. preferable.

CaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、CaOは、アルカリ土類酸化物の中では、ガラス板を割れ難くする効果が大きい成分である。CaOの含有量は0〜10%、0.1〜9%、2.9超〜8%、3.0〜7.5%、特に4.2〜6%が好ましい。CaOの含有量が多過ぎると、耐失透性が低下し易くなり、ガラス板に成形し難くなる。   CaO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Moreover, CaO is a component with a large effect which makes a glass plate hard to break among alkaline-earth oxides. The content of CaO is preferably 0 to 10%, 0.1 to 9%, more than 2.9 to 8%, 3.0 to 7.5%, and particularly preferably 4.2 to 6%. When there is too much content of CaO, devitrification resistance will fall easily and it will become difficult to shape | mold into a glass plate.

SrOは、高温粘度を低下させて、溶融性や成形性を高める成分である。また、SrOは、ZrOと共存する場合に、ZrO系の失透結晶を析出し難くする成分である。SrOの含有量は0〜20%、0.1〜15%、4.0超〜15%、5〜14%、7.0超〜13%、特に9.2〜12.5%が好ましい。SrOの含有量が多過ぎると、長石族の失透結晶が析出し易くなり、また原料コストが高騰する。 SrO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Also, SrO, when coexisting with ZrO 2, is a component that hardly deposited devitrification crystals ZrO 2 system. The content of SrO is preferably 0 to 20%, 0.1 to 15%, more than 4.0 to 15%, 5 to 14%, more than 7.0 to 13%, particularly preferably 9.2 to 12.5%. If the content of SrO is too large, feldspar group devitrified crystals are likely to precipitate, and the raw material cost increases.

BaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。BaOの含有量は0〜20%、0.1〜15%、2.0超〜14%未満、2.0超〜8%未満、特に2.0超〜5%未満が好ましい。BaOの含有量が多過ぎると、バリウム長石族の失透結晶が析出し易くなり、また原料コストが高騰する。更に、密度が増大して、支持部材のコストが高騰し易くなる。なお、BaOの含有量が少な過ぎると、高温粘度が高くなり、溶融性、成形性が低下する傾向がある。   BaO is a component that lowers the high-temperature viscosity and improves the meltability and moldability. The BaO content is preferably 0 to 20%, 0.1 to 15%, more than 2.0 to less than 14%, more than 2.0 to less than 8%, particularly preferably more than 2.0 to less than 5%. When there is too much content of BaO, the devitrification crystal | crystallization of a barium feldspar group will become easy to precipitate, and raw material cost will rise. Furthermore, the density increases, and the cost of the support member is likely to increase. In addition, when there is too little content of BaO, high temperature viscosity will become high and there exists a tendency for a meltability and a moldability to fall.

NaO+KOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaO+KOは、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分であり、光電変換効率を高めるために重要な成分である。NaO+KOの含有量は4.5〜12%である。NaO+KOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。一方、NaO+KOの含有量が少な過ぎると、上記効果を享受し難くなる。 Na 2 O + K 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O + K 2 O is an effective component for the growth of chalcopyrite crystals in a CIS solar cell, and is an important component for increasing the photoelectric conversion efficiency. The content of Na 2 O + K 2 O is 4.5-12%. When the content of Na 2 O + K 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked. On the other hand, when the content of Na 2 O + K 2 O is too small, it becomes difficult to enjoy the above-mentioned effects.

NaOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、NaOは、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分であり、光電変換効率を高めるために重要な成分である。NaOの含有量は4.5〜12%、特に4.5〜9%が好ましい。NaOの含有量が多過ぎると、歪点が低下し易くなることに加えて、熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。 Na 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Na 2 O is an effective component for the growth of chalcopyrite crystals in the CIS solar cell, and is an important component for increasing the photoelectric conversion efficiency. The Na 2 O content is preferably 4.5 to 12%, particularly preferably 4.5 to 9%. When the content of Na 2 O is too large, in addition to the strain point tends to decrease, the thermal expansion coefficient becomes too high, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked.

Oは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、KOは、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分であり、光電変換効率を高めるために重要な成分である。しかし、Alを10%超含むガラス系において、KOの含有量が多過ぎると、KAlSiO系の失透結晶が析出し易くなる。また、KOの含有量が多過ぎると、歪点が低下し易くなり、また熱膨張係数が高くなり過ぎて、ガラス板の耐熱衝撃性が低下し易くなる。結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じたり、割れが発生し易くなる。よって、KOの含有量は0〜10%、0.1〜10%、特に1〜7%が好ましい。 K 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. K 2 O is an effective component for the growth of chalcopyrite crystals in the CIS solar cell, and is an important component for increasing the photoelectric conversion efficiency. However, in a glass system containing more than 10% Al 2 O 3 , if the content of K 2 O is too large, KAlSiO-based devitrified crystals are likely to precipitate. If the content of K 2 O is too large, easily strain point is lowered, also too high thermal expansion coefficient, the thermal shock resistance of the glass plate is liable to lower. As a result, in the heat treatment step when manufacturing the thin film solar cell, the glass plate is likely to be thermally contracted or thermally deformed or cracked. Therefore, the content of K 2 O is preferably 0 to 10 %, 0.1 to 10%, particularly preferably 1 to 7%.

更に、下記の成分含有量、成分比を有することが好ましい。   Furthermore, it is preferable to have the following component content and component ratio.

LiOは、熱膨張係数を調整する成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、LiOは、NaOやKOと同様にして、CIS系太陽電池において、カルコパイライト結晶の成長に効果的な成分である。しかし、LiOは、原料コストが高いことに加えて、歪点を大幅に低下させる成分である。よって、LiOは任意成分であり、その含有量は0〜10%、0〜2%、特に0〜0.1%未満が好ましい。 Li 2 O is a component that adjusts the thermal expansion coefficient, and is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Further, Li 2 O is an effective component for the growth of chalcopyrite crystals in CIS solar cells in the same manner as Na 2 O and K 2 O. However, Li 2 O is a component that significantly lowers the strain point in addition to the high raw material cost. Therefore, Li 2 O is an optional component, and its content is preferably 0 to 10%, 0 to 2%, particularly preferably 0 to less than 0.1%.

ZrOは、高温粘度を上げずに、歪点を高める成分である。しかし、ZrOの含有量が多過ぎると、密度が高くなり易く、またガラス板が割れ易くなり、更にはZrO系の失透結晶が析出し易くなり、ガラス板に成形し難くなる。よって、ZrOは任意成分であり、その含有量は0〜15%、0〜10%、0〜7%、0.1〜6.5%、特に2〜6%が好ましい。 ZrO 2 is a component that increases the strain point without increasing the high-temperature viscosity. However, if the content of ZrO 2 is too large, the density tends to increase, the glass plate tends to break, ZrO 2 -based devitrified crystals tend to precipitate, and it becomes difficult to form the glass plate. Therefore, ZrO 2 is an optional component, and its content is preferably 0 to 15%, 0 to 10%, 0 to 7%, 0.1 to 6.5%, particularly preferably 2 to 6%.

ガラス中のFeはFe2+又はFe3+の状態で存在するが、特にFe2+は近赤外領域に強い光吸収特性を有する。このため、Fe2+は、大容量のガラス溶解窯において、ガラス溶解窯内の輻射エネルギーを吸収し易く、溶融効率を高める効果を有する。また、Fe3+は、鉄の価数変化の際に酸素を放出するため、清澄効果も有する。更に、ガラス板の製造コストを低廉化するために、高純度原料(Feの含有量が極めて少ない原料)の使用を制限して、少量のFeを含む原料を使用することが好ましい。一方、Feの含有量が多過ぎると、太陽光を吸収し易くなるため、薄膜太陽電池の表面温度が上昇し易くなり、結果として、光電変換効率が低下する虞がある。また、Feの含有量が多過ぎると、窯の輻射エネルギーが、エネルギー源の近傍で吸収されて、窯の中央部に到達せず、ガラス溶解窯の熱分布にムラが生じ易くなる。よって、Feの含有量は0〜1%、特に0.01〜1%が好ましい。また、Feの好適な下限範囲は0.05%超、0.10%超、特に0.20%超である。なお、本発明では、酸化鉄は、Feの価数に係らず、「Fe」に換算して表記するものとする。 Fe in the glass exists in the state of Fe 2+ or Fe 3+ , and especially Fe 2+ has strong light absorption characteristics in the near infrared region. For this reason, Fe <2+> has the effect of being easy to absorb the radiant energy in a glass melting furnace, and improving a melting efficiency in a large capacity | capacitance glass melting furnace. Fe 3+ also has a clarification effect because it releases oxygen when the valence of iron changes. Furthermore, in order to reduce the manufacturing cost of the glass plate, use of a raw material containing a small amount of Fe 2 O 3 by limiting the use of a high-purity raw material (a raw material with a very low content of Fe 2 O 3 ). Is preferred. On the other hand, when the content of Fe 2 O 3 is too large, it becomes easy to absorb sunlight, and thus the surface temperature of the thin film solar cell is likely to rise, and as a result, the photoelectric conversion efficiency may be lowered. Further, when the content of Fe 2 O 3 is too large, the radiation energy of the kilns, are absorbed in the vicinity of the energy source, does not reach the central portion of the furnace, it tends to occur unevenness in the heat distribution of the glass melting furnace . Therefore, the content of Fe 2 O 3 is preferably 0 to 1%, particularly preferably 0.01 to 1%. Further, the preferable lower limit range of Fe 2 O 3 is more than 0.05%, more than 0.10%, particularly more than 0.20%. In the present invention, iron oxide is expressed in terms of “Fe 2 O 3 ” regardless of the valence of Fe.

TiOは、紫外線による着色を防止すると共に、耐候性を高める成分である。しかし、TiOの含有量が多過ぎると、ガラスが失透したり、ガラスが茶褐色に着色し易くなる。よって、TiOの含有量は0〜10%、特に0〜0.1%未満が好ましい。 TiO 2 is a component that prevents coloring by ultraviolet rays and enhances weather resistance. However, when the content of TiO 2 is too large, or glass is devitrified, glass tends colored brown. Therefore, the content of TiO 2 is preferably 0 to 10%, particularly preferably less than 0 to 0.1%.

は、耐失透性を高める成分、特にZrO系の失透結晶の析出を抑制する成分であり、またガラス板を割れ難くする成分である。しかし、Pの含有量が多過ぎると、ガラスが乳白色に分相し易くなる。よって、Pの含有量は0〜10%、0〜0.2%、特に0〜0.1%未満が好ましい。 P 2 O 5 is a component that enhances devitrification resistance, particularly a component that suppresses precipitation of ZrO 2 -based devitrification crystals, and a component that makes it difficult to break the glass plate. However, when the content of P 2 O 5 is too large, easily glass phase separation milky. Therefore, the content of P 2 O 5 is preferably 0 to 10%, 0 to 0.2%, particularly preferably less than 0 to 0.1%.

ZnOは、高温粘度を低下させる成分である。ZnOの含有量が多過ぎると、耐失透性が低下し易くなる。よって、ZnOの含有量は0〜10%、特に0〜5%が好ましい。   ZnO is a component that lowers the high temperature viscosity. When there is too much content of ZnO, devitrification resistance will fall easily. Therefore, the content of ZnO is preferably 0 to 10%, particularly preferably 0 to 5%.

SOは、清澄剤として作用する成分であり、その含有量は0〜1%、特に0.01〜1%が好ましい。なお、フロート法でガラス板を成形すると、安価にガラス板を大量生産し得るが、この場合、清澄剤として芒硝を用いることが好ましい。 SO 3 is a component that acts as a fining agent, and its content is preferably 0 to 1%, particularly preferably 0.01 to 1%. In addition, when a glass plate is shape | molded by the float glass process, a glass plate can be mass-produced cheaply, but in this case, it is preferable to use a salt cake as a clarifier.

Sbは、清澄剤として作用する成分であるが、フロート法でガラス板を成形する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Sbの含有量は0〜1%、特に0〜0.1%未満が好ましい。 Sb 2 O 3 is a component that acts as a fining agent. However, when a glass plate is formed by the float process, Sb 2 O 3 is a component that colors the glass and is a component that is concerned about the environmental burden. The content of Sb 2 O 3 is preferably 0 to 1%, particularly preferably less than 0 to 0.1%.

Asは、清澄剤として作用する成分であるが、フロート法でガラス板を成形する場合、ガラスを着色させる成分であり、また環境的負荷が懸念される成分である。Asの含有量は0〜1%、特に0〜0.1%未満が好ましい。 As 2 O 3 is a component that acts as a fining agent. However, when a glass plate is formed by the float process, it is a component that colors the glass and is a component that is concerned about the environmental burden. The content of As 2 O 3 is preferably 0 to 1%, particularly preferably less than 0 to 0.1%.

SnOは、清澄剤として作用する成分であるが、耐失透性を低下させる成分である。SnOの含有量は0〜1%、特に0〜0.1%未満が好ましい。 SnO 2 is a component that acts as a fining agent, but is a component that reduces devitrification resistance. The SnO 2 content is preferably 0 to 1%, particularly preferably 0 to less than 0.1%.

SiO−Alは、ガラスネットワークを構成する成分の内、主要構成成分のSiOと歪点を高める寄与が大きいAlの差である。SiO−Alが大き過ぎると、歪点が低下し易くなる。一方、SiO−Alが小さ過ぎると、耐失透性が低下し易くなる。よって、SiO−Alの含有量は28〜50%、30〜45%未満、32〜43%、特に34〜40%が好ましい。 SiO 2 —Al 2 O 3 is a difference between SiO 2 as a main component and Al 2 O 3 that greatly contributes to increase the strain point among components constituting the glass network. If SiO 2 —Al 2 O 3 is too large, the strain point tends to decrease. On the other hand, when the SiO 2 -Al 2 O 3 is too little, the devitrification resistance is liable to decrease. Therefore, the content of SiO 2 —Al 2 O 3 is preferably 28 to 50%, less than 30 to 45%, 32 to 43%, particularly preferably 34 to 40%.

MgO+CaOは、アルカリ土類金属酸化物の中では、高温粘度を低下させることにより、ガラス溶解窯内の上昇流、下降流、バッチ投入口方向への後退流の移動速度を高めて、ガラスを均質化させる2成分の総和である。また、MgO+CaOは、アルカリ土類金属酸化物の中では、ガラス板の割れ難さを最も維持し得ると共に、密度を最も低下させる2成分の総和である。密度を低下させると、薄膜太陽電池の支持部材のコストを低廉化することができる。MgO+CaOの含有量は0〜10%、0.1〜10%、2.9超〜10%、特に3.4超〜9.4%未満が好ましい。MgO+CaOの含有量が多過ぎると、耐失透性、特にZrO系の失透結晶が析出し易くなる。なお、MgO+CaOの含有量が少な過ぎると、ガラス溶解窯内でのガラス融液の移動速度が低下して、ガラス融液が均質化されず、結果として、溶融性、成形性が低下する傾向がある。 MgO + CaO, among alkaline earth metal oxides, increases the moving speed of the upward flow, downward flow, and backward flow toward the batch inlet in the glass melting furnace by reducing the high-temperature viscosity, making the glass homogeneous Is the sum of the two components to be converted. Moreover, MgO + CaO is the total of the two components that can most maintain the difficulty of breaking the glass plate and reduce the density most among the alkaline earth metal oxides. When the density is lowered, the cost of the support member of the thin film solar cell can be reduced. The content of MgO + CaO is preferably 0 to 10%, 0.1 to 10%, more than 2.9 to 10%, and more preferably more than 3.4 to less than 9.4%. When the content of MgO + CaO is too large, devitrification resistance, tends to particularly devitrification crystals ZrO 2 system is deposited. In addition, when there is too little content of MgO + CaO, the moving speed of the glass melt in a glass melting furnace will fall, a glass melt will not be homogenized, and there exists a tendency for a meltability and a moldability to fall as a result. is there.

質量比CaO/MgOは、アルカリ土類酸化物の内、高温粘度を低下させる効果が大きいMgOとCaOの比である。耐失透性の観点から見ると、ZrO系の失透結晶を特に発生させ易いMgOに対して、MgOと比較してZrO系の失透結晶を発生させ難いCaOの比である。質量比CaO/MgOは、ZrO系の失透結晶の析出を抑制しつつ、高温粘度を低下させるために、1超、2超、2.5超、特に3.4超が好ましい。 The mass ratio CaO / MgO is a ratio of MgO and CaO having a large effect of reducing the high temperature viscosity among the alkaline earth oxides. From the point of view of resistance to devitrification, against easy MgO especially to generate devitrification crystals ZrO 2 system, which is the ratio of hard CaO which caused the devitrification crystals ZrO 2 system as compared with MgO. The mass ratio CaO / MgO is preferably more than 1, more than 2, more than 2.5, particularly more than 3.4 in order to reduce the high temperature viscosity while suppressing the precipitation of ZrO 2 -based devitrified crystals.

CaO+SrOの含有量は0〜30%、0.1〜25%、6.92〜23%、8〜21%、特に9〜20%が好ましい。CaO+SrOの含有量が多過ぎると、耐失透性が低下し易くなる。なお、CaO+SrOの含有量が少な過ぎると、ガラス溶解窯内でのガラス融液の移動速度が低下して、ガラス融液が均質化されず、結果として、溶融性、成形性が低下する傾向がある。   The content of CaO + SrO is preferably 0 to 30%, 0.1 to 25%, 6.92 to 23%, 8 to 21%, particularly preferably 9 to 20%. When there is too much content of CaO + SrO, devitrification resistance will fall easily. In addition, when there is too little content of CaO + SrO, the moving speed of the glass melt in a glass melting furnace will fall, a glass melt will not be homogenized, and there exists a tendency for a meltability and a moldability to fall as a result. is there.

質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)は、高温粘度を低下させる効果が大きい成分の総量(MgO、CaO、SrO、BaO、LiO、NaO、及びKOの総量)に対して、CIS系太陽電池において、カルコパイライト結晶の析出に有用なNaOの含有量の比である。質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)は0.005〜0.5、0.05〜0.4、0.1〜0.38、0.137〜0.355、0.140〜0.300、特に0.158超〜0.250が好ましい。質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が大き過ぎると、高歪点を維持し難くなり、また溶融性、成形性が低下し易くなる。一方、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎると、薄膜太陽電池の光電変換効率が低下し易くなる。また、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎると、高温粘度を低下させるために、LiOやKOの含有量を増加せざるを得ず、結果として、原料コストが高騰する。なお、KOの含有量を優先的に増加させると、Alを10%超含むガラス系では、KAlSiO系の失透結晶が析出し易くなる。更に、質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が小さ過ぎても、高歪点を維持し難くなり、また耐失透性が低下して、液相粘度が低下し易くなる。 The mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is the total amount of components (MgO, CaO, SrO, BaO, Li 2 O, Na 2 O, and K 2 O that have a large effect of reducing the high-temperature viscosity. It is the ratio of the content of Na 2 O useful for precipitation of chalcopyrite crystals in the CIS solar cell to the total amount). The mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is 0.005 to 0.5, 0.05 to 0.4, 0.1 to 0.38, 0.137 to 0.355,. 140 to 0.300, especially more than 0.158 to 0.250 are preferable. When the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too large, it becomes difficult to maintain a high strain point, and the meltability and moldability tend to be lowered. On the other hand, when the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, the photoelectric conversion efficiency of the thin-film solar cell tends to be lowered. In addition, if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, the high-temperature viscosity is lowered, so the content of Li 2 O and K 2 O must be increased, and as a result Raw material costs will soar. Note that when the content of K 2 O is preferentially increased, KAlSiO-based devitrified crystals are likely to precipitate in a glass system containing more than 10% Al 2 O 3 . Furthermore, even if the mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is too small, it is difficult to maintain a high strain point, and devitrification resistance is lowered, and the liquid phase viscosity is likely to be lowered. .

上記成分以外にも、溶解性、清澄性、成形性を高めるために、F、Cl、CeOを合量で各々1%まで添加してもよい。また、化学的耐久性を高めるために、Nb、HfO、Ta、Y、Laを各々3%まで添加してもよい。更に、色調の調整のために、上記以外の希土類酸化物、遷移金属酸化物を合量で2%まで添加してもよい。 In addition to the above components, F, Cl, and CeO 2 may be added up to 1% in total in order to enhance solubility, clarity, and moldability. In order to increase chemical durability, Nb 2 O 5 , HfO 2 , Ta 2 O 5 , Y 2 O 3 , and La 2 O 3 may be added up to 3% each. Furthermore, in order to adjust the color tone, a rare earth oxide or transition metal oxide other than the above may be added up to 2% in total.

本発明の薄膜太陽電池用ガラス板において、30〜380℃における平均熱膨張係数は70〜100×10−7/℃、特に80〜90×10−7/℃が好ましい。このようにすれば、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合し易くなる。なお、熱膨張係数が高過ぎると、ガラス板の耐熱衝撃性が低下し易くなり、結果として、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に割れが発生し易くなる。 In the glass plate for a thin-film solar cell of the present invention, the average thermal expansion coefficient at 30 to 380 ° C. is preferably 70 to 100 × 10 −7 / ° C., particularly preferably 80 to 90 × 10 −7 / ° C. If it does in this way, it will become easy to match with the thermal expansion coefficient of the electrode film of a thin film solar cell, and a photoelectric conversion film. If the thermal expansion coefficient is too high, the thermal shock resistance of the glass plate tends to be lowered, and as a result, the glass plate is likely to be cracked in the heat treatment step when manufacturing the thin film solar cell.

本発明の薄膜太陽電池用ガラス板において、密度は2.90g/cm以下、特に2.85g/cm以下が好ましい。このようにすれば、薄膜太陽電池の支持部材のコストを低廉化し易くなる。なお、「密度」は、周知のアルキメデス法で測定可能である。 In the glass plate for a thin film solar cell of the present invention, the density is preferably 2.90 g / cm 3 or less, particularly preferably 2.85 g / cm 3 or less. If it does in this way, it will become easy to reduce the cost of the support member of a thin film solar cell. The “density” can be measured by a known Archimedes method.

本発明の薄膜太陽電池用ガラス板において、歪点は580℃超であり、好ましくは600超〜650℃、より好ましくは605超〜650℃、更に好ましくは610超〜650℃である。このようにすれば、薄膜太陽電池を製造する際の熱処理工程で、ガラス板に熱収縮や熱変形が生じ難くなる。   In the glass plate for a thin film solar cell of the present invention, the strain point is more than 580 ° C, preferably more than 600 to 650 ° C, more preferably more than 605 to 650 ° C, and still more preferably more than 610 to 650 ° C. If it does in this way, it will become difficult to produce thermal contraction and a thermal deformation to a glass plate at the heat treatment process at the time of manufacturing a thin film solar cell.

本発明の薄膜太陽電池用ガラス板において、104.0dPa・sにおける温度は1200℃以下、1187℃以下、特に1180℃以下が好ましい。このようにすれば、低温でガラス板を成形し易くなる。 In the glass plate for a thin film solar cell of the present invention, the temperature at 10 4.0 dPa · s is preferably 1200 ° C. or lower, 1187 ° C. or lower, particularly preferably 1180 ° C. or lower. If it does in this way, it will become easy to shape | mold a glass plate at low temperature.

本発明の薄膜太陽電池用ガラス板において、102.5dPa・sにおける温度は1520℃以下、特に1460℃以下が好ましい。このようにすれば、低温でガラス原料を溶解し易くなる。なお、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。 In the glass plate for a thin film solar cell of the present invention, the temperature at 10 2.5 dPa · s is preferably 1520 ° C. or less, particularly preferably 1460 ° C. or less. If it does in this way, it will become easy to melt | dissolve a glass raw material at low temperature. The “temperature at 10 2.5 dPa · s” can be measured by a platinum ball pulling method.

本発明の薄膜太陽電池用ガラス板において、液相温度は1160℃以下、特に1100℃以下が好ましい。液相温度が上昇すると、成形時にガラスが失透し易くなり、成形性が低下し易くなる。   In the glass plate for a thin film solar cell of the present invention, the liquidus temperature is preferably 1160 ° C. or less, particularly preferably 1100 ° C. or less. When the liquidus temperature rises, the glass tends to devitrify during molding, and the moldability tends to decrease.

本発明の薄膜太陽電池用ガラス板において、液相粘度は104.0dPa・s以上、特に104.3dPa・以上が好ましい。液相粘度が低下すると、成形時にガラスが失透し易くなり、成形性が低下し易くなる。 In the glass plate for a thin-film solar cell of the present invention, the liquid phase viscosity is preferably 10 4.0 dPa · s or more, particularly preferably 10 4.3 dPa · s or more. When the liquid phase viscosity is lowered, the glass is easily devitrified during molding, and the moldability is easily lowered.

本発明の薄膜太陽電池用ガラス板において、ヤング率は78GPa以上、特に80GPa以上が好ましい。また、比ヤング率は、27.5GPa/(g/cm)以上、特に28GPa/(g/cm)以上が好ましい。このようにすれば、ガラス板が撓み難くなるため、搬送工程や梱包工程における取り扱いの際に大きく揺動して落下したり、他の部材と接触して破損し難くなる。ここで、「ヤング率」は、共振法で測定した値を指す。「比ヤング率」は、ヤング率を密度で除した値である。 In the glass plate for a thin film solar cell of the present invention, the Young's modulus is preferably 78 GPa or more, particularly preferably 80 GPa or more. The specific Young's modulus is preferably 27.5 GPa / (g / cm 3 ) or more, and particularly preferably 28 GPa / (g / cm 3 ) or more. If it does in this way, since it will become difficult to bend a glass plate, at the time of handling in a conveyance process and a packing process, it will rock | fluctuate greatly and will fall, or it will become difficult to be damaged by contacting with another member. Here, “Young's modulus” refers to a value measured by a resonance method. “Specific Young's modulus” is a value obtained by dividing Young's modulus by density.

本発明の薄膜太陽電池用ガラス板は、上記のガラス組成範囲になるように、調合したガラス原料を連続溶融炉に投入し、ガラス原料を加熱溶融した後、得られたガラス融液を脱泡した上で、成形装置に供給し、板状に成形、徐冷することにより、作製することができる。   The glass plate for a thin-film solar cell of the present invention is prepared by putting the prepared glass raw material into a continuous melting furnace so as to be in the above glass composition range, heating and melting the glass raw material, and defoaming the obtained glass melt Then, it can be produced by supplying it to a molding apparatus, molding it into a plate shape, and slowly cooling it.

ガラス板の成形方法としては、フロート法、スロットダウンドロー法、オーバーフローダウンドロー法、リドロー法等を例示できるが、安価にガラス板を大量生産する場合、フロート法を採用することが好ましい。   Examples of the glass plate forming method include a float method, a slot down draw method, an overflow down draw method, a redraw method, and the like. However, when a glass plate is mass-produced at low cost, it is preferable to employ a float method.

本発明の薄膜太陽電池用ガラス板は、化学強化処理、特にイオン交換処理が行われていないことが好ましい。薄膜太陽電池には、高温の熱処理工程が存在する。高温の熱処理工程では、強化層(圧縮応力層)が消失し、化学強化処理を行う実益が乏しくなる。また、上記と同様の理由により、風冷強化等の物理強化処理も行われていないことが好ましい。   The glass plate for a thin film solar cell of the present invention is preferably not subjected to chemical strengthening treatment, particularly ion exchange treatment. A thin film solar cell has a high-temperature heat treatment step. In the high-temperature heat treatment process, the strengthening layer (compressive stress layer) disappears, and the actual benefit of performing the chemical strengthening treatment becomes poor. Further, for the same reason as described above, it is preferable that physical strengthening processing such as wind cooling strengthening is not performed.

特に、CIS系太陽電池の場合、ガラス板をイオン交換処理すると、ガラス表面のNaイオンが減少してしまい、光電変換効率が低下し易くなる。この場合は、別途、Na供給膜をガラス板に形成する方法を採用することが好ましい。   In particular, in the case of a CIS solar cell, when the glass plate is subjected to ion exchange treatment, Na ions on the glass surface are reduced, and the photoelectric conversion efficiency is easily lowered. In this case, it is preferable to adopt a method of separately forming a Na supply film on a glass plate.

以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, based on an Example, this invention is demonstrated in detail. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1〜6は、試料No.1〜42を示している。 Table 1-6, specimen No. 1 to 42 are shown.

次のようにして、試料No.1〜42を作製した。まず表中のガラス組成になるように調合したガラスバッチを白金坩堝に入れ、1550℃で2時間溶融した。次に、得られた溶融ガラスをカーボン板上に流し出して、平板形状に成形した後、徐冷した。その後、各測定に応じて、所定の加工を行った。得られた各試料について、熱膨張係数α、密度d、歪点Ps、徐冷点Ta、軟化点Ts、10dPa・sにおける温度、10dPa・sにおける温度、102.5dPa・sにおける温度、10dPa・sにおける温度、液相温度TL、液相粘度log10ηTL、体積電気抵抗率ρ(150℃、250℃、350℃)、誘電率ε、誘電正接tanδ、ヤング率、比ヤング率を評価した。これらの結果を表1〜6に示す。 Sample no. 1 to 42 were prepared. First, a glass batch prepared so as to have the glass composition in the table was placed in a platinum crucible and melted at 1550 ° C. for 2 hours. Next, the obtained molten glass was poured out on a carbon plate, formed into a flat plate shape, and then gradually cooled. Thereafter, predetermined processing was performed according to each measurement. About each obtained sample, thermal expansion coefficient α, density d, strain point Ps, annealing point Ta, softening point Ts, temperature at 10 4 dPa · s, temperature at 10 3 dPa · s, 10 2.5 dPa · s temperature at s, temperature at 10 2 dPa · s, liquid phase temperature TL, liquid phase viscosity log 10 ηTL, volume resistivity ρ (150 ° C., 250 ° C., 350 ° C.), dielectric constant ε, dielectric loss tangent tan δ, Young's modulus The specific Young's modulus was evaluated. These results are shown in Tables 1-6.

熱膨張係数αは、ディラトメーターにより30〜380℃における平均熱膨張係数を測定した値である。なお、測定試料として、直径5.0mm、長さ20mmの円柱試料を用いた。   The thermal expansion coefficient α is a value obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer. A cylindrical sample having a diameter of 5.0 mm and a length of 20 mm was used as a measurement sample.

密度dは、公知のアルキメデス法で測定した値である。   The density d is a value measured by a known Archimedes method.

歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336−71に基づいて測定した値である。   The strain point Ps, the annealing point Ta, and the softening point Ts are values measured based on ASTM C336-71.

10dPa・sにおける温度、10dPa・sにおける温度、102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、10dPa・sにおける温度は、成形温度に相当している。 The temperature at 10 4 dPa · s, the temperature at 10 3 dPa · s, and the temperature at 10 2.5 dPa · s are values measured by the platinum ball pulling method. The temperature at 10 4 dPa · s corresponds to the molding temperature.

液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、この白金ボートを温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。液相粘度log10ηTLは、液相温度TLにおけるガラスの粘度を白金球引き上げ法で測定した値である。なお、液相温度が低い程、また液相粘度が高い程、耐失透性が向上し、成形時にガラス中に失透結晶が析出し難くなり、結果として、大型のガラス板を安価に作製し易くなる。 The liquid phase temperature TL passes through a standard sieve 30 mesh (500 μm), and after the glass powder remaining in 50 mesh (300 μm) is placed in a platinum boat, the platinum boat is held in a temperature gradient furnace for 24 hours to obtain a crystal It is the value which measured the temperature which deposits. The liquidus viscosity log 10 ηTL is a value obtained by measuring the viscosity of the glass at the liquidus temperature TL by a platinum ball pulling method. In addition, the lower the liquidus temperature and the higher the liquidus viscosity, the better the devitrification resistance, and the more devitrified crystals are less likely to precipitate in the glass during molding, resulting in the production of a large glass plate at low cost. It becomes easy to do.

体積電気抵抗率ρは、各温度において、ASTM C657−78に基づいて測定した値を指す。   The volume resistivity ρ indicates a value measured based on ASTM C657-78 at each temperature.

誘電率ε、誘電正接tanδは、ASTM D150−87に基づいて、25℃、1MHzの条件で測定した値である。   The dielectric constant ε and the dielectric loss tangent tan δ are values measured under conditions of 25 ° C. and 1 MHz based on ASTM D150-87.

ヤング率は、共振法で測定した値を指す。また、比ヤング率は、ヤング率を密度で割った値である。   The Young's modulus refers to a value measured by a resonance method. The specific Young's modulus is a value obtained by dividing Young's modulus by density.

表1〜6から明らかなように、試料No.2〜33、37〜42は、歪点が600℃超〜650℃であるため、高い耐熱性を有する。また、試料No.1〜33、37〜42は、熱膨張係数が70〜100×10−7/℃であるため、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合させ易い。更に、試料No.1〜33、37〜42は、10dPa・sにおける温度が1200℃未満、液相粘度が104.0dPa・s以上であるため、生産性に優れている。 As is apparent from Tables 1 to 6, sample No. 2 to 33 and 37 to 42 have high heat resistance because the strain point is more than 600 ° C. to 650 ° C. Sample No. Since 1 to 33 and 37 to 42 have a thermal expansion coefficient of 70 to 100 × 10 −7 / ° C., they easily match the thermal expansion coefficients of the electrode film and the photoelectric conversion film of the thin film solar cell. Furthermore, sample no. 1-33 and 37-42 are excellent in productivity because the temperature at 10 4 dPa · s is less than 1200 ° C. and the liquid phase viscosity is 10 4.0 dPa · s or more.

一方、試料No.34は、歪点が高いものの、アルカリ成分、特にNaOを含有していないため、CIS系太陽電池の光電変換効率を高めることが困難であると考えられる。また、試料No.34は、熱膨張係数が低過ぎるため、薄膜太陽電池の電極膜、光電変換膜の熱膨張係数に整合させることが困難であると考えられる。 On the other hand, sample No. Although 34 has a high strain point, it does not contain an alkali component, particularly Na 2 O, and therefore it is considered difficult to increase the photoelectric conversion efficiency of the CIS solar cell. Sample No. 34 is considered to be difficult to match the thermal expansion coefficient of the electrode film of the thin-film solar cell and the photoelectric conversion film because the thermal expansion coefficient is too low.

試料No.35、36は汎用のガラス板である。特に、試料No.36は、特許文献1に記載のガラス板である。試料No.35、36は、歪点が約580℃以下であるため、熱処理工程でガラス板に熱変形や熱収縮が生じ易く、薄膜太陽電池の光電変換効率を十分に高めることができないと考えられる。 Sample No. 35 and 36 are general-purpose glass plates. In particular, sample no. Reference numeral 36 denotes a glass plate described in Patent Document 1. Sample No. Since 35 and 36 have a strain point of about 580 ° C. or less, it is considered that thermal deformation and thermal shrinkage are likely to occur in the glass plate in the heat treatment step, and the photoelectric conversion efficiency of the thin-film solar cell cannot be sufficiently increased.

Claims (13)

ガラス組成として、質量%で、SiO 45〜60%、Al 8.0超〜18%、B 0〜15%(但し、15%を含まず)、MgO+CaO+SrO+BaO 1〜40%、Na O 4.5〜12%、NaO+K4.512%を含有し、且つ歪点が580℃超であることを特徴とする薄膜太陽電池用ガラス板。 As a glass composition, in mass%, SiO 2 45~60%, Al 2 O 3 8.0 super ~18%, B 2 O 3 0~15 % ( not inclusive of 15%), MgO + CaO + SrO + BaO 1~40% , Na 2 O 4.5~12%, Na 2 O + K 2 O 4.5 containing 12%, and strain point glass plate for thin-film solar cell, which is a 580 ° C. greater. 質量比NaO/(MgO+CaO+SrO+BaO+LiO+NaO+KO)が0.05〜0.5であることを特徴とする請求項1に記載の薄膜太陽電池用ガラス板。 2. The glass plate for a thin-film solar cell according to claim 1, wherein a mass ratio Na 2 O / (MgO + CaO + SrO + BaO + Li 2 O + Na 2 O + K 2 O) is 0.05 to 0.5. SiO−Alが28〜50%、MgO+CaO+SrO+BaOが15〜40%、MgO+CaOが0〜10%、質量比CaO/MgOが1.0超、CaO+SrOが0〜30%であることを特徴とする請求項1又は2に記載の薄膜太陽電池用ガラス板。 SiO 2 —Al 2 O 3 is 28 to 50%, MgO + CaO + SrO + BaO is 15 to 40%, MgO + CaO is 0 to 10%, mass ratio CaO / MgO is more than 1.0, and CaO + SrO is 0 to 30%. The glass plate for thin film solar cells according to claim 1 or 2. 更に、Feを0.01〜1%含むことを特徴とする請求項1〜3のいずれか一項に記載の薄膜太陽電池用ガラス板。 Furthermore, a glass plate for a thin film solar cell according to claim 1, characterized in that it comprises an Fe 2 O 3 0.01~1%. 更に、SOを0.01〜1%含むことを特徴とする請求項1〜4のいずれか一項に記載の薄膜太陽電池用ガラス板。 Furthermore, a glass plate for a thin film solar cell according to claim 1, wherein the early days including the SO 3 0.01 to 1%. 歪点が600超〜650℃であることを特徴とする請求項1〜5のいずれか一項に記載の薄膜太陽電池用ガラス板。   A strain point is 600-650 degreeC, The glass plate for thin film solar cells as described in any one of Claims 1-5 characterized by the above-mentioned. 30〜380℃における平均熱膨張係数が70〜100×10−7/℃であることを特徴とする請求項1〜6のいずれか一項に記載の薄膜太陽電池用ガラス板。 The average thermal expansion coefficient in 30-380 degreeC is 70-100 * 10 < -7 > / degreeC, The glass plate for thin film solar cells as described in any one of Claims 1-6 characterized by the above-mentioned. 104.0dPa・sにおける温度が1187℃以下であることを特徴とする請求項1〜7のいずれか一項に記載の薄膜太陽電池用ガラス板。 10 4.0 thin-film solar cell glass plate according to any one of claims 1-7, wherein the temperature in dPa · s is not more than 1187 ° C.. 液相粘度が104.0dPa・s以上であることを特徴とする請求項1〜8のいずれか一項に記載の薄膜太陽電池用ガラス板。 Glass plate for thin-film solar cell according to any one of claims 1 to 8, wherein the liquidus viscosity of 10 4.0 dPa · s or more. 30〜380℃における平均熱膨張係数が60〜120×10−7/℃の膜が成膜されており、且つ該膜の成膜温度が500〜700℃であることを特徴とする請求項1〜9のいずれか一項に記載の薄膜太陽電池用ガラス板。 2. A film having an average coefficient of thermal expansion of 60 to 120 × 10 −7 / ° C. at 30 to 380 ° C. is formed, and the film forming temperature of the film is 500 to 700 ° C. The glass plate for thin film solar cells as described in any one of -9. 表面にイオン交換層を有しないことを特徴とする請求項1〜10のいずれか一項に記載の薄膜太陽電池用ガラス板。 The glass plate for a thin-film solar cell according to any one of claims 1 to 10, wherein an ion exchange layer is not provided on the surface. CIS系太陽電池に用いることを特徴とする請求項1〜11のいずれか一項に記載の薄膜太陽電池用ガラス板。   It uses for a CIS type solar cell, The glass plate for thin film solar cells as described in any one of Claims 1-11 characterized by the above-mentioned. ガラス組成中のZrO の含有量が0〜4.5質量%であることを特徴とする請求項1〜12のいずれか一項に記載の薄膜太陽電池用ガラス板。 Glass plate for thin-film solar cell according to any one of claims 1 to 12, wherein the content of ZrO 2 in the glass composition is 0 to 4.5 mass%.
JP2012030287A 2011-05-10 2012-02-15 Glass plate for thin film solar cell Active JP5915892B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012030287A JP5915892B2 (en) 2011-05-10 2012-02-15 Glass plate for thin film solar cell
PCT/JP2012/061014 WO2012153634A1 (en) 2011-05-10 2012-04-25 Glass plate for thin film solar cell
US14/116,511 US9133052B2 (en) 2011-05-10 2012-04-25 Glass plate for thin film solar cell
EP12783053.7A EP2708518A4 (en) 2011-05-10 2012-04-25 Glass plate for thin film solar cell
CN201280020325.5A CN103492332A (en) 2011-05-10 2012-04-25 Glass plate for thin film solar cell
KR1020137024255A KR101554532B1 (en) 2011-05-10 2012-04-25 Glass plate for thin film solar cell
TW101116200A TWI543952B (en) 2011-05-10 2012-05-07 Glass plate for thin film solar cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011104801 2011-05-10
JP2011104801 2011-05-10
JP2012030287A JP5915892B2 (en) 2011-05-10 2012-02-15 Glass plate for thin film solar cell

Publications (2)

Publication Number Publication Date
JP2012250902A JP2012250902A (en) 2012-12-20
JP5915892B2 true JP5915892B2 (en) 2016-05-11

Family

ID=47524068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030287A Active JP5915892B2 (en) 2011-05-10 2012-02-15 Glass plate for thin film solar cell

Country Status (1)

Country Link
JP (1) JP5915892B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024170A (en) * 2012-01-12 2014-09-03 日本电气硝子株式会社 Glass
WO2013108790A1 (en) * 2012-01-20 2013-07-25 旭硝子株式会社 Cu-In-Ga-Se SOLAR-CELL GLASS SUBSTRATE AND SOLAR CELL USING SAME
US20150068595A1 (en) * 2012-03-07 2015-03-12 Asahi Glass Company, Limited GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
JP6128128B2 (en) * 2012-09-10 2017-05-17 旭硝子株式会社 Glass substrate for solar cell and solar cell using the same
JP6128418B2 (en) * 2013-01-10 2017-05-17 日本電気硝子株式会社 Glass plate for thin film solar cell
JP6955320B2 (en) * 2014-04-07 2021-10-27 日本電気硝子株式会社 Manufacturing method of laminate and semiconductor package
CN115636583A (en) * 2014-04-07 2023-01-24 日本电气硝子株式会社 Supporting glass substrate and laminate using same
TW201542485A (en) * 2014-05-15 2015-11-16 Asahi Glass Co Ltd Glass substrate for solar cell and solar cell using the same
TW201544481A (en) * 2014-05-21 2015-12-01 Asahi Glass Co Ltd Glass plate
WO2016043285A1 (en) * 2014-09-19 2016-03-24 旭硝子株式会社 Glass substrate and cigs solar cell
JP6428344B2 (en) * 2015-02-13 2018-11-28 Agc株式会社 Glass substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same
JP5614607B2 (en) * 2008-08-04 2014-10-29 日本電気硝子株式会社 Tempered glass and method for producing the same
JP5825703B2 (en) * 2009-02-03 2015-12-02 日本電気硝子株式会社 Chemically tempered glass

Also Published As

Publication number Publication date
JP2012250902A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5915892B2 (en) Glass plate for thin film solar cell
WO2013105625A1 (en) Glass
JP2008280189A (en) Glass substrate for solar cell, and method of manufacturing the same
JP5733811B2 (en) Manufacturing method of glass substrate for solar cell
JP5610563B2 (en) Glass substrate for solar cell
JP6254345B2 (en) Glass substrate for solar cell
KR101554532B1 (en) Glass plate for thin film solar cell
JP5429949B2 (en) Glass substrate for thin film compound solar cell and method for producing the same
JP6497576B2 (en) Glass plate for solar cell
JP6090705B2 (en) Glass plate for thin film solar cell
JP5850392B2 (en) Glass plate
JP6040699B2 (en) Glass plate for thin film solar cell
JP6128418B2 (en) Glass plate for thin film solar cell
JP2014097916A (en) Glass plate for thin film solar cell and method of producing the same
JP2011088794A (en) Glass plate for solar cell
JP6593726B2 (en) Glass plate for solar cell
JP6593724B2 (en) Glass plate for solar cell
JP2015231936A (en) Glass for solar battery
JP2014084237A (en) Glass plate for thin film solar cell
JP2013063910A (en) Glass substrate for solar cell
JP2014094859A (en) Glass plate for thin film solar cell
JP5831850B2 (en) Glass substrate for solar cell
JP5648982B2 (en) Glass substrate for solar cell
JP5742084B2 (en) Glass substrate for solar cell
JP5915891B2 (en) Glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160323

R150 Certificate of patent or registration of utility model

Ref document number: 5915892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150