JP5553496B2 - 開口部側壁に形成した高分子の処理により高アスペクト比の開口部におけるエッチプロファイルの屈曲と湾曲を防止する方法 - Google Patents

開口部側壁に形成した高分子の処理により高アスペクト比の開口部におけるエッチプロファイルの屈曲と湾曲を防止する方法 Download PDF

Info

Publication number
JP5553496B2
JP5553496B2 JP2008240357A JP2008240357A JP5553496B2 JP 5553496 B2 JP5553496 B2 JP 5553496B2 JP 2008240357 A JP2008240357 A JP 2008240357A JP 2008240357 A JP2008240357 A JP 2008240357A JP 5553496 B2 JP5553496 B2 JP 5553496B2
Authority
JP
Japan
Prior art keywords
bias power
power level
opening
polymer film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008240357A
Other languages
English (en)
Other versions
JP2009124109A (ja
JP2009124109A5 (ja
Inventor
ベラ キャロル
エル ドーン ケニー
ベーゲ シュテファン
デシュムクー サブハッシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2009124109A publication Critical patent/JP2009124109A/ja
Publication of JP2009124109A5 publication Critical patent/JP2009124109A5/ja
Application granted granted Critical
Publication of JP5553496B2 publication Critical patent/JP5553496B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

関連出願の相互参照
本願はカロール・ベラらによって2007年9月25日に「開口部側壁に形成した高分子の処理により高アスペクト比の開口部におけるエッチプロファイルの屈曲と湾曲を防止する方法」の名称で出願された米国特許出願第11/861032号に基づく優先権を主張する。
本発明の実施形態は半導体デバイスの製造に係り、特に、半導体デバイスの製造において用いられるプラズマエッチ処理に関する。
背景
半導体ウェハ上でのマイクロ電子デバイスの作製には誘電性薄膜層を貫く開口部の形成が必要であり、開口部に金属を充填することで異なる層中の導体間を電気的に接触させている。コンタクト開口部のアスペクト比(深さと直径の比)は典型的には40:1の高さにのぼる。特徴部のサイズの工業規格が65nmから45nm、32nmと進むにつれ、所要深さが約24700Åであるのに対し、コンタクト開口部の穴の直径は約630Åにまで縮小された。開口部の直径及び開口部と開口部との間隔はほぼ同じである(例えば、約630Å)。各コンタクト開口部のアスペクト比が非常に大きいことから、全ての開口部の垂直プロファイルが一定であることが、隣り合う開口部間の絶縁体の所要厚さの維持に必須である。コンタクト開口部の位置パターンと直径は、開口部の形成に先立ってウェハ表面上に堆積されるパターンフォトレジスト層の開口部によって規定される。フォトレジストの各開口部によりコンタクト開口部の位置と直径が規定される。フォトレジストの堆積後、フォトレジスト層の開口部を通して誘電体をエッチングするように適合されたプラズマエッチ処理によりコンタクト開口部を形成する。プラズマエッチ処理ではプラズマ内で2タイプの種、つまり炭素に対してのフッ素含有比が高いエッチ種とフッ素に対しての炭素の含有比が高い高分子種を産生するフッ化炭素/フッ化炭化水素ガスを用いる。高分子種は各開口部の側壁の露出面上に蓄積してエッチ選択性を増強し、エッチ処理によりフォトレジストパターンによって確立された直径を超えて開口部が広がる傾向を緩和する。
現在のプラズマエッチ処理では、特徴部のサイズが大きい、例えば90nmで良好な結果が安定して得られる。エッチプロファイルはチャンバ圧とRFバイアス電力によって制御される。RFバイアス電力を上げると、イオンエネルギーと垂直方向の運動量の上昇によってより直線的で細いエッチプロファイルが形成される。チャンバ圧を下げるとイオンとの衝突が減少し、その公称垂直軌道から偏向されるイオンの数が減少することから同様の効果が得られる。
特徴部のサイズが45nm、続いて32nmに縮小されるにつれ、多くの場合においてデバイスに不具合が発生する恐れがあるほどにエッチプロファイルを悪化させる2つの問題が生じてきた。ここで「湾曲(bowing)」と称するところの問題の1つでは、コンタクト開口部最上部付近でその一部に広がりが認められる。広がった部位の直径は所望の穴部直径の2倍にもなることがあり、広がった部位で隣接開口部と部分的に融合する傾向が高くなる。ここで「屈曲(bending)」と称するところの別の問題では、開口部底部付近での開口部の軸の真垂直からの偏向が認められる。このような屈曲により開口部底部の中心がその近隣に向かって開口部直径の50%から100%にのぼって逸れることが観察されている。前述の湾曲及び屈曲問題は近年になって初めて生じた問題であり、デバイス特徴部のサイズが45nm以下にまで縮小されたのと時期的に一致しているが、その原因は未だ不明である。プラズマエッチ処理中にプラズマリアクタチャンバ圧を低下させる及び/又はRFバイアス電力とイオンエネルギーを上昇させることで湾曲又は屈曲をいくらか軽減できるものの、解決策はまだ登場していない。エッチプロファイルの屈曲又は湾曲が軽減されるとは言え、このようなアプローチではプラズマエッチ処理を実行できるチャンバ圧の範囲(プロセス「ウィンドウ」)が狭くなり、問題がある。同様に、ウェハに印加するRFバイアス電力を上げることでイオンエネルギーを上昇させると、エッチ選択性の低下やフォトレジストのコーナー部でのファセット形成等の悪影響が生じる。プロセスウィンドウを狭めることなく湾曲及び屈曲を防止するやり方が必要とされている。
概要
基板上の誘電体層に高アスペクト比のコンタクト開口部をプラズマイオンエッチングする方法を提供する。一実施形態において、本方法はプラズマリアクタチャンバにC、C、CH又はC等のフッ化炭素及び/又はフッ化炭化水素ガスを第1ガス流量で、フッ化ケイ素ガスを第1流量の0.5から1.5倍の第2流量で、アルゴンガスを第1流量の約2から7倍の流量で導入することを含む。本方法は高分子膜をコンタクト開口部の側壁に堆積しながらコンタクト開口部を誘電体層にエッチングすることを更に含み、高分子膜の厚さはコンタクト開口部の半径より小さい。一実施形態において、コンタクト開口部の側壁に高分子膜を堆積しながらの誘電体層へのコンタクト開口部のエッチングは、所望のプラズマエッチ処理に対応する公称RFバイアス電力レベルのRFバイアス電力を継続的に印加しながら、RF電力をチャンバに結合してチャンバ内でプラズマを発生させることで行う。一実施形態において、側壁上の高分子膜の導電性は、導電性高分子材料の使用と高分子膜とアルゴンイオンとのイオン衝突、及び基板に公称電力レベルの1.5倍を超える高RFバイアス電力レベルのRFバイアス電力の連続バーストを結合することで上昇する。
詳細な説明
45nm以下の特徴部サイズで発生するエッチプロファイルの屈曲及び湾曲が、各コンタクト開口部の側壁面の長さに沿っての静電荷の不均等な分布によって引き起こされることを発明者は発見した。この問題の発生には、イオンと電子の速度プロファイルの角度分布の違いが一部関係している。図1に図示されるように、高アスペクト比のコンタクト開口部100は誘電体膜102に、それを覆うフォトレジスト層106を貫く開口部104と整合して形成される。開口部100は誘電体膜102の露出部分がフッ化炭素/フッ化炭化水素プラズマ108のエッチャント種と反応することで形成される。プラズマから発生した電子と正電荷イオンは共に開口部100の側壁100aに突き当たる。図2のグラフで示されるように、イオンは誘電体層102の上面に対して垂直な方向近辺に集中する細い角速度分布又はプロファイル(実線)を有しており、電子はより等方性の角速度分布を有している。この結果、事実上、プラズマからの電子は高アスペクト比開口部100の底部に到達する前に側壁100aとの衝突により吸収されてしまい、ほぼ全ての電子が側壁100aの上部との衝突によって吸収され、側壁100aの上部は負に帯電する。
イオンは2つのエネルギーピークを有する。高エネルギーピークはウェハに印加したRFバイアス信号のピーク間電圧に対応するイオンエネルギーで起こる。低いほうのエネルギーピークはピーク間バイアス電圧の2分の1に対応するイオンエネルギーで生じる。様々な運動エネルギーレベルでのイオン個体数分布が図3のグラフに図示されている。高いほうのエネルギーピークの個体数はバイアス信号のRF周波数が低下するにつれ上昇する。高エネルギーイオンは開口部100の底部に到達するまでに側壁100aに衝突する傾向が低いため、側壁100aの底部は正に帯電する。低エネルギーイオンは側壁100aの上部近くに蓄積された負の電荷によって、その垂直軌道からより容易に逸れてしまう。図1に図示の偏向したイオン経路112は、イオンが側壁100aの負に帯電した部位の電場を通って湾曲した経路を進むことによる、真垂直から偏向している低エネルギーイオンの典型的な経路を表しており、偏向されたイオン経路は最終的には側壁100aの負に帯電した部位の下方の一点で側壁100aと交差する。これにより側壁102のその点でのエッチ速度が上昇し、偏向したイオン経路と側壁100aとの交差部付近の領域における開口部プロファイルの湾曲につながる。その結果が図4に図示されており、公称直径Dを有する高アスペクト比コンタクト開口部100のその上部付近の部位の直径は拡張された直径Dを有し、エッチプロファイルの湾曲を表している。コンタクト開口部100は隣接するコンタクト開口部101から公称の離間距離Sだけ離れている。湾曲部の近辺において、離間距離は狭い離間距離Sへと狭くなり、公称離間距離Sの5%の狭さとなる。場合によっては、離間距離Sが湾曲部近辺ではゼロになることもある。拡張された開口部直径Dが公称直径Dのほぼ2倍となることもある。
屈曲問題は側壁100aの外周付近での不均等な電荷の分散から生じる。例えば、開口部100の底部近くで蓄積する、外周に沿った正の電荷の不均等な分布が挙げられる。電荷がこのように不均等に分布することで高エネルギーイオンは最終的に若干偏向してしまい、この偏向はイオンが十分に長い距離、又は開口部100の底部に達して初めて認められる。この結果、屈曲問題は開口部100の底部の中心位置における、開口部100の上部の中心(又は軸)からの横方向のズレとして現れる。図4を参照すると、開口部100の底部は開口部の直径Dにほぼ等しい屈曲距離Bだけ横方向にズレている。
本発明の実施形態は湾曲問題と屈曲問題の双方を、プラズマエッチ処理の全持続時間中、各開口部100の側壁100a上に導電性薄膜を形成することで解決することに関する。導電性コーティングにより放電路が構築され、この放電路に沿って不均等な電荷分布に流れが生じて電荷の分布が均衡状態になる。事実上、開口部100の上部付近での負の電荷と、開口部100の底部付近での正の電荷の蓄積が、側壁100a上の導電性薄膜に沿って双方向に流れる正負の電荷により軽減又は解消される。
エッチ処理中、開口部100の深さは一貫して増大し、側壁100aの深さは延びる。エッチ処理中に開口部100の深さが増し、側壁100aの追加部位が絶えず形成されるにつれ、導電性薄膜は下方向に延長され、追加部位を被覆する。一実施形態において、エッチ処理中、処理は継続的に行われる。図5はエッチ処理開始後間もない時点でのコンタクト開口部100であり、導電性薄膜130が側壁100aを被覆していることを表している。図6はコンタクト開口部100がその全深である約24700Åに到達した後のこの処理の結果を示す。湾曲部での直径Dは公称直径Dの10%以下である。屈曲距離B(底部での開口部の軸の偏向)はほぼゼロに減少した。これらの結果は、少なくとも5ジーメンス/メートルの導電性を導電膜130に付与することで得られた。導電性は導電層130において約10−11秒以下の1/e放電時間を実現するに十分であるべきである。1/e放電時間T=ε/σであり、εは導電層130を通る静電気放電路の実効誘電率であり、σは導電層130の導電性である。
一実施形態において、導電性薄膜130はプラズマエッチ処理中にC、C、CH又はCのフッ化炭素及び/又はフッ化炭化水素処理ガスを利用することで形成する。プラズマ中のフッ化炭素/フッ化炭化水素ガス分子の解離により生成されるフッ素が豊富なプラズマ副生成物が誘電体102の露出部分をエッチングする。プラズマ中のフッ化炭素/フッ化炭化水素ガス分子の解離によって生成される炭素が豊富なプラズマ副生成物は側壁100a上に厚さ約10Å程度の導電性高分子薄層130として堆積する傾向がある。層130の導電性は、10−11以下程度の1/e放電時間を得るに十分なほどに増強させる。図7は上述したタイプのフッ化炭素高分子に典型的な所定の誘電率での、導電性の関数(横軸)としての1/e放電時間(縦軸)を示すグラフである。一実施形態において、導電層130は誘電特性と導電特性の双方を有する特別に生成された高分子であり、1/e放電時間を10−11秒以下程度へと最小限に抑えるに十分な導電性を備えている。このような導電性を層130に付与すると、側壁100a又は(より正確には)層130内で正及び負の電荷が双方向に流れて中和又は平衡化される効果がある。その結果、側壁100aに沿って静電荷が均一に分布する、又は静電荷が打ち消される可能性がある。
一実施形態において、導電性高分子は例えばC、C、CH又はCを処理ガスとして図6のコンタクト開口部を形成するプラズマエッチ処理中に使用することで形成される。C、C、CH又はCはプラズマ中で高分子前駆体を生成し、前駆体は側壁100a上に堆積されると導電層130としての導電性高分子を生成する傾向がある。加えて、必要とされる導電性は半導体種含有処理ガス、例えばSiFフッ化ケイ素をプラズマに添加することで得られる。これにより高分子層130は高分子構造内にケイ素原子を取り込み、高分子層130の導電性が向上する。
一実施形態においては、側壁100a上の高分子層130の導電性をアルゴン等の比較的原子番号の高い不活性ガスをプラズマに添加し、高分子層130を高エネルギーアルゴンイオンにイオン衝突させることで更に増強する。これは、低周波(1〜4MHz)のRFバイアス信号をウェハに約5〜10キロワットの範囲の電力レベルで印加することで達成される。この結果、高分子膜130の分子構造が変化し、グラファイト構造に近いものになる。グラファイト構造は高い導電性を備えた平面六角形炭素結晶構造である。高分子膜130の分子構造がグラファイト構造に似てくるにつれ、高分子膜130の導電性はグラファイトの導電性に近づき始める。一実施形態において、アルゴンイオンの衝突は高分子層130で約5ジーメンス/mの導電性を得るに十分なイオンエネルギーで行う。
アルゴンイオン衝突に必要な高電力高電圧RFバイアスが誘電体のエッチプロセスレシピに適合しないことがある。このような場合は、アルゴンイオン衝突を周期的な短いバースト/フラッシュで行うことでプラズマエッチ処理への影響を小さくし、高エネルギーアルゴンイオン衝突を行う短い各バースト中を除き、RFバイアス電力をエッチプロセスレシピと適合する低レベルのままにする。この構想は図8Aから8Hに図示されており、コンタクト開口部のエッチングの進行を表しているエッチプロファイルの時系列での連続図である。図8Aから8Hにおいて、高エネルギーアルゴンイオン衝突に既に曝露された導電層の一部のみを斜線で表し、斜線でない部分は先行のイオン衝突バーストより後に形成された、つまりまだイオン衝突に曝露されていない導電層130の新しい部分を表している。図8A、8C、8E、8Gにおいて、側壁100aの新しい部位及び高分子膜130の新しい部位(斜線なし)は連続バーストの合間に形成されているため、まだ高バイアス電力に曝露されていない。図8B、8D、8F、8Hにおいて、高RFバイアス電力(例えば、6kW)の次のバーストの間、導電層130のまだ曝露されていない(斜線なし)部分を高バイアス電圧の短いバーストと高エネルギーアルゴンイオン衝突に曝露し、その構造をより導電性の高いものに変化させる。この変化は図において層130の斜線で示されている。時間の経過に伴ってウェハに印加されるRFバイアス電力の対応するパターンは図9に図示されており、短い周期的なバーストを除いて、RFバイアス電力がエッチプロセスレシピで指示の公称電力レベル(例えば、3キロワット又は500ワットから4キロワットの範囲)に留まることを図示している。バーストの間は電力を一時的に高レベル(例えば、6キロワット)に上昇させる。一実施形態においてはRF電力レベルを図9に図示されるようにパルス状のバーストとするが、アルゴンガス流量は一定である。フッ化炭素又はフッ化炭化水素処理ガスを公称エッチ中に使用し、アルゴンはアルゴンバースト中にのみ使用する。各バーストの持続時間は高分子膜130の新たに露出した部分の導電性が必要なだけ上昇するに十分なものであり、10ミリ秒程度である(例えば、約0.25ミリ秒から1秒以上の範囲)。公称エッチ処理バイアス電力レベルとイオン衝突バースト電力レベルの差が大きければ大きいほど、バーストの持続時間を短くしてエッチ処理への影響を回避するべきである。例えば、公称エッチ処理バイアス電力レベル(例えば、500W)と6kWのイオン衝突バーストの場合は差が比較的大きく、この場合は各6kWバーストの持続時間は比較的短く、例えば約1m秒であるべきである。公称エッチ処理バイアス電力レベルがより高く(例えば、3kW)バーストバイアスレベルが6kWである場合、差は小さくなるため、例えばバースト持続時間は10ミリ秒から1秒程度と長くてもよい。バースト間の時間はまだ高エネルギーイオン衝突に曝露させていない高分子膜130の新しい(斜線なし)部分における電荷の大量蓄積を防止するに十分な短さであり、1秒(例えば、0.5秒から5秒)程度である。
一実施形態において、RFバイアス信号周波数は例えば1〜4MHzの範囲のLF周波数である。加えて、13.56MHzのRFバイアス電力成分もウェハに印加してもよい。チャンバ圧の範囲は慣用の処理よりも広く、10mTから1Torrの間のいずれに設定してもよい。湾曲及び屈曲問題は導電層130を通っての電荷の中和(又は均衡)によって軽減又は解消されることから、(チャンバ圧の上昇に負うところの)イオン軌道の垂直方向からの角偏向における多少の増大は許容される。プラズマの密度はRFプラズマソース電力を誘導コイル又はオーバーヘッド容量電極等であるRFソース電力アプリケータからチャンバに結合することで制御する。
上記の処理を実行するためのプラズマリアクタを図10に図示する。リアクタは円筒状の側壁205、天井部210、天井部210の開口部のオーバーヘッド電極215、及び床部220によって取り囲まれた真空チャンバ200を含む。絶縁リング212が電極215を天井部210から隔てている。真空ポンプ225は床部220の排気ポート227を介してチャンバ200に連結されている。オーバーヘッド電極215は内側及び外側内部マニホルド230、235を有するガス分配板であり、マニホルドは内側及び外側のガス注入口列240、245にガスを供給する。同軸RF供給構造250によりRFプラズマソース電力をオーバーヘッド電極215に結合し、供給構造250は薄い絶縁リング254を介して電極215に連結された内側中空円筒状導体252と天井部210で終端する外側中空円筒状導体256を含む。RFソース電力発生装置260は内側及び外側同軸導体252、256に同軸チューニングスタブ等の固定インピーダンス整合要素262を介して連結されている。ウェハ支持台座部270はカソード電極274を封入する絶縁層272を含み、電極はインピーダンス整合要素278を介してRFバイアス電力発生装置276に連結されている。処理ガス分配パネル280は処理ガスを内側及び外側マニホルド230、235にガス供給ライン282、284を介して供給する。様々なガス供給源がガス分配パネルに連結されており、フッ化炭素/フッ化炭化水素ガス供給源286、フッ化ケイ素ガス供給源287及びアルゴンガス供給源288を含む。ガス分配パネル280によりガス供給ライン282、284内での総ガス流量を構築する個々のガスの流量が決定される。一実施形態においては、パルス変調型パワーエンベロープ制御装置290により、バースト間の公称電力出力レベル(例えば、3kW)を維持しながら発生装置276による高電力バースト(例えば、6kW)の印加を可能とする。別の実施形態においては制御装置290により発生装置276の出力側でスイッチ292を制御する。第2発生装置277(破線で図示)により一定の公称(例えば、3キロワット)の出力を供給し、発生装置276によりスイッチ292によってゲートされる周期的な短い6kWのバーストを供給する。
周期的な高電力バーストのそれぞれの持続時間は、エッチプロセスレシピへの影響を最小限に抑えるに十分な短さであるが、図5の高分子膜130の導電性を上昇させるに十分な長さである。バースト間の時間は図8のコンタクト開口部側壁100a上に静電荷が大量に蓄積されるのを防止するのに十分な短さである。次のバーストまでの間、図8の高分子層130の新たに形成された部分はイオン衝突に曝露されておらず導電性が低いため、新しい部分は電荷の蓄積を受け易い。この蓄積は、ウェハでの高電力RFバイアスのバースト間の時間を最短に抑えることで最低限に抑えることが可能である(エッチプロファイルの湾曲又は屈曲を回避するために)。各高電力RFバイアスバーストの持続時間は、例えば約10ミリ秒であり、バースト間の時間は約1秒である。内側及び外側ガスマニホルド230、235の組み合わせへのフッ化炭素/フッ化炭化水素処理ガス流量は10〜100sccmの範囲である。アルゴン流量はフッ化炭素/フッ化炭化水素ガス流量の約2〜7倍である。フッ化ケイ素の流量はフッ化炭素/フッ化炭化水素処理ガスの流量の約0.5〜1.5倍である。公称バイアス電力レベルは約500〜4000ワットであり、RFバースト電力レベルは約5〜10キロワットの範囲にある。バイアス電力周波数は1〜4MHzの範囲である。チャンバ圧は例えば1mT〜10mTorrの範囲にある。一実施形態において、フッ化炭素処理ガスはCである。
図11は一実施形態による処理を示す。この処理において、フッ化炭素/フッ化炭化水素ガス(例えば、C、C、CH又はC等)はチャンバ内へと10〜100sccmの範囲の流量で導入される(ブロック400)。加えて、アルゴンガスをフッ化炭素/フッ化炭化水素ガス流量の2〜7倍の流量(例えば、300〜750sccm)で導入し(ブロック401)、フッ化ケイ素ガスをフッ化炭素/フッ化炭化水素ガスの流量の0.5〜1.5倍の流量(例えば、10〜100sccm)で導入する(ブロック402)。RFソース電力とRFバイアス電力を印加して、チャンバ内のプラズマに点火する。RFバイアス電力レベルはエッチプロセスレシピで指定の公称レベル、例えば500〜4000ワットに設定し、このレベルで許容範囲のエッチ選択性が得られ、フォトレジストのファセット形成又は損傷が最低限に抑えられる。図8の高分子膜130の導電性を最適化するために、バイアス電力を周期的に約6kWに短時間(例えば、10ミリ秒)だけ上昇させ、アルゴン流だけを既定の流量(例えば、1秒に1回)とする。これをコンタクト開口部が所望の深さにエッチングされるまで行う。
上記は本発明の実施形態についてのものであるが、本発明のその他及び更なる実施形態はその基本的な範囲から逸脱することなく創作することができ、その範囲は特許請求の範囲に基づいて定められる。
本発明の上述した実施形態が得られ、詳細に理解されるように、上記で簡単に要約された本発明のより具体的な説明が実施形態を参照して行なわれ、これらは添付図面に記載されている。しかしながら、添付図面は本発明の典型的な実施形態を図示するに過ぎず、本発明はその他の同等に効果的な実施形態も含み得るため、本発明の範囲を制限すると解釈されないことに留意すべきである。
コンタクトエッチ処理中の高アスペクト比コンタクト開口部における静電荷の蓄積効果を示す図である。 ウェハ表面上でのイオン軌道(実線)と電子軌道(破線)の角速度分布を表すグラフである。 イオンエネルギー分布のグラフである。 図1で図示の電荷の蓄積の結果得られた高アスペクト比のコンタクト開口部のエッチプロファイルを示す図である。 導電膜が高アスペクト比開口部の側壁を被覆している実施形態の概念を示す図である。 図5に図示のタイプのプラズマエッチ処理で得られた最終エッチプロファイルを示す図である。 部分導電性高分子膜における導電性の関数としての放電時間を示す図である。 一実施形態によるプラズマエッチ処理で得られたエッチプロファイルの時系列での連続図である。 図8の処理における時間の関数としての印加RFバイアス電力レベルを示す図である。 図5のエッチ処理を実行するために構成されたプラズマリアクタを示す図である。 一実施形態による処理に対応するフロー図である。
円滑な理解のために、可能な限り、図面で共通する同一要素は同一参照番号を用いて表した。図面はすべて概略的であり、実寸ではない。

Claims (15)

  1. 基板上の誘電体層に高アスペクト比のコンタクト開口部を形成するためのプラズマイオンエッチングの実行方法であり、
    誘電体層を覆うフォトレジスト層にコンタクト開口部の位置と直径を規定する開口部を形成し、
    基板をプラズマリアクタチャンバ内に載置し、
    チャンバ内にフッ化炭素又はフッ化炭化水素ガス、及びアルゴンガスを導入し、
    所望のプラズマエッチ処理に対応する公称RFバイアス電力レベルのRFバイアス電力を前記基板に継続的に結合しながら、RF電力を前記チャンバへ結合することによって、前記誘電体層にコンタクト開口部を、高分子膜を前記コンタクト開口部の側壁に堆積しながら前記開口部と整合させてエッチングし、
    前記公称RFバイアス電力レベルの1.5倍を超え、バースト間の時間よりも短い持続時間の周期的なバーストによって、高RFバイアス電力レベルのRFバイアス電力を前記基板に結合することを含む、前記高分子膜をアルゴンイオンとイオン衝突させることによって、前記側壁上の前記高分子膜の導電性を上昇させることを含む方法。
  2. 前記公称RFバイアス電力レベルが所望のエッチプロファイルに対応し、前記高RFバイアス電力レベルが前記高分子膜の分子構造をより導電性の高い構造へと変化させるに十分である請求項1記載の方法。
  3. 前記公称RFバイアス電力レベルが500ワットから4キロワットであり、前記高RFバイアス電力レベルがキロワットから10キロワットである請求項2記載の方法。
  4. 前記高RFバイアス電力レベルの前記バーストの持続時間がミリ秒から1秒であり、バースト間の時間が1秒以上である請求項3記載の方法。
  5. 前記高RFバイアス電力レベルが前記高分子膜で少なくとも5ジーメンス/mの導電性を生じさせるに十分なものである請求項1記載の方法。
  6. 前記高RFバイアス電力レベルが前記高分子膜で10−11秒以下の1/e放電時間を達成するに十分なものである請求項1記載の方法。
  7. 基板上の誘電体層に高アスペクト比のコンタクト開口部を形成するためのプラズマイオンエッチングの実行方法であり、
    公称電力レベルのエッチRFバイアス電力を基板に継続的に印加しながら、第1ガス流量でフッ化炭素又はフッ化炭化水素ガスを、前記基板を納めたチャンバ内に導入し、RF電力を前記チャンバに結合することによって、基板上の誘電体層にコンタクト開口部を、高分子膜を前記コンタクト開口部の側壁に堆積しながらエッチングし、
    前記側壁上の前記高分子膜の導電性を前記高分子膜のイオン衝突により上昇させることを含み、前記高分子膜の前記イオン衝突がアルゴンガスを第2ガス流量でチャンバに導入し、公称電力レベルのエッチRFバイアス電力よりも高い少なくとも1キロワットバースト間の時間よりも短い持続時間の周期的なバーストによって、イオン衝突RFバイアス電力を基板に印加することを含む方法。
  8. 前記イオン衝突RFバイアス電力が前記公称電力レベルの少なくとも1.5倍の電力レベルである請求項7記載の方法。
  9. チャンバに半導体元素を含有する処理ガスを第3ガス流量で導入することを更に含む請求項7記載の方法。
  10. 半導体元素を含有する前記処理ガスが半導体元素のフッ化物を含む請求項9記載の方法。
  11. 前記第3ガス流量が前記第1ガス流量の0.5〜1.5倍である請求項9記載の方法。
  12. 前記第2ガス流量が前記第1ガス流量の2〜7倍の範囲である請求項7記載の方法。
  13. 前記バーストの持続時間がバースト間の時間未満である請求項8記載の方法。
  14. 前記エッチRFバイアス電力の継続的な印加が前記エッチRFバイアス電力を第1RF発生装置から供給することを含み、
    前記イオン衝突RFバイアス電力の印加が前記イオン衝突RFバイアス電力をゲートスイッチを介して第2RF発生装置から供給することを含む請求項7記載の方法。
  15. 前記フッ化炭素/フッ化炭化水素ガスがC、C、CH又はCの少なくとも1つを含む請求項7記載の方法。
JP2008240357A 2007-09-25 2008-09-19 開口部側壁に形成した高分子の処理により高アスペクト比の開口部におけるエッチプロファイルの屈曲と湾曲を防止する方法 Expired - Fee Related JP5553496B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/861,032 US7846846B2 (en) 2007-09-25 2007-09-25 Method of preventing etch profile bending and bowing in high aspect ratio openings by treating a polymer formed on the opening sidewalls
US11/861,032 2007-09-25

Publications (3)

Publication Number Publication Date
JP2009124109A JP2009124109A (ja) 2009-06-04
JP2009124109A5 JP2009124109A5 (ja) 2012-12-20
JP5553496B2 true JP5553496B2 (ja) 2014-07-16

Family

ID=39952217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240357A Expired - Fee Related JP5553496B2 (ja) 2007-09-25 2008-09-19 開口部側壁に形成した高分子の処理により高アスペクト比の開口部におけるエッチプロファイルの屈曲と湾曲を防止する方法

Country Status (6)

Country Link
US (1) US7846846B2 (ja)
EP (1) EP2043139A2 (ja)
JP (1) JP5553496B2 (ja)
KR (1) KR101019930B1 (ja)
CN (1) CN101447425B (ja)
TW (1) TWI367527B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330805A1 (en) * 2007-11-02 2010-12-30 Kenny Linh Doan Methods for forming high aspect ratio features on a substrate
KR101575190B1 (ko) * 2010-02-12 2015-12-08 삼성전자주식회사 윗면과 바닥면의 시디차가 없는 깊은 트렌치를 갖는 반도체 및 제조방법
CN101866848B (zh) * 2010-04-29 2012-05-30 中微半导体设备(上海)有限公司 一种刻蚀有机物层的等离子刻蚀方法
US9165785B2 (en) 2013-03-29 2015-10-20 Tokyo Electron Limited Reducing bowing bias in etching an oxide layer
US9275869B2 (en) * 2013-08-02 2016-03-01 Lam Research Corporation Fast-gas switching for etching
KR102203460B1 (ko) 2014-07-11 2021-01-18 삼성전자주식회사 나노구조 반도체 발광소자의 제조방법
KR20160119329A (ko) 2015-04-02 2016-10-13 삼성전자주식회사 반도체 소자의 미세패턴 형성방법
KR102345979B1 (ko) 2015-04-30 2021-12-31 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN111063655A (zh) * 2018-10-17 2020-04-24 无锡华润上华科技有限公司 一种半导体器件的制造方法
CN111785604A (zh) * 2019-04-04 2020-10-16 中微半导体设备(上海)股份有限公司 气体喷淋头、制作方法及包括气体喷淋头的等离子体装置
US20220362803A1 (en) * 2019-10-18 2022-11-17 Lam Research Corporation SELECTIVE ATTACHMENT TO ENHANCE SiO2:SiNx ETCH SELECTIVITY
US11437230B2 (en) 2020-04-06 2022-09-06 Applied Materials, Inc. Amorphous carbon multilayer coating with directional protection
US20220223431A1 (en) * 2020-12-28 2022-07-14 American Air Liquide, Inc. High conductive passivation layers and method of forming the same during high aspect ratio plasma etching

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9616225D0 (en) * 1996-08-01 1996-09-11 Surface Tech Sys Ltd Method of surface treatment of semiconductor substrates
US6187685B1 (en) * 1997-08-01 2001-02-13 Surface Technology Systems Limited Method and apparatus for etching a substrate
US6228775B1 (en) 1998-02-24 2001-05-08 Micron Technology, Inc. Plasma etching method using low ionization potential gas
JP4153606B2 (ja) * 1998-10-22 2008-09-24 東京エレクトロン株式会社 プラズマエッチング方法およびプラズマエッチング装置
EP1131847B1 (en) * 1998-11-04 2010-02-17 Surface Technology Systems Plc A method for etching a substrate
JP2002110647A (ja) 2000-09-29 2002-04-12 Hitachi Ltd 半導体集積回路装置の製造方法
JP5174319B2 (ja) * 2005-11-11 2013-04-03 株式会社日立ハイテクノロジーズ エッチング処理装置およびエッチング処理方法
US7713430B2 (en) * 2006-02-23 2010-05-11 Micron Technology, Inc. Using positive DC offset of bias RF to neutralize charge build-up of etch features
KR100763514B1 (ko) 2006-06-30 2007-10-04 삼성전자주식회사 반도체 장치의 개구 형성 방법 및 이를 이용한 반도체 장치제조 방법
US7682986B2 (en) * 2007-02-05 2010-03-23 Lam Research Corporation Ultra-high aspect ratio dielectric etch
US20080203056A1 (en) * 2007-02-26 2008-08-28 Judy Wang Methods for etching high aspect ratio features

Also Published As

Publication number Publication date
KR20090031822A (ko) 2009-03-30
JP2009124109A (ja) 2009-06-04
TW200924050A (en) 2009-06-01
EP2043139A2 (en) 2009-04-01
CN101447425A (zh) 2009-06-03
KR101019930B1 (ko) 2011-03-08
US20090081876A1 (en) 2009-03-26
US7846846B2 (en) 2010-12-07
CN101447425B (zh) 2011-06-01
TWI367527B (en) 2012-07-01

Similar Documents

Publication Publication Date Title
JP5553496B2 (ja) 開口部側壁に形成した高分子の処理により高アスペクト比の開口部におけるエッチプロファイルの屈曲と湾曲を防止する方法
US11670486B2 (en) Pulsed plasma chamber in dual chamber configuration
KR101144021B1 (ko) 기판을 최적화하기 위해 플라즈마 프로세스들 사이에서 순차 교번하는 방법 및 장치
US10181412B2 (en) Negative ion control for dielectric etch
JP3386287B2 (ja) プラズマエッチング装置
US7138067B2 (en) Methods and apparatus for tuning a set of plasma processing steps
US20010008805A1 (en) Process for producing semiconductor device
US8545671B2 (en) Plasma processing method and plasma processing apparatus
US6217704B1 (en) Plasma processing apparatus
JP3533105B2 (ja) 半導体装置の製造方法と製造装置
JP2015119099A (ja) 半導体装置の製造方法
CN112133630A (zh) 处理具有掩模的被处理体的方法
CN105489485A (zh) 处理被处理体的方法
WO2003030240A2 (en) Etching method and apparatus
WO2009070562A1 (en) Plasma control using dual cathode frequency mixing
US20130203260A1 (en) Etching method and etching apparatus
US6815369B2 (en) Method for monitoring deposition reaction during processing the surface of a semiconductor substrate
WO2008049024A1 (en) Methods and apparatus for tuning a set of plasma processing steps
JPH08255782A (ja) プラズマ表面処理装置
KR102442816B1 (ko) 비-이극성 전자 플라즈마에 의해 이방성 및 모노-에너제틱 뉴트럴 빔을 제공하기 위한 방법 및 장치
JPH0950984A (ja) 表面処理方法
US20220139719A1 (en) Etching method and plasma processing apparatus
JP2003031555A (ja) 表面処理装置
US20230377853A1 (en) Plasma systems and processes with pulsed magnetic field
JP2011211135A (ja) プラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130712

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130718

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130816

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130913

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140527

R150 Certificate of patent or registration of utility model

Ref document number: 5553496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees