JP5552913B2 - Surface-coated cutting tool with excellent fracture resistance due to hard coating layer - Google Patents

Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Download PDF

Info

Publication number
JP5552913B2
JP5552913B2 JP2010138409A JP2010138409A JP5552913B2 JP 5552913 B2 JP5552913 B2 JP 5552913B2 JP 2010138409 A JP2010138409 A JP 2010138409A JP 2010138409 A JP2010138409 A JP 2010138409A JP 5552913 B2 JP5552913 B2 JP 5552913B2
Authority
JP
Japan
Prior art keywords
crsin
inclination angle
coating layer
hard coating
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010138409A
Other languages
Japanese (ja)
Other versions
JP2011224766A (en
Inventor
耕一 田中
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010138409A priority Critical patent/JP5552913B2/en
Publication of JP2011224766A publication Critical patent/JP2011224766A/en
Application granted granted Critical
Publication of JP5552913B2 publication Critical patent/JP5552913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、鋼や鋳鉄などの高速断続重切削加工という厳しい切削条件下で用いた場合でも、硬質被覆層がすぐれた耐欠損性を示し、切削工具の長寿命化が可能となる表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is a surface-coated cutting tool that has excellent chipping resistance and a long tool life even when used under severe cutting conditions such as high-speed intermittent heavy cutting of steel and cast iron. The present invention relates to a tool (hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.

例えば、特許文献1に示されるように、切削工具基体にCrSi系膜とTiAl系膜を被覆し、TiAl系膜とCrSi系膜の夫々の(111)面のX線回折測定から算出される格子定数の比の値を0.98乃至1.02とすることで、CrSi系膜とTiAl系膜の原子間での格子不整合が低減し、その結果、著しい密着性の向上を示す被覆工具が知られている。
また、特許文献2に示されるように、SiとTiとAlとCrとNとを含有し、立方晶と六方晶とからなり、X線回折測定における立方晶の(111)面,(200)面のX線ピーク強度をそれぞれIc(111),Ic(200)と表し、六方晶の(100)面,(002)面のX線ピーク強度をそれぞれIh(100),Ih(002)と表したとき、X線ピーク強度比:〔Ih(100)+Ih(002)〕/〔Ih(100)+Ih(002)+Ic(111)+Ic(200)〕が0.4〜0.7であるSi含有複合窒化物膜を基体表面に被覆した被覆工具が知られている。
さらに、特許文献3に示されるように、WC基超硬合金焼結体で構成された工具本体の表面に、TiAlN系の硬質被覆層を蒸着形成してなる被覆工具が知られており、この被覆工具においては、その特徴の一つとして、硬質被覆層を柱状結晶で構成するとともに、硬質被覆層の表面側に位置する結晶粒の結晶幅を、硬質被覆層の工具基体側に位置する結晶粒の結晶幅より大きい二つの領域で構成することにより、被覆工具の耐欠損性、耐摩耗性を向上させている。
For example, as shown in Patent Document 1, a cutting tool base is coated with a CrSi-based film and a TiAl-based film, and is calculated from X-ray diffraction measurement of each (111) plane of the TiAl-based film and the CrSi-based film. By setting the value of the constant ratio to 0.98 to 1.02, lattice mismatch between the atoms of the CrSi-based film and the TiAl-based film is reduced, and as a result, a coated tool that exhibits a significant improvement in adhesion can be obtained. Are known.
Further, as shown in Patent Document 2, it contains Si, Ti, Al, Cr, and N, and is composed of cubic and hexagonal crystals. The cubic (111) plane in the X-ray diffraction measurement, (200) The X-ray peak intensities of the planes are expressed as Ic (111) and Ic (200), respectively, and the X-ray peak intensities of the hexagonal (100) plane and (002) plane are expressed as Ih (100) and Ih (002), respectively. X-ray peak intensity ratio: [Ih (100) + Ih (002)] / [Ih (100) + Ih (002) + Ic (111) + Ic (200)] is 0.4 to 0.7 A coated tool in which a substrate surface is coated with a composite nitride film is known.
Furthermore, as shown in Patent Document 3, there is known a coated tool formed by vapor-depositing a TiAlN-based hard coating layer on the surface of a tool body composed of a WC-based cemented carbide sintered body. One feature of the coated tool is that the hard coating layer is composed of columnar crystals, and the crystal width of the crystal grains located on the surface side of the hard coating layer is the crystal located on the tool base side of the hard coating layer. By comprising two regions larger than the crystal width of the grains, the chipping resistance and wear resistance of the coated tool are improved.

特開2002−18606号公報Japanese Patent Laid-Open No. 2002-18606 特開2007−254785号公報JP 2007-254785 A 特開2008−296290号公報JP 2008-296290 A

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の重切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃に対して衝撃的かつ断続的な高負荷が作用する乾式断続重切削や、連続的な高負荷がかかる乾式連続高送り切削に用いた場合には、層中へのクラック進展が避けられず表面被覆層の剥離・欠落が生じるため、切刃部に欠損を生じやすく、これが原因で、比較的短時間で使用寿命に至るのが現状である。
すなわち、前記特許文献1に示されるTi、Al、Cr、Siの複合窒化物のように皮膜の界面接合に着目した技術においては、優れた密着性および耐熱クラック性を発揮し、湿式切削においては優れた工具寿命を発揮するものの乾式断続切削においては機械的クラック進展を避けられず、比較的短時間で寿命に至るという欠点があった。
また、前記特許文献2に示されるTi、Al、Cr、Siの複合窒化物のように結晶構造に着目した技術においては、優れた耐摩耗性・耐チッピング性を発揮し通常の断続切削加工では優れた性能を発揮するものの、高速断続切削のように切刃に高い衝撃負荷がかかる切削加工条件においては、クラックの進展を避けられず、比較的短時間で寿命に至るという欠点があった。
さらに、前記特許文献3のように、柱状晶によって構成される硬質皮膜は、粒子同士の結合力が弱く、結晶粒の欠落などが原因で高速切削領域には上限があった。
In recent years, the FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting, and with this, high-efficiency heavy cutting such as high feed and high cutting However, in the above-mentioned conventional coated tools, there are no particular problems when various steels and cast irons are machined under normal conditions, but they are shocking and intermittent to the cutting edge. When it is used for dry intermittent heavy cutting where a high load is applied and dry continuous high feed cutting where a continuous high load is applied, crack growth into the layer is inevitable and the surface coating layer is peeled or missing For this reason, the cutting edge is likely to be damaged, and due to this, the service life is reached in a relatively short time.
That is, in the technology that focuses on the interfacial bonding of the film, such as the composite nitride of Ti, Al, Cr, and Si shown in Patent Document 1, it exhibits excellent adhesion and heat crack resistance, and in wet cutting Although exhibiting an excellent tool life, in the dry interrupted cutting, there is a disadvantage that the mechanical crack progress is unavoidable and the life is reached in a relatively short time.
Moreover, in the technology that focuses on the crystal structure like the composite nitride of Ti, Al, Cr, and Si shown in Patent Document 2, it exhibits excellent wear resistance and chipping resistance, and in normal interrupted cutting processing Although exhibiting excellent performance, under the cutting conditions in which a high impact load is applied to the cutting edge, such as high-speed intermittent cutting, there is a drawback that the progress of cracks cannot be avoided and the life is reached in a relatively short time.
Further, as in Patent Document 3, the hard film composed of columnar crystals has a weak bonding force between particles, and there is an upper limit in the high-speed cutting region due to lack of crystal grains.

そこで、本発明者らは、前述のような観点から、被覆工具の耐欠損性を高め、使用寿命の延命化を図るべく、CrSiN層からなる硬質被覆層の結晶形態に着目し、鋭意研究を行った結果、次のような知見を得た。   In view of the above, the inventors of the present invention focused on the crystal form of the hard coating layer composed of the CrSiN layer in order to increase the fracture resistance of the coated tool and to prolong the service life. As a result, the following findings were obtained.

従来の被覆工具のCrSiN層からなる硬質被覆層は、例えば、図2に示される物理蒸着装置の1種であるスパッタリング(SP)装置に上記のWC基超硬合金焼結体からなる工具基体を装着し、例えば、
装置内加熱温度:300〜500℃、
工具基体に印加する直流バイアス電圧:−30〜−50V、
カソード電極:CrSi合金、
スパッタリング電力:3〜6kW、
装置内ガス流量:窒素(N)ガス+アルゴン(Ar)ガス、
装置内ガス圧力:0.3〜1.5Pa、
の条件で、CrSiN層(以下、従来CrSiN層という)を形成することにより製造されている。
A hard coating layer made of a CrSiN layer of a conventional coated tool is obtained by, for example, applying a tool base made of the above WC-based cemented carbide sintered body to a sputtering (SP) apparatus which is one type of physical vapor deposition apparatus shown in FIG. Wearing, for example,
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the tool base: -30 to -50V,
Cathode electrode: CrSi alloy,
Sputtering power: 3-6 kW,
Gas flow in the apparatus: nitrogen (N 2 ) gas + argon (Ar) gas,
In-apparatus gas pressure: 0.3 to 1.5 Pa,
In this condition, a CrSiN layer (hereinafter referred to as a conventional CrSiN layer) is formed.

しかし、本発明者らは、CrSiN層の形成を、例えば、図1に概略説明図で示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置を用いて、装置内に上記の工具基体を装着し、例えば、
工具基体温度:350〜400 ℃、
蒸発源:金属Crおよび金属Si
プラズマガン放電電力(金属Crに対して):8〜12kW
プラズマガン放電電力(金属Siに対して):8〜14kW
反応ガス流量:窒素(N)ガス 100〜120sccm、
放電ガス:アルゴン(Ar)ガス 40〜60sccm、
工具基体に印加する直流バイアス電圧: 0〜−20V
という条件下で蒸着を行い、かつ、蒸着初期は、バイアス電圧を0Vにして工具基体側(領域I)のCrSiN層を蒸着し、蒸着後期には、バイアス電圧を−5〜−20Vに切り換えて硬質被覆層の表面側(領域II)のCrSiN層の蒸着を行うと、この結果形成された領域Iと領域IIからなるCrSiN層(以下、改質CrSiN層という)は、前記従来CrSiN層に比して、切刃に対して衝撃的かつ断続的な高負荷が作用する乾式断続重切削や、連続的な高負荷がかかる乾式連続高送り切削において、すぐれた耐摩耗性と耐欠損性を示すことを見出したのである。
However, the present inventors have formed a CrSiN layer by using, for example, an ion plating apparatus using a pressure gradient type Ar plasma gun, which is a kind of physical vapor deposition apparatus schematically shown in FIG. The above tool base is mounted in the apparatus, for example,
Tool substrate temperature: 350 to 400 ° C.
Evaporation source: Metal Cr and Metal Si
Plasma gun discharge power (relative to metal Cr): 8-12 kW
Plasma gun discharge power (relative to metal Si): 8-14 kW
Reaction gas flow rate: nitrogen (N 2) gas 100~120Sccm,
Discharge gas: Argon (Ar) gas 40-60 sccm,
DC bias voltage applied to tool base: 0 to -20V
In the initial stage of vapor deposition, the bias voltage is set to 0V, and the CrSiN layer on the tool base side (region I) is deposited. In the latter stage of vapor deposition, the bias voltage is switched to -5 to -20V. When the CrSiN layer on the surface side (region II) of the hard coating layer is deposited, the resulting CrSiN layer composed of region I and region II (hereinafter referred to as a modified CrSiN layer) is compared with the conventional CrSiN layer. Excellent wear resistance and fracture resistance in dry intermittent heavy cutting where impact and intermittent high load are applied to the cutting edge and dry continuous high feed cutting where continuous high load is applied I found out.

この発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金焼結体からなる工具基体の表面に、0.5〜2μmの平均層厚を有するCrSiN膜からなる硬質被覆層を物理蒸着した表面被覆切削工具において、
(a)硬質被覆層の、工具基体とCrSiN膜の界面から0.1μmの高さ位置にあるCrSiN結晶粒の粒径幅をWΙ、CrSiN膜の最表面から0.1μmの深さ位置にあるCrSiN結晶粒の粒径幅をWΙΙとしたとき、
10nm<WΙ<50nm、かつ、5<WΙΙ/WΙ<100
の関係を満たし、
(b)さらに、電子線後方散乱回折装置を用いて、硬質被覆層断面のCrSiN結晶粒の結晶方位を解析し、測定された二次元領域を工具基体表面に対して略垂直な方向に100nm毎のピッチで縦区分に区切り、さらに、それぞれの縦区分内を工具基体とCrSiN膜の界面からCrSiN膜の成長方向に100nm毎のピッチで区切り、100nm×100nmに区分けされたそれぞれの領域(セル)に存在する各測定点の、
<111>結晶方位とCrSiN膜測定断面の法線方向がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下であり、
<111>結晶方位とCrSiN膜測定断面の法線と直交する方向がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下であり、
<100>結晶方位とCrSiN膜測定断面の法線がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下
である100nm幅の縦区分が、測定された全面積のうちの60%以上を占有することを特徴とする表面被覆切削工具。
(2) 前記CrSiN膜の組成をCr1−xSiNで表した時に、Crに対するSiの含有割合xが0.2≦x≦0.6を満たすことを特徴とする(1)に記載の表面被覆切削工具。」
に特徴を有するものである。

This invention was made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer made of a CrSiN film having an average layer thickness of 0.5 to 2 μm is physically vapor-deposited on the surface of a tool base made of a tungsten carbide-based cemented carbide sintered body,
(A) The width of CrSiN crystal grains at a height of 0.1 μm from the interface between the tool base and the CrSiN film of the hard coating layer is W Ι , and the depth of 0.1 μm from the outermost surface of the CrSiN film. When the grain width of a certain CrSiN crystal grain is W 2 ,
10nm <W Ι <50nm and,, 5 <W ΙΙ / W Ι <100
Meet the relationship,
(B) Further, by using an electron beam backscatter diffraction apparatus, the crystal orientation of the CrSiN crystal grains in the hard coating layer cross section is analyzed, and the measured two-dimensional region is measured every 100 nm in a direction substantially perpendicular to the tool substrate surface. Each of the regions (cells) divided into 100 nm × 100 nm by dividing each vertical section into 100 nm × 100 nm from the interface between the tool base and the CrSiN film in the growth direction of the CrSiN film. Of each measuring point present in
The average inclination angle of the inclination angle formed by the <111> crystal orientation and the normal direction of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle is 15 degrees among the cells existing in the same vertical section. And
The average inclination angle of the inclination angle formed by the <111> crystal orientation and the direction orthogonal to the normal line of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle among the cells existing in the same vertical section Is 15 degrees or less,
The average inclination angle of the inclination angle formed by the <100> crystal orientation and the normal line of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle among cells existing in the same vertical section is 15 degrees or less. A surface-coated cutting tool characterized in that the vertical section of 100 nm width occupies 60% or more of the total area measured.
(2) When the composition of the CrSiN film is expressed by Cr 1-x Si x N, the Si content ratio x with respect to Cr satisfies 0.2 ≦ x ≦ 0.6. Surface coated cutting tool. "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

既に述べたように、この発明は、例えば、図1に概略説明図で示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置を用いて、装置内にWC基超硬合金焼結体からなる工具基体を装着し、例えば、
工具基体温度:350〜400 ℃、
蒸発源:金属Crおよび金属Si
プラズマガン放電電力(金属Crに対して):8〜12kW
プラズマガン放電電力(金属Siに対して):8〜14kW
反応ガス流量:窒素(N)ガス 100〜120sccm、
放電ガス:アルゴン(Ar)ガス 40〜60sccm、
工具基体に印加する直流バイアス電圧: 0〜−20V
という条件下で蒸着を行い、かつ、蒸着初期は、バイアス電圧を0Vにして工具基体側(領域I)のCrSiN層を蒸着し、蒸着後期には、バイアス電圧を−5〜−20Vに切り換えて硬質被覆層の表面側(領域II)のCrSiN層の蒸着を行うことによって、領域Iと領域IIからなる改質CrSiN層を形成するものである。
なお、従来CrSiN層の構成成分であるCrが高温強度を向上させ、また、Siが耐熱性を向上させ、Nが層の強度を向上させる作用があることはすでによく知られているが、これに加えて、この発明の改質CrSiN層は高速断続重切削加工条件という厳しい使用条件下でも、すぐれた耐欠損性を示す。
そして、その理由は以下に述べるように、改質CrSiN層の特異な結晶粒形態と強い関連性を有する。
As described above, the present invention uses, for example, an ion plating apparatus using a pressure gradient type Ar plasma gun shown in a schematic explanatory diagram in FIG. A tool base is mounted, for example,
Tool substrate temperature: 350 to 400 ° C.
Evaporation source: Metal Cr and Metal Si
Plasma gun discharge power (relative to metal Cr): 8-12 kW
Plasma gun discharge power (relative to metal Si): 8-14 kW
Reaction gas flow rate: nitrogen (N 2) gas 100~120Sccm,
Discharge gas: Argon (Ar) gas 40-60 sccm,
DC bias voltage applied to tool base: 0 to -20V
In the initial stage of vapor deposition, the bias voltage is set to 0V, and the CrSiN layer on the tool base side (region I) is deposited. In the latter stage of vapor deposition, the bias voltage is switched to -5 to -20V. A modified CrSiN layer composed of regions I and II is formed by vapor-depositing a CrSiN layer on the surface side (region II) of the hard coating layer.
It is well known that Cr, which is a constituent component of the conventional CrSiN layer, improves the high-temperature strength, Si improves the heat resistance, and N improves the strength of the layer. In addition, the modified CrSiN layer of the present invention exhibits excellent fracture resistance even under severe use conditions such as high-speed intermittent heavy cutting conditions.
The reason is strongly related to the unique crystal grain shape of the modified CrSiN layer as described below.

まず、前記蒸着で形成された改質CrSiN層について、膜の成長方向に対して垂直平面内におけるCrSiN結晶粒の粒径幅の変化を観察したところ、図3(a)に、層厚方向縦断面模式図を、また、図3(b)には、イ−イ面に沿った斜視断面模式図を示すように、領域I(工具基体側の硬質被覆層)においては、粒径幅が10〜50nmのCrSiN結晶粒が観察され、一方、領域II(硬質被覆層の表面側)においては、領域Iの粒径幅より大きな粒径幅を有するCrSiN結晶粒が観察された。
さらに、集束イオンビーム加工装置を用いて、例えば、図3(a)および図3(b)に示す模式図のイ−イ面に示すように薄片化した試料について、工具基体表面と硬質被覆層界面から垂直高さ換算で0.1μmの位置での粒径幅WΙおよび、硬質被覆層表面から垂直深さ換算で0.1μmの位置の粒径幅WΙΙを測定し、それらの値とWΙΙ/WΙの数値を測定したところ、WΙΙ/WΙは5〜100であることを確認した。
なお、この改質CrSiN層の平均層厚、領域Iと領域IIのCrSiN結晶粒の粒径幅、WΙ、WΙΙおよびWΙΙ/WΙの値は、特に、金属Crおよび金属Siに対するプラズマガン出力、工具基体である超硬合金焼結体のWCの粒径、前記蒸着条件の内の蒸着時間によって影響を受けるが、WCの平均粒径が0.2〜3μm、また、蒸着時間が62〜225minであれば、0.5〜2μmの平均層厚で、かつ、WΙΙ/WΙが5〜100の範囲の改質CrSiN層を形成することができる。
なお、ここでいう「粒径幅」とは、「前記高さ換算あるいは深さ換算で0.1μmとなる位置に工具基体表面と平行な線を引いた場合に、ひとつの粒子内を通る線分の長さの平均値」である。
First, with respect to the modified CrSiN layer formed by the vapor deposition, when the change in the grain width of the CrSiN crystal grains in the plane perpendicular to the film growth direction was observed, FIG. In the area I (hard coating layer on the tool base side), the particle size width is 10 as shown in the schematic view of the plane and in FIG. CrSiN crystal grains of ˜50 nm were observed, while CrSiN crystal grains having a grain size width larger than that of region I were observed in region II (the surface side of the hard coating layer).
Further, using the focused ion beam processing apparatus, the surface of the tool base and the hard coating layer are obtained for the thinned sample as shown, for example, in the Y plane of the schematic diagrams shown in FIGS. 3 (a) and 3 (b). grain radial width W from the interface at the location of 0.1μm in vertical height in terms Ι and measures the particle radial width W Iotaiota position 0.1μm vertical depth Convert hard coating layer surface, and their values measurement of the value of the W ΙΙ / W Ι, the W ΙΙ / W Ι was confirmed to be 5 to 100.
The average layer thickness of the reformed CrSiN layer, regions I and II of the CrSiN grains with diameter width, W iota, the value of W Iotaiota and W ΙΙ / W Ι is particularly plasma to metal Cr, and metal Si Although it is affected by the gun output, the WC particle size of the cemented carbide sintered body as the tool base, and the vapor deposition time among the vapor deposition conditions, the average particle size of WC is 0.2 to 3 μm, and the vapor deposition time is if 62~225Min, with an average layer thickness of 0.5 to 2 [mu] m, and, W ΙΙ / W Ι can form a modified CrSiN layer ranging from 5 to 100.
The term “particle size width” as used herein means “a line passing through one particle when a line parallel to the tool base surface is drawn at a position where the height or depth is 0.1 μm. The average length of minutes.

ついで、さらに、電子線後方散乱回折装置を用いて、硬質被覆層断面のCrSiN結晶粒の結晶方位を解析し、測定された二次元領域を垂直に100nm毎のピッチで縦区分に区切り、さらに、それぞれの縦区分内を工具基体とCrSiN膜の界面からCrSiN膜の成長方向に100nm毎のピッチで区切り、100nm×100nmに区分けされたそれぞれの領域(セル)に存在する各測定点の、
<111>結晶方位とCrSiN膜測定断面の法線方向がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下であり、
<111>結晶方位とCrSiN膜測定断面の法線と直交する方向がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下であり、
<100>結晶方位とCrSiN膜測定断面の法線がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下である100nm幅の縦区分が、測定された全面積のうちの60%以上を占有することが見出された。
Then, using a backscattering diffraction device for electron beams, the crystal orientation of the CrSiN crystal grains of the hard coating layer cross section is analyzed, and the measured two-dimensional region is vertically divided into vertical sections at a pitch of every 100 nm. Each vertical section is divided from the interface between the tool base and the CrSiN film in the growth direction of the CrSiN film at a pitch of every 100 nm, and each measurement point existing in each region (cell) divided into 100 nm × 100 nm,
The average inclination angle of the inclination angle formed by the <111> crystal orientation and the normal direction of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle is 15 degrees among the cells existing in the same vertical section. And
The average inclination angle of the inclination angle formed by the <111> crystal orientation and the direction orthogonal to the normal line of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle among the cells existing in the same vertical section Is 15 degrees or less,
The average inclination angle of the inclination angle formed by the <100> crystal orientation and the normal line of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle among cells existing in the same vertical section is 15 degrees or less. It has been found that a 100 nm wide longitudinal section occupies more than 60% of the total area measured.

前記改質CrSiN層の領域II(粗粒領域)では、すくい面側から生じる垂直方向へのクラック発生を抑制するとともに、直下の領域Iに存在する微細な結晶粒群の結晶方位と強く配向し、ずれが15度以下となる結晶方位を有することから、領域Iと領域IIの結晶界面で高い整合性が導入され、層界面の付着強度を高めるだけでなく、領域IIの粗大粒子を媒介として領域Iの微細粒同士の結合を高め、高い靭性を発揮させ耐欠損性を向上させる作用を有する。
また、領域Iでは、結晶粒界が多数導入されていることで、改質CrSiN層中での亀裂進展を分散させ、耐欠損性を向上させる作用を有する。
In the region II (coarse grain region) of the modified CrSiN layer, the generation of cracks in the vertical direction generated from the rake face side is suppressed, and the crystal orientation of the fine grain group existing in the region I immediately below is strongly oriented. Since the crystal orientation is such that the deviation is 15 degrees or less, high consistency is introduced at the crystal interface between the region I and the region II, and not only the adhesion strength at the layer interface is increased but also the coarse particles in the region II are used as mediators. It has the effect of enhancing the bonding between the fine grains in the region I, exhibiting high toughness and improving fracture resistance.
In the region I, since a large number of crystal grain boundaries are introduced, the crack propagation in the modified CrSiN layer is dispersed and the fracture resistance is improved.

前記改質CrSiN層について、領域IのCrSiN結晶粒の粒径幅が50nmを超えると、前記した亀裂の進展分散効果および領域IIの粗大粒欠落抑制効果が小さくなり、一方、領域IのCrSiN結晶粒の粒径幅が10nm未満では、CrSiN結晶粒自体の強度が維持されないため、領域IのCrSiN結晶粒の粒径幅は10〜50nmと定めた。
また、領域Iと領域IIのそれぞれの中間高さにおけるCrSiN結晶粒の粒径幅WΙ、WΙΙの比の値WΙΙ/WΙが5未満では、領域IIの粗大CrSiN結晶粒の大きさが十分でなく、領域Iの微細CrSiN結晶粒の結合を高める効果が得られず、一方、WΙΙ/WΙが100を超えると粒径幅が大きくなり結晶粒が粗大化しすぎて、剥離を生じやすくなることから、WΙΙ/WΙの値は、5〜100と定めた。
さらに、CrSiN膜の組成をCr1−xSiNで表した時に、Crに対するSiの含有割合xが0.2未満では、Siの含有割合が低く所望の耐熱性が得られないため好ましくなく、0.6を超えるとCrの含有割合が低く所望の高温強度が得られないため好ましくない。そこで、xの値は、0.2〜0.6と定めた。
In the modified CrSiN layer, when the grain width of the CrSiN crystal grains in the region I exceeds 50 nm, the effect of spreading and distributing cracks and the effect of suppressing the loss of coarse grains in the region II are reduced, while the CrSiN crystal in the region I is reduced. If the grain size width of the grains is less than 10 nm, the strength of the CrSiN crystal grains themselves is not maintained, so the grain width of the CrSiN crystal grains in the region I is determined to be 10 to 50 nm.
Further, regions I and each of definitive to an intermediate height CrSiN grains with diameter width W of II iota, the ratio of the values W ΙΙ / W Ι is less than 5 W Iotaiota, coarse CrSiN grain region II size is not sufficient, not to obtain the effect of enhancing the binding of the fine CrSiN grain region I, whereas, W ΙΙ / W Ι is too greater than the crystal grains are coarsened particle diameter width is increased to 100, the release since the easily occur, the value of W ΙΙ / W Ι was defined as 5 to 100.
Further, when the composition of the CrSiN film is expressed by Cr 1-x Si x N, if the Si content ratio x with respect to Cr is less than 0.2, the Si content ratio is low and the desired heat resistance cannot be obtained. If it exceeds 0.6, the Cr content is low and the desired high-temperature strength cannot be obtained. Therefore, the value of x is set to 0.2 to 0.6.

また、本発明の改質CrSiN層は、工具基体表面から硬質被覆層の表面にまで、成長方向に、結晶方位のずれが15度以下である縦区分の占有面積が60%以上であることから、既に述べたように、領域IIの粗大粒子と領域Iの微細粒子の界面において高い結合力を発揮し、さらに、領域IIの粗大粒子を介して領域Iの微細結晶粒が高い靭性を発揮するのである。   Further, the modified CrSiN layer of the present invention has an occupied area of 60% or more in the vertical section in which the crystal orientation deviation is 15 degrees or less in the growth direction from the surface of the tool base to the surface of the hard coating layer. As described above, high bonding force is exhibited at the interface between the coarse particles in region II and the fine particles in region I, and the fine crystal grains in region I exhibit high toughness through the coarse particles in region II. It is.

本発明の被覆工具は、改質CrSiN層からなる硬質被覆層が、CrSiN結晶粒の粒径幅が小さい領域Iと、粒径幅がこれより大きい領域IIとからなり、かつ、領域Iの微細粒子と領域IIの粗大粒子の結晶方位のずれが15度以下となる縦区分の面積割合が高いため、切刃に対して衝撃的・断続的高負荷が作用する乾式断続重切削条件や、連続的な高負荷がかかる乾式連続高送り切削条件においても、すぐれた高温強度に加えてすぐれた耐欠損性と靭性を示し、すぐれた工具特性を発揮し、工具寿命の延命化に寄与するものである。   In the coated tool of the present invention, the hard coating layer composed of the modified CrSiN layer is composed of a region I in which the grain size width of CrSiN crystal grains is small and a region II in which the grain size width is larger than this, and the fineness of the region I Because the area ratio of the vertical section where the deviation of the crystal orientation of the particles and the coarse particles in the region II is 15 degrees or less is high, the dry interrupted heavy cutting conditions in which impact / intermittent high load acts on the cutting blade, continuous Even under dry continuous high-feed cutting conditions where high loads are applied, it exhibits excellent fracture resistance and toughness in addition to excellent high-temperature strength, exhibits excellent tool characteristics, and contributes to the extension of tool life. is there.

本発明の表面被覆切削工具の硬質被覆層(改質CrSiN層)を蒸着形成するため圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the ion plating apparatus using the pressure gradient type Ar plasma gun in order to vapor-deposit and form the hard coating layer (modified CrSiN layer) of the surface coating cutting tool of this invention. 従来の表面被覆切削工具の硬質被覆層(従来CrSiN層)を蒸着形成するためスパッタリング(SP)装置の概略図を示す。The schematic of a sputtering (SP) apparatus in order to vapor-deposit and form the hard coating layer (conventional CrSiN layer) of the conventional surface coating cutting tool is shown. 本発明の表面被覆切削工具の改質CrSiN層からなる硬質被覆層の模式図を示し、(a)は、層厚方向縦断面模式図を、また、(b)は、イ−イ面に沿った斜視断面模式図を示すThe schematic diagram of the hard coating layer which consists of the modification | reformation CrSiN layer of the surface coating cutting tool of this invention is shown, (a) is a layer thickness direction longitudinal cross-sectional schematic diagram, (b) is along an II surface. Shows a schematic perspective sectional view 硬質被覆層の領域IにおけるCrSiN結晶粒の結晶方位<111>が断面研磨面に対する法線方向と直交する方向に対する傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle with respect to the direction orthogonal to the normal line direction with respect to a cross-section grinding | polishing surface in the crystal orientation <111> of the CrSiN crystal grain in the area | region I of a hard coating layer.

つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、ここでは被覆インサートを中心にして説明するが、被覆インサートに限らず、被覆エンドミル、被覆ドリル等の各種の被覆工具に適用できるものである。
Next, the coated tool of the present invention will be specifically described with reference to examples.
In addition, although demonstrated centering on a covering insert here, it is applicable not only to a covering insert but to various covering tools, such as a covering end mill and a covering drill.

原料粉末として、いずれも0.8〜3.0μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A1〜A12を形成した。 WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 0.8 to 3.0 μm are prepared as raw material powders. Were blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was heated at a pressure of 1400 in a vacuum of 6 Pa. Sintered under the condition of holding at 1 ° C. for 1 hour, and after sintering, a tool base made of a WC-based cemented carbide having an ISO standard / CNMG120408 insert shape by applying a honing process of R: 0.03 to the cutting edge portion. A1 to A12 were formed.

ついで、前記工具基体A1〜A12を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、蒸発源として、金属Crおよび金属Siを装着し、まず、装置内を排気して1.0×10−3Pa以下の真空に保持しながらヒーターで装置内を400℃に加熱した後、Arガスを導入して2.3×10−2Paとしたのち、圧力勾配型プラズマガンの放電電力を2kWとし、装置内にArイオンを発生させ、工具基体に−200Vのバイアス電圧を印加することによって、前記工具基体を10分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、
表2に示す条件で、まず、工具基体にバイアス電圧を印加しないで、圧力勾配型Arプラズマガンの放電電力を所定の値とし、Arガスを40sccm〜60sccm,窒素ガスを100sccm〜120sccm流しながら、炉内の圧力を3×10−2〜6×10−2Paに保ち、Cr蒸発源およびSi蒸発源にプラズマビームを入射し金属Crおよび金属Siの蒸気を発生させるとともにプラズマビームでイオン化して、工具基体表面に、表4に示される所定時間の間、CrSiN層の領域Iを蒸着形成し、
引き続き、同じく表2に示す条件で、工具基体に−5V〜−20Vのバイアス電圧を印加した状態で、前記同様に、工具基体表面に、表2に示される所定時間の間、改質CrSiN層の領域IIを蒸着形成することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明インサートという)1〜17を製造した。
なお、表2に、本発明インサート1〜17の改質CrSiN層の形成条件である圧力勾配型Arプラズマガンを利用したイオンプレーティングの各種条件を示す。
Next, the tool bases A1 to A12 are ultrasonically cleaned in acetone and dried, and then attached to the ion plating apparatus using the pressure gradient type Ar plasma gun shown in FIG. First, the inside of the apparatus is exhausted and the inside of the apparatus is heated to 400 ° C. with a heater while maintaining a vacuum of 1.0 × 10 −3 Pa or less. .3 × 10 −2 Pa, the discharge power of the pressure gradient plasma gun is set to 2 kW, Ar ions are generated in the apparatus, and a bias voltage of −200 V is applied to the tool base to After Ar bombarding for 10 minutes, the inside of the apparatus was once evacuated to about 1 × 10 −3 Pa,
Under the conditions shown in Table 2, first, without applying a bias voltage to the tool base, the discharge power of the pressure gradient type Ar plasma gun is set to a predetermined value, while Ar gas is supplied at 40 sccm to 60 sccm and nitrogen gas is supplied at 100 sccm to 120 sccm, The pressure in the furnace is maintained at 3 × 10 −2 to 6 × 10 −2 Pa, a plasma beam is incident on the Cr evaporation source and the Si evaporation source to generate vapors of metal Cr and metal Si and ionize with the plasma beam. The region I of the CrSiN layer is deposited on the surface of the tool base for a predetermined time shown in Table 4,
Subsequently, the modified CrSiN layer was applied to the tool base surface for a predetermined time shown in Table 2 with a bias voltage of −5 to −20 V applied to the tool base under the same conditions as shown in Table 2. The surface-coated inserts 1 to 17 of the present invention (hereinafter referred to as the present invention inserts) 1 to 17 as the coated tools of the present invention were produced.
Table 2 shows various conditions for ion plating using a pressure gradient type Ar plasma gun, which are conditions for forming the modified CrSiN layers of the inserts 1 to 17 of the present invention.

比較の目的で、前記工具基体A1〜A12をアセトン中で超音波洗浄し、乾燥した状態で、図2に示されるスパッタリング(SP)装置に装着し、カソード電極(蒸発源)として金属CrとCrSi合金を装着し、まず、装置内を排気して0.01Pa以下の真空に保持しながらヒーターで装置内を350〜400℃に加熱した後、Arガスを200sccm導入し、金属Crと前記工具基体との間に−800Vの直流バイアス電圧を印加し、前記工具基体表面を5分間Crボンバード処理し、ついで、表3に示す条件で、装置内に雰囲気ガスとして窒素ガスおよびArガスを導入して0.5Paの雰囲気とするとともに、前記CrSi合金と前記工具基体との間にバイアス電圧として−30V〜−50Vの直流バイアス電圧を印加し、もって前記工具基体の表面に、表6に示される目標層厚の従来CrSiN層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来表面被覆インサート(以下、従来インサートという)1〜13を製造した。
なお、表3には、従来インサート1〜13の従来CrSiN層の形成されるスパッタリング条件を示す。
For the purpose of comparison, the tool bases A1 to A12 are ultrasonically cleaned in acetone and dried, and then mounted on the sputtering (SP) apparatus shown in FIG. 2, and metal Cr and CrSi are used as cathode electrodes (evaporation sources). The alloy is mounted, and first, the interior of the apparatus is evacuated and the interior of the apparatus is heated to 350-400 ° C. with a heater while being maintained at a vacuum of 0.01 Pa or less. A DC bias voltage of −800 V was applied between the tool substrate and the surface of the tool base was Cr bombarded for 5 minutes. Then, under the conditions shown in Table 3, nitrogen gas and Ar gas were introduced into the apparatus as atmospheric gases. A DC bias voltage of −30 V to −50 V was applied as a bias voltage between the CrSi alloy and the tool base, and the atmosphere was 0.5 Pa. Conventional surface-coated inserts (hereinafter referred to as conventional inserts) 1 to 13 as conventional coated tools are formed on the surface of the tool base by vapor deposition of a conventional CrSiN layer having a target layer thickness shown in Table 6 as a hard coating layer. Manufactured.
Table 3 shows sputtering conditions for forming the conventional CrSiN layers of the conventional inserts 1 to 13.

本発明インサート1〜17の改質CrSiN層および従来インサート1〜13の従来CrSiN層について、硬質被覆層の垂直縦断面内におけるCrSiN結晶粒の粒径の変化を、走査型電子顕微鏡(CarlZeiss社製 ULTRA55)で観察したところ、例えば、図3(a)に例示されるように、改質CrSiN層の工具基体表面近傍は幅10〜50nmの微細粒からなる領域Iからなり、さらに、硬質被覆層表面近傍は幅50nm以上の粗大粒からなる領域IIからなることが観察された。
さらに、集束イオンビーム加工装置を用いて、図3(a)および図3(b)に示す模式図のイ−イ面に例示されるように、基板表面に対して5度の傾きで試料を幅7μm×長さ10μm×厚さ100nmに薄片化した試料について、透過型電子顕微鏡(JEM−2010F)を用いて、工具基体表面と硬質被覆層界面から垂直高さ換算で0.1μmの位置での粒径幅WΙおよび、硬質被覆層表面から垂直深さ換算で0.1μmの位置の粒径幅WΙΙを測定し、それらの値をWΙΙ/WΙの数値とともに表4および表5に示した。
なお、ここでいう粒径幅とは、「観察された表面内で、前記高さ換算あるいは深さ換算で0.1μmとなる位置に工具基体表面と平行な線を引いた場合に、ひとつの粒子内を通る線分の長さの平均値」である。
表4から、本発明インサート1〜17の改質CrSiN層は、工具基体表面と硬質被覆層界面から垂直高さ換算で0.1μmの位置での粒径幅WΙおよび、硬質被覆層表面から垂直深さ換算で0.1μmの位置の粒径幅WΙΙが、それぞれ、
10nm<WΙ<50nm、かつ、5<WΙΙ/WΙ<100
の関係を満たしていることが分かる。
一方、表5から、従来インサート1〜13の従来CrSiN層は、前記関係式を満たしていないことが分かる。
For the modified CrSiN layers of the present inserts 1 to 17 and the conventional CrSiN layers of the conventional inserts 1 to 13, the change in the grain size of the CrSiN crystal grains in the vertical longitudinal section of the hard coating layer was measured by a scanning electron microscope (manufactured by Carl Zeiss). When observed with ULTRA 55), for example, as illustrated in FIG. 3A, the vicinity of the tool base surface of the modified CrSiN layer is composed of a region I consisting of fine grains having a width of 10 to 50 nm, and further a hard coating layer. It was observed that the vicinity of the surface was composed of a region II composed of coarse particles having a width of 50 nm or more.
Further, using the focused ion beam processing apparatus, the sample is inclined at 5 degrees with respect to the substrate surface as exemplified by the Y-plane in the schematic diagram shown in FIGS. 3 (a) and 3 (b). Using a transmission electron microscope (JEM-2010F), a sample cut into a width of 7 μm × length of 10 μm × thickness of 100 nm was measured at a position of 0.1 μm in terms of vertical height from the tool base surface and the hard coating layer interface. and particle diameter width W iota of, measuring the particle radial width W Iotaiota position 0.1μm vertical depth Convert hard coating layer surface, tables 4 and 5 their values with numeric W ΙΙ / W Ι It was shown to.
Incidentally, the particle size width referred to here means that “one line is drawn when a line parallel to the tool base surface is drawn at a position where the height or depth is converted to 0.1 μm in the observed surface. The average value of the lengths of the line segments passing through the particles.
From Table 4, modification CrSiN layer of the present invention the insert 1 to 17, from the grain diameter width W iota and hard layer surface of the hard coating layer interface and the tool substrate surface at the location of 0.1μm in vertical height conversion The particle size width W の at a position of 0.1 μm in terms of vertical depth is
10nm <W Ι <50nm and,, 5 <W ΙΙ / W Ι <100
It can be seen that this relationship is satisfied.
On the other hand, it can be seen from Table 5 that the conventional CrSiN layers of the conventional inserts 1 to 13 do not satisfy the relational expression.

ついで、本発明インサート1〜17の改質CrSiN層および従来インサート1〜13の従来CrSiN層について、硬質被覆層の縦断面を研磨面とした状態で、電子線後方散乱回折装置(EBSD)を用いて、硬質被覆層の縦断面の結晶方位を解析した。すなわち、幅10μm、高さ硬質被覆層の層厚相当の領域を、0.01μm/stepの間隔で、前記断面研磨面の法線方向および法線と直交する任意の方向に対して各測定点の結晶方位<111>がなす傾斜角、および断面研磨面の法線方向と結晶方位<100>がなす傾斜角を測定し、この測定結果に基づいて、測定された面積領域を基板表面に垂直に100nm毎のピッチで縦区分に区切り、さらに、それぞれの縦区分内を工具基体とCrSiN膜の界面からCrSiN膜の成長方向に100nm毎のピッチで区切り、100nm×100nmに区分けされたそれぞれの領域(セル)に存在する測定点の前記三つの測定傾斜角の平均値をそれぞれ計算し、同一の前記縦区分に存在する複数セルの三つの測定傾斜角の平均値の最大値と最小値の差をそれぞれ計算し、これらの値を表4および表5に示した。
そして、表4から、本発明インサートの改質CrSiN層は、縦区分内に存在するセルにおける、前記断面研磨面の法線方向と<111>方向のなす平均傾斜角、前記断面研磨面の法線に直交する方向と<111>方向のなす平均傾斜角、前記断面研磨面の法線方向と<100>方向のなす平均傾斜角の最大値と最小値の差が15度以下となる縦区分が全面積の60%以上を占めていることが分かる。
一方、表5から、従来インサートの従来CrSiN層は、同一縦区分における各平均傾斜角の最大値と最小値の差が15度以下となる縦区分は、存在するものの、少ない(50%以下)ことが分かる。
Next, with respect to the modified CrSiN layers of the inserts 1 to 17 of the present invention and the conventional CrSiN layers of the conventional inserts 1 to 13, an electron beam backscattering diffractometer (EBSD) was used in a state where the longitudinal section of the hard coating layer was a polished surface. Then, the crystal orientation of the longitudinal section of the hard coating layer was analyzed. That is, each measurement point is measured with respect to a normal direction of the cross-section polished surface and an arbitrary direction orthogonal to the normal line at an interval of 0.01 μm / step at an area corresponding to the thickness of the hard coating layer having a width of 10 μm and a height. Of the crystal orientation <111> and the normal direction of the cross-section polished surface and the crystal orientation <100> are measured. Based on the measurement result, the measured area is perpendicular to the substrate surface. Each of the regions divided into 100 nm × 100 nm by dividing each vertical section into a vertical section at a pitch of every 100 nm, and further dividing the inside of each vertical section from the interface between the tool base and the CrSiN film in the growth direction of the CrSiN film at a pitch of every 100 nm. The average value of the three measurement inclination angles of the measurement points existing in the (cell) is calculated respectively, and the maximum value and the minimum average value of the three measurement inclination angles of the plurality of cells existing in the same vertical section are calculated. Difference were calculated respectively, showed these values in Tables 4 and 5.
And, from Table 4, the modified CrSiN layer of the insert of the present invention has an average inclination angle formed between the normal direction of the cross-sectional polished surface and the <111> direction in the cells existing in the vertical section, and the method of the cross-sectional polished surface Vertical section in which the difference between the average inclination angle formed between the direction perpendicular to the line and the <111> direction and the maximum value and minimum value of the average inclination angle formed between the normal direction of the cross-section polished surface and the <100> direction is 15 degrees or less Occupies 60% or more of the total area.
On the other hand, from Table 5, the conventional CrSiN layer of the conventional insert has few vertical sections where the difference between the maximum value and the minimum value of each average inclination angle is 15 degrees or less in the same vertical section (50% or less). I understand that.

Figure 0005552913
Figure 0005552913

Figure 0005552913
Figure 0005552913

Figure 0005552913
Figure 0005552913

Figure 0005552913
Figure 0005552913

Figure 0005552913
Figure 0005552913

つぎに、本発明インサート1〜17および従来インサート1〜13について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS316の等間隔4本縦溝入り丸棒、
切削速度: 220 m/min.、
切り込み: 2 mm、
送り: 0.3 mm/rev.、
切削時間: 2 分、
の条件(切削条件1という)でのステンレス鋼の乾式断続高速切削加工試験(通常の切削速度および送りは、それぞれ、180m/min、0.2mm/rev.)、
被削材:JIS・SCMN439の長さ方向等間隔6本縦溝入り丸棒、
切削速度: 240 m/min.、
切り込み: 2 mm、
送り: 0.3 mm/rev.、
切削時間: 2 分、
の条件(切削条件2という)での合金鋼の乾式断続高速切削加工試験(通常の切削速度および送りは、それぞれ、180m/min.、0.2mm/rev.)、
を行い、
いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表6に示した。
Next, about this invention inserts 1-17 and conventional inserts 1-13, in the state where this was screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SUS316 equally spaced four vertical grooved round bars,
Cutting speed: 220 m / min. ,
Incision: 2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 2 minutes,
(Continuous cutting speed and feed are 180 m / min and 0.2 mm / rev., Respectively)
Work material: JIS-SCMN439 round bar with 6 equal grooves in the longitudinal direction,
Cutting speed: 240 m / min. ,
Incision: 2 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 2 minutes,
Dry interrupted high-speed cutting test of alloy steel under the following conditions (referred to as cutting condition 2) (normal cutting speed and feed are 180 m / min. And 0.2 mm / rev., Respectively),
And
In any cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 6.

Figure 0005552913
Figure 0005552913

表4、6に示される結果から、本発明インサート1〜17は、CrSiN結晶粒の粒径幅が小さい領域Iと、粒径幅がこれより大きい領域IIとからなり、かつ、基板に対して垂直に連続する領域Iの微細粒子と領域IIの粗大粒子の結晶方位のずれが15度以下となる縦区分の面積割合が高いため、切刃に対して衝撃的・断続的高負荷が作用する乾式断続重切削条件や、連続的な高負荷がかかる乾式連続高送り切削条件においても、すぐれた高温強度に加えてすぐれた耐欠損性と靭性を示し、すぐれた工具特性を発揮することが明らかである。
さらに、表4、6から、本発明インサートの改質CrSiN層の中でも特に性能のよいものは、縦区分内に存在するセルにおける、前記断面研磨面の法線方向と<111>方向のなす平均傾斜角、前記断面研磨面の法線に直交する方向と<111>方向のなす平均傾斜角、前記断面研磨面の法線方向と<100>方向のなす平均傾斜角の最大値と最小値の差が5度以下となる縦区分が全面積の60%以上を占めていることが分かる。
これに対して、表5、6から、従来インサート1〜13においては、従来CrSiN層は、耐欠損性と靭性に劣り、乾式断続重切削条件や、乾式連続高送り切削条件では欠損等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 4 and 6, the inserts 1 to 17 of the present invention are composed of the region I where the grain width of CrSiN crystal grains is small and the area II where the grain width is larger than this, and with respect to the substrate. Since the area ratio of the vertical section where the deviation of the crystal orientation of the fine particles in the vertically continuous region I and the coarse particles in the region II is 15 degrees or less is high, impact and intermittent high loads act on the cutting edge. Clearly shows excellent tool characteristics as well as excellent fracture resistance and toughness in addition to excellent high-temperature strength, even in dry intermittent heavy cutting conditions and dry continuous high-feed cutting conditions that require continuous high loads. It is.
Further, from Tables 4 and 6, among the modified CrSiN layers of the inserts of the present invention, those having particularly good performance are the averages formed between the normal direction of the cross-section polished surface and the <111> direction in the cells existing in the longitudinal section. An inclination angle, an average inclination angle formed between the direction perpendicular to the normal line of the cross-section polished surface and the <111> direction, and a maximum value and a minimum value of an average inclination angle formed between the normal direction of the cross-section polished surface and the <100> direction. It can be seen that vertical sections with a difference of 5 degrees or less occupy 60% or more of the total area.
On the other hand, from Tables 5 and 6, in the conventional inserts 1 to 13, the conventional CrSiN layer is inferior in fracture resistance and toughness, and due to defects such as dry interrupted heavy cutting conditions and dry continuous high feed cutting conditions, It is clear that the service life is reached in a relatively short time.

前述のように、この発明の被覆工具は、硬質被覆層(改質CrSiN層)がすぐれた靭性、耐欠損性を有することから、被覆インサートばかりでなく、被覆エンドミル、被覆ドリル等の各種被覆工具として用いることができ、そして、これによって、靭性不足、強度不足等に起因する工具欠損の発生を防止し、長期の使用に亘って優れた切削性能を発揮するものであるから、低コスト化に十分満足に対応できるとともに、工具寿命の延命化を図ることができるものである。   As described above, the coated tool of the present invention has not only a coated insert but also various coated tools such as a coated end mill and a coated drill because the hard coating layer (modified CrSiN layer) has excellent toughness and fracture resistance. As a result, it prevents tool breakage due to insufficient toughness, insufficient strength, etc., and exhibits excellent cutting performance over a long period of use. In addition to being able to respond satisfactorily, the tool life can be extended.

1: 工具基体
2: 硬質被覆層
3: 工具基体と硬質被覆層の界面
4: 硬質被覆層の最表面
5: 工具基体と硬質被覆層の界面から、基体に垂直な高さ換算で0.1μmの位置
6: 硬質被覆層の最表面から、基体に垂直な深さ換算で0.1μmの位置
1: Tool substrate 2: Hard coating layer 3: Interface between tool substrate and hard coating layer 4: Outermost surface of hard coating layer 5: 0.1 μm in terms of height perpendicular to the substrate from the interface between the tool substrate and the hard coating layer Position 6: 0.1 μm position in terms of depth perpendicular to the substrate from the outermost surface of the hard coating layer

Claims (2)

炭化タングステン基超硬合金焼結体からなる工具基体の表面に、0.5〜2μmの平均層厚を有するCrSiN膜からなる硬質被覆層を物理蒸着した表面被覆切削工具において、
(a)硬質被覆層の、工具基体とCrSiN膜の界面から0.1μmの高さ位置にあるCrSiN結晶粒の粒径幅をW、CrSiN膜の最表面から0.1μmの深さ位置にあるCrSiN結晶粒の粒径幅をWIIとしたとき、
10nm<W<50nm、かつ、5<WII/W<100
の関係を満たし、
(b)さらに、電子線後方散乱回折装置を用いて、硬質被覆層断面のCrSiN結晶粒の結晶方位を解析し、測定された二次元領域を工具基体表面に対して略垂直な方向に100nm毎のピッチで縦区分に区切り、さらに、それぞれの縦区分内を工具基体とCrSiN膜の界面からCrSiN膜の成長方向に100nm毎のピッチで区切り、100nm×100nmに区分けされたそれぞれの領域(セル)に存在する各測定点の、
<111>結晶方位とCrSiN膜測定断面の法線方向がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下であり、
<111>結晶方位とCrSiN膜測定断面の法線と直交する方向がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下であり、
<100>結晶方位とCrSiN膜測定断面の法線がなす傾斜角の平均傾斜角を計算し、同一縦区分に存在するセルのうち、測定傾斜角の最大値と最小値の差が15度以下
である100nm幅の縦区分が、測定された全面積のうちの60%以上を占有することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool obtained by physically vapor-depositing a hard coating layer made of a CrSiN film having an average layer thickness of 0.5 to 2 μm on the surface of a tool base made of a tungsten carbide-based cemented carbide sintered body,
(A) The hard coating layer has a grain width of CrSiN crystal grains at a height position of 0.1 μm from the interface between the tool base and the CrSiN film at W I and a depth position of 0.1 μm from the outermost surface of the CrSiN film. When the particle size width of a certain CrSiN crystal grain is W II ,
10 nm <W I <50 nm and 5 <W II / W I <100
Meet the relationship,
(B) Further, by using an electron beam backscatter diffraction apparatus, the crystal orientation of the CrSiN crystal grains in the hard coating layer cross section is analyzed, and the measured two-dimensional region is measured every 100 nm in a direction substantially perpendicular to the tool substrate surface. Each of the regions (cells) divided into 100 nm × 100 nm by dividing each vertical section into 100 nm × 100 nm from the interface between the tool base and the CrSiN film in the growth direction of the CrSiN film. Of each measuring point present in
The average inclination angle of the inclination angle formed by the <111> crystal orientation and the normal direction of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle is 15 degrees among the cells existing in the same vertical section. And
The average inclination angle of the inclination angle formed by the <111> crystal orientation and the direction orthogonal to the normal line of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle among the cells existing in the same vertical section Is 15 degrees or less,
The average inclination angle of the inclination angle formed by the <100> crystal orientation and the normal line of the CrSiN film measurement cross section is calculated, and the difference between the maximum value and the minimum value of the measurement inclination angle among cells existing in the same vertical section is 15 degrees or less. A surface-coated cutting tool characterized in that the vertical section of 100 nm width occupies 60% or more of the total area measured.
前記CrSiN膜の組成をCr1−xSiNで表した時に、Crに対するSiの含有割合xが0.2≦x≦0.6を満たすことを特徴とする請求項1に記載の表面被覆切削工具。
The surface coating according to claim 1, wherein when the composition of the CrSiN film is expressed by Cr 1-x Si x N, the Si content ratio x with respect to Cr satisfies 0.2 ≦ x ≦ 0.6. Cutting tools.
JP2010138409A 2010-03-30 2010-06-17 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Expired - Fee Related JP5552913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138409A JP5552913B2 (en) 2010-03-30 2010-06-17 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010077336 2010-03-30
JP2010077336 2010-03-30
JP2010138409A JP5552913B2 (en) 2010-03-30 2010-06-17 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2011224766A JP2011224766A (en) 2011-11-10
JP5552913B2 true JP5552913B2 (en) 2014-07-16

Family

ID=45040767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138409A Expired - Fee Related JP5552913B2 (en) 2010-03-30 2010-06-17 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5552913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875101B2 (en) * 2018-03-22 2020-12-29 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136778B2 (en) * 1992-06-11 2001-02-19 三菱マテリアル株式会社 Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP3901336B2 (en) * 1998-03-31 2007-04-04 大日本印刷株式会社 Operation method of ion plating apparatus
JP3394021B2 (en) * 2000-06-30 2003-04-07 日立ツール株式会社 Coated cutting tool
JP3766003B2 (en) * 2001-07-13 2006-04-12 日立ツール株式会社 Coated cutting tool
JP4807575B2 (en) * 2005-10-19 2011-11-02 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883475B2 (en) * 2005-11-08 2012-02-22 三菱マテリアル株式会社 Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4967396B2 (en) * 2006-03-22 2012-07-04 株式会社タンガロイ Si-containing composite nitride film and coated cutting tool
JP4960149B2 (en) * 2007-05-29 2012-06-27 京セラ株式会社 Surface coated cutting tool
JP5218834B2 (en) * 2008-09-01 2013-06-26 三菱マテリアル株式会社 Film forming method and film forming apparatus
JP5303816B2 (en) * 2009-10-01 2013-10-02 日立ツール株式会社 Hard coating tool

Also Published As

Publication number Publication date
JP2011224766A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5585935B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207109B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2008100320A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2011152602A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP5515806B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5207105B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5239292B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5560514B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5287124B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5590308B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5397690B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5552913B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5309733B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP2011224767A (en) Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
JP5099587B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009090396A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP5239296B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5240498B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees