JP2011121838A - Glass substrate - Google Patents

Glass substrate Download PDF

Info

Publication number
JP2011121838A
JP2011121838A JP2009282656A JP2009282656A JP2011121838A JP 2011121838 A JP2011121838 A JP 2011121838A JP 2009282656 A JP2009282656 A JP 2009282656A JP 2009282656 A JP2009282656 A JP 2009282656A JP 2011121838 A JP2011121838 A JP 2011121838A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
strain point
content
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009282656A
Other languages
Japanese (ja)
Other versions
JP5664891B2 (en
Inventor
Masato Rokusha
真人 六車
Hironori Takase
寛典 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2009282656A priority Critical patent/JP5664891B2/en
Publication of JP2011121838A publication Critical patent/JP2011121838A/en
Application granted granted Critical
Publication of JP5664891B2 publication Critical patent/JP5664891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a glass substrate that has a thermal expansion coefficient equivalent to that of soda lime glass, has a high strain point and is excellent in productivity. <P>SOLUTION: The glass substrate has a glass composition comprising, by mass, 40-60% SiO<SB>2</SB>, 0-15% Al<SB>2</SB>O<SB>3</SB>, 3.5-15% B<SB>2</SB>O<SB>3</SB>(but not 3.5%), 10-30% MgO+CaO+SrO+BaO (total content of MgO, CaO, SrO and BaO), 0.1-15% BaO, 1-25% Na<SB>2</SB>O+K<SB>2</SB>O (total content of Na<SB>2</SB>O and K<SB>2</SB>O), 0-15% Na<SB>2</SB>O, 0-15% K<SB>2</SB>O and 0.1-15% ZrO<SB>2</SB>, has a strain point of 570°C or higher but lower than 625°C and has a thermal expansion coefficient at 30-380°C of 60-90×10<SP>-7</SP>/°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ガラス基板に関し、特にプラズマディスプレイパネル(PDP)や太陽電池パネルに好適なガラス基板に関する。   The present invention relates to a glass substrate, and more particularly to a glass substrate suitable for a plasma display panel (PDP) or a solar cell panel.

PDPは、前面ガラス基板と背面ガラス基板を対向させて、電極等の位置合わせを行った後、その周囲を約500〜600℃で封着することにより作製される。前面ガラス基板の表面には、ITO膜やネサ膜等からなる透明電極が成膜されており、透明電極上には、誘電体層が形成されている。また、背面ガラス基板の表面には、Al、Ag、Ni等からなる電極が形成されており、その電極上には、誘電体層と隔壁が形成されている。なお、誘電体層と隔壁は、それぞれ約500〜600℃の熱処理により、形成されている。   The PDP is produced by making the front glass substrate and the rear glass substrate face each other, aligning the electrodes and the like, and then sealing the periphery at about 500 to 600 ° C. A transparent electrode made of an ITO film, a nesa film or the like is formed on the surface of the front glass substrate, and a dielectric layer is formed on the transparent electrode. An electrode made of Al, Ag, Ni or the like is formed on the surface of the rear glass substrate, and a dielectric layer and a partition are formed on the electrode. The dielectric layer and the partition are formed by heat treatment at about 500 to 600 ° C., respectively.

従来、PDP用ガラス基板として、フロート法等で板厚1.5〜3.0mmに成形されたソーダ石灰ガラス(熱膨張係数:約84×10−7/℃)が用いられてきた。しかし、ソーダ石灰ガラスは、歪点が低いため、PDPの製造工程における熱処理により、熱変形や熱収縮しやすい課題を有していた。そこで、現在では、熱処理による熱変形や熱収縮を抑制するために、熱膨張係数がソーダ石灰ガラスと同等であり、且つ570℃以上の歪点を有する高歪点ガラスが広く使用されるに到っている(特許文献1参照)。 Conventionally, soda lime glass (thermal expansion coefficient: about 84 × 10 −7 / ° C.) molded to a thickness of 1.5 to 3.0 mm by a float method or the like has been used as a glass substrate for PDP. However, since soda lime glass has a low strain point, it has a problem that it is easily deformed or contracted by heat treatment in the manufacturing process of the PDP. Therefore, at present, in order to suppress thermal deformation and thermal shrinkage due to heat treatment, high strain point glass having a thermal expansion coefficient equivalent to that of soda lime glass and having a strain point of 570 ° C. or higher is widely used. (See Patent Document 1).

特開平8−290938号公報JP-A-8-290938 特開2002−193635号公報JP 2002-193635 A

高歪点ガラスは、ソーダ石灰ガラスと比較して、溶融温度や成形温度が極めて高いため、溶融性や成形性が低い。具体的には、従来の高歪点ガラス基板は、成形温度(高温粘度10dPa・sにおける温度)が1200℃前後であるため、低温でガラス基板を成形することが困難である(特許文献2参照)。結果として、従来の高歪点ガラスは、ソーダ石灰ガラスよりも生産性に劣り、コスト高になっていた。 High strain point glass has a very high melting temperature and molding temperature compared to soda-lime glass, and therefore has low meltability and moldability. Specifically, since a conventional high strain point glass substrate has a molding temperature (temperature at a high temperature viscosity of 10 4 dPa · s) of around 1200 ° C., it is difficult to mold the glass substrate at a low temperature (Patent Literature). 2). As a result, the conventional high strain point glass is inferior in productivity and higher in cost than soda lime glass.

そこで、本発明は、ソーダ石灰ガラスと同等の熱膨張係数を有するとともに、高歪点であり、且つ生産性に優れるガラス基板を作製することを技術的課題とする。   Then, this invention makes it a technical subject to produce the glass substrate which has a thermal expansion coefficient equivalent to soda-lime glass, is a high strain point, and is excellent in productivity.

本発明者等は、鋭意検討の結果、ガラス組成中の各成分の含有量を厳密に規制し、特にBを所定量導入することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明のガラス基板は、ガラス組成として、質量%で、SiO 40〜60%、Al 0〜15%、B 3.5〜15%(但し、3.5%は含まない)、MgO+CaO+SrO+BaO(MgO、CaO、SrO、BaOの合量) 10〜30%、BaO 0.1〜15%、NaO+KO(NaO、KOの合量) 1〜25%、NaO 0〜15%、KO 0〜15%、ZrO 0.1〜15%を含有し、歪点が570℃以上625℃未満であり、且つ30〜380℃における熱膨張係数が60〜90×10−7/℃であることを特徴とする。ここで、「歪点」は、ASTM C336−71に基づいて測定した値を指す。また、「30〜380℃における熱膨張係数」は、ディラトメーターで測定した平均値を指す。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by strictly regulating the content of each component in the glass composition, and in particular by introducing a predetermined amount of B 2 O 3. It is proposed as an invention. That is, the glass substrate of this invention, as a glass composition, by mass%, SiO 2 40~60%, Al 2 O 3 0~15%, B 2 O 3 3.5~15% ( However, 3.5% MgO + CaO + SrO + BaO (total amount of MgO, CaO, SrO, BaO) 10-30%, BaO 0.1-15%, Na 2 O + K 2 O (total amount of Na 2 O, K 2 O) 1 25%, Na 2 O 0-15%, K 2 O 0-15%, ZrO 2 0.1-15%, strain point is 570 ° C. or higher and lower than 625 ° C., and heat at 30 to 380 ° C. The expansion coefficient is 60 to 90 × 10 −7 / ° C. Here, the “strain point” refers to a value measured based on ASTM C336-71. Moreover, "the thermal expansion coefficient in 30-380 degreeC" points out the average value measured with the dilatometer.

本発明のガラス基板は、ガラス組成中の各成分の含有量を厳密に規制している。このようにすれば、歪点や熱膨張係数を適正な範囲(例えば、歪点:570℃以上625℃未満、30〜380℃における熱膨張係数:60〜90×10−7/℃)に規制しやすくなる。特に、本発明のガラス基板は、ガラス組成中のBの含有量を3.5質量%より多く含有している。このようにすれば、溶融温度や成形温度が顕著に低下するため、つまり溶融性や成形性が顕著に向上するため、ガラス基板の生産性が向上し、結果として、ガラス基板を低廉化することができる。 The glass substrate of the present invention strictly regulates the content of each component in the glass composition. In this way, the strain point and the thermal expansion coefficient are regulated within an appropriate range (for example, the strain point: 570 ° C. or more and less than 625 ° C., the thermal expansion coefficient at 30 to 380 ° C .: 60 to 90 × 10 −7 / ° C.). It becomes easy to do. In particular, the glass substrate of the present invention contains more than 3.5% by mass of B 2 O 3 in the glass composition. In this way, the melting temperature and the molding temperature are significantly reduced, that is, the meltability and the moldability are significantly improved, so that the productivity of the glass substrate is improved, and as a result, the glass substrate is made inexpensive. Can do.

第二に、本発明のガラス基板は、10dPa・sにおける温度が1150℃未満であることを特徴とする。ここで、「10dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。なお、10dPa・sにおける温度は、溶融ガラスを板状に成形する際に目安になる温度、つまり成形温度に相当する温度であり、この温度が低い程、ガラス基板を成形しやすくなる。 Second, the glass substrate of the present invention is characterized in that the temperature at 10 4 dPa · s is less than 1150 ° C. Here, “temperature at 10 4 dPa · s” refers to a value measured by a platinum ball pulling method. Note that the temperature at 10 4 dPa · s is a temperature that serves as a guide when the molten glass is formed into a plate shape, that is, a temperature corresponding to the forming temperature, and the lower the temperature, the easier the glass substrate is formed.

第三に、本発明のガラス基板は、PDPに用いることを特徴とする。   Thirdly, the glass substrate of the present invention is used for PDP.

第四に、本発明のガラス基板は、太陽電池パネルに用いることを特徴とし、特にCIS系太陽電池または色素増感型太陽電池に用いることを特徴とする。CIS系太陽電池は、ガラス基板上に、光吸収層としてCu、In、Ga、Seからなるカルコパイライト型化合物半導体、Cu(IN,Ga)Seが形成されている。カルコパイライト型化合物半導体は、セレン化法等で作製されるが、その際の熱処理温度は約500〜600℃である。従来、CIS系太陽電池には、ガラス基板としてソーダ石灰ガラスが用いられてきた。しかし、ソーダ石灰ガラスは、歪点が低いため、カルコパイライト型化合物半導体の作製工程における熱処理により、熱変形や熱収縮しやすい課題を有していた。一方、本発明のガラス基板は、高歪点であるとともに、ソーダ石灰ガラスと同等の熱膨張係数を有し、且つ生産性が良好であるため、本用途に好適である。また、本発明のガラス基板は、高歪点であるため、色素増感型太陽電池の製造工程における熱処理(TiOの焼成工程)により、熱変形や熱収縮が生じ難い性質も有している。 Fourthly, the glass substrate of the present invention is characterized by being used for a solar cell panel, and particularly by being used for a CIS solar cell or a dye-sensitized solar cell. CIS solar cell on a glass substrate, Cu, an In, Ga, chalcopyrite-type compound semiconductor composed of Se, Cu (IN, Ga) Se 2 is formed as a light absorbing layer. The chalcopyrite type compound semiconductor is produced by a selenization method or the like, and the heat treatment temperature at that time is about 500 to 600 ° C. Conventionally, soda-lime glass has been used as a glass substrate in CIS solar cells. However, since soda lime glass has a low strain point, it has a problem that it is easily deformed or contracted by heat treatment in the manufacturing process of the chalcopyrite type compound semiconductor. On the other hand, the glass substrate of the present invention has a high strain point, has a thermal expansion coefficient equivalent to that of soda-lime glass, and has good productivity, and thus is suitable for this application. In addition, since the glass substrate of the present invention has a high strain point, it has a property that heat deformation and heat shrinkage hardly occur due to heat treatment (TiO 2 firing step) in the manufacturing process of the dye-sensitized solar cell. .

本発明のガラス基板において、ガラス組成中の各成分の含有量を上記のように限定した理由を以下に説明する。なお、以下の%表示は、特に断りがない限り、質量%を指す。   The reason why the content of each component in the glass composition is limited as described above in the glass substrate of the present invention will be described below. In addition, the following% display points out the mass% unless there is particular notice.

SiOは、ガラスのネットワークを形成する成分である。その含有量は40〜60%、好ましくは43〜58%、より好ましくは45〜55%未満である。SiOの含有量が多くなると、高温粘度が高くなって、溶融性や成形性が低下し、或いは熱膨張係数が低下し過ぎて、周辺材料の熱膨張係数に整合し難くなる。一方、SiOの含有量が少なくなると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下しやすくなり、また歪点が低下しやすくなり、更にはPDP等の製造工程における熱処理により、ガラス基板に割れが発生したり、熱変形や熱収縮が生じやすくなる。 SiO 2 is a component that forms a network of glass. Its content is 40-60%, preferably 43-58%, more preferably less than 45-55%. When the content of SiO 2 is increased, the high-temperature viscosity is increased, the meltability and moldability are decreased, or the thermal expansion coefficient is excessively decreased, and it is difficult to match the thermal expansion coefficient of the surrounding material. On the other hand, when the content of SiO 2 is reduced, the thermal expansion coefficient becomes too high, the thermal shock resistance is likely to be lowered, the strain point is liable to be lowered, and further, the heat treatment in the production process of PDP or the like, Cracks are likely to occur in the substrate and thermal deformation and thermal shrinkage are likely to occur.

Alは、歪点を高める成分である。その含有量は0〜15%、好ましくは3〜14%、より好ましくは5〜13%である。Alの含有量が多くなると、高温粘度が高くなって、溶融性や成形性が低下し、或いは熱膨張係数が低下し過ぎて、周辺材料の熱膨張係数に整合し難くなる。 Al 2 O 3 is a component that increases the strain point. Its content is 0 to 15%, preferably 3 to 14%, more preferably 5 to 13%. When the content of Al 2 O 3 increases, the high-temperature viscosity increases, the meltability and formability decrease, or the thermal expansion coefficient decreases excessively, making it difficult to match the thermal expansion coefficient of the surrounding materials.

は、高温粘度を低下させて、溶融性や成形性を顕著に高める成分であり、必須成分である。その含有量は3.5〜15%(但し、3.5%は含まない)、好ましくは4.1〜15%、より好ましくは4.5〜12%、更に好ましくは5.1〜10%未満である。Bの含有量が多くなると、歪点が低下しやすくなる。一方、Bの含有量が3.5%以下になると、溶融温度や成形温度が上昇しやすくなる。 B 2 O 3 is a component that lowers the high-temperature viscosity and remarkably improves the meltability and moldability, and is an essential component. The content thereof is 3.5 to 15% (excluding 3.5%), preferably 4.1 to 15%, more preferably 4.5 to 12%, still more preferably 5.1 to 10%. Is less than. As the content of B 2 O 3 increases, the strain point tends to decrease. On the other hand, when the content of B 2 O 3 is 3.5% or less, the melting temperature and the molding temperature tend to increase.

MgO+CaO+SrO+BaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。その含有量は10〜30%、好ましくは15〜25%である。MgO+CaO+SrO+BaOの含有量が多くなると、耐失透性が低下しやすくなるため、ガラス基板に成形し難くなる。一方、MgO+CaO+SrO+BaOの含有量が少なくなると、歪点が低下する傾向にあり、また溶融温度や成形温度が上昇する傾向にある。   MgO + CaO + SrO + BaO is a component that lowers the high-temperature viscosity and improves the meltability and moldability. Its content is 10-30%, preferably 15-25%. When the content of MgO + CaO + SrO + BaO is increased, the devitrification resistance is liable to be reduced, and thus it is difficult to mold the glass substrate. On the other hand, when the content of MgO + CaO + SrO + BaO decreases, the strain point tends to decrease, and the melting temperature and molding temperature tend to increase.

MgOは、高温粘度を顕著に低下させて、溶融性や成形性を高める成分である。その含有量は0〜10%、好ましくは0〜9%、より好ましくは0〜8%である。MgOの含有量が多くなると、耐失透性が低下しやすくなるため、ガラス基板に成形し難くなる。   MgO is a component that remarkably lowers the high-temperature viscosity and improves the meltability and moldability. Its content is 0-10%, preferably 0-9%, more preferably 0-8%. When the content of MgO is increased, the devitrification resistance is likely to be lowered, so that it is difficult to form the glass substrate.

CaOは、高温粘度を低下させて、溶融性や成形性を高める成分である。その含有量は0〜10%、好ましくは0〜9%、より好ましくは0〜8%である。CaOの含有量が多くなると、耐失透性が低下しやすくなるため、ガラス基板に成形し難くなる。   CaO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Its content is 0-10%, preferably 0-9%, more preferably 0-8%. When the content of CaO is increased, the devitrification resistance is likely to be lowered, so that it is difficult to mold the glass substrate.

SrOは、高温粘度を低下させて、溶融性や成形性を高める成分である。その含有量は0〜15%、好ましくは0〜13%、より好ましくは0〜10%である。SrOの含有量が多くなると、耐失透性が低下しやすくなるため、ガラス基板に成形し難くなる。   SrO is a component that increases the meltability and moldability by reducing the high-temperature viscosity. Its content is 0-15%, preferably 0-13%, more preferably 0-10%. When the content of SrO is increased, the devitrification resistance is likely to be lowered, so that it is difficult to form the glass substrate.

BaOは、高温粘度を低下させて、溶融性や成形性を顕著に高める成分であり、必須成分である。その含有量は0.1〜15%、好ましくは2〜13%、より好ましくは4〜10%である。BaOの含有量が多くなると、耐失透性が低下しやすくなるため、ガラス基板に成形し難くなる。一方、BaOの含有量が0.1%より少ないと、溶融温度や成形温度が上昇しやすくなる。   BaO is a component that lowers the high-temperature viscosity and remarkably improves the meltability and moldability, and is an essential component. Its content is 0.1-15%, preferably 2-13%, more preferably 4-10%. When the content of BaO is increased, the devitrification resistance is likely to be lowered, so that it is difficult to form the glass substrate. On the other hand, when the content of BaO is less than 0.1%, the melting temperature and the molding temperature tend to increase.

NaO+KOは、高温粘度を低下させて、溶融性や成形性を高める成分であり、また熱膨張係数を調整し得る成分である。その含有量は1〜25%、好ましくは5〜20%である。NaO+KOの含有量が多くなると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下しやすくなり、また歪点が低下する傾向にある。このため、PDP等の製造工程における熱処理により、ガラス基板に割れが発生したり、熱変形や熱収縮が生じやすくなる。一方、NaO+KOの含有量が少なくなると、溶融温度や成形温度が上昇する傾向にある。 Na 2 O + K 2 O is a component that lowers the high-temperature viscosity to improve the meltability and moldability, and is a component that can adjust the thermal expansion coefficient. Its content is 1 to 25%, preferably 5 to 20%. When the content of Na 2 O + K 2 O increases, the thermal expansion coefficient becomes too high, the thermal shock resistance tends to decrease, and the strain point tends to decrease. For this reason, the glass substrate is easily cracked or thermally deformed or contracted by heat treatment in the manufacturing process of PDP or the like. On the other hand, when the content of Na 2 O + K 2 O decreases, the melting temperature and the molding temperature tend to increase.

NaOは、高温粘度を低下させて、溶融性や成形性を高める成分であり、また熱膨張係数を調整し得る成分である。また、CIS系太陽電池に用いる場合は、光電変換効率を向上させる上で重要な成分である。その含有量は0〜10%、好ましくは2〜8%、より好ましくは3〜7%である。NaOの含有量が多くなると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下しやすくなり、また歪点が低下する傾向にある。このため、PDP等の製造工程における熱処理により、ガラス基板に割れが発生したり、熱変形や熱収縮が生じやすくなる。 Na 2 O is a component that lowers the high-temperature viscosity to improve the meltability and moldability, and is a component that can adjust the thermal expansion coefficient. Moreover, when using for a CIS type solar cell, it is an important component in improving photoelectric conversion efficiency. Its content is 0-10%, preferably 2-8%, more preferably 3-7%. When the content of Na 2 O increases, the thermal expansion coefficient becomes too high, the thermal shock resistance tends to decrease, and the strain point tends to decrease. For this reason, the glass substrate is easily cracked or thermally deformed or contracted by heat treatment in the manufacturing process of PDP or the like.

Oは、高温粘度を低下させて、溶融性や成形性を高める成分であり、また熱膨張係数を調整し得る成分である。その含有量は0〜15%、好ましくは1〜13%、より好ましくは2〜12%である。KOの含有量が多くなると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下しやすくなり、また歪点が低下する傾向にある。このため、PDP等の製造工程における熱処理により、ガラス基板に割れが発生したり、熱変形や熱収縮が生じやすくなる。 K 2 O is a component that lowers the high-temperature viscosity to improve the meltability and moldability, and is a component that can adjust the thermal expansion coefficient. The content is 0 to 15%, preferably 1 to 13%, more preferably 2 to 12%. When the content of K 2 O increases, the thermal expansion coefficient becomes too high, the thermal shock resistance tends to decrease, and the strain point tends to decrease. For this reason, the glass substrate is easily cracked or thermally deformed or contracted by heat treatment in the manufacturing process of PDP or the like.

ZrOは、歪点を顕著に高める成分であり、必須成分である。その含有量は0.1〜15%、好ましくは2〜13%、より好ましくは3〜10%である。ZrOの含有量が多くなると、失透ブツが発生しやすくなるため、ガラス基板に成形し難くなる。一方、ZrOの含有量が少なくなると、歪点が低下しやすくなる。なお、上記の通り、Bの含有量が多くなると、歪点が低下しやすくなるが、ZrOを所定量添加すれば、そのような事態を抑制することができる。 ZrO 2 is a component that significantly increases the strain point and is an essential component. Its content is 0.1 to 15%, preferably 2 to 13%, more preferably 3 to 10%. When the content of ZrO 2 increases, devitrification is likely to occur, and it becomes difficult to form the glass substrate. On the other hand, when the content of ZrO 2 decreases, the strain point tends to decrease. Incidentally, as described above, if the content of B 2 O 3 is increased, but the strain point tends to be reduced, the ZrO 2 if a predetermined amount added, it is possible to suppress such a situation.

上記成分以外に溶解性、清澄性、成形性を改善するために、SO、As、Sb、P、F、Clを合量で2%まで添加することができる。また、化学的耐久性を改善するために、La、TiO、SnO、ZnOを合量で5%まで添加することができる。さらに、ガラス基板の色調を調整するために、Fe、CoO、NiO、Ndを合量で1%まで添加することができる。但し、フロート法でガラス基板を成形する場合、As、Sbはフロートバス中で還元されて金属異物になるため、これらの成分の添加を避けることが好ましい。 In addition to the above components, SO 3 , As 2 O 3 , Sb 2 O 3 , P 2 O 5 , F, and Cl may be added up to 2% in total in order to improve solubility, clarity, and moldability. it can. In order to improve chemical durability, La 2 O 3 , TiO 2 , SnO 2 , and ZnO can be added up to a total amount of 5%. Furthermore, in order to adjust the color tone of the glass substrate, Fe 2 O 3 , CoO, NiO, Nd 2 O 3 can be added up to 1% in total. However, when a glass substrate is formed by the float process, As 2 O 3 and Sb 2 O 3 are reduced in the float bath to become a metal foreign substance, so it is preferable to avoid the addition of these components.

LiOは、高温粘度を低下させて、溶融性や成形性を高める成分であるが、歪点を顕著に低下させる作用を有するため、実質的に含有しないことが好ましい。ここで、「実質的にLiOを含有しない」とは、ガラス組成中のLiOの含有量が1000ppm未満の場合を指す。 Li 2 O is a component that lowers the high-temperature viscosity and improves the meltability and moldability. However, Li 2 O has an effect of remarkably lowering the strain point, and is therefore preferably not substantially contained. Here, “substantially does not contain Li 2 O” refers to a case where the content of Li 2 O in the glass composition is less than 1000 ppm.

本発明のガラス基板において、歪点は570℃以上625℃未満であり、好ましくは570℃以上600℃以下である。歪点が570℃未満であると、PDP等の製造工程における熱処理により、熱変形や熱収縮が生じやすくなる。一方、歪点が625℃以上であると、溶融温度や成形温度が上昇し、ガラス基板の製造コストが高騰する。   In the glass substrate of the present invention, the strain point is 570 ° C. or higher and lower than 625 ° C., preferably 570 ° C. or higher and 600 ° C. or lower. When the strain point is lower than 570 ° C., thermal deformation or thermal shrinkage is likely to occur due to heat treatment in the manufacturing process of PDP or the like. On the other hand, when the strain point is 625 ° C. or higher, the melting temperature and the molding temperature increase, and the manufacturing cost of the glass substrate increases.

本発明のガラス基板において、30〜380℃における熱膨張係数は60〜90×10−7/℃であり、好ましくは65〜90×10−7/℃、より好ましくは80〜90×10−7/℃である。このようにすれば、ガラス基板の熱膨張係数が、誘電体層等の周辺材料の熱膨張係数に整合しやすくなる。 In the glass substrate of the present invention, the thermal expansion coefficient at 30 to 380 ° C. is 60 to 90 × 10 -7 / ° C., preferably 65 to 90 × 10 -7 / ° C., more preferably 80-90 × 10 -7 / ° C. In this way, the thermal expansion coefficient of the glass substrate can be easily matched with the thermal expansion coefficient of the peripheral material such as the dielectric layer.

本発明のガラス基板において、10dPa・sにおける温度は1150℃未満、特に1100℃未満が好ましい。このようにすれば、低温でガラス基板を成形しやすくなるため、ガラス基板の生産性が向上し、ガラス基板を低廉化することができる。 In the glass substrate of the present invention, the temperature at 10 4 dPa · s is preferably less than 1150 ° C., particularly preferably less than 1100 ° C. In this way, since it becomes easy to form a glass substrate at a low temperature, the productivity of the glass substrate can be improved and the glass substrate can be made inexpensive.

本発明のガラス基板は、所望のガラス組成になるように、ガラス原料を調合したガラスバッチを連続溶融炉に投入した上で、このガラスバッチを加熱溶融し、脱泡した後、成形装置に供給して、溶融ガラスを板状に成形し、徐冷することにより、製造することができる。   In the glass substrate of the present invention, a glass batch prepared with glass raw materials is put into a continuous melting furnace so as to have a desired glass composition, the glass batch is heated and melted, defoamed, and then supplied to a molding apparatus. And it can manufacture by shape | molding molten glass in plate shape and slowly cooling.

本発明のガラス基板を製造するに際し、ガラス原料の一部にカレットを用いることが好ましい。このようにすれば、ガラスバッチの溶解性を高めることができる。特に、Bの導入原料として、無アルカリアルミノボロシリケートガラスのカレットを用いること好ましい。このようにすれば、無アルカリアルミノボロシリケートガラスのカレットの再利用を促進できるとともに、カレット以外のガラス原料中のアルカリ成分の含有量が相対的に多くなるため、ガラスバッチの溶解性を更に高めることができる。 In producing the glass substrate of the present invention, it is preferable to use cullet as part of the glass raw material. If it does in this way, the solubility of a glass batch can be improved. In particular, it is preferable to use a cullet of an alkali-free aluminoborosilicate glass as a raw material for introducing B 2 O 3 . In this way, the reuse of the cullet of the alkali-free aluminoborosilicate glass can be promoted, and the content of the alkali component in the glass raw material other than the cullet is relatively increased, so that the solubility of the glass batch is further increased. be able to.

ガラス基板の成形方法として、フロート法、スロットダウンドロー法、オーバーフローダウンドロー法、リドロー法等の成形方法を採用することができる。特に、フロート法は、安価に大型のガラス基板を効率良く成形できるため、好ましい。   As a glass substrate forming method, a forming method such as a float method, a slot down draw method, an overflow down draw method, or a redraw method can be employed. In particular, the float process is preferable because a large glass substrate can be efficiently formed at low cost.

以下、実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1は、本発明の実施例(試料No.1〜8)および比較例(試料No.9)を示している。   Table 1 shows Examples (Sample Nos. 1 to 8) and Comparative Examples (Sample No. 9) of the present invention.

次のようにして、表1の各試料を作製した。まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に投入し、1550℃2時間溶融した。次に、溶融ガラスをカーボン型に流し込み、板状に成形した後、所定の徐冷処理を行った。最後に、得られたガラスに対して、以下の測定に応じた加工を施した。   Each sample of Table 1 was produced as follows. First, a glass batch in which glass raw materials were prepared so as to have the glass composition in the table was put into a platinum crucible and melted at 1550 ° C. for 2 hours. Next, the molten glass was poured into a carbon mold, formed into a plate shape, and then subjected to a predetermined slow cooling treatment. Finally, processing according to the following measurements was performed on the obtained glass.

各試料につき、熱膨張係数、歪点および10dPa・sにおける温度を測定した。その結果を表1に示す。 For each sample, the thermal expansion coefficient, strain point, and temperature at 10 4 dPa · s were measured. The results are shown in Table 1.

熱膨張係数は、直径5.0mm、長さ20mmの円柱状の試料を測定試料とし、ディラトメーターで測定した平均値である。測定温度範囲は30〜380℃である。   The thermal expansion coefficient is an average value measured with a dilatometer using a cylindrical sample having a diameter of 5.0 mm and a length of 20 mm as a measurement sample. The measurement temperature range is 30 to 380 ° C.

歪点は、ASTM C336−71に基づいて測定した値である。   The strain point is a value measured based on ASTM C336-71.

10dPa・sにおける温度は、白金球引き上げ法により測定した値である。 The temperature at 10 4 dPa · s is a value measured by a platinum ball pulling method.

表1から明らかなように、試料No.1〜8は、10dPa・sにおける温度が低いため、低温でガラス基板を成形しやすいと考えられる。また、試料No.1〜8は、熱膨張係数が83〜85×10−7/℃であるため、PDPの周辺部材やCIS系結晶相の熱膨張係数に整合している。さらに、試料No.1〜8は、歪点が570〜600℃であるため、耐熱性が良好である。一方、試料No.9は、10dPa・sにおける温度が高いため、低温でガラス基板を成形し難いと考えられる。 As is clear from Table 1, sample No. Nos. 1 to 8 are considered to easily form a glass substrate at a low temperature because the temperature at 10 4 dPa · s is low. Sample No. Nos. 1 to 8 have a thermal expansion coefficient of 83 to 85 × 10 −7 / ° C., and thus match the thermal expansion coefficients of the peripheral members of the PDP and the CIS crystal phase. Furthermore, sample no. 1 to 8 have good heat resistance because the strain point is 570 to 600 ° C. On the other hand, sample No. No. 9 is considered to be difficult to mold a glass substrate at a low temperature because the temperature at 10 4 dPa · s is high.

Claims (4)

ガラス組成として、質量%で、SiO 40〜60%、Al 0〜15%、B 3.5〜15%(但し、3.5%は含まない)、MgO+CaO+SrO+BaO 10〜30%、BaO 0.1〜15%、NaO+KO 1〜25%、NaO 0〜15%、KO 0〜15%、ZrO 0.1〜15%を含有し、歪点が570℃以上625℃未満であり、且つ30〜380℃における熱膨張係数が60〜90×10−7/℃であることを特徴とするガラス基板。 As a glass composition, in mass%, SiO 2 40~60%, Al 2 O 3 0~15%, B 2 O 3 3.5~15% ( however, not including 3.5%), MgO + CaO + SrO + BaO 10~30 %, BaO 0.1-15%, Na 2 O + K 2 O 1-25%, Na 2 O 0-15%, K 2 O 0-15%, ZrO 2 0.1-15%, strain point Is a glass substrate characterized by having a thermal expansion coefficient at 30 to 380 ° C. of 60 to 90 × 10 −7 / ° C. 10dPa・sにおける温度が1150℃未満であることを特徴とする請求項1に記載のガラス基板。 The glass substrate according to claim 1, wherein the temperature at 10 4 dPa · s is less than 1150 ° C. プラズマディスプレイパネルに用いることを特徴とする請求項1または2に記載のガラス基板。   The glass substrate according to claim 1, wherein the glass substrate is used for a plasma display panel. 太陽電池パネルに用いることを特徴とする請求項1または2に記載のガラス基板。   It uses for a solar cell panel, The glass substrate of Claim 1 or 2 characterized by the above-mentioned.
JP2009282656A 2009-12-14 2009-12-14 Glass substrate Active JP5664891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282656A JP5664891B2 (en) 2009-12-14 2009-12-14 Glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282656A JP5664891B2 (en) 2009-12-14 2009-12-14 Glass substrate

Publications (2)

Publication Number Publication Date
JP2011121838A true JP2011121838A (en) 2011-06-23
JP5664891B2 JP5664891B2 (en) 2015-02-04

Family

ID=44286114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282656A Active JP5664891B2 (en) 2009-12-14 2009-12-14 Glass substrate

Country Status (1)

Country Link
JP (1) JP5664891B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153634A1 (en) * 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell
JP2013063880A (en) * 2011-09-20 2013-04-11 Nippon Electric Glass Co Ltd Glass plate
WO2013111749A1 (en) * 2012-01-25 2013-08-01 旭硝子株式会社 Glass substrate for cu-in-ga-se solar cells, and solar cell using same
JP2014097916A (en) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd Glass plate for thin film solar cell and method of producing the same
WO2015156075A1 (en) * 2014-04-07 2015-10-15 日本電気硝子株式会社 Supporting glass substrate and laminate using same
JP2016000683A (en) * 2014-05-21 2016-01-07 旭硝子株式会社 Glass plate
JP2016155735A (en) * 2014-04-07 2016-09-01 日本電気硝子株式会社 Support glass substrate and laminate using the same
JP2016169155A (en) * 2011-07-19 2016-09-23 日本電気硝子株式会社 Glass substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310433A (en) * 1998-04-27 1999-11-09 Central Glass Co Ltd Substrate glass for display device
JP2001064034A (en) * 1999-08-24 2001-03-13 Asahi Glass Co Ltd Glass base plate for display
JP2007284307A (en) * 2006-04-19 2007-11-01 Central Glass Co Ltd Substrate glass for display device
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310433A (en) * 1998-04-27 1999-11-09 Central Glass Co Ltd Substrate glass for display device
JP2001064034A (en) * 1999-08-24 2001-03-13 Asahi Glass Co Ltd Glass base plate for display
JP2007284307A (en) * 2006-04-19 2007-11-01 Central Glass Co Ltd Substrate glass for display device
JP2008280189A (en) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd Glass substrate for solar cell, and method of manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153634A1 (en) * 2011-05-10 2012-11-15 日本電気硝子株式会社 Glass plate for thin film solar cell
US9133052B2 (en) 2011-05-10 2015-09-15 Nippon Electric Glass Co., Ltd. Glass plate for thin film solar cell
JP2016169155A (en) * 2011-07-19 2016-09-23 日本電気硝子株式会社 Glass substrate
JP2013063880A (en) * 2011-09-20 2013-04-11 Nippon Electric Glass Co Ltd Glass plate
WO2013111749A1 (en) * 2012-01-25 2013-08-01 旭硝子株式会社 Glass substrate for cu-in-ga-se solar cells, and solar cell using same
CN104080749A (en) * 2012-01-25 2014-10-01 旭硝子株式会社 Glass substrate for Cu-In-Ga-Se solar cells, and solar cell using same
JPWO2013111749A1 (en) * 2012-01-25 2015-05-11 旭硝子株式会社 Glass substrate for Cu-In-Ga-Se solar cell and solar cell using the same
JP2014097916A (en) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd Glass plate for thin film solar cell and method of producing the same
JP2016155735A (en) * 2014-04-07 2016-09-01 日本電気硝子株式会社 Support glass substrate and laminate using the same
WO2015156075A1 (en) * 2014-04-07 2015-10-15 日本電気硝子株式会社 Supporting glass substrate and laminate using same
CN106103369A (en) * 2014-04-07 2016-11-09 日本电气硝子株式会社 Support glass substrate and use its duplexer
CN115636582A (en) * 2014-04-07 2023-01-24 日本电气硝子株式会社 Supporting glass substrate and laminate using same
JP2016000683A (en) * 2014-05-21 2016-01-07 旭硝子株式会社 Glass plate
JP2016121069A (en) * 2014-05-21 2016-07-07 旭硝子株式会社 Glass sheet

Also Published As

Publication number Publication date
JP5664891B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5664891B2 (en) Glass substrate
JP6191138B2 (en) Glass
TWI593653B (en) Alkali free glass
JP2008222542A (en) Glass substrate for solar battery
JP5733811B2 (en) Manufacturing method of glass substrate for solar cell
JP5668477B2 (en) Glass substrate and manufacturing method thereof
JP5729673B2 (en) Alkali-free glass
JP5610563B2 (en) Glass substrate for solar cell
JP2011249779A (en) Solar cell
TWI543952B (en) Glass plate for thin film solar cells
JP5704500B2 (en) Manufacturing method of glass plate
JP6254345B2 (en) Glass substrate for solar cell
JP4853817B2 (en) Glass substrate for flat panel display
JP4962898B2 (en) Glass substrate for flat panel display
JP6090705B2 (en) Glass plate for thin film solar cell
JP2011063464A (en) Glass plate for plasma display
JP2006347803A (en) Glass substrate for flat panel display
JP2020172423A (en) Alkali-free glass plate
JP6040699B2 (en) Glass plate for thin film solar cell
WO2011158366A1 (en) Glass substrate and manufacturing method thereof
JP5382609B2 (en) Glass substrate
JP2011088794A (en) Glass plate for solar cell
JP2004277222A (en) Glass substrate for flat panel display device
JP5765514B2 (en) Glass plate
JP5915891B2 (en) Glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5664891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150