JP5553582B2 - エンジンの排ガス浄化装置 - Google Patents

エンジンの排ガス浄化装置 Download PDF

Info

Publication number
JP5553582B2
JP5553582B2 JP2009266888A JP2009266888A JP5553582B2 JP 5553582 B2 JP5553582 B2 JP 5553582B2 JP 2009266888 A JP2009266888 A JP 2009266888A JP 2009266888 A JP2009266888 A JP 2009266888A JP 5553582 B2 JP5553582 B2 JP 5553582B2
Authority
JP
Japan
Prior art keywords
fuel
exhaust gas
temperature
reforming catalyst
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009266888A
Other languages
English (en)
Other versions
JP2011111924A (ja
Inventor
卓俊 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2009266888A priority Critical patent/JP5553582B2/ja
Publication of JP2011111924A publication Critical patent/JP2011111924A/ja
Application granted granted Critical
Publication of JP5553582B2 publication Critical patent/JP5553582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、ディーゼルエンジンの排ガスに含まれる窒素酸化物(以下、NOxという)の排出を低減する装置に関するものである。
従来、この種の排ガス浄化装置として、燃料インジェクタとリーンNOxトラップとが用いられ、ディーゼル燃料が燃料インジェクタからディーゼル酸化触媒の排ガス上流側に噴射され、このディーゼル燃料がリーンNOxトラップに吸蔵されたNOxを還元する。このときディーゼル燃料の代わりに水素ガスを用いると、更に効率良くNOxを還元できることが知られており、ディーゼル燃料から水素を生成する手段が検討されている。
一方、ディーゼル燃料は何千個もの異なった炭化水素分子で構成される。ディーゼル燃料がH2混合ガスを生成するために反応するとき、これらの異なった分子は、広く様々な反応進路という結果をもたらす広く様々な構造及びサイズを持つ。考えられている多くの異なった反応進路がある間、約85%のディーゼル燃料はC11−C20の範囲の分子で補われ、これらの反応経路の多くが同じ反応生成物をもたらす。ディーゼル燃料中には各炭素原子毎に約1.77の水素原子が存在し、ディーゼル燃料をCnmで表する場合、H2混合ガス生成装置で起こる主要な反応は次の4つの式で表される。
燃焼 :Cnm + (n+m/4)O2 = nCO2 + (m/2)H2
部分酸化 : Cnm + (n/2)O2 = nCO + (m/2)H2
水蒸気改質 : Cnm + nH2O = nCO + (n+m/2)H2
水性ガスシフト: CO + H2O = CO2 + H2
燃焼と部分酸化は発熱の反応であり、燃焼は部分酸化より著しく多くの熱を放つ。改質は、燃焼から放出される熱より大幅に少ない熱を吸収する吸熱反応である。燃焼反応はH2混合ガス生成装置内に望ましい運転温度を維持するのに重要である。即ち、燃料の発熱値の約30%は、望ましい工程温度を維持するのに使用される。触媒を用いたH2混合ガス生成装置は、通常、500℃〜700℃の温度で作動し、非触媒作用のH2混合ガス生成装置は900℃と1200℃の温度で作動する。酸素は、燃焼と部分酸化反応に必要である。等量比は、ディーゼル燃料の完全な燃焼のために要求される酸素量で定義される。即ち、本明細書において『等量比』とは、燃料噴射量を排ガス中の酸素量で割った値(燃料噴射量/排ガス中の酸素量)を意味する。より高い等量比で、より大きい割合の酸素が燃焼に加わることで、より多くの熱の放出が促進される。より低い等量比では、部分酸化反応が優勢である。上記非触媒作用のH2混合ガス生成装置では、温度を900℃に制御し、外部エア導入量とディーゼル燃料を部分酸化反応等量比に制御することで、H2混合ガスを生成する(例えば、非特許文献1参照。)。
一方、放電が電極ギャップを通して行われ、空気と燃料がそのプラズマ領域に噴射され、更にプラズマフォーミングガスとして空気を用い大気圧で作動する低電流プラズマ改質装置が開示されている(例えば、非特許文献2参照。)。この装置では、外部エア導入量とディーゼル燃料を部分酸化反応等量比に制御し、プラズマを用いて部分酸化反応により水素混合ガスを生成する。プラズマ反応部の後流に改質触媒を配置し、更に部分酸化反応を促進させることで効率良くH2水素混合ガスを生成する。
E.Johannes et al., Transient Performance of a Non-Catalytic Syngas Generator for Active DPF Regeneration and NOx Reduction, SAE 2008-01-0446(第2頁左欄第2段落、第2頁右欄第4〜第6段落、第3頁左欄第1及び第3段落、第8頁左欄第2段落、図2) L.Bromberg et al., Aftertreatment of Diesel Vehicle Emissions Using Compact Plasmatron Fuel Converter-Catalyst Systems, Plasma Science and Fusion Center Report PSFC/RR-00-1 (December 1999)(第4頁第3段落、第5頁第1〜第3段落、第7頁第3段落、第8頁第2段落、第9頁第1段落、図1、図2)
しかし、上記従来の非特許文献1に示されたH2混合ガス生成装置及び非特許文献2に示された低電流プラズマ改質装置では、部分酸化反応に用いるO2を供給するために外部エアを導入する必要があり、これにより水素リッチ雰囲気を形成する面で不利になる。
本発明の第1の目的は、外部エアを導入することなく、最適な時期に最適な量の燃料を燃料改質触媒に噴射することにより、排ガス中のNOxを効率良く低減できる、エンジンの排ガス浄化装置を提供することにある。本発明の第2の目的は、燃料改質触媒を燃料の改質反応に必要な温度まで短時間で昇温でき、その後、燃料改質触媒で水素を生成するための燃料過多の雰囲気を速やかに形成できる、エンジンの排ガス浄化装置を提供することにある。
本発明の第1の観点は、図1〜図4に示すように、ディーゼルエンジン11の排気管16に設けられたNOx吸蔵還元触媒19と、NOx吸蔵還元触媒19より排ガス上流側の排気管16に設けられた燃料改質触媒21と、燃料改質触媒21より排ガス上流側の排気管16に挿入された噴射ノズル22aを有しこの噴射ノズル22aから燃料改質触媒21に向って燃料29を噴射する燃料噴射手段22と、NOx吸蔵還元触媒21より排ガス下流側の排気管16に設けられたアンモニア選択還元触媒23と、燃料改質触媒21の温度を検出する改質触媒温度センサ33と、改質触媒温度センサ33の検出出力に基づいて燃料噴射手段22を制御するコントローラ37とを備えたディーゼルエンジンの排ガス浄化装置であって、コントローラ37が、燃料噴射手段22に対して、燃料改質触媒21を燃料29の改質反応可能な温度まで昇温させるための第1噴射制御と、燃料改質触媒21内に燃料過多の雰囲気を形成して水素を生成させるために第1噴射制御より燃料噴射量を増やす第2噴射制御とをこの順に行うとともに、燃料噴射手段22に対する第1噴射制御と第2噴射制御との間に、燃料改質触媒21を燃料29の改質反応可能な温度に維持するのに必要な燃料量を燃料改質触媒21の入口温度と排ガス流量から算出して燃料噴射手段22からの燃料噴射量を制御する温度維持噴射制御と、燃料改質触媒21内の酸素濃度をゼロに近付けるのに必要な燃料量を排ガス流量と排ガス中の酸素濃度から算出して燃料噴射手段22からの燃料噴射量を制御する酸素ゼロ噴射制御とをこの順に行うことにより、燃料噴射手段22からの燃料29の噴射による燃料改質触媒21の温度上昇を一次遅れモデルを用いて予測しながら燃料噴射手段22を制御することを特徴とする。
本発明の第2の観点は、第1の観点に基づく発明であって、更に図1及び図5に示すように、排ガス温度の低いときに、コントローラ37が、第1噴射制御の前に、燃料29の噴射量を第1噴射制御の噴射量に達するまで徐々に増やす漸増噴射制御を行うことを特徴とする。
本発明の第3の観点は、第1の観点に基づく発明であって、更に一次遅れモデルが、燃料噴射手段22から噴射された燃料29のもつエネルギに温度上昇率を乗じて投入エネルギ量を算出し、この投入エネルギ量に一次遅れの時定数を考慮してエネルギ上昇量を求め、このエネルギ上昇量から燃料改質触媒21の上昇温度を算出し、更にこの上昇温度を燃料改質触媒21の入口温度に加算して燃料改質触媒21の出口温度を求めるように構成されたことを特徴とする。
本発明の第4の観点は、第3の観点に基づく発明であって、更に一次遅れモデルの温度上昇率が基本温度上昇率に温度上昇率補正値を乗じて算出され、基本温度上昇率が、燃料改質触媒21の入口温度と一次遅れモデルから算出された燃料改質触媒21の出口温度との触媒温度平均値と、排ガス流量との関係から求められ、温度上昇率補正値が、触媒温度平均値と、排ガス流量及び燃料噴射量を乗じた値との関係から求められることを特徴とする。
本発明の第5の観点は、第3の観点に基づく発明であって、更に一次遅れモデルの時定数が基本時定数に時定数補正値を乗じて算出され、基本時定数が、燃料改質触媒21の入口温度と一次遅れモデルから算出された燃料改質触媒21の出口温度の触媒温度平均値と、排ガス流量との関係から求められ、時定数補正値が、触媒温度平均値と、排ガス流量及び燃料噴射量を乗じた値との関係から求められることを特徴とする。
本発明の第6の観点は、第1又は第2の観点に基づく発明であって、更に図19〜図23に示すように、第1噴射制御時の燃料噴射量が低排ガス流量時より高排ガス流量時に少なく設定されたことを特徴とする。
本発明の第1の観点の排ガス浄化装置では、コントローラが、燃料噴射手段からの燃料の噴射による燃料改質触媒の温度上昇を一次遅れモデルを用いて予測しながら燃料噴射手段を制御して、燃料噴射手段の噴射ノズルから最適な時期に噴射した最適な量の燃料を噴射することにより、この燃料の一部が燃料改質触媒で改質されてNOx還元性能の高い水素や一酸化炭素が生成され、NOx吸蔵還元触媒でこの触媒に吸蔵されたNOxが上記水素や炭化水素(燃料)と反応してアンモニア、窒素、水等が生成される。そして、この生成されたアンモニアはアンモニア選択還元触媒で排ガス中のNOxと反応して窒素が生成される。この結果、外部エアを導入することなく、排ガス中のNOxを効率良く低減できる。
また、本発明の第1の観点の排ガス浄化装置では、第1噴射制御により燃料改質触媒を燃料の改質反応に必要な温度まで短時間で昇温でき、その後、第2噴射制御により燃料改質触媒で水素や一酸化炭素を生成するための燃料過多の雰囲気を速やかに形成できる。
更に、本発明の第1の観点の排ガス浄化装置では、燃料噴射手段に対する第1噴射制御と第2噴射制御との間に、温度維持噴射制御を行うことにより、燃料改質触媒の改質部の入口温度が燃料を改質可能な温度に上昇するまで燃料改質触媒の発熱部の温度が高くなり過ぎずかつ低くなり過ぎないように維持する。また温度維持噴射制御後、酸素ゼロ噴射制御を行うことにより、燃料改質触媒内の酸素濃度をゼロに近付ける。この結果、排ガス中の酸素濃度がゼロに近付いた状態で第2噴射制御を行うので、燃料改質触媒は速やかに燃料過多の雰囲気になる。
本発明の第2の観点の排ガス浄化装置では、排ガス温度の低いときに、コントローラが、第1噴射制御の前に漸増噴射制御を行うことにより、燃料の噴射量を第1噴射制御の噴射量に達するまで徐々に増やす。この結果、燃料改質触媒の昇温に寄与せずに排出される未燃燃料の発生を抑制できる。
本発明の第3の観点の排ガス浄化装置では、一次遅れモデルの温度上昇率と時定数を用いることにより、燃料噴射手段からどの時期にどのくらいの量の燃料を噴射すれば、燃料改質触媒を燃料の改質反応に必要な温度まで短時間で昇温でき、燃料改質触媒で水素を生成するための燃料過多の雰囲気を速やかに形成できるかを予測できる。この結果、上記一次遅れモデルを用いて燃料噴射手段から噴射される燃料量を制御することにより、排ガス中のNOxを効率良く低減できる。
本発明の第4の観点の排ガス浄化装置では、一次遅れモデルの温度上昇率を基本温度上昇率に温度上昇率補正値を乗じて算出することにより、上記温度上昇率を比較的精度良く求めることができる。
本発明の第5の観点の排ガス浄化装置では、一次遅れモデルの時定数を基本時定数に時定数補正値を乗じて算出することにより、上記時定数を比較的精度良く求めることができる。
本発明の第6の観点の排ガス浄化装置では、第1噴射制御時の燃料噴射量を低排ガス流量時より高排ガス流量時に少なく設定したので、高排ガス流量時における燃料改質触媒の昇温効率が高くなるとともに、高排ガス流量時における総燃料噴射量を少なくすることができる。
本発明実施形態のエンジンの排ガス浄化装置を示す構成図である。 燃料改質触媒で水素や一酸化炭素を生成のための燃料噴射制御を示すフローチャート図である。 第1及び第2噴射制御からなる燃料噴射制御を示す図である。 第1及び第2噴射制御に温度維持噴射制御及び酸素ゼロ噴射制御を加えた燃料噴射制御を示す図である。 第1及び第2噴射制御に漸増噴射制御、温度維持噴射制御及び酸素ゼロ噴射制御を加えた燃料噴射制御を示す図である。 噴射ノズルから噴射された燃料の燃焼エネルギの大部分が燃料改質触媒の改質部の温度を上昇させるためのエネルギに変化する状態を時系列的に示す図である。 低排ガス流量時であって燃料改質触媒の改質部入口温度を220〜300℃の範囲内で20℃毎に一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する改質部の温度上昇率の変化を示す図である。 中排ガス流量時であって燃料改質触媒の改質部入口温度を220〜300℃の範囲内で20℃毎に一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する改質部の温度上昇率の変化を示す図である。 高排ガス流量時であって燃料改質触媒の改質部入口温度を240〜300℃の範囲内で20℃毎に一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する改質部の温度上昇率の変化を示す図である。 燃料改質触媒の改質部入口温度を220〜300℃の範囲内で20℃毎に一定に保ったときの排ガス流量と燃料噴射量と改質部の温度上昇率との関係を示す図である。 コントローラのメモリに記憶された基本温度上昇率のマップである。 コントローラのメモリに記憶された温度上昇率補正値のマップである。 低排ガス流量時であって燃料改質触媒の改質部入口温度を220〜300℃の範囲内で20℃毎に一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する時定数の変化を示す図である。 中排ガス流量時であって燃料改質触媒の改質部入口温度を220〜300℃の範囲内で20℃毎に一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する時定数の変化を示す図である。 高排ガス流量時であって燃料改質触媒の改質部入口温度を220〜300℃の範囲内で20℃毎に一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する時定数の変化を示す図である。 燃料改質触媒の改質部入口温度を220〜300℃の範囲内で20℃毎に一定に保ったときの排ガス流量と燃料噴射量と時定数との関係を示す図である。 コントローラのメモリに記憶された基本時定数のマップである。 コントローラのメモリに記憶された時定数補正値のマップである。 (a)は低排ガス流量時における昇温時の指示空気過剰率の変化を示す図であり、(b)は低排ガス流量時における燃料噴射量の変化を示す図である。 (a)は高排ガス流量時における昇温時の指示空気過剰率の変化を示す図であり、(b)は高排ガス流量時における燃料噴射量の変化を示す図である。 低排ガス流量時における昇温時の燃料噴射量の変化に対する総燃料噴射量の変化を示す図である。 高排ガス流量時における昇温時の燃料噴射量の変化に対する総燃料噴射量の変化を示す図である。 燃料噴射制御率と排ガス流量との関係を示す図である。 実施例1の燃料噴射制御による燃料改質触媒の各部の実測温度及び予測温度の変化を示す図である。 実施例1の燃料噴射制御による燃料改質触媒の改質部出口における水素及び一酸化炭素の濃度の変化を示す図である。 実施例2の燃料噴射制御による燃料改質触媒の各部の実測温度及び予測温度の変化を示す図である。 実施例2の燃料噴射制御による燃料改質触媒の改質部出口における水素及び一酸化炭素の濃度の変化を示す図である。
次に本発明を実施するための形態を図面に基づいて説明する。図1に示すように、ディーゼルエンジン11の吸気ポートには吸気マニホルド12を介して吸気管13が接続され、排気ポートには排気マニホルド14を介して排気管16が接続される。吸気管13には、ターボ過給機17のコンプレッサハウジング17aと、ターボ過給機17により圧縮された吸気を冷却するインタクーラ18とがそれぞれ設けられ、排気管16にはターボ過給機17のタービンハウジング17bが設けられる。コンプレッサハウジング17aにはコンプレッサ回転翼(図示せず)が回転可能に収容され、タービンハウジング17bにはタービン回転翼(図示せず)が回転可能に収容される。コンプレッサ回転翼とタービン回転翼とはシャフト(図示せず)により連結され、エンジン11から排出される排ガスのエネルギによりタービン回転翼及びシャフトを介してコンプレッサ回転翼が回転し、このコンプレッサ回転翼の回転により吸気管13内の吸入空気が圧縮されるように構成される。
排気管16には排ガス浄化装置が設けられる。この排ガス浄化装置は、排気管16に設けられたNOx吸蔵還元触媒19と、NOx吸蔵還元触媒19より排ガス上流側の排気管16に設けられた燃料改質触媒21と、燃料改質触媒21より排ガス上流側の排気管16に挿入された噴射ノズル22aを有する燃料噴射手段22と、NOx吸蔵還元触媒19より排ガス下流側の排気管16に設けられたアンモニア選択還元触媒23とを備える。噴射ノズル22aと燃料改質触媒21との間にはミキサ24が設けられ、燃料改質触媒21とNOx吸蔵還元触媒19との間にはヒートマス26が設けられ、更にNOx吸蔵還元触媒19とアンモニア選択還元触媒23との間にはパティキュレートフィルタ27が設けられる。即ち、上記排気管16には、エンジン側(排ガス上流側)から順に、噴射ノズル22a、ミキサ24、燃料改質触媒21、ヒートマス26、NOx吸蔵還元触媒19、パティキュレートフィルタ27及びアンモニア選択還元触媒23とが設けられる。燃料改質触媒21、ヒートマス26、NOx吸蔵還元触媒19、パティキュレートフィルタ27及びアンモニア選択還元触媒23は排気管16より直径を拡大した筒状のコンバータ28に収容される。
ミキサ24は、噴射ノズル22aから噴射された燃料29を排ガス中に均一に分散する機能を有する。このミキサ24は、軸線方向に排ガスが通過する筒状のミキサ本体24aと、ミキサ本体24a内の排ガスの通過を遮るようにミキサ本体24a内に所定の間隔をあけて設けられた複数枚の仕切板24b,24c,24dとを備える。複数枚の仕切板24b,24c,24dには複数のガス孔(貫通孔)がそれぞれ形成される。また各仕切板24b,24c,24dに形成された複数のガス孔は、隣接する仕切板24b,24c,24dに形成された複数のガス孔とミキサ本体24aの軸線方向に重ならないようにそれぞれ形成される。この実施の形態では、ミキサ本体24a内に3枚の仕切板24b,24c,24dが配設される。なお、仕切板の枚数は3枚ではなく、2枚、4枚、又は5枚以上であってもよい。
燃料改質触媒21は、排ガス上流側から順に設けられた発熱部21aと改質部21bとを有する。発熱部21aは、図示しないが、両端が開放されかつ排ガスの流通方向に延びる複数のセル(貫通孔)が形成されたステンレス鋼製の円筒状のメタル担体と、このメタル担体の表面にPt−Pd、Pt−Pd−Rh等を担持するためにコーティングされたアルミナ等の金属酸化物からなるコーティング層と、このコーティング層に分散されたPt−Pd、Pt−Pd−Rh等の貴金属とを有する。メタル担体は、図示しないが、帯板状のステンレス鋼箔上に波板状のステンレス鋼箔を固定した状態で、帯板状のステンレス鋼箔を螺旋状に巻いてステンレス鋼板製の短管内に挿入することにより形成される。改質部21bは、発熱部のメタル担体と略同一形状のメタル担体と、このメタル担体の表面にRh、Pd、Pt等を担持するためにコーティングされたアルミナ、ジルコニア、セリア等の金属酸化物からなるコーティング層と、このコーティング層に分散されたRh、Pd、Pt等の貴金属とを有する。発熱部21a及び改質部21bのメタル担体を形成するための帯状のステンレス鋼箔の厚さは10〜50μmと薄く形成され、発熱部21a及び改質部21bのメタル担体を形成するための波板状のステンレス鋼箔の厚さも10〜50μmと薄く形成される。
ヒートマス26は、図示しないが、両端が開放されかつ排ガスの流通方向に延びる複数のセル(貫通孔)が形成されたステンレス鋼製の円筒状のメタル担体を有する。このメタル担体は、厚さ100〜400μmと比較的厚い帯板状のステンレス鋼箔上に、厚さ100〜400μmと比較的厚い波板状のステンレス鋼箔を固定した状態で、帯板状のステンレス鋼箔を螺旋状に巻いてステンレス鋼板製の短管内に挿入することにより形成される。ヒートマス26のメタル担体を形成するためのステンレス鋼箔を、発熱部21a及び改質部21bのメタル担体を形成するためのステンレス鋼箔より厚くしたのは、ヒートマス26の熱容量を大きくすることにより、燃料改質触媒21に流入する排ガス温度の変化を抑制するためである。具体的には、燃料改質触媒21での燃料改質により発生する高温の排ガスをヒートマス26にて緩和することにより、この高温の排ガスのNOx吸蔵還元触媒19への流入が抑制され、NOx吸蔵還元触媒19の過昇温が防止される。
NOx吸蔵還元触媒19は、図示しないが、排ガスの流れる方向に格子状(ハニカム状)の通路が形成されたモノリス担体(材質:コージェライト)と、このモノリス担体上に形成されかつ貴金属及びNOx吸蔵剤が担持されたコート層とを有する。貴金属としてはPtが挙げられ、NOx吸蔵剤としてはLi,Na,K,Cs等のアルカリ金属や、Mg,Ca,Ba等のアルカリ土類金属や、Y,La,Ce,Pr,Nd,Eu,Gd,Dy(Y以外はランタノイド系金属)等の希土類金属が挙げられる。またコート層としてはアルミナが挙げられる。パティキュレートフィルタ27は、図示しないが、排ガスの通過可能な多孔質の隔壁で区画されかつ排ガスの流通方向に延びる複数のセル(貫通孔)が形成されたコージェライト製の円筒状の担体と、複数のセル(貫通孔)の相隣接する入口部と出口部を交互に実質的に封止する封止部材とを有する。このフィルタ27により排ガス中のパティキュレートが捕集される。アンモニア選択還元触媒23は、図示しないが、排ガスの流れる方向に格子状(ハニカム状)の通路が形成されたモノリス担体(材質:コージェライト)と、このモノリス担体上に鉄系ゼオライト、銅系ゼオライト、コバルト系ゼオライト、銀−アルミナ、イリジウム触媒等をコーティングすることにより形成されたコート層とを有する。銅系ゼオライトの具体例としては、Na型のZSM−5ゼオライトのNaイオンをCuイオンとイオン交換した物質である銅イオン交換ゼオライト(Cu−ZSM−5)が挙げられる。コバルト系ゼオライトの具体例としては、Na型のZSM−5ゼオライトのNaイオンをCoイオンとイオン交換した物質であるコバルトイオン交換ゼオライト(Co−ZSM−5)が挙げられる。
一方、燃料噴射手段22は、排気管16にミキサ24に向けて挿入された上記噴射ノズル22aと、この噴射ノズル22aに一端が接続された燃料供給管22bと、この燃料供給管22bの他端に接続され燃料29が貯留されたタンク22cとを有する。また燃料供給管22bには噴射ノズル22aへの燃料29の供給圧力を調整する圧力調整弁22dが設けられ、圧力調整弁22dとタンク22cとの間の燃料供給管22bにはタンク22c内の燃料29を噴射ノズル22aに供給可能なポンプ22eが設けられる。圧力調整弁22dは第1〜第3ポート22f,22g,22hを有する三方弁であり、第1ポート22fはポンプ22eの吐出口に接続され、第2ポート22gは噴射ノズル22aに接続され、更に第3ポート22hは戻り管22iを介してタンク22cに接続される。なお、タンク22cに貯留される燃料29は軽油である。また、圧力調整弁22dがオンすると第1ポート22fと第2ポート22gが連通し、オフすると第1ポート22fと第3ポート22hが連通するように構成される。更に噴射ノズル22aにはこのノズルを開閉するノズル開閉弁22jが設けられる。この開閉弁22jは間欠的に開いて、その開く間隔及び開く回数を変えることにより、噴射ノズル22aから噴射される燃料29の噴射量が調整されるように構成される。
ターボ過給機17のタービンハウジング17bと燃料噴射手段22の噴射ノズル22aとの間の排気管16には燃料改質触媒21に流入する排ガス中のNOx濃度及びO2濃度を検出する第1NOxセンサ31が設けられ、NOx吸蔵還元触媒19とパティキュレートフィルタ27との間のコンバータ28にはNOx吸蔵還元触媒19から流出する排ガス中のNOx濃度及びO2濃度を検出する第2NOxセンサ32が設けられる。また燃料改質触媒21にはこの触媒21の温度を検出する改質触媒温度センサ33が設けられる。この改質触媒温度センサ33は燃料改質触媒21の発熱部21aと改質部21bとの間に挿入される。更にエンジン11の回転速度は回転センサ34により検出され、エンジン指示燃料噴射量はエンジン指示燃料噴射センサ36により検出される。第1NOxセンサ31、第2NOxセンサ32、改質触媒温度センサ33、回転センサ34及びエンジン指示燃料噴射センサ36の各検出出力はコントローラ37の制御入力に接続され、コントローラ37の制御出力は燃料噴射手段22の圧力調整弁22d、ポンプ22e及び開閉弁22jにそれぞれ接続される。そしてコントローラ37は、燃料噴射手段22の噴射ノズル22aからの燃料29の噴射による燃料改質触媒21の温度上昇を一次遅れモデルを用いて予測しながら燃料噴射手段22の圧力調整弁22d、ポンプ22e及び開閉弁22jを制御するように構成される。
具体的には、図1〜図3に示すように、コントローラ37は、燃料噴射手段22に対して、燃料改質触媒21を燃料29の改質反応可能な温度まで昇温させるための第1噴射制御と、燃料改質触媒21内に燃料過多の雰囲気を形成して水素を生成させるために第1噴射制御より燃料噴射量を増やす第2噴射制御とをこの順に行う。但し、図1及び図4に示すように、コントローラ37は、燃料噴射手段22に対する第1噴射制御と第2噴射制御との間に、燃料改質触媒21を燃料29の改質反応可能な温度に維持するのに必要な燃料量を燃料改質触媒21の入口温度と排ガス流量から算出して燃料噴射手段22からの燃料噴射量を制御する温度維持噴射制御と、燃料改質触媒21内の酸素濃度をゼロに近付けるのに必要な燃料量を排ガス流量と排ガス中の酸素濃度から算出して燃料噴射手段22からの燃料噴射量を制御する酸素ゼロ噴射制御とをこの順に行うことができる。温度維持噴射制御は、この実施の形態では、第1噴射制御より燃料29の噴射量を減らすことにより、燃料改質触媒21を燃料29の改質反応可能な温度に維持している。また酸素ゼロ噴射制御は、この実施の形態では、温度維持噴射制御による燃料29の噴射量より多くかつ第2噴射制御による燃料29の噴射量より少なく燃料29を噴射することにより、燃料改質触媒21内の酸素濃度をゼロに近付ける。なお、エンジンの運転状況により、第1噴射制御より燃料の噴射量を増やすことにより、燃料改質触媒を燃料の改質反応可能な温度に維持することができる場合には、温度維持噴射制御時に第1噴射制御より燃料の噴射量を増やしてもよい。また、エンジンの運転状況により、温度維持噴射制御による燃料の噴射量より少なく燃料を噴射することにより、燃料改質触媒内の酸素濃度をゼロに近付けることができる場合には、減量噴射制御による燃料の噴射量より少なく燃料を噴射してもよい。
また、図1及び図5に示すように、排ガス温度の低いときに、コントローラ37は、第1噴射制御の前に、燃料29の噴射量を第1噴射制御の噴射量に達するまで徐々に増やす漸増噴射制御を行うことが好ましい。この制御は、排ガス温度の低いときに燃料29を多く噴射しても燃焼せずに排出される未燃燃料が発生してしまうため、これを防止するために行われる制御である。この漸増噴射制御の傾斜角(図5)は、排ガスの温度及び流量で決まる、即ち酸素流量に対して噴射できる燃料量から決まる。例えば、排ガス温度が200℃であるとき、燃料29の最大噴射量の10%程度噴射すると、排ガス温度が次第に上昇していき、燃料29の噴射量も次第に上昇していくので、漸増噴射制御の傾斜角(図5)が決まる。この漸増噴射制御は排ガス温度が200〜300℃の範囲内で行われる。
一方、一次遅れモデルは次のように構成される。先ず燃料噴射手段22から噴射された燃料のもつエネルギに温度上昇率を乗じて投入エネルギ量を算出する。ここで、図1及び図6に示すように、噴射ノズル22aから噴射された燃料29が燃料改質触媒21の発熱部21aで燃焼すると極めて短時間に多くのエネルギを発生するけれども、この燃焼エネルギが排ガスとともに改質部21bに流入すると、改質部21bの各部にエネルギが熱として時間をかけて少しずつ与えられる。このとき燃料29の燃焼エネルギの一部は放熱されたり或いは改質部を通過してしまい、改質部21bの温度上昇に寄与しない。このため改質部21bの温度を予測するために改質部21bの温度上昇率を求める必要がある。即ち、一次遅れモデルとは、噴射ノズル22aから噴射された燃料が燃料改質触媒21の発熱部21aで燃焼して発生したエネルギにより、改質部21bが瞬時に温度上昇せずに遅れて温度上昇することであると定義することができる。
排ガス流量が低流量であって、改質部21b入口温度を220℃、240℃、260℃、280℃及び300℃にそれぞれ一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する改質部21bの温度上昇率の変化は図7に示すようになる。即ち、改質部21b入口温度が240℃、260℃、280℃及び300℃であるときに、燃料噴射量を増加させても改質部21bの温度上昇率は略一定であるけれども、改質部21b入口温度が220℃であるときには、燃料噴射量を増加させると改質部21bの温度上昇率は減少する傾向にある。また排ガス流量が中流量であって、改質部21b入口温度を220℃、240℃、260℃、280℃及び300℃にそれぞれ一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する改質部21bの温度上昇率の変化は図8に示すようになる。即ち、改質部21b入口温度が260℃、280℃及び300℃であるときに、燃料噴射量を増加させても改質部21bの温度上昇率は略一定であるけれども、改質部21b入口温度が220℃及び240℃であるときには、燃料噴射量を増加させると改質部21bの温度上昇率は減少する傾向にある。更に排ガス流量が高流量であって、改質部21b入口温度を240℃、260℃、280℃及び300℃にそれぞれ一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する改質部21bの温度上昇率の変化は図9に示すようになる。即ち、改質部21b入口温度が280℃及び300℃であるときに、燃料噴射量を増加させても改質部21bの温度上昇率は略一定であるけれども、改質部21b入口温度が240℃及び260℃であるときには、燃料噴射量を増加させると改質部21bの温度上昇率は減少する傾向にある。
上述のことから、燃料改質触媒21の発熱部21aの温度が発熱部21aの反応開始温度より高いときには、燃料の燃焼が良好であるため、燃料噴射量を増加しても改質部21bの温度上昇率は略一定であるけれども、発熱部21aの温度が発熱部21aの反応開始温度の境界温度付近では、燃料噴射量を増加させると、燃料の一部がリークしてしまい、改質部21bの温度上昇率は減少する傾向にあることが分かる。なお、発熱部21aの反応開始温度は排ガス流量が多くなると、若干高くなる傾向がある。
上記図7〜図9のグラフを一つにまとめると、図10のグラフになる。図10では、パラメータが排ガス流量と燃料噴射量と温度上昇率の3つであるため、取扱いが不便である。そこで、排ガス流量と最少量の燃料噴射時における改質部21bの温度上昇率(基本温度上昇率)との2つのパラメータからなる基本温度上昇率マップ(図11)と、燃料噴射量及び排ガス流量を乗じた値と補正係数(温度上昇率補正値)との2つのパラメータからなる温度上昇率補正値マップ(図12)を用いて、温度上昇率を算出する。即ち、温度上昇率は基本温度上昇率に温度上昇率補正値を乗じて算出される。最少量の燃料噴射時における改質部21b入口温度と一次遅れモデルから算出された改質部21b出口温度とから触媒温度平均値を求める。基本温度上昇率(最少量の燃料噴射時における改質部21bの温度上昇率)は、上記触媒温度平均値と排ガス流量との関係から求められる。また温度上昇率補正値(補正係数)は、上記触媒温度平均値と、排ガス流量及び燃料噴射量を乗じた値との関係から求められる。上記基本温度上昇率マップと温度上昇率補正値マップはコントローラ37のメモリ38に記憶される。
次に上記投入エネルギ量に一次遅れの時定数を考慮してエネルギ上昇量を求める。排ガス流量が低流量であって、改質部21b入口温度を220℃、240℃、260℃、280℃及び300℃にそれぞれ一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する時定数の変化は図13に示すようになる。即ち、改質部21b入口温度が240℃、260℃、280℃及び300℃であるときに、燃料噴射量を増加させても時定数は略一定であるけれども、改質部21b入口温度が220℃であるときには、燃料噴射量を増加させると時定数は増加する傾向にある。また排ガス流量が中流量であって、改質部21b入口温度を220℃、240℃、260℃、280℃及び300℃にそれぞれ一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する時定数の変化は図14に示すようになる。即ち、改質部21b入口温度が240℃、260℃、280℃及び300℃であるときに、燃料噴射量を増加させても時定数は略一定であるけれども、改質部21b入口温度が220℃であるときには、燃料噴射量を増加させると時定数は増加する傾向にある。更に排ガス流量が高流量であって、改質部21b入口温度を240℃、260℃、280℃及び300℃にそれぞれ一定に保ったときの等量比(燃料噴射量/排ガス中の酸素量)の変化に対する時定数の変化は図15に示すようになる。即ち、改質部21b入口温度が260℃、280℃及び300℃であるときに、燃料噴射量を増加させても時定数は略一定であるけれども、改質部21b入口温度が240℃であるときには、燃料噴射量を増加させると時定数は増加する傾向にある。
上述のことから、燃料改質触媒21の発熱部21aの温度が発熱部21aの反応開始温度より高いときには、燃料の燃焼が良好であるため、燃料噴射量を増加しても時定数は略一定であるけれども、発熱部21aの温度が発熱部21aの反応開始温度の境界温度付近では、燃料噴射量を増加させると、燃料が燃焼し難いため、時定数は増加する傾向にあることが分かる。なお、発熱部21aの反応開始温度は排ガス流量が多くなると、若干高くなる傾向がある。
上記図13〜図15のグラフを一つにまとめると、図16のグラフになる。図16では、パラメータが排ガス流量と燃料噴射量と排ガス温度の3つであるため、取扱いが不便である。そこで、排ガス流量と最少量の燃料噴射時における時定数(基本時定数)との2つのパラメータからなる基本時定数マップ(図17)と、燃料噴射量及び排ガス流量を乗じた値と補正係数(時定数補正値)との2つのパラメータからなる時定数補正値マップ(図18)を用いて、時定数を算出する。即ち、時定数は基本時定数に時定数補正値を乗じて算出される。最少量の燃料噴射時における改質部21b入口温度と一次遅れモデルから算出された改質部21b出口温度とから触媒温度平均値を求める。基本時定数(最少量の燃料噴射時における時定数)は、上記触媒温度平均値と排ガス流量との関係から求められる。また時定数補正値(補正係数)は、上記触媒温度平均値と、排ガス流量及び燃料噴射量を乗じた値との関係から求められる。上記基本時定数マップと時定数補正値マップはコントローラ37のメモリ38に記憶される。
更に上記エネルギ上昇量から燃料改質触媒21の改質部21bの上昇温度を算出した後に、この上昇温度を改質部21bの入口温度に加算して改質部21bの出口温度を求める。これらの操作や演算等を繰り返して改質部21bの温度予測が行われる。なお、この実施の形態では、燃料改質触媒に流入する排ガス中のNOx濃度及びO2濃度を検出する第1NOxセンサと、NOx吸蔵還元触媒から流出する排ガス中のNOx濃度及びO2濃度を検出する第2NOxセンサ32とを用いたが、第1及び第2NOxセンサを用いなくてもよい。この場合、エンジン出口におけるNOx流量は、予め実験により求められたNOxモデルから予測され、NOx吸蔵還元触媒の出口におけるNOx流量は、上記エンジン出口におけるNOx流量の例えば80%がNOx吸蔵還元触媒に吸蔵されるとして求められる。また排ガス中のO2濃度は、エンジン指示燃料噴射センサの検出するエンジン指示燃料噴射量と、マスエアフローセンサの検出する吸入空気の積算流量とから算出して求められる。
第1噴射制御での実際の燃料噴射量は、排ガス中の酸素濃度による噴射制限量に、触媒温度平均値と排ガス流量による噴射制限率を乗じることにより求められる。上記噴射制限量は、燃料改質触媒21の改質部21bの昇温時に燃料過多とならないように、即ち排ガス中の酸素濃度がゼロにならないように定められる。ここで、排ガス中の酸素濃度は、O2センサにより求めるか、或いは吸入空気量とエンジンへの燃料噴射量とから算出して求められる。また噴射制限率は、触媒温度平均値(改質部21b入口温度と一次遅れモデルから算出された改質部21b出口温度との平均値)と排ガス流量との関係から定められる。
一方、第2噴射制御での実際の燃料噴射量は、排ガス中の酸素を消費するための燃料量と、水素や一酸化炭素を発生させるための燃料量とを加算することにより求められる。なお、燃料改質触媒21の改質部21bでの主な燃料改質反応は次の式(1)〜式(4)で表される。
2C1630 + 47O2 → 32CO2 + 30H2O …(1)
1630 + 8O2 → 16CO + 15H2 …(2)
CO + H2O → CO2 + H2 …(3)
1630 + 16H2O → 16CO + 31H2 …(4)
ここで、式(1)は燃焼反応であり、式(2)は部分酸化反応であり、式(3)は水性ガスシフト反応であり、式(4)は水蒸気改質反応である。なお、式(4)の反応が支配的な反応であるため、式(4)により必要な燃料噴射量が算出される。
このように構成されたエンジンの排ガス浄化装置の動作を説明する。コントローラは、第1NOxセンサ31の検出したNOx濃度と、回転センサ34及びエンジン指示燃料噴射センサ36の検出出力から算出された排ガス流量とから、NOx吸蔵還元触媒19の入口側のNOx流量を算出し、第2NOxセンサ32の検出したNOx濃度と、回転センサ34及びエンジン指示燃料噴射センサ36の検出出力から算出された排ガス流量とから、NOx吸蔵還元触媒19の出口側のNOx流量を算出する。そしてコントローラ37はこれらのNOx流量の差を積分することにより、NOx吸蔵還元触媒19に吸蔵されたNOx量を算出する。コントローラ37がNOx吸蔵還元触媒19に所定量のNOxが吸蔵されたと判断すると、或いはコントローラ37がNOx吸蔵還元触媒19の入口及び出口におけるNOx濃度の差からNOx吸蔵還元触媒19によるNOx低減率が所定値以下になったと判断すると、燃料噴射手段22のポンプ22e、圧力調整弁22d及び開閉弁22jを制御して噴射ノズル22aから燃料を噴射する。このときコントローラ37は、噴射ノズル22aからの燃料29の噴射による燃料改質触媒21の温度上昇を一次遅れモデルを用いて予測しながらポンプ22e、圧力調整弁22d及び開閉弁22jを制御して、噴射ノズル22aから最適な時期に噴射した最適な量の燃料29を噴射する。即ち、一次遅れモデルの温度上昇率を基本温度上昇率に温度上昇率補正値を乗じて算出し、一次遅れモデルの時定数を基本時定数に時定数補正値を乗じて算出することにより、噴射ノズル22aからどの時期にどのくらいの量の燃料29を噴射すれば、燃料改質触媒21を燃料の改質反応に必要な温度(例えば、600〜700℃)まで短時間で昇温でき、燃料改質触媒21の改質部21bで水素や一酸化炭素を生成するための燃料過多の雰囲気を速やかに形成できるかを予測できる。
具体的には、図1〜図3に示すように、コントローラ37は、第1噴射制御を行った後に、第2噴射制御を行う。第1噴射制御を行うと、噴射ノズル22aから噴射された燃料29がミキサ24で撹拌されて排ガス中に均一に分散され、排ガスとともに燃料改質触媒21の発熱部21aに流入する。この発熱部21aに流入した燃料は発熱部21aで燃焼して排ガスを昇温させる。この昇温した排ガスが燃料改質触媒21の改質部21bに流入すると、この排ガスにより改質部21bが燃料の改質反応に必要な温度まで昇温する。第2噴射制御を行うと、噴射ノズル22aから噴射された燃料がミキサ24で撹拌されて排ガス中に均一に分散され、排ガスとともに燃料改質触媒21の発熱部21aに流入するけれども、燃料過多(燃料リッチ)雰囲気では、多くの燃料が発熱部21aで燃焼せずに通過して改質部21bに流入する。この改質部21bに流入した燃料の一部は改質部21bで改質されてNOx還元性能の高い水素や一酸化炭素が生成される。
上記水素、一酸化炭素、炭化水素(燃料)を含む排ガスはパティキュレートフィルタ27に流入し、このフィルタ27で排ガス中のパティキュレートが捕集される。フィルタ27を通過した水素、一酸化炭素、炭化水素(燃料)を含む排ガスはNOx吸蔵還元触媒19に流入する。NOx吸蔵還元触媒19でこの触媒19に吸蔵されたNOxは上記水素、一酸化炭素、炭化水素(燃料)と反応してアンモニア、窒素、水、二酸化炭素等が生成される。そして生成されたアンモニアはアンモニア選択還元触媒23で排ガス中のNOxと反応して窒素が生成される。この結果、排ガス中のNOxを効率良く低減できる。
ここで、図1及び図4に示すように、コントローラ37は、第1噴射制御と第2噴射制御との間に、温度維持噴射制御を行うことができる。この温度維持噴射制御により、燃料改質触媒21の改質部21bを燃料の改質反応可能な温度(例えば、600〜700℃)に維持することができる。この結果、燃料改質触媒21の温度が燃料改質に適した温度より高くなり過ぎるのを防止できる。またコントローラ37は、温度維持噴射制御後、酸素ゼロ噴射制御を行うことができる。この酸素ゼロ噴射制御により、燃料改質触媒21の改質部21b内の酸素濃度をゼロに近付けることができる。この結果、排ガス中の酸素濃度がゼロに近付いた状態で第2噴射制御を行うので、改質部21bは速やかに燃料過多の雰囲気になり、改質部21bで燃料が効率良く水素や一酸化炭素に改質される。更に図1及び図5に示すように、排ガス温度の低いときに、コントローラ37は、第1噴射制御の前に漸増噴射制御を行うことができる。この漸増噴射制御により、燃料29の噴射量を第1噴射制御の噴射量に達するまで徐々に増やす。この結果、燃料改質触媒21の改質部21bの昇温に寄与せずに排出される未燃燃料の発生を抑制できる。
なお、この実施の形態では、エンジンとしてターボ過給機付ディーゼルエンジンを挙げたが、自然吸気型ディーゼルエンジンであってもよい。また、この実施の形態では、排ガスの一部を吸気に還流するEGR装置を設けていないが、本発明はEGR装置を備えたディーゼルエンジンにも適用できる。
更に図19〜図23に示すように、第1噴射制御時の燃料噴射量が低排ガス流量時より高排ガス流量時に少なく設定される。これにより高排ガス流量時における昇温効率が高くなるとともに、高排ガス流量時における総燃料噴射量を少なくすることができる。その理由は次の通りである。燃料改質触媒21を改質可能温度に昇温させるまでに必要な燃料の最適噴射量をAとし、燃料と空気を理想的な割合で混合して完全燃焼させる状態(stoichiometryの状態、以下「ストイキ」という。)にするために必要な燃料の最適噴射量をBとし、A/Bを噴射制限率とするとき、低排ガス流量時には噴射制限率A/Bが1に近くなるのに対し(図21)、高排ガス流量時には噴射制限率A/Bが1よりかなり小さくなる(図22)。ここで、低排ガス流量時に燃料の最適噴射量が、ストイキにするために必要な燃料の最適噴射量Bに近くなるのは、低排ガス流量であるため燃料改質触媒21の発熱部21aで燃料が燃焼(酸化)し易くなるからである。また高排ガス流量時に燃料の最適噴射量が、ストイキにするために必要な燃料の最適噴射量Bよりかなり小さくなるのは、高排ガス流量であるため燃料改質触媒21の発熱部21aで燃料が燃焼(酸化)し難くなるからである。この結果、低排ガス流量時には、第1噴射制御として、ストイキにするために必要な燃料の最適噴射量Bに近い量の燃料を噴射し(図19)、高排ガス流量時には、第1噴射制御として、ストイキにするために必要な燃料の最適噴射量Bよりかなり少ない量の燃料を噴射する(図20)。従って、上述のように、第1噴射制御時の燃料噴射量を低排ガス流量時より高排ガス流量時に少なく設定すると、高排ガス流量時における昇温効率が高くなるとともに、高排ガス流量時における総燃料噴射量を少なくすることができる。
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
排ガスを導入可能な内径80mmの排気管に燃料改質触媒を設け、この燃料改質触媒の排ガス上流側に燃料噴射手段の噴射ノズルを燃料改質触媒に向けて挿入した。燃料改質触媒は、排ガス上流側から順に設けられた発熱部と改質部とを有する。発熱部は、両端が開放されかつ排ガスの流通方向に延びる複数のセル(貫通孔)が形成されたステンレス鋼製の円筒状のメタル担体と、このメタル担体の表面にPt−Pdを担持するためにコーティングされたアルミナからなるコーティング層と、このコーティング層に分散されたPt−Pdとを有する。改質部は、発熱部のメタル担体と略同一形状のメタル担体と、このメタル担体の表面にRhを担持するためにコーティングされたアルミナからなるコーティング層と、このコーティング層に分散されたRhとを有する。
燃料噴射手段は、上記噴射ノズルと、この噴射ノズルに一端が接続された燃料供給管と、この燃料供給管の他端に接続され燃料が貯留されたタンクとを有する。また燃料供給管には噴射ノズルへの燃料の供給量を調整する圧力調整弁を設け、圧力調整弁とタンクとの間の燃料供給管にはタンク内の燃料を噴射ノズルに供給可能なポンプを設けた。更に噴射ノズルにはこのノズルを開閉するノズル開閉弁を設け、発熱部と改質部との間の排気管には温度センサを挿入した。温度センサの検出出力をコントローラに制御入力に接続し、コントローラの制御出力をポンプ、圧力調整弁及び開閉弁に接続した。コントローラにメモリには、図11の基本温度上昇率マップと、図12の温度上昇率補正値マップと、図17の基本時定数マップと、図18の時定数補正値マップとを記憶させた。
この状態で、排気管に改質反応開始温度より若干高い温度の排ガスを流した。コントローラは、噴射ノズルからの燃料の噴射による燃料改質触媒の改質部の温度上昇を一次遅れモデルを用いて予測しながら燃料噴射手段を制御した。具体的には、コントローラは、図24に示すように、燃料噴射手段に対して、改質部を燃料の改質反応可能な温度まで昇温させるための第1噴射制御と、改質部内に燃料過多の雰囲気を形成して水素を生成させるために第1噴射制御より燃料噴射量を増やす第2噴射制御とをこの順に行った。
<実施例2>
コントローラが、図26に示すように、燃料噴射手段に対する第1噴射制御と第2噴射制御との間に、改質部を燃料の改質反応可能な温度に維持するのに必要な燃料量を改質部の入口温度と排ガス流量から算出して燃料噴射手段からの燃料噴射量を制御する温度維持噴射制御と、改質部内の酸素濃度をゼロに近付けるのに必要な燃料量を排ガス流量と排ガス中の酸素濃度から算出して燃料噴射手段からの燃料噴射量を制御する酸素ゼロ噴射制御とをこの順に行った。上記以外は実施例1と同様に構成した。
<比較例1>
コントローラが、一次遅れモデルを用いた予測を行わずに、温度センサの検出出力に基づいて、噴射ノズルから略一定の流量で燃料を噴射した。上記以外は実施例1と同様に構成した。
<比較試験1及び評価>
実施例1、実施例2及び比較例1の装置の排気管の排ガス下流端に水素及び一酸化炭素の濃度の測定装置を接続して、水素及び一酸化炭素の濃度をそれぞれ測定した。その結果を図25及び図27に示す。比較例1では、温度を予測せずに、単に温度センサの検出出力に基づいて燃料を燃料改質触媒に向って噴射するため、燃料改質触媒が昇温した時点で燃料を噴射してしまい、燃料改質触媒の温度が急激に上昇して1000℃以上になり、燃料改質触媒が破損した。これに対し、実施例1及び2では、図25及び図27から明らかなように、実施例1及び2では水素濃度及び一酸化炭素濃度が高くなった。特に実施例2では水素濃度及び一酸化炭素濃度が実施例1のそれぞれ約3倍となった。
11 ディーゼルエンジン
16 排気管
19 NOx吸蔵還元触媒
21 燃料改質触媒
22 燃料噴射手段
22a 噴射ノズル
23 アンモニア選択還元触媒
29 燃料
33 改質触媒温度センサ
37 コントローラ

Claims (6)

  1. ディーゼルエンジン(11)の排気管(16)に設けられたNOx吸蔵還元触媒(19)と、前記NOx吸蔵還元触媒(19)より排ガス上流側の排気管(16)に設けられた燃料改質触媒(21)と、前記燃料改質触媒(21)より排ガス上流側の排気管(16)に挿入された噴射ノズル(22a)を有しこの噴射ノズル(22a)から前記燃料改質触媒(21)に向って燃料(29)を噴射する燃料噴射手段(22)と、前記NOx吸蔵還元触媒(19)より排ガス下流側の排気管(16)に設けられたアンモニア選択還元触媒(23)と、前記燃料改質触媒(21)の温度を検出する改質触媒温度センサ(33)と、前記改質触媒温度センサ(33)の検出出力に基づいて前記燃料噴射手段(22)を制御するコントローラ(37)とを備えたディーゼルエンジンの排ガス浄化装置であって、
    前記コントローラ(37)が、前記燃料噴射手段(22)に対して、前記燃料改質触媒(21)を燃料の改質反応可能な温度まで昇温させるための第1噴射制御と、前記燃料改質触媒(21)内に燃料過多の雰囲気を形成して水素を生成させるために前記第1噴射制御より前記燃料噴射量を増やす第2噴射制御とをこの順に行うとともに、前記燃料噴射手段(22)に対する前記第1噴射制御と前記第2噴射制御との間に、前記燃料改質触媒(21)を前記燃料(29)の改質反応可能な温度に維持するのに必要な燃料量を前記燃料改質触媒(21)の入口温度と排ガス流量から算出して前記燃料噴射手段(22)からの燃料噴射量を制御する温度維持噴射制御と、前記燃料改質触媒(21)内の酸素濃度をゼロに近付けるのに必要な燃料量を排ガス流量と排ガス中の酸素濃度から算出して前記燃料噴射手段(22)からの燃料噴射量を制御する酸素ゼロ噴射制御とをこの順に行うことにより、前記燃料噴射手段(22)からの前記燃料(29)の噴射による前記燃料改質触媒(21)の温度上昇を一次遅れモデルを用いて予測しながら前記燃料噴射手段(22)を制御することを特徴とするディーゼルエンジンの排ガス浄化装置。
  2. 排ガス温度の低いときに、コントローラ(37)が、第1噴射制御の前に、燃料(29)の噴射量を前記第1噴射制御の噴射量に達するまで徐々に増やす漸増噴射制御を行う請求項記載のディーゼルエンジンの排ガス浄化装置。
  3. 一次遅れモデルが、燃料噴射手段(22)から噴射された燃料(29)のもつエネルギに温度上昇率を乗じて投入エネルギ量を算出し、この投入エネルギ量に一次遅れの時定数を考慮してエネルギ上昇量を求め、このエネルギ上昇量から燃料改質触媒(21)の上昇温度を算出し、更にこの上昇温度を前記燃料改質触媒(21)の入口温度に加算して前記燃料改質触媒(21)の出口温度を求めるように構成された請求項1記載のディーゼルエンジンの排ガス浄化装置。
  4. 一次遅れモデルの温度上昇率が基本温度上昇率に温度上昇率補正値を乗じて算出され、
    前記基本温度上昇率が、燃料改質触媒(21)の入口温度と前記一次遅れモデルから算出された前記燃料改質触媒(21)の出口温度との触媒温度平均値と、排ガス流量との関係から求められ、
    前記温度上昇率補正値が、前記触媒温度平均値と、前記排ガス流量及び燃料噴射量を乗じた値との関係から求められる請求項記載のディーゼルエンジンの排ガス浄化装置。
  5. 一次遅れモデルの時定数が基本時定数に時定数補正値を乗じて算出され、
    前記基本時定数が、燃料改質触媒(21)の入口温度と前記一次遅れモデルから算出された前記燃料改質触媒(21)の出口温度の触媒温度平均値と、排ガス流量との関係から求められ、
    前記時定数補正値が、前記触媒温度平均値と、排ガス流量及び燃料噴射量を乗じた値との関係から求められる請求項記載のディーゼルエンジンの排ガス浄化装置。
  6. 第1噴射制御時の燃料噴射量が低排ガス流量時より高排ガス流量時に少なく設定された請求項1又は2記載のディーゼルエンジンの排ガス浄化装置。
JP2009266888A 2009-11-25 2009-11-25 エンジンの排ガス浄化装置 Active JP5553582B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266888A JP5553582B2 (ja) 2009-11-25 2009-11-25 エンジンの排ガス浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266888A JP5553582B2 (ja) 2009-11-25 2009-11-25 エンジンの排ガス浄化装置

Publications (2)

Publication Number Publication Date
JP2011111924A JP2011111924A (ja) 2011-06-09
JP5553582B2 true JP5553582B2 (ja) 2014-07-16

Family

ID=44234459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266888A Active JP5553582B2 (ja) 2009-11-25 2009-11-25 エンジンの排ガス浄化装置

Country Status (1)

Country Link
JP (1) JP5553582B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878336B2 (ja) * 2011-11-04 2016-03-08 日野自動車株式会社 排ガス浄化装置
JP6287417B2 (ja) * 2014-03-20 2018-03-07 三菱自動車工業株式会社 車両の温度推定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4320582B2 (ja) * 2003-10-24 2009-08-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4155182B2 (ja) * 2003-12-09 2008-09-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4075795B2 (ja) * 2003-12-19 2008-04-16 日産自動車株式会社 ディーゼルエンジンの排気後処理装置
JP4270029B2 (ja) * 2004-06-08 2009-05-27 トヨタ自動車株式会社 内燃機関及び内燃機関の運転制御装置
JP4267536B2 (ja) * 2004-08-09 2009-05-27 日野自動車株式会社 排気浄化装置の制御方法
US7257941B1 (en) * 2006-03-14 2007-08-21 Eaton Corporation Model based diagnostics of an aftertreatment fuel dosing system
JP4631902B2 (ja) * 2007-12-13 2011-02-16 株式会社豊田自動織機 排ガス浄化装置

Also Published As

Publication number Publication date
JP2011111924A (ja) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5187586B2 (ja) 希薄燃焼エンジンからのNOx排出を低減するための装置
US8434296B2 (en) Exhaust emission control device for internal combustion engine
JP4427782B2 (ja) 内燃エンジンの改善された排気制御のためのシステム
JP5613842B2 (ja) 燃料改質器及びこれを用いた排ガス浄化装置
EP2233711B1 (en) Exhaust gas purification device for internal combustion engine
US20150275722A1 (en) Device and method for regenerating a particulate filter arranged in the exhaust section of an internal combustion engine
EP1604099B1 (en) MANAGEMENT OF THERMAL FLUCTUATIONS IN LEAN NOx ADSORBER AFTERTREATMENT SYSTEMS
BRPI0807355A2 (pt) Método de controle para controle de um sistema de pós-tratamento de exaustão e sistema de pós-tratamento de exaustão.
WO2007032564A1 (ja) 内燃機関の排気浄化装置
EP1787950A2 (en) Fuel reformer and methods for using the same
JP2005048772A (ja) Dpnrデバイスを再生するための燃料改質装置を動作させる装置及び方法
JP2007177672A (ja) 排気浄化装置
EP2233712A1 (en) Exhaust purification device for internal combustion engine
CA2777407A1 (en) Fuel processor with improved carbon management control
JP5890133B2 (ja) 燃料改質器及びこれを用いた排ガス浄化装置
JP5553582B2 (ja) エンジンの排ガス浄化装置
JP2013174203A (ja) 排ガス浄化装置
KR20190072341A (ko) 연료 개질 시스템
EP1857648A1 (en) System and methods for improving emission control of internal combustion engines
JP2007278162A (ja) ディーゼルエンジンの排ガス浄化装置
chul Park et al. Low temperature active regeneration of soot using hydrogen in a multi-channel catalyzed DPF
RU145543U1 (ru) Блок каталитического нейтрализатора снижения токсичности выхлопных газов и устройство снижения токсичности выхлопных газов
JP2013015087A (ja) 排ガス浄化装置
JP2011025166A (ja) 酸化触媒及びこれを用いたエンジンの排ガス浄化装置
EP3276725B1 (en) Exhaust gas cleaning system equipped with power generation function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140527

R150 Certificate of patent or registration of utility model

Ref document number: 5553582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250