JP5733811B2 - Manufacturing method of glass substrate for solar cell - Google Patents

Manufacturing method of glass substrate for solar cell Download PDF

Info

Publication number
JP5733811B2
JP5733811B2 JP2008323012A JP2008323012A JP5733811B2 JP 5733811 B2 JP5733811 B2 JP 5733811B2 JP 2008323012 A JP2008323012 A JP 2008323012A JP 2008323012 A JP2008323012 A JP 2008323012A JP 5733811 B2 JP5733811 B2 JP 5733811B2
Authority
JP
Japan
Prior art keywords
glass
glass substrate
solar cell
cao
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008323012A
Other languages
Japanese (ja)
Other versions
JP2010143790A (en
Inventor
寛典 高瀬
寛典 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008323012A priority Critical patent/JP5733811B2/en
Publication of JP2010143790A publication Critical patent/JP2010143790A/en
Application granted granted Critical
Publication of JP5733811B2 publication Critical patent/JP5733811B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Description

本発明は、太陽電池用ガラス基板の製造方法に関し、具体的には廃ガラスをリサイクル可能な太陽電池用ガラス基板の製造方法に関する。   The present invention relates to a method for producing a solar cell glass substrate, and more specifically to a method for producing a solar cell glass substrate capable of recycling waste glass.

近年、環境的観点から、太陽電池の需要が高まっており、単結晶シリコン、多結晶シリコンまたはアモルファスシリコン太陽電池は、主に家庭用発電、商業用発電等に利用されている。その他の太陽電池として、カルコパイライト系薄膜多結晶太陽電池、CdTe太陽電池、色素増感型太陽電池、有機薄膜太陽電池等が開発されており、これらも実用化されつつある。   In recent years, the demand for solar cells has increased from an environmental point of view, and single crystal silicon, polycrystalline silicon, or amorphous silicon solar cells are mainly used for household power generation, commercial power generation, and the like. As other solar cells, chalcopyrite thin film polycrystalline solar cells, CdTe solar cells, dye-sensitized solar cells, organic thin film solar cells and the like have been developed, and these are also being put into practical use.

太陽電池は、一般的に、基板表面に電極膜、光吸収層、電極膜を備え、その上に保護用のカバーガラスを備えた構造を有している。太陽電池用基板は、電極膜や光吸収層が熱処理工程により形成されるため、耐熱性が要求される。このため、太陽電池用基板として、ガラス基板が用いられている。
国際公開第08/098968号パンフレット
A solar cell generally has a structure in which an electrode film, a light absorption layer, and an electrode film are provided on a substrate surface, and a protective cover glass is provided thereon. Since the electrode film and the light absorption layer are formed by a heat treatment process, the solar cell substrate is required to have heat resistance. For this reason, a glass substrate is used as a solar cell substrate.
International Publication No. 08/098968 Pamphlet

近年、環境的観点から、資源のリサイクルが推進されており、ガラス製品もその例外ではない。しかし、ガラス製品全体で見ると、リサイクル率は高いとは言えず、環境的要請を満たしているとは言い難い。したがって、ガラス製品から発生した廃ガラスのリサイクルを推進する必要がある。   In recent years, recycling of resources has been promoted from an environmental viewpoint, and glass products are no exception. However, looking at the glass products as a whole, the recycling rate is not high and it is difficult to say that they meet environmental requirements. Therefore, it is necessary to promote recycling of waste glass generated from glass products.

また、ガラス製品を製造する過程において、相当量の廃ガラスが発生するが、環境的観点から、この廃ガラスもリサイクルし、ガラス製品に還元する必要性が高い。   Further, in the process of manufacturing a glass product, a considerable amount of waste glass is generated. However, from an environmental viewpoint, it is highly necessary to recycle the waste glass and reduce it to a glass product.

上記事情に鑑み、本発明は、廃ガラスを効率良くリサイクル可能な太陽電池用ガラス基板の製造方法を創案し、ガラス製品のリサイクル率を高め、近年の環境的要請を満たすことを技術的課題とする。   In view of the above circumstances, the present invention has developed a method for manufacturing a glass substrate for a solar cell that can efficiently recycle waste glass, raises the recycling rate of glass products, and satisfies recent environmental demands as a technical problem. To do.

本発明者は、鋭意検討の結果、廃ガラスをガラス原料の一部に用い、このガラス原料で太陽電池用ガラス基板を作製することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の太陽電池用ガラス基板の製造方法は、ガラス組成として、質量%で、SiO 50〜75%、Al 7.4〜18%、NaO 0.5〜20%、ZrO 0〜1.8%を含有するように、ガラス原料を調合すると共に、ガラス原料の一部に廃ガラスを用い、得られたガラス原料をガラス溶融窯で溶融した後、ガラス基板に成形することを特徴とする。 As a result of intensive studies, the present inventors have found that the above technical problems can be solved by using a waste glass as a part of a glass raw material and producing a glass substrate for a solar cell with this glass raw material. It is what we propose. That method of manufacturing a glass substrate for a solar cell of the present invention has a glass composition, in mass%, SiO 2 50~75%, Al 2 O 3 7.4 ~18%, Na 2 O 0.5~20% The glass raw material is prepared so as to contain 0 to 1.8% of ZrO 2 , waste glass is used as a part of the glass raw material, and the obtained glass raw material is melted in a glass melting kiln. It is characterized by molding.

発明の太陽電池用ガラス基板の製造方法は、ガラス原料中の廃ガラスの含有量が1〜90質量%であることが好ましい As for the manufacturing method of the glass substrate for solar cells of this invention, it is preferable that content of the waste glass in a glass raw material is 1-90 mass%.

本発明の太陽電池用ガラス基板の製造方法は、ガラス組成として、下記酸化物換算の質量%で、SiO 50〜75%、Al 7.4〜18%、B 0〜12%、MgO 0〜10%、CaO 0〜20%、SrO 0〜15%、BaO 0〜15%、RO(MgO+CaO+SrO+BaO:MgO、CaO、SrOおよびBaOの合量) 5〜25%、NaO 0.5〜20%、KO 0〜15%、ZrO 0〜1.8%を含有するように、ガラス原料を調合することが好ましい。 Method of manufacturing a glass substrate for a solar cell of the present invention has a glass composition, in weight percent terms of oxide, SiO 2 50~75%, Al 2 O 3 7.4 ~18%, B 2 O 3 0~ 12%, MgO 0-10%, CaO 0-20%, SrO 0-15%, BaO 0-15%, RO (MgO + CaO + SrO + BaO: Total amount of MgO, CaO, SrO and BaO) 5-25%, Na 2 O It is preferable to prepare the glass raw material so as to contain 0.5 to 20%, K 2 O 0 to 15%, and ZrO 2 0 to 1.8%.

発明の太陽電池用ガラス基板の製造方法は、ガラス組成として、下記酸化物換算の質量%で、As+Sb+SnO+SO(As、Sb、SnOおよびSOの合量)を0.05〜5%含有するように、ガラス原料を調合することが好ましいMethod of manufacturing a glass substrate for a solar cell of the present invention has a glass composition, in weight percent terms of oxide, As 2 O 3 + Sb 2 O 3 + SnO 2 + SO 3 (As 2 O 3, Sb 2 O 3, SnO It is preferable to prepare the glass raw material so as to contain 0.05 to 5% of the total amount of 2 and SO 3 .

発明の太陽電池用ガラス基板の製造方法は、液相粘度が104.0dPa・s以上になるように、ガラス原料を調合することが好ましい。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。「液相温度」は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。 In the method for producing a glass substrate for a solar cell of the present invention, it is preferable to prepare the glass raw material so that the liquid phase viscosity is 10 4.0 dPa · s or more. Here, the “liquid phase viscosity” is a value obtained by measuring the viscosity of the glass at the liquid phase temperature by a platinum ball pulling method. “Liquid phase temperature” is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 μm), and putting the glass powder remaining at 50 mesh (a sieve opening of 300 μm) into a platinum boat, and putting it in a temperature gradient furnace. This is a value obtained by measuring the temperature at which crystals are deposited while maintaining the time.

発明の太陽電池用ガラス基板の製造方法は、歪点が560℃以上になるように、ガラス原料を調合することが好ましい。ここで、「歪点」は、ASTM C336−71の方法に基づいて測定した値を指す。このようにすれば、熱処理工程でガラス基板が変形する事態を防止することができる。 In the method for producing a glass substrate for a solar cell of the present invention, it is preferable to prepare a glass raw material so that the strain point is 560 ° C. or higher. Here, the “strain point” refers to a value measured based on the method of ASTM C336-71. If it does in this way, the situation where a glass substrate changes in a heat treatment process can be prevented.

発明の太陽電池用ガラス基板の製造方法は、廃ガラスのガラス組成が下記(1)〜(8)のいずれかであることが好ましい
(1)下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、MgO 1〜6%、CaO 2〜12%、NaO 10〜15%、KO 0〜4%、SO 0〜1%、Fe 0〜1%含有、
(2)下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、MgO 0〜4%、CaO 6〜14%、NaO 10〜15%、KO 0〜4%、SO 0〜1%、Fe 0〜1%含有、
(3)下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、B 0〜20%、MgO 0〜5%、CaO 0〜10%、BaO 0〜5%、NaO 0〜20%、KO 0〜10%、Sb 0〜1%、TiO 0〜5%、Fe 0〜1%含有、
(4)下記酸化物換算の質量%で、SiO 50〜75%、Al 0〜30%、B 0〜30%、MgO 0〜10%、CaO 0〜30%、NaO 0〜15%、KO 0〜15%、ZrO 0〜30%、ZnO 0〜5%、TiO 0〜5%、Fe 0〜1%、SO 0〜1%含有、
(5)下記酸化物換算の質量%で、SiO 55〜65%、Al 1〜3%、MgO 0〜1%、CaO 0〜2%、SrO 8〜12%、BaO 5〜12%、ZrO 0〜3%、NaO 6〜9%、KO 7〜12%、ZnO 0〜1%、CeO 0〜1%、TiO 0〜1%、Fe 0〜1%、Sb 0〜1%、NiO 0〜0.02%、CoO 0〜0.003%含有、
(6)下記酸化物換算の質量%で、SiO 50〜60%、Al 1〜6%、MgO 0〜3%、CaO 1〜5%、SrO 0〜3%、BaO 0〜2%、PbO 20〜25%、NaO 4〜8%、KO 6〜10%、Sb 0〜1%、Fe 0〜1%含有、
(7)下記酸化物換算の質量%で、SiO 50〜70%、Al 0〜8%、MgO 0〜8%、CaO 0〜12%、SrO 0〜14%、BaO 0〜14%、ZrO 0〜10%、NaO 0.5〜5%、KO 1〜10%、Fe 0〜1%、SO 0〜1%含有、
(8)下記酸化物換算の質量%で、SiO 55〜75%、Al 2〜20%、B 1〜12%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜15%、ZnO 0〜1%、As 0〜2%、Sb 0〜2%、SnO 0〜1%、Fe 0〜1%含有。
As for the manufacturing method of the glass substrate for solar cells of this invention, it is preferable that the glass composition of waste glass is either of following (1)-(8).
(1) in weight percent terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, MgO 1~6%, CaO 2~12%, Na 2 O 10~15%, K 2 O 0-4%, SO 3 0-1%, Fe 2 O 3 0-1% contained,
(2) mass% terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, 0~4% MgO, CaO 6~14%, Na 2 O 10~15%, K 2 O 0-4%, SO 3 0-1%, Fe 2 O 3 0-1% contained,
(3) mass% terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, B 2 O 3 0~20%, 0~5% MgO, CaO 0~10% BaO 0-5%, Na 2 O 0-20%, K 2 O 0-10%, Sb 2 O 3 0-1%, TiO 2 0-5%, Fe 2 O 3 0-1%,
(4) mass% terms of oxide, SiO 2 50~75%, Al 2 O 3 0~30%, B 2 O 3 0~30%, 0~10% MgO, CaO 0~30%, Na 2 O 0~15%, K 2 O 0~15%, ZrO 2 0~30%, 0~5% ZnO, TiO 2 0~5%, Fe 2 O 3 0~1%, SO 3 0~1% Containing,
(5) weight percent terms of oxide, SiO 2 55~65%, Al 2 O 3 1~3%, 0~1% MgO, CaO 0~2%, SrO 8~12%, BaO 5~12 %, ZrO 2 0~3%, Na 2 O 6~9%, K 2 O 7~12%, 0~1% ZnO, CeO 2 0~1%, TiO 2 0~1%, Fe 2 O 3 0 ~1%, Sb 2 O 3 0~1 %, NiO 0~0.02%, CoO 0~0.003% containing,
(6) Mass% in terms of the following oxides: SiO 2 50-60%, Al 2 O 3 1-6%, MgO 0-3%, CaO 1-5%, SrO 0-3%, BaO 0-2 %, PbO 20-25%, Na 2 O 4-8%, K 2 O 6-10%, Sb 2 O 3 0-1%, Fe 2 O 3 0-1%,
(7) Mass% in terms of the following oxides: SiO 2 50 to 70%, Al 2 O 3 0 to 8%, MgO 0 to 8%, CaO 0 to 12%, SrO 0 to 14%, BaO 0 to 14 %, ZrO 2 0-10%, Na 2 O 0.5-5%, K 2 O 1-10%, Fe 2 O 3 0-1%, SO 3 0-1%,
(8) mass% terms of oxide, SiO 2 55~75%, Al 2 O 3 2~20%, B 2 O 3 1~12%, 0~10% MgO, CaO 0~10%, SrO 0~10%, BaO 0~15%, 0~1 % ZnO, As 2 O 3 0~2%, Sb 2 O 3 0~2%, SnO 2 0~1%, Fe 2 O 3 0~1% Contains.

発明の太陽電池用ガラス基板の製造方法は、CRT用ガラスの廃ガラスをガラス原料の一部に用いることが好ましい In the method for producing a solar cell glass substrate of the present invention, it is preferable to use waste glass of CRT glass as a part of the glass raw material.

発明の太陽電池用ガラス基板の製造方法は、フロート法でガラス基板を成形することが好ましい。このようにすれば、大型のガラス基板を安定して作製することができ、結果として、ガラス基板の作製コストを低廉化することができる。 As for the manufacturing method of the glass substrate for solar cells of this invention, it is preferable to shape | mold a glass substrate by the float glass process. In this way, a large glass substrate can be stably manufactured, and as a result, the manufacturing cost of the glass substrate can be reduced.

本発明に係る太陽電池用ガラス基板は、上記のいずれかに記載の方法で作製されてなることが好ましい。 The solar cell glass substrate according to the present invention is preferably produced by any of the methods described above.

本発明に係る太陽電池用ガラス基板は、歪点が560℃以上であり、且つカルコパイライト系薄膜多結晶太陽電池または色素増感型太陽電池に用いることが好ましい。なお、「カルコパイライト系薄膜多結晶太陽電池」は、IB−IIIB−VIB族の化合物を用いた太陽電池を指し、CuInSe:CIS系、Cu(In,Ga)Se:CIGS系、Cu(In,Ga)(Se,S):CIGSS系等の光吸収層を有する太陽電池を指す。 The glass substrate for a solar cell according to the present invention has a strain point of 560 ° C. or higher and is preferably used for a chalcopyrite thin film polycrystalline solar cell or a dye-sensitized solar cell. The “chalcopyrite thin film polycrystalline solar cell” refers to a solar cell using a compound of the IB-IIIB-VIB group, CuInSe 2 : CIS system, Cu (In, Ga) Se 2 : CIGS system, Cu ( In, Ga) (Se, S): refers to a solar cell having a light absorption layer such as CIGSS.

本発明に係る太陽電池用カバーガラスは、ガラス組成として、NaOを0.5〜20質量%含むように、ガラス原料を調合すると共に、ガラス原料の一部に廃ガラスを用い、ガラス原料をガラス溶融窯で溶融した後、カバーガラスに成形することが好ましい。 The cover glass for a solar cell according to the present invention is prepared by preparing a glass raw material so as to contain 0.5 to 20% by mass of Na 2 O as a glass composition, and using waste glass as part of the glass raw material. After melting in a glass melting furnace, it is preferable to form a cover glass.

本発明の太陽電池用ガラス基板の製造方法において、ガラス原料中の廃ガラスの含有量は1〜90質量%、10〜85質量%、特に30〜75質量%が好ましい。廃ガラスの含有量が少なくなると、廃ガラスのリサイクルを推進し難くなる。一方、廃ガラスの含有量が多くなると、ガラス組成を調整し難くなるとともに、溶融時にガスを発生させる炭酸塩、硝酸塩、硫酸塩、清澄剤等をガラス原料中に導入し難くなり、このことに起因して、溶融ガラスの均質性が低下したり、脱泡し難くなる等の不具合が発生しやすくなる。なお、不均質なガラス基板は、熱処理により、ガラス基板に歪みが入りやすく、これが割れ等の原因になるおそれがある。また、泡がガラス基板表面に露出すると、電極膜を均一に成膜し難くなる。なお、本発明の太陽電池用ガラス基板の製造方法において、廃ガラスの粒度は10mm以下、特に5mm以下が好ましい。廃ガラスの粒度が大きくなると、ガラスの均質性が低下しやすくなる。   In the manufacturing method of the glass substrate for solar cells of this invention, content of the waste glass in a glass raw material is 1-90 mass%, 10-85 mass%, Especially 30-75 mass% is preferable. When the content of waste glass decreases, it becomes difficult to promote recycling of waste glass. On the other hand, when the content of waste glass increases, it becomes difficult to adjust the glass composition, and it becomes difficult to introduce carbonates, nitrates, sulfates, fining agents, etc. that generate gas at the time of melting into the glass raw material. As a result, defects such as reduced homogeneity of the molten glass and difficulty in defoaming easily occur. Note that a non-homogeneous glass substrate is likely to be distorted by heat treatment, which may cause cracks and the like. Further, when the bubbles are exposed on the glass substrate surface, it is difficult to form the electrode film uniformly. In addition, in the manufacturing method of the glass substrate for solar cells of this invention, the particle size of waste glass is 10 mm or less, Especially 5 mm or less is preferable. When the particle size of the waste glass increases, the homogeneity of the glass tends to decrease.

本発明の太陽電池用ガラス基板の製造方法において、ガラス基板は、ガラス組成として、下記酸化物換算の質量%で、SiO 50〜75%、Al 7.4〜18%、B 0〜12%、MgO 0〜10%、CaO 0〜20%、SrO 0〜15%、BaO 0〜15%、RO(MgO+CaO+SrO+BaO) 5〜25%、NaO 0.5〜20%、KO 0〜15%、ZrO 0〜1.8%を含有することが好ましい。 The method of manufacturing a glass substrate for a solar cell of the present invention, a glass substrate, a glass composition, in weight percent terms of oxide, SiO 2 50~75%, Al 2 O 3 7.4 ~18%, B 2 O 3 0-12%, MgO 0-10%, CaO 0-20%, SrO 0-15%, BaO 0-15%, RO (MgO + CaO + SrO + BaO) 5-25%, Na 2 O 0.5-20%, K 2 O 0~15%, preferably contains ZrO 2 from 0 to 1.8%.

本発明の太陽電池用ガラス基板の製造方法において、ガラス基板のガラス組成を上記のように限定した理由を以下に説明する。   The reason for limiting the glass composition of the glass substrate as described above in the method for producing a glass substrate for solar cell of the present invention will be described below.

SiOは、ガラスネットワークを形成する成分であるとともに、歪点を高める成分であり、その含有量は50〜75%、好ましくは50〜60%である。SiOの含有量が少なくなると、高温粘度が低くなり過ぎ、液相粘度が低下しやすくなるとともに、廃ガラスのリサイクルを推進し難くなる。一方、SiOの含有量が多くなると、高温粘度が高くなり過ぎ、溶融性や成形性が低下しやすくなる。 SiO 2, together with a component for forming a glass network, or to enhance the strain point, the content thereof is 50% to 75%, good Mashiku is 50-60%. When the content of SiO 2 decreases, the high temperature viscosity becomes too low, the liquid phase viscosity tends to decrease, and the recycling of waste glass becomes difficult to promote. On the other hand, when the content of SiO 2 increases, the high-temperature viscosity becomes too high, and the meltability and moldability tend to decrease.

は、融剤として働き、高温粘度を低下させて、溶融性や成形性を高める成分であり、その含有量は0〜12%、好ましくは0〜8%である。Bの含有量が多くなると、高温粘度が低くなり過ぎ、液相粘度が低下しやすくなるとともに、歪点が低下しやすくなる。 B 2 O 3 is a component that acts as a flux and lowers the high temperature viscosity to improve the meltability and moldability, and its content is 0 to 12%, preferably 0 to 8%. When the content of B 2 O 3 increases, the high temperature viscosity becomes too low, the liquid phase viscosity tends to decrease, and the strain point tends to decrease.

Alは、歪点を高める成分であり、その含有量は7.4〜18%、好ましくは7.4〜15%である。Alの含有量が少なくなると、廃ガラスのリサイクルを推進し難くなる。一方、Alの含有量が多くなると、高温粘度が高くなり過ぎ、溶融性や成形性が低下しやすくなる。 Al 2 O 3 is a component that increases the strain point, and its content is 7.4 to 18%, preferably 7.4 to 15%. When the content of Al 2 O 3 decreases, it becomes difficult to promote recycling of waste glass. On the other hand, when the content of Al 2 O 3 increases, the high-temperature viscosity becomes too high, and the meltability and moldability tend to decrease.

MgOは、高温粘度を低下させて、溶融性や成形性を高める成分であり、その含有量は0〜10%、好ましくは1〜8%である。MgOの含有量が少なくなると、窓ガラス等の廃ガラスのリサイクルを推進し難くなる。一方、MgOの含有量が多くなると、歪点が上昇する傾向があるものの、高温粘度が低くなり過ぎ、またガラスが失透しやすくなるため、液相温度が上昇し、液相粘度が低下しやすくなる。   MgO is a component that lowers the high-temperature viscosity and improves meltability and moldability, and its content is 0 to 10%, preferably 1 to 8%. When the content of MgO decreases, it becomes difficult to promote recycling of waste glass such as window glass. On the other hand, when the content of MgO increases, the strain point tends to increase, but the high-temperature viscosity becomes too low, and the glass is liable to devitrify, so the liquidus temperature rises and the liquidus viscosity decreases. It becomes easy.

CaOは、高温粘度を低下させて、溶融性や成形性を高める成分であり、その含有量は0〜20%、好ましくは2〜10%である。CaOの含有量が少なくなると、窓ガラス、瓶ガラス、CRT用ファンネルガラス等の廃ガラスのリサイクルを推進し難くなる。一方、CaOの含有量が多くなると、歪点が上昇する傾向があるものの、高温粘度が低くなり過ぎ、またガラスが失透しやすくなるため、液相温度が上昇し、液相粘度が低下しやすくなる。   CaO is a component that increases the meltability and moldability by reducing the high-temperature viscosity, and its content is 0 to 20%, preferably 2 to 10%. When the content of CaO decreases, it becomes difficult to promote recycling of waste glass such as window glass, bottle glass, and funnel glass for CRT. On the other hand, as the CaO content increases, the strain point tends to increase, but the high-temperature viscosity becomes too low, and the glass tends to devitrify, so the liquidus temperature rises and the liquidus viscosity decreases. It becomes easy.

SrOは、高温粘度を低下させて、溶融性や成形性を高める成分であり、その含有量は0〜15%、好ましくは2〜12%である。SrOの含有量が多くなると、歪点が上昇する傾向があるものの、高温粘度が低くなり過ぎ、またガラスが失透しやすくなるため、液相温度が上昇し、液相粘度が低下しやすくなる。一方、SrOの含有量が少なくなると、CRT用パネルガラス等の廃ガラスのリサイクルを推進し難くなる。   SrO is a component that lowers the high-temperature viscosity and improves meltability and moldability, and its content is 0 to 15%, preferably 2 to 12%. When the SrO content increases, the strain point tends to increase, but the high-temperature viscosity becomes too low, and the glass tends to devitrify, so the liquidus temperature rises and the liquidus viscosity tends to decrease. . On the other hand, when the content of SrO decreases, it becomes difficult to promote recycling of waste glass such as CRT panel glass.

BaOは、高温粘度を低下させて、溶融性や成形性を高める成分であり、その含有量は0〜15%、好ましくは2〜12%である。BaOの含有量が少なくなると、CRT用パネルガラス等の廃ガラスのリサイクルを推進し難くなる。一方、BaOの含有量が多くなると、歪点が上昇する傾向があるものの、高温粘度が低くなり過ぎ、またガラスが失透しやすくなるため、液相温度が上昇し、液相粘度が低下しやすくなる。   BaO is a component that increases the meltability and moldability by lowering the high-temperature viscosity, and its content is 0 to 15%, preferably 2 to 12%. When the content of BaO decreases, it becomes difficult to promote recycling of waste glass such as CRT panel glass. On the other hand, when the content of BaO increases, the strain point tends to increase, but the high-temperature viscosity becomes too low and the glass tends to devitrify, so that the liquidus temperature rises and the liquidus viscosity decreases. It becomes easy.

RO(MgO+CaO+SrO+BaO)は104.0dPa・sにおける温度や溶融温度を低下させる成分であり、その含有量は5〜25%、好ましくは10〜25%、より好ましくは17〜25%である。RO(MgO+CaO+SrO+BaO)の含有量が少なくなると、歪点が低下する傾向にあり、高温粘度104.0dPa・sにおける温度や溶融温度が上昇する傾向にある。一方、RO(MgO+CaO+SrO+BaO)の含有量が多くなると、ガラスが失透しやすくなり、ガラス基板に成形し難くなる。 RO (MgO + CaO + SrO + BaO) is a component that lowers the temperature and melting temperature at 10 4.0 dPa · s, and its content is 5 to 25%, preferably 10 to 25%, more preferably 17 to 25%. When the content of RO (MgO + CaO + SrO + BaO) decreases, the strain point tends to decrease, and the temperature and melting temperature at a high temperature viscosity of 10 4.0 dPa · s tend to increase. On the other hand, when the content of RO (MgO + CaO + SrO + BaO) increases, the glass tends to devitrify and it becomes difficult to form the glass substrate.

ZrOは、歪点を高める成分であり、その含有量は0〜1.8%である。ZrOの含有量が多くなると、高温粘度が高くなり過ぎ、溶融性や成形性が低下しやすくなる。 ZrO 2 is a component that increases the strain point, and its content is 0 to 1.8 %. When the content of ZrO 2 increases, the high-temperature viscosity becomes too high, and the meltability and moldability tend to decrease.

NaOは、高温粘度を大幅に低下させて、溶融性や成形性を高める成分であり、その含有量は0.5〜20%、好ましくは0.5〜8%である。NaOの含有量が少なくなると、窓ガラス、瓶ガラス、CRT用パネルガラス、CRT用ファンネルガラス、PDP用ガラス基板等の廃ガラスのリサイクルを推進し難くなる。一方、NaOの含有量が多くなると、高温粘度が低くなり過ぎ、液相粘度が低下しやすくなるとともに、歪点が低下しやすくなる。 Na 2 O is a component that significantly lowers the high-temperature viscosity and improves the meltability and moldability, and its content is 0.5 to 20%, preferably 0.5 to 8%. When the content of Na 2 O decreases, it becomes difficult to promote recycling of waste glass such as window glass, bottle glass, CRT panel glass, CRT funnel glass, and PDP glass substrate. On the other hand, when the content of Na 2 O increases, the high temperature viscosity becomes too low, the liquid phase viscosity tends to decrease, and the strain point tends to decrease.

Oは、高温粘度を大幅に低下させて、溶融性や成形性を高める成分であり、その含有量は0〜15%、好ましくは0〜13%である。KOの含有量が少なくなると、CRT用パネルガラス、CRT用ファンネルガラス、PDP用ガラス基板等の廃ガラスのリサイクルを推進し難くなる。一方、KOの含有量が多くなると、高温粘度が低下しやすくなり、液相粘度が低下しやすくなるとともに、歪点が低下しやすくなる。 K 2 O is a component that greatly lowers the high-temperature viscosity and improves meltability and moldability, and its content is 0 to 15%, preferably 0 to 13%. When the content of K 2 O decreases, it becomes difficult to promote recycling of waste glass such as CRT panel glass, CRT funnel glass, and PDP glass substrate. On the other hand, when the content of K 2 O increases, the high temperature viscosity tends to decrease, the liquid phase viscosity tends to decrease, and the strain point tends to decrease.

As、Sb、SnO、SOは、清澄剤であり、ガス放出によりガラスを均質化させる成分であり、As+Sb+SnO+SOの含有量は0.05〜5%、好ましくは0.1〜1.0%である。As+Sb+SnO+SOの含有量が少なくなると、清澄効果が乏しくなり、脱泡し難くなるとともに、ガラスを均質化し難くなる。一方、As+Sb+SnO+SOの含有量が多くなると、ガスが発生し過ぎるため、溶解中の溶融ガラスの表面に泡層が生じ、ガラスを均質に加熱し難くなったり、泡層に起因した泡が製品に流れ込みやすくなる。 As 2 O 3 , Sb 2 O 3 , SnO 2 , and SO 3 are fining agents and are components that homogenize the glass by gas release, and the content of As 2 O 3 + Sb 2 O 3 + SnO 2 + SO 3 is 0.05 to 5%, preferably 0.1 to 1.0%. When the content of As 2 O 3 + Sb 2 O 3 + SnO 2 + SO 3 decreases, the clarification effect becomes poor and it becomes difficult to defoam, and it is difficult to homogenize the glass. On the other hand, if the content of As 2 O 3 + Sb 2 O 3 + SnO 2 + SO 3 increases, gas is generated too much, and a foam layer is generated on the surface of the molten glass being melted, making it difficult to heat the glass homogeneously. The foam resulting from the foam layer is likely to flow into the product.

なお、上記成分以外にも他の成分(例えば、Fe、TiO、CeO、NiO、CoO)を20%までガラス組成中に添加することができる。なお、NiOの含有量は15ppm〜20%が好ましい。
In addition to the above components, other components (for example, Fe 2 O 3 , TiO 2 , CeO 2 , NiO, CoO) can be added to the glass composition up to 20%. The NiO content is preferably 15 ppm to 20%.

本発明の太陽電池用ガラス基板の製造方法において、液相粘度が104.0dPa・s以上、104.4dPa・s以上、104.8dPa・s以上、特に105.0dPa・s以上になるように、ガラス原料を調合することが好ましい。液相粘度が104.0dPa・sより低いと、成形時にガラスに結晶が析出しやすくなり、ガラス基板の製造効率が低下する。ガラス原料中の廃ガラスの含有量が多い場合、成形時にガラスが失透しやすくなるため、液相粘度を上記範囲に規制する必要性が高い。 In the method for producing a glass substrate for a solar cell of the present invention, the liquid phase viscosity is 10 4.0 dPa · s or more, 10 4.4 dPa · s or more, 10 4.8 dPa · s or more, particularly 10 5.0 dPa. -It is preferable to prepare a glass raw material so that it may become more than s. When the liquidus viscosity is less than 10 4.0 dPa · s, crystal glass is easily precipitated, to decrease the production efficiency of the glass substrate at the time of molding. When there is much content of the waste glass in a glass raw material, since it becomes easy to devitrify glass at the time of shaping | molding, it is highly necessary to control liquid phase viscosity to the said range.

本発明の太陽電池用ガラス基板の製造方法において、歪点が560℃以上、570℃以上、特に580℃以上になるように、ガラス原料を調合することが好ましい。歪点が560℃より低いと、高温の熱処理工程でガラス基板が熱変形しやすくなる。 In the manufacturing method of the glass substrate for solar cells of this invention, it is preferable to prepare a glass raw material so that a strain point may be 560 degreeC or more, 570 degreeC or more, especially 580 degreeC or more. When the strain point is lower than 560 ° C., the glass substrate tends to be thermally deformed in a high-temperature heat treatment process.

本発明の太陽電池用ガラス基板の製造方法において、熱膨張係数が75〜95×10−7/℃、特に80〜90×10−7/℃になるように、ガラス原料を調合することが好ましい。このようにすれば、ガラス基板の熱膨張係数が、CIS等の光吸収層、酸化チタン等の酸化物半導体多孔質膜等の熱膨張係数に整合し、材料間の残留応力を低減することができ、結果として、これらの材料の剥離を防止することができる。ここで、「熱膨張係数」は、直径5.0mm、長さ20mmの円柱を測定試料とし、ディラトメーターで30〜380℃の温度範囲における線熱膨張係数の平均値を指す。 In the manufacturing method of the glass substrate for solar cells of this invention, it is preferable to prepare a glass raw material so that a thermal expansion coefficient may be 75-95 * 10 < -7 > / degreeC, especially 80-90 * 10 < -7 > / degreeC. . In this way, the thermal expansion coefficient of the glass substrate matches the thermal expansion coefficient of the light absorbing layer such as CIS, and the oxide semiconductor porous film such as titanium oxide, and the residual stress between the materials can be reduced. As a result, peeling of these materials can be prevented. Here, “thermal expansion coefficient” refers to an average value of linear thermal expansion coefficient in a temperature range of 30 to 380 ° C. with a dilatometer using a cylinder having a diameter of 5.0 mm and a length of 20 mm as a measurement sample.

本発明の太陽電池用ガラス基板の製造方法において、104.0dPa・sにおける温度が1200℃以下、1170℃以下、特に1150℃以下になるように、ガラス原料を調合することが好ましい。このようにすれば、フロート法、オーバーフローダウンドロー法、ロールアウト法等でガラス基板を成形しやすくなる。104.0dPa・sにおける温度が1200℃より高いと、成形の際に成分揮発によって溶融ガラスが変質しやすく、また成形温度が高温になるため、成形装置への負荷が大きくなり、結果として、成形装置のライフが短くなり、ガラス基板の作製コストが高騰する。一方、104.0dPa・sにおける温度が低過ぎると、歪点が低下する傾向があるため、104.0dPa・sにおける温度を1050℃以上とするのが好ましい。ここで、「104.0dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。 The method of manufacturing a glass substrate for a solar cell of the present invention, 10 4.0 dPa · Temperature in s is 1200 ° C. or less, 1170 ° C. or less, in particular so as to be 1150 ° C. or less, it is preferable to formulate a glass raw material. If it does in this way, it will become easy to shape | mold a glass substrate by the float method, the overflow downdraw method, the rollout method, etc. When the temperature at 10 4.0 dPa · s is higher than 1200 ° C., the molten glass is easily deteriorated due to component volatilization at the time of molding, and the molding temperature becomes high, resulting in an increased load on the molding apparatus. The life of the molding apparatus is shortened and the production cost of the glass substrate is increased. On the other hand, if the temperature at 10 4.0 dPa · s is too low, the strain point tends to decrease, so the temperature at 10 4.0 dPa · s is preferably 1050 ° C. or higher. Here, “temperature at 10 4.0 dPa · s” refers to a value measured by a platinum ball pulling method.

現在、種々のガラス製品が市場に流通しているが、環境的観点から、ガラス製品から発生する廃ガラスをリサイクルする必要性が高い。特に、窓ガラス、瓶ガラス、蛍光ランプ用ガラス、ガラスファイバー、CRTパネルガラス、CRTファンネルガラス、PDP用ガラス基板、LCD用ガラス基板等は、流通量が多く、廃ガラスをリサイクルする必要性が高い。これらのガラス組成は、製造メーカーにより多少異なるが、概ね以下に示す通りである。
(1)窓ガラスは、下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、MgO 1〜6%、CaO 2〜12%、NaO 10〜15%、KO 0〜4%、SO 0〜1%、Fe 0〜1%含有、
(2)瓶ガラスは、下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、MgO 0〜4%、CaO 6〜14%、NaO 10〜15%、KO 0〜4%、SO 0〜1%、Fe 0〜1%含有、
(3)蛍光ランプ用ガラスは、下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、B 0〜20%、MgO 0〜5%、CaO 0〜10%、BaO 0〜5%、NaO 0〜20%、KO 0〜10%、Sb 0〜1%、TiO 0〜5%、Fe 0〜1%含有、
(4)ガラスファイバーは、下記酸化物換算の質量%で、SiO 50〜75%、Al 0〜30%、B 0〜30%、MgO 0〜10%、CaO 0〜30%、NaO 0〜15%、KO 0〜15%、ZrO 0〜30%、ZnO 0〜5%、TiO 0〜5%、Fe 0〜1%、SO 0〜1%含有、
(5)CRTパネルガラスは、下記酸化物換算の質量%で、SiO 55〜65%、Al 1〜3%、MgO 0〜1%、CaO 0〜2%、SrO 8〜12%、BaO 5〜12%、ZrO 0〜3%、NaO 6〜9%、KO 7〜12%、ZnO 0〜1%、CeO 0〜1%、TiO 0〜1%、Fe 0〜1%、Sb 0〜1%、NiO 0〜0.02%、CoO 0〜0.003%含有、
(6)CRTファンネルガラスは、下記酸化物換算の質量%で、SiO 50〜60%、Al 1〜6%、MgO 0〜3%、CaO 1〜5%、SrO 0〜3%、BaO 0〜2%、PbO 20〜25%、NaO 4〜8%、KO 6〜10%、Sb 0〜1%、Fe 0〜1%含有、
(7)PDP用ガラス基板は、下記酸化物換算の質量%で、SiO 50〜70%、Al 0〜8%、MgO 0〜8%、CaO 0〜12%、SrO 0〜14%、BaO 0〜14%、ZrO 0〜10%、NaO 0.5〜5%、KO 1〜10%、Fe 0〜1%、SO 0〜1%含有、
(8)LCD用ガラス基板は、下記酸化物換算の質量%で、SiO 55〜75%、Al 2〜20%、B 1〜12%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜15%、ZnO 0〜1%、As 0〜2%、Sb 0〜2%、SnO 0〜1%、Fe 0〜1%含有。
Currently, various glass products are distributed in the market. From the environmental point of view, there is a high need to recycle waste glass generated from glass products. In particular, window glass, bottle glass, glass for fluorescent lamps, glass fiber, CRT panel glass, CRT funnel glass, glass substrates for PDP, glass substrates for LCD, etc. have a large distribution volume, and it is highly necessary to recycle waste glass. . These glass compositions vary somewhat depending on the manufacturer, but are generally as shown below.
(1) window glass, in weight percent terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, MgO 1~6%, CaO 2~12%, Na 2 O 10 ~15%, K 2 O 0~4% , SO 3 0~1%, Fe 2 O 3 0~1% containing,
(2) bottles glass, by mass% terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, 0~4% MgO, CaO 6~14%, Na 2 O 10 ~15%, K 2 O 0~4% , SO 3 0~1%, Fe 2 O 3 0~1% containing,
(3) glass for fluorescent lamps, in mass% terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, B 2 O 3 0~20%, MgO 0~5% , CaO 0-10%, BaO 0-5%, Na 2 O 0-20%, K 2 O 0-10%, Sb 2 O 3 0-1%, TiO 2 0-5%, Fe 2 O 3 0 Containing 1%,
(4) Glass fiber, in mass% terms of oxide, SiO 2 50~75%, Al 2 O 3 0~30%, B 2 O 3 0~30%, 0~10% MgO, CaO 0~ 30%, Na 2 O 0~15% , K 2 O 0~15%, ZrO 2 0~30%, 0~5% ZnO, TiO 2 0~5%, Fe 2 O 3 0~1%, SO 3 0 to 1% content,
(5) CRT panel glass, in weight percent terms of oxide, SiO 2 55~65%, Al 2 O 3 1~3%, 0~1% MgO, CaO 0~2%, SrO 8~12% BaO 5-12%, ZrO 2 0-3%, Na 2 O 6-9%, K 2 O 7-12%, ZnO 0-1%, CeO 2 0-1%, TiO 2 0-1%, Fe 2 O 3 0 to 1%, Sb 2 O 3 0 to 1%, NiO 0 to 0.02%, CoO 0 to 0.003% contained,
(6) CRT funnel glass, in weight% terms of oxide, SiO 2 50~60%, Al 2 O 3 1~6%, 0~3% MgO, CaO 1~5%, SrO 0~3% BaO 0-2%, PbO 20-25%, Na 2 O 4-8%, K 2 O 6-10%, Sb 2 O 3 0-1%, Fe 2 O 3 0-1%,
(7) The glass substrate for PDP is mass% in terms of the following oxides: SiO 2 50 to 70%, Al 2 O 3 0 to 8%, MgO 0 to 8%, CaO 0 to 12%, SrO 0 to 14 %, BaO 0-14%, ZrO 2 0-10%, Na 2 O 0.5-5%, K 2 O 1-10%, Fe 2 O 3 0-1%, SO 3 0-1%,
(8) a glass substrate for LCD, by mass% terms of oxide, SiO 2 55~75%, Al 2 O 3 2~20%, B 2 O 3 1~12%, 0~10% MgO, CaO 0~10%, SrO 0~10%, BaO 0~15%, 0~1% ZnO, As 2 O 3 0~2%, Sb 2 O 3 0~2%, SnO 2 0~1%, Fe 2 O 3 0 to 1% contained.

本発明の太陽電池用ガラス基板の製造方法において、CRT用ガラス(CRTパネルガラス、CRTファンネルガラス)の廃ガラスを原料の一部に用いることが好ましい。使用済みブラウン管テレビを解体して素材の種類別等に分別し、できるだけ多くの部材を資源として再利用することが要請されており、(財)家電製品協会では、リサイクルプラントが開発され、家電メーカー各社においても解体手段が種々提案されている。特に、ブラウン管テレビの構成部品において、CRT用ガラスは大きい容積を占め、これを分別して、ガラス原料としてリサイクルする必要性が高い。そこで、CRT用ガラスの廃ガラスを原料の一部に用いて、太陽電池用ガラス基板を作製すると、上記要請を的確に満たすことができる。   In the method for producing a glass substrate for a solar cell of the present invention, it is preferable to use waste glass of CRT glass (CRT panel glass, CRT funnel glass) as a part of the raw material. It is required to dismantle used CRT TVs, sort them into different types of materials, etc., and reuse as many materials as possible as resources. The Japan Home Appliances Association has developed a recycling plant, and home appliance manufacturers Various companies have proposed various dismantling means. In particular, CRT glass occupies a large volume in the components of CRT televisions, and it is highly necessary to separate this and recycle it as a glass raw material. Therefore, when the glass substrate for solar cells is produced using waste glass of CRT glass as a part of the raw material, the above requirement can be satisfied accurately.

本発明の太陽電池用ガラス基板の製造方法において、成形方法は、フロート法、スロットダウンドロー法、オーバーフローダウンドロー法、リドロー法、ロールアウト法等が利用可能である。特に、フロート法は、大型のガラス基板を安価に作製することができる。フロート法の場合、ガラス組成中に、清澄剤として、As、Sbを添加しないことが好ましい。このようにすれば、As、Sbがフロートバス中で還元されて、金属異物が析出する事態を防止することができる。 In the method for manufacturing a glass substrate for a solar cell of the present invention, as a forming method, a float method, a slot down draw method, an overflow down draw method, a redraw method, a roll out method, or the like can be used. In particular, the float method can produce a large glass substrate at low cost. In the case of the float process, it is preferable not to add As 2 O 3 or Sb 2 O 3 as a fining agent in the glass composition. In this way, it is possible to As 2 O 3, Sb 2 O 3 is reduced in the float bath, to prevent the foreign metal substance is precipitated.

本発明に係る太陽電池用ガラス基板は、上記のいずれかに記載の方法で作製されてなることを特徴とする。ここで、本発明の太陽電池用ガラス基板の技術的特徴(好適なガラス組成、ガラス特性等)は、上記した通りであり、ここでは、その記載を省略する。 The glass substrate for solar cells according to the present invention is manufactured by any of the methods described above. Here, the technical characteristics (a suitable glass composition, glass characteristics, etc.) of the glass substrate for solar cells of the present invention are as described above, and the description thereof is omitted here.

本発明に係る太陽電池用ガラス基板は、歪点が560℃以上であり、且つカルコパイライト系薄膜多結晶太陽電池に用いることが好ましい。カルコパイライト系薄膜多結晶太陽電池は、まずガラス基板上にスパッタリング等により電極(例えばMo)を成膜した後、スパッタリング法、蒸着法等により光吸収層の前駆体を作製し、300〜650℃に熱処理して光吸収層を成膜する。続いて、バッファー層(例えばCdS)を化学析出法等で形成するとともに、窓層(例えばZnO)および透明導電膜(例えばITO)をスパッタリング法等で形成する。光吸収層を成膜する際、熱処理温度を高温にすると、熱拡散による粒子の再構成等を推進することができる。本発明の太陽電池用ガラス基板は、廃ガラスのリサイクルを推進できる効果に加えて、歪点が560℃以上であるため、高温で熱処理してもガラス基板が変形し難く、ガラス基板上に光吸収層を安定して成膜することができ、結果として、カルコパイライト系薄膜多結晶太陽電池の特性を高めることができる。 The glass substrate for a solar cell according to the present invention has a strain point of 560 ° C. or higher and is preferably used for a chalcopyrite thin film polycrystalline solar cell. In the chalcopyrite thin film polycrystalline solar cell, an electrode (for example, Mo) is first formed on a glass substrate by sputtering or the like, and then a precursor of a light absorption layer is prepared by sputtering or vapor deposition. Then, a light absorption layer is formed by heat treatment. Subsequently, a buffer layer (for example, CdS) is formed by a chemical deposition method or the like, and a window layer (for example, ZnO) and a transparent conductive film (for example, ITO) are formed by a sputtering method or the like. When the light absorption layer is formed, if the heat treatment temperature is increased, the reconfiguration of particles by thermal diffusion can be promoted. In addition to the effect of promoting the recycling of waste glass, the glass substrate for solar cell of the present invention has a strain point of 560 ° C. or higher, so that the glass substrate is not easily deformed even when heat-treated at a high temperature. The absorption layer can be stably formed, and as a result, the characteristics of the chalcopyrite thin film polycrystalline solar cell can be enhanced.

本発明に係る太陽電池用ガラス基板は、歪点が560℃以上であり、且つ色素増感型太陽電池に用いることが好ましい。色素増感型太陽電池は、まずガラス基板上に透明導電膜(例えばITO、FTO、ATO)をスパッタリング法等で成膜した後、酸化物半導体微粒子をガラス基板上に塗布し、熱処理することで酸化物半導体多孔質膜を成膜する。ここで、酸化物半導体多孔質膜を成膜する際の熱処理温度は600℃を超える場合もある。次に、酸化物半導体多孔質膜に色素を吸着させる。続いて、酸化物半導体多孔質膜を成膜したガラス基板と透明導電膜を成膜したガラス基板により、セルを作製し、ヨウ素レドックス等の酸化還元対を含む電解質溶液でセル内を満たす。本発明の太陽電池用ガラス基板は、廃ガラスのリサイクルを推進できる効果に加えて、歪点が560℃以上であるため、高温で熱処理温度してもガラス基板が変形し難く、ガラス基板上に酸化物半導体多孔質膜を安定して成膜することができ、結果として、色素増感型太陽電池の特性を高めることができる。 The glass substrate for a solar cell according to the present invention has a strain point of 560 ° C. or higher and is preferably used for a dye-sensitized solar cell. In a dye-sensitized solar cell, a transparent conductive film (for example, ITO, FTO, ATO) is first formed on a glass substrate by a sputtering method, and then oxide semiconductor fine particles are applied on the glass substrate and heat-treated. An oxide semiconductor porous film is formed. Here, the heat treatment temperature for forming the oxide semiconductor porous film may exceed 600 ° C. in some cases. Next, a dye is adsorbed on the oxide semiconductor porous film. Subsequently, a cell is manufactured using a glass substrate on which an oxide semiconductor porous film is formed and a glass substrate on which a transparent conductive film is formed, and the inside of the cell is filled with an electrolyte solution containing a redox pair such as iodine redox. In addition to the effect of promoting the recycling of waste glass, the glass substrate for solar cells of the present invention has a strain point of 560 ° C. or higher. The oxide semiconductor porous film can be stably formed, and as a result, the characteristics of the dye-sensitized solar cell can be improved.

本発明に係る太陽電池用ガラス基板は、板厚が4mm以下、3mm以下、特に2mm未満が好ましい。ガラス基板の板厚が小さい程、太陽電池を薄型化、軽量化することができる。 The glass substrate for a solar cell according to the present invention preferably has a plate thickness of 4 mm or less, 3 mm or less, particularly preferably less than 2 mm. As the plate thickness of the glass substrate is smaller, the solar cell can be made thinner and lighter.

本発明の太陽電池用カバーガラスの製造方法は、ガラス原料の一部に廃ガラスを用い、ガラス原料をガラス溶融窯で溶融した後、カバーガラスに成形することを特徴とする。本発明の太陽電池用ガラス基板は、光が入射しない側に使用する基板のみならず、光が入射する側の基板(カバーガラス)に使用してもよい。光が入射する側の基板に使用する場合、紫外線着色を防止するために、ガラス組成中にTiOを0.1〜5%添加してもよい。また、機械的強度を高めるために、ガラス基板の表面を強化処理(物理強化または化学強化)してもよい。なお、本発明に係る太陽電池用ガラス基板が有する技術的特徴(ガラス組成、公的な特性等)は、本発明に係る太陽電池用カバーガラスも同様に有することができるが、便宜上、その説明は省略する。 The method for producing a cover glass for a solar cell according to the present invention is characterized in that waste glass is used as part of a glass raw material, the glass raw material is melted in a glass melting furnace, and then formed into a cover glass. The glass substrate for a solar cell of the present invention may be used not only for a substrate used on a side where light does not enter but also for a substrate (cover glass) on a side where light enters. When used for a substrate on which light is incident, 0.1 to 5% of TiO 2 may be added to the glass composition in order to prevent ultraviolet coloring. In order to increase the mechanical strength, the surface of the glass substrate may be subjected to a strengthening process (physical strengthening or chemical strengthening). The technical characteristics (glass composition, official characteristics, etc.) of the glass substrate for solar cells according to the present invention can be similarly provided by the cover glass for solar cells according to the present invention. Is omitted.

以下、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

表1は廃ガラスのガラス組成を示し、表2は本発明の実施例(試料No.1〜7)を示し、表3は本発明の比較例(試料No.8、9)を示している。   Table 1 shows the glass composition of waste glass, Table 2 shows examples (sample Nos. 1 to 7) of the present invention, and Table 3 shows comparative examples (samples No. 8 and 9) of the present invention. .

次のようにして、表2、3に記載の各試料を調製した。5mm以下の大きさに粉砕した各廃ガラスを用意し、廃ガラスと酸化物原料を混合して、表2、3に記載のガラス組成になるように、ガラス原料を作製した。次に、ガラス原料を連続溶融炉で溶融し、得られた溶融ガラスをガラス基板に成形した。続いて、得られたガラス基板を200mm角の大きさに切断加工し、各試料を得た。   Each sample described in Tables 2 and 3 was prepared as follows. Each waste glass grind | pulverized to the magnitude | size of 5 mm or less was prepared, waste glass and an oxide raw material were mixed, and the glass raw material was produced so that it might become a glass composition of Tables 2 and 3. Next, the glass raw material was melted in a continuous melting furnace, and the obtained molten glass was formed on a glass substrate. Subsequently, the obtained glass substrate was cut into a size of 200 mm square to obtain each sample.

得られた各試料につき、歪点、液相温度、液相粘度、104.0dPa・sにおける温度、均質性を評価した。 Obtained for each sample was evaluated strain point, liquidus temperature, liquidus viscosity, temperature at 10 4.0 dPa · s, homogeneity.

歪点は、ASTM C336−71に記載の方法で測定した値である。   The strain point is a value measured by the method described in ASTM C336-71.

液相温度は、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。   The liquid phase temperature is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 μm), putting the glass powder remaining at 50 mesh (a sieve opening of 300 μm) in a platinum boat, and keeping it in a temperature gradient furnace for 24 hours The value at which the temperature at which crystals precipitate is measured.

液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。   The liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.

104.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperature at 10 4.0 dPa · s is a value measured by a platinum ball pulling method.

均質性は、各試料を10mm×40mmに切断し、光路長40mmにおける透過光を目視観察することで評価した。均質性が非常に良いものを「◎」、良いものを「○」、悪いものを「×」で評価した。   The homogeneity was evaluated by observing the transmitted light at an optical path length of 40 mm by cutting each sample into 10 mm × 40 mm. Those with very good homogeneity were evaluated with “「 ”, good with“ ◯ ”, and bad with“ × ”.

表2から明らかなように、試料No.1〜7は、廃ガラスのリサイクル率が10%以上、歪点が535℃以上、液相温度が1080℃以下、液相粘度が104.4dPa・s以上であり、均質性の評価も良好であった。 As apparent from Table 2, the sample No. Nos. 1 to 7 have a recycling rate of waste glass of 10% or more, a strain point of 535 ° C. or more, a liquidus temperature of 1080 ° C. or less, and a liquidus viscosity of 10 4.4 dPa · s or more. It was good.

一方、表3から明らかなように、試料No.8は、廃ガラスのリサイクル率が100%であるため、均質性の評価が不良であった。なお、試料No.9は、廃ガラスのリサイクル率が0%であり、近年の環境的要請を満たしていない。   On the other hand, as apparent from Table 3, the sample No. In No. 8, since the recycling rate of waste glass was 100%, the evaluation of homogeneity was poor. Sample No. In No. 9, the recycling rate of waste glass is 0%, which does not meet recent environmental requirements.

本発明に係る太陽電池用ガラス基板は、カルコパイライト系薄膜多結晶太陽電池、色素増感型太陽電池のみならず、シリコン太陽電池(単結晶シリコン太陽電池、多結晶シリコン太陽電池、微結晶シリコン太陽電池、アモルファスシリコン太陽電池を含む)、CdTe太陽電池、有機薄膜太陽電池に適用可能である。 The glass substrate for solar cell according to the present invention is not limited to chalcopyrite thin film polycrystalline solar cells and dye-sensitized solar cells, but also silicon solar cells (single crystal silicon solar cells, polycrystalline silicon solar cells, microcrystalline silicon solar cells). Battery, amorphous silicon solar cell), CdTe solar cell, and organic thin film solar cell.

Claims (10)

ガラス組成として、質量%で、SiO 50〜75%、Al 7.4〜18%、NaO 0.5〜20%、ZrO 0〜1.8%を含有するように、ガラス原料を調合すると共に、ガラス原料の一部に廃ガラスを用い、得られたガラス原料をガラス溶融窯で溶融した後、ガラス基板に成形することを特徴とする太陽電池用ガラス基板の製造方法。 As a glass composition, in mass%, SiO 2 50~75%, Al 2 O 3 7.4 ~18%, Na 2 O 0.5~20%, to contain ZrO 2 0 to 1.8%, A method for producing a glass substrate for a solar cell, comprising preparing a glass raw material, using waste glass as a part of the glass raw material, melting the obtained glass raw material in a glass melting furnace, and then forming the glass substrate. . ガラス原料中の廃ガラスの含有量が1〜90質量%であることを特徴とする請求項1に記載の太陽電池用ガラス基板の製造方法。   Content of the waste glass in a glass raw material is 1-90 mass%, The manufacturing method of the glass substrate for solar cells of Claim 1 characterized by the above-mentioned. ガラス組成として、下記酸化物換算の質量%で、SiO 50〜75%、Al 7.4〜18%、B 0〜12%、MgO 0〜10%、CaO 0〜20%、SrO 0〜15%、BaO 0〜15%、RO(MgO+CaO+SrO+BaO) 5〜25%、NaO 0.5〜20%、KO 0〜15%、ZrO 0〜1.8%を含有するように、ガラス原料を調合することを特徴とする請求項1または2に記載の太陽電池用ガラス基板の製造方法。 As a glass composition, in weight percent terms of oxide, SiO 2 50~75%, Al 2 O 3 7.4 ~18%, B 2 O 3 0~12%, 0~10% MgO, CaO 0~20 %, SrO 0-15%, BaO 0-15%, RO (MgO + CaO + SrO + BaO) 5-25%, Na 2 O 0.5-20%, K 2 O 0-15%, ZrO 2 0-1.8%. The method for producing a glass substrate for a solar cell according to claim 1 or 2, wherein a glass raw material is prepared so as to contain. ガラス組成として、下記酸化物換算の質量%で、As+Sb+SnO+SOを0.05〜5%含有するように、ガラス原料を調合することを特徴とする請求項1〜3のいずれかに記載の太陽電池用ガラス基板の製造方法。 The glass raw material is prepared so as to contain 0.05 to 5% of As 2 O 3 + Sb 2 O 3 + SnO 2 + SO 3 as a glass composition in mass% in terms of the following oxides. The manufacturing method of the glass substrate for solar cells in any one of -3. 液相粘度が104.0dPa・s以上になるように、ガラス原料を調合することを特徴とする請求項1〜4のいずれかに記載の太陽電池用ガラス基板の製造方法。 The method for producing a glass substrate for a solar cell according to any one of claims 1 to 4, wherein the glass raw material is prepared so that the liquid phase viscosity is 10 4.0 dPa · s or more. 歪点が560℃以上になるように、ガラス原料を調合することを特徴とする請求項1〜5のいずれかに記載の太陽電池用ガラス基板の製造方法。   The method for producing a glass substrate for a solar cell according to any one of claims 1 to 5, wherein the glass raw material is prepared so that the strain point is 560 ° C or higher. 廃ガラスのガラス組成が下記(1)〜(8)のいずれかであることを特徴とする請求項1〜6のいずれかに記載の太陽電池用ガラス基板の製造方法。
(1)下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、MgO 1〜6%、CaO 2〜12%、NaO 10〜15%、KO 0〜4%、SO 0〜1%、Fe 0〜1%含有、
(2)下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、MgO 0〜4%、CaO 6〜14%、NaO 10〜15%、KO 0〜4%、SO 0〜1%、Fe 0〜1%含有、
(3)下記酸化物換算の質量%で、SiO 65〜75%、Al 0.5〜5%、B 0〜20%、MgO 0〜5%、CaO 0〜10%、BaO 0〜5%、NaO 0〜20%、KO 0〜10%、Sb 0〜1%、TiO 0〜5%、Fe 0〜1%含有、
(4)下記酸化物換算の質量%で、SiO 50〜75%、Al 0〜30%、B 0〜30%、MgO 0〜10%、CaO 0〜30%、NaO 0〜15%、KO 0〜15%、ZrO 0〜30%、ZnO 0〜5%、TiO 0〜5%、Fe 0〜1%、SO 0〜1%含有、
(5)下記酸化物換算の質量%で、SiO 55〜65%、Al 1〜3%、MgO 0〜1%、CaO 0〜2%、SrO 8〜12%、BaO 5〜12%、ZrO 0〜3%、NaO 6〜9%、KO 7〜12%、ZnO 0〜1%、CeO 0〜1%、TiO 0〜1%、Fe 0〜1%、Sb 0〜1%、NiO 0〜0.02%、CoO 0〜0.003%含有、
(6)下記酸化物換算の質量%で、SiO 50〜60%、Al 1〜6%、MgO 0〜3%、CaO 1〜5%、SrO 0〜3%、BaO 0〜2%、PbO 20〜25%、NaO 4〜8%、KO 6〜10%、Sb 0〜1%、Fe 0〜1%含有、
(7)下記酸化物換算の質量%で、SiO 50〜70%、Al 0〜8%、MgO 0〜8%、CaO 0〜12%、SrO 0〜14%、BaO 0〜14%、ZrO 0〜10%、NaO 0.5〜5%、KO 1〜10%、Fe 0〜1%、SO 0〜1%含有、
(8)下記酸化物換算の質量%で、SiO 55〜75%、Al 2〜20%、B 1〜12%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜15%、ZnO 0〜1%、As 0〜2%、Sb 0〜2%、SnO 0〜1%、Fe 0〜1%含有。
The method for producing a glass substrate for a solar cell according to any one of claims 1 to 6, wherein the glass composition of the waste glass is any one of the following (1) to (8).
(1) in weight percent terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, MgO 1~6%, CaO 2~12%, Na 2 O 10~15%, K 2 O 0-4%, SO 3 0-1%, Fe 2 O 3 0-1% contained,
(2) mass% terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, 0~4% MgO, CaO 6~14%, Na 2 O 10~15%, K 2 O 0-4%, SO 3 0-1%, Fe 2 O 3 0-1% contained,
(3) mass% terms of oxide, SiO 2 65~75%, Al 2 O 3 0.5~5%, B 2 O 3 0~20%, 0~5% MgO, CaO 0~10% BaO 0-5%, Na 2 O 0-20%, K 2 O 0-10%, Sb 2 O 3 0-1%, TiO 2 0-5%, Fe 2 O 3 0-1%,
(4) mass% terms of oxide, SiO 2 50~75%, Al 2 O 3 0~30%, B 2 O 3 0~30%, 0~10% MgO, CaO 0~30%, Na 2 O 0~15%, K 2 O 0~15%, ZrO 2 0~30%, 0~5% ZnO, TiO 2 0~5%, Fe 2 O 3 0~1%, SO 3 0~1% Containing,
(5) weight percent terms of oxide, SiO 2 55~65%, Al 2 O 3 1~3%, 0~1% MgO, CaO 0~2%, SrO 8~12%, BaO 5~12 %, ZrO 2 0~3%, Na 2 O 6~9%, K 2 O 7~12%, 0~1% ZnO, CeO 2 0~1%, TiO 2 0~1%, Fe 2 O 3 0 ~1%, Sb 2 O 3 0~1 %, NiO 0~0.02%, CoO 0~0.003% containing,
(6) Mass% in terms of the following oxides: SiO 2 50-60%, Al 2 O 3 1-6%, MgO 0-3%, CaO 1-5%, SrO 0-3%, BaO 0-2 %, PbO 20-25%, Na 2 O 4-8%, K 2 O 6-10%, Sb 2 O 3 0-1%, Fe 2 O 3 0-1%,
(7) Mass% in terms of the following oxides: SiO 2 50 to 70%, Al 2 O 3 0 to 8%, MgO 0 to 8%, CaO 0 to 12%, SrO 0 to 14%, BaO 0 to 14 %, ZrO 2 0-10%, Na 2 O 0.5-5%, K 2 O 1-10%, Fe 2 O 3 0-1%, SO 3 0-1%,
(8) mass% terms of oxide, SiO 2 55~75%, Al 2 O 3 2~20%, B 2 O 3 1~12%, 0~10% MgO, CaO 0~10%, SrO 0~10%, BaO 0~15%, 0~1 % ZnO, As 2 O 3 0~2%, Sb 2 O 3 0~2%, SnO 2 0~1%, Fe 2 O 3 0~1% Contains.
PDP用ガラスの廃ガラスをガラス原料の一部に用いることを特徴とする請求項1〜7のいずれかに記載の太陽電池用ガラス基板の製造方法。   The method for producing a glass substrate for a solar cell according to any one of claims 1 to 7, wherein waste glass of PDP glass is used as part of the glass raw material. 廃ガラスの粒度が10mm以下であることを特徴とする請求項1〜8のいずれかに記載の太陽電池用ガラス基板の製造方法。   The method for producing a glass substrate for a solar cell according to any one of claims 1 to 8, wherein the particle size of the waste glass is 10 mm or less. フロート法でガラス基板を成形することを特徴とする請求項1〜9のいずれかに記載の太陽電池用ガラス基板の製造方法。   A glass substrate is shape | molded by the float glass process, The manufacturing method of the glass substrate for solar cells in any one of Claims 1-9 characterized by the above-mentioned.
JP2008323012A 2008-12-19 2008-12-19 Manufacturing method of glass substrate for solar cell Expired - Fee Related JP5733811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323012A JP5733811B2 (en) 2008-12-19 2008-12-19 Manufacturing method of glass substrate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323012A JP5733811B2 (en) 2008-12-19 2008-12-19 Manufacturing method of glass substrate for solar cell

Publications (2)

Publication Number Publication Date
JP2010143790A JP2010143790A (en) 2010-07-01
JP5733811B2 true JP5733811B2 (en) 2015-06-10

Family

ID=42564607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323012A Expired - Fee Related JP5733811B2 (en) 2008-12-19 2008-12-19 Manufacturing method of glass substrate for solar cell

Country Status (1)

Country Link
JP (1) JP5733811B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748453B2 (en) * 2010-11-15 2015-07-15 株式会社レノバ Method for heating ground glass containing arsenic, method for preventing arsenic elution from ground glass, and glass material
JP2012106875A (en) * 2010-11-15 2012-06-07 Recycle One Inc Method for melting crushed glass, molten glass, and glass material
TW201245080A (en) * 2011-03-17 2012-11-16 Asahi Glass Co Ltd Glass for chemical strengthening
JP6410108B2 (en) * 2011-07-19 2018-10-24 日本電気硝子株式会社 Glass substrate
JP5850392B2 (en) * 2011-09-20 2016-02-03 日本電気硝子株式会社 Glass plate
WO2014024850A1 (en) * 2012-08-06 2014-02-13 旭硝子株式会社 GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
CN104603076A (en) * 2012-09-10 2015-05-06 旭硝子株式会社 Glass substrate for solar cell and solar cell using same
JP5797222B2 (en) * 2012-10-02 2015-10-21 AvanStrate株式会社 Glass substrate manufacturing method and manufacturing apparatus
JP6090705B2 (en) * 2012-11-09 2017-03-08 日本電気硝子株式会社 Glass plate for thin film solar cell
JP6172445B2 (en) * 2013-03-08 2017-08-02 日本電気硝子株式会社 cover glass
JP2016117627A (en) * 2014-12-24 2016-06-30 日本電気硝子株式会社 Production method of glass fiber
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320823B2 (en) * 1998-02-27 2009-08-26 旭硝子株式会社 Substrate glass composition
JP5105571B2 (en) * 2003-10-10 2012-12-26 日本電気硝子株式会社 Method for producing alkali-free glass
JP2005213132A (en) * 2004-02-02 2005-08-11 Nippon Electric Glass Co Ltd Method for manufacturing glass substrate for plasma display panel and glass substrate for plasma display panel
DE102004011218B4 (en) * 2004-03-04 2006-01-19 Schott Ag X-ray opaque glass, process for its preparation and its use
JP5808069B2 (en) * 2007-02-16 2015-11-10 日本電気硝子株式会社 Glass substrate for solar cell
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same
JP2008305711A (en) * 2007-06-08 2008-12-18 Nippon Electric Glass Co Ltd Manufacturing method of glass substrate for plasma display panel and glass substrate for plasma display panel

Also Published As

Publication number Publication date
JP2010143790A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5733811B2 (en) Manufacturing method of glass substrate for solar cell
JP5808069B2 (en) Glass substrate for solar cell
JP6191138B2 (en) Glass
JP5915892B2 (en) Glass plate for thin film solar cell
JP2008280189A (en) Glass substrate for solar cell, and method of manufacturing the same
JP5610563B2 (en) Glass substrate for solar cell
JPWO2012108345A1 (en) Glass composition, glass substrate for solar cell using glass composition, and glass substrate for display panel
JPWO2011152414A1 (en) Glass substrate and manufacturing method thereof
JP5429949B2 (en) Glass substrate for thin film compound solar cell and method for producing the same
JP5704500B2 (en) Manufacturing method of glass plate
TWI543952B (en) Glass plate for thin film solar cells
JP6254345B2 (en) Glass substrate for solar cell
JP6128418B2 (en) Glass plate for thin film solar cell
WO2015076208A1 (en) Glass sheet
JP2011088794A (en) Glass plate for solar cell
JP5660522B2 (en) Glass substrate for thin film compound solar cell
KR20150054793A (en) Glass substrate for solar cell and solar cell using same
JP2013063910A (en) Glass substrate for solar cell
JP5831850B2 (en) Glass substrate for solar cell
WO2023022074A1 (en) Glass substrate for space-based solar power generation
JP5742084B2 (en) Glass substrate for solar cell
JP5648982B2 (en) Glass substrate for solar cell
JP2012036037A (en) Outdoor glass tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140127

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5733811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees