JP5552340B2 - アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク - Google Patents

アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク Download PDF

Info

Publication number
JP5552340B2
JP5552340B2 JP2010056922A JP2010056922A JP5552340B2 JP 5552340 B2 JP5552340 B2 JP 5552340B2 JP 2010056922 A JP2010056922 A JP 2010056922A JP 2010056922 A JP2010056922 A JP 2010056922A JP 5552340 B2 JP5552340 B2 JP 5552340B2
Authority
JP
Japan
Prior art keywords
actuator
link
rigidity
control surface
gain margin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010056922A
Other languages
English (en)
Other versions
JP2011189818A (ja
Inventor
寿章 小川
浩二 伊藤
亮 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2010056922A priority Critical patent/JP5552340B2/ja
Priority to US13/037,907 priority patent/US8688255B2/en
Priority to EP11156337.5A priority patent/EP2368796B8/en
Publication of JP2011189818A publication Critical patent/JP2011189818A/ja
Priority to US14/174,661 priority patent/US9097327B2/en
Application granted granted Critical
Publication of JP5552340B2 publication Critical patent/JP5552340B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/44Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for conveying or interconverting oscillating or reciprocating motions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18888Reciprocating to or from oscillating

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

本発明は、航空機の舵面又はホーンアーム部材に取り付けられて舵面を駆動するアクチュエータ及びこのアクチュエータに対して連結されるリンクを備える、アクチュエータ及びリンクと、そのアクチュエータ及びリンクを製造する製造方法と、そのアクチュエータ及びリンクを設計する設計方法とに関する。
航空機においては、動翼(操縦翼面)として形成されて、補助翼(エルロン)や方向舵(ラダー)、昇降舵(エレベータ)等として構成される舵面が設けられている。そして、このような舵面を駆動するアクチュエータ及びこのアクチュエータに連結されるリンクとして、特許文献1及び特許文献2に開示されたものが知られている。特許文献1及び特許文献2に開示されたアクチュエータ及びリンクにおいては、アクチュエータは、舵面又は舵面に取り付けられたホーンアーム部材に取り付けられる油圧駆動式のシリンダ機構として設けられ、リンクは、アクチュエータと舵面とに対して揺動自在に連結されている。
特開平5−97095号公報(第2頁、第1−2図) 特開昭62−165007号公報(第1−2頁、第1−2図)
特許文献1及び特許文献2に開示されたような航空機における舵面駆動用のアクチュエータ及びリンクにおいては、舵面を駆動する荷重を支えるために高強度であることが必要であることに加え、変形を抑制するとともに舵面を駆動する制御システムとしての安定性を確保する観点から高剛性であることも必要となる。このため、特許文献1及び特許文献2に開示されたようなアクチュエータ及びリンクを設計し、更に製造する場合、必要となる強度及び剛性を確保する観点から、アクチュエータ及びリンクを構成する材料として、ステンレス鋼やチタン合金といった金属材料が選択される。しかしながら、金属材料で形成されるため、軽量化には限界があり、更なる重量軽減を図ることは困難な状況にある。
尚、アクチュエータ及びリンクの構成材料としてチタン合金を用いた場合、重量当たりの剛性である比剛性を高く確保することができるが、重量当たりの強度である比強度が低くなる。このため、強度を確保することが制約条件となり、軽量化を図ることが困難となる。一方、アクチュエータ及びリンクの構成材料としてステンレス鋼を用いた場合、比強度を高く確保することができるが、比剛性が低くなる。このため、剛性を確保することが制約条件となり、軽量化を図ることが困難となる。
従って、強度と剛性とがバランスよく確保されるとともに軽量化を図ることが可能なアクチュエータ及びリンクを実現するためには、従来とは全く異なる飛躍した観点からアクチュエータ及びリンクの構造を設計する必要がある。そして、従来よりも軽量化を図るとともに、従来と同等又はそれ以上の強度及び剛性を確保することも必要となる。
本発明は、上記実情に鑑みることにより、従来と同等又はそれ以上の強度及び剛性を確保できるとともに、更に軽量化を図ることができる、アクチュエータ及びリンク、そのアクチュエータ及びリンクの製造方法、そのアクチュエータ及びリンクの設計方法を提供す
ることを目的とする。
上記目的を達成するための発明に係るアクチュエータ及びリンクの製造方法は、航空機の舵面に又は当該舵面に取り付けられたホーンアーム部材に一端側が揺動自在に取り付けられて前記舵面を駆動するアクチュエータと当該アクチュエータに対して連結されるリンクとを製造する、アクチュエータ及びリンクの製造方法に関する。そして、発明に係るアクチュエータ及びリンクの製造方法は、前記アクチュエータを構成する材料と前記リンクを構成する材料とを決定する、材料決定ステップと、前記舵面の慣性質量、前記舵面の剛性、前記アクチュエータの剛性、及び前記リンクの剛性を各パラメータとして含むとともに当該各パラメータの関係を規定する演算モデルを用い、前記アクチュエータの剛性に対する前記リンクの剛性の比である剛性比の変化に伴うゲイン余裕の変化を演算する、演算ステップと、前記演算ステップでの演算結果に基づいて、前記剛性比及び前記ゲイン余裕がそれぞれ所定の範囲に収まるように、前記アクチュエータ及び前記リンクの剛性を決定する、剛性決定ステップと、前記アクチュエータ及び前記リンクの剛性が前記剛性決定ステップで決定された剛性に設定されるように、前記アクチュエータ及び前記リンクの形状を決定する、形状決定ステップと、前記形状決定ステップで決定された形状となるように前記アクチュエータ及び前記リンクを形成する形成ステップと、前記形成ステップで形成される前記アクチュエータ及び前記リンクを連結して組み立てる組み立てステップと、を備え、前記リンクは、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられるとともに、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられ、前記材料決定ステップにおいて、前記アクチュエータを構成する材料と前記リンクを構成する材料とのうちの少なくともいずれかの材料に繊維強化プラスチックが含まれるように材料の決定が行われることを特徴とする。
この発明によると、舵面を駆動するアクチュエータを構成する材料と、このアクチュエータに連結されるリンクを構成する材料とのうちの少なくともいずれかの材料に繊維強化プラスチックが含まれるように決定される。このため、チタン合金製のものよりも比重が大幅に小さくて(即ち、密度も大幅に小さくて)且つ比強度及び比剛性が大幅に大きく、更にステンレス鋼製のものよりも比強度及び比剛性が大幅に大きいアクチュエータ及びリンクを実現することができる。そして、舵面、アクチュエータ、及びリンクについての演算モデルでの演算結果に基づいて、アクチュエータに対するリンクの剛性比とゲイン余裕とがそれぞれ設定された所定の範囲に収まるように、アクチュエータ及びリンクの剛性が決定される。これにより、構成素材として繊維強化プラスチックを含むアクチュエータ及びリンクの剛性が、変形が十分に抑制されるとともに舵面を駆動する制御システムとしての安定性が十分に確保される水準に確実に決定されることになる。そして、アクチュエータ及びリンクは、上記のように決定された剛性に設定されるように形状が決定されるとともにその決定された形状に形成され、更に連結されて組み立てられることで完成することになる。よって、従来のようなチタン合金やステンレス鋼といった金属により構成されたアクチュエータ及びリンクに比して、軽量化を図ることができるとともに、同等又はそれ以上の強度及び剛性を確保することができるアクチュエータ及びリンクを製造することができる。
従って、本発明によると、従来と同等又はそれ以上の強度及び剛性を確保できるとともに、更に軽量化を図ることができるアクチュエータ及びリンクを製造することができる。
また、前述の目的を達成するための発明に係るアクチュエータ及びリンクの設計方法は、航空機の舵面に又は当該舵面に取り付けられたホーンアーム部材に一端側が揺動自在に取り付けられて前記舵面を駆動するアクチュエータと当該アクチュエータに対して連結されるリンクとを設計する、アクチュエータ及びリンクの設計方法に関する。そして、発明に係るアクチュエータ及びリンクの設計方法は、前記アクチュエータを構成する材料と前記リンクを構成する材料とを決定する、材料決定ステップと、前記舵面の慣性質量、前記舵面の剛性、前記アクチュエータの剛性、及び前記リンクの剛性を各パラメータとして含むとともに当該各パラメータの関係を規定する演算モデルを用い、前記アクチュエータの剛性に対する前記リンクの剛性の比である剛性比の変化に伴うゲイン余裕の変化を演算する、演算ステップと、前記演算ステップでの演算結果に基づいて、前記剛性比及び前記ゲイン余裕がそれぞれ所定の範囲に収まるように、前記アクチュエータ及び前記リンクの剛性を決定する、剛性決定ステップと、前記アクチュエータ及び前記リンクの剛性が前記剛性決定ステップで決定された剛性に設定されるように、前記アクチュエータ及び前記リンクの形状を決定する、形状決定ステップと、を備え、前記リンクは、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられるとともに、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられ、前記材料決定ステップにおいて、前記アクチュエータを構成する材料と前記リンクを構成する材料とのうちの少なくともいずれかの材料に繊維強化プラスチックが含まれるように材料の決定が行われることを特徴とする。
この発明によると、舵面を駆動するアクチュエータを構成する材料と、このアクチュエータに連結されるリンクを構成する材料とのうちの少なくともいずれかの材料に繊維強化プラスチックが含まれるように決定される。このため、チタン合金製のものよりも比重が大幅に小さくて(即ち、密度も大幅に小さくて)且つ比強度及び比剛性が大幅に大きく、更にステンレス鋼製のものよりも比強度及び比剛性が大幅に大きいアクチュエータ及びリンクを実現することができる。そして、舵面、アクチュエータ、及びリンクについての演算モデルでの演算結果に基づいて、アクチュエータに対するリンクの剛性比とゲイン余裕とがそれぞれ設定された所定の範囲に収まるように、アクチュエータ及びリンクの剛性が決定される。これにより、構成素材として繊維強化プラスチックを含むアクチュエータ及びリンクの剛性が、変形が十分に抑制されるとともに舵面を駆動する制御システムとしての安定性が十分に確保される水準に確実に決定されることになる。そして、アクチュエータ及びリンクの設計は、上記のように決定された剛性に設定されるように形状が決定されることで完了することになる。よって、従来のようなチタン合金やステンレス鋼といった金属で構成されたアクチュエータ及びリンクに比して、軽量化を図ることができるとともに、同等又はそれ以上の強度及び剛性を確保することができるアクチュエータ及びリンクを設計することができる。
発明に係るアクチュエータ及びリンクの設計方法は、前記リンクは、直線状にそれぞれ延びるとともに並んで配置される一対の直線部と、当該一対の直線部のそれぞれにおける一方の端部に対して屈曲部分を介して接続するとともに当該端部同士を連結するように延びる連結部と、前記連結部の中央部分から突出するように設けられ、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられる支点軸取付部と、前記一対の直線部のそれぞれにおける他方の端部として設けられ、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられるアクチュエータ取付部と、を有し、前記材料決定ステップにおいて、前記一対の直線部及び前記連結部を構成する材料に繊維強化プラスチックが含まれるように材料の決定が行われることが好ましい
この発明によると、アクチュエータの作動に伴って舵面を安定して駆動させるように、一対の直線部とこの一対の直線部に対して屈曲部分を介して連結する連結部とを備えた門型の形状に形成されるリンクが設計される。屈曲部分を有する門型形状のリンクの場合、軽量化を図りつつ強度及び剛性をバランスよく確保することは困難である。しかしながら、この設計方法によると、リンクにおける一対の直線部及び連結部の構成材料が、繊維強化プラスチックに決定されるため、より高い水準で強度及び剛性をバランスよく確保する
とともに大幅な軽量化を図ることができる。
発明に係るアクチュエータ及びリンクの設計方法は、前記演算ステップで用いられる前記演算モデルは、前記舵面の慣性質量と、前記舵面の剛性をモデル化したバネと、前記アクチュエータの剛性をモデル化したバネと、前記リンクの剛性をモデル化したバネとが直列に連結されたバネマスモデルとして前記各パラメータの関係を規定することが好ましい
この発明によると、演算ステップで用いられる演算モデルが、舵面、アクチュエータ、及びリンクについて、それらの慣性質量やバネが直列に連結されたバネマスモデルとして構成される。このため、直列に連結される実際の舵面、アクチュエータ、及びリンクの関係に即して、舵面の慣性質量、舵面の剛性、アクチュエータの剛性、及びリンクの剛性の各パラメータの関係をより正確に規定する演算モデルを簡易な演算モデルにて実現することができる。
また、前述の目的を達成するための発明に係るアクチュエータ及びリンクは、航空機の舵面に又は当該舵面に取り付けられたホーンアーム部材に一端側が揺動自在に取り付けられて前記舵面を駆動するアクチュエータと当該アクチュエータに対して連結されるリンクとを備える、アクチュエータ及びリンクに関する。そして、発明に係るアクチュエータ及びリンクは、前記リンクは、直線状にそれぞれ延びるとともに並んで配置される一対の直線部と、当該一対の直線部のそれぞれにおける一方の端部に対して屈曲部分を介して接続するとともに当該端部同士を連結するように延びる連結部と、前記連結部の中央部分から突出するように設けられ、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられる支点軸取付部と、前記一対の直線部のそれぞれにおける他方の端部として設けられ、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられるアクチュエータ取付部と、を有し、前記一対の直線部及び前記連結部を構成する材料に繊維強化プラスチックが含まれていることを特徴とする。
この発明によると、アクチュエータの作動に伴って舵面を安定して駆動させるように、一対の直線部とこの一対の直線部に対して屈曲部分を介して連結する連結部とを備えた門型の形状に形成されるリンクが備えられる。従来のようにチタン合金やステンレス鋼といった金属材料により形成されて屈曲部分を有する門型形状のリンクの場合、強度及び剛性をバランスよく確保しつつ更に軽量化を図ることは困難である。しかしながら、この発明によると、リンクにおける一対の直線部及び連結部を構成する材料に繊維強化プラスチックが含まれる。このため、チタン合金製のものよりも比重が大幅に小さくて(即ち、密度も大幅に小さくて)且つ比強度及び比剛性が大幅に大きく、更にステンレス鋼製のものよりも比強度及び比剛性が大幅に大きいアクチュエータ及びリンクを実現することができる。これにより、アクチュエータ及びリンクにおいて、より高い水準で強度及び剛性をバランスよく確保するとともに大幅な軽量化を図ることができる。よって、本発明によると、門型形状のリンクを備えるアクチュエータ及びリンクにおいて、従来のようなチタン合金やステンレス鋼といった金属により構成されたアクチュエータ及びリンクに比して、軽量化を図ることができるとともに、同等又はそれ以上の強度及び剛性を確保することができる。
本発明によると、従来と同等又はそれ以上の強度及び剛性を確保できるとともに、更に軽量化を図ることができる、アクチュエータ及びリンク、そのアクチュエータ及びリンクの製造方法、そのアクチュエータ及びリンクの設計方法を提供することができる。
本発明の一実施の形態に係るアクチュエータ及びリンクを示す斜視図である。 図1に示すアクチュエータ及びリンクが航空機の機体に取り付けられた状態を機体の一部とともに示す模式図である。 図1に示すリンクの斜視図である。 図3に示すリンクの平面図である。 図3に示すリンクの側面図である。 本発明の一実施の形態に係るアクチュエータ及びリンクの製造方法を説明するための工程図である。 図6に示す製造方法における設計工程を実行する設計装置の機能ブロック図である。 図6に示す製造方法の設計工程における演算ステップにおいて用いられる演算モデルを説明するための図である。 図6に示す製造方法の設計工程における演算ステップでの演算結果を説明するための図である。 図6に示す製造方法の設計工程にて設計されるアクチュエータ及びリンクにおける剛性比と重量との関係について構成材料を変更して解析した結果を説明するための図である。
以下、本発明を実施するための形態について図面を参照しつつ説明する。本発明の実施形態は、航空機の舵面又はホーンアーム部材に取り付けられて舵面を駆動するアクチュエータ及びこのアクチュエータに対して連結されるリンクを備える、アクチュエータ及びリンクと、そのアクチュエータ及びリンクを製造する製造方法と、そのアクチュエータ及びリンクを設計する設計方法とに関して、広く適用することができるものである。
[アクチュエータ及びリンク]
図1は、航空機の舵面を駆動するためのユニットとして設けられ、本発明の実施形態に係るアクチュエータ及びリンクを構成する舵面駆動ユニット1を示す斜視図である。また、図2は、舵面駆動ユニット1が、航空機の機体100に取り付けられた状態を機体100の一部とともに示す模式図である。尚、舵面102を構成する航空機の動翼(操縦翼面)として、補助翼(エルロン)や方向舵(ラダー)、昇降舵(エレベータ)などが挙げられる。また、舵面駆動ユニット1は、フラップやスポイラー等として構成される舵面を駆動するユニットとして用いられることもある。
図1及び図2に示す舵面駆動ユニット1は、舵面102を駆動するアクチュエータ11と、アクチュエータ11に対して連結される本実施形態におけるリンクを構成するリアクションリンク12と、を備えて構成されている。この舵面駆動ユニット1は、後述するように、本発明の実施形態に係るアクチュエータ及びリンクの設計方法によって設計され、本発明の実施形態に係るアクチュエータ及びリンクの製造方法によって製造される。
アクチュエータ11は、油圧駆動式のシリンダ機構として設けられ、円筒形状のシリンダ本体13と円形断面の丸棒状のロッド部14とを備えて構成されている。そして、シリンダ本体13の内部に対して航空機に設けられる油圧装置(図示せず)によって圧油が供給及び排出されることによって作動し、ロッド部14がシリンダ本体13に対して伸張・収縮して変位するように作動する。尚、これらのシリンダ本体13及びロッド部14は、例えば、ステンレス鋼により形成されている。アクチュエータ11を構成する材料は、後述するアクチュエータ及びリンクの設計方法において決定されることになる。
また、このアクチュエータ11は、その一端側であるロッド部14の先端側において、舵面102に対してヒンジ部等を介して揺動自在に取り付けられる。そして、アクチュエ
ータ11は、その他端側であるシリンダ本体13の端部において、機体フレーム101に対して支持部材103を介して支持されている。また、アクチュエータ11は、支持部材103に対して揺動自在に連結されている(図1では、アクチュエータ11と支持部材103との連結状態の図示を省略している)。尚、ロッド部14の先端側は、舵面102に直接に取り付けられなくてもよく、舵面102に取り付けられるホーンアーム部材に対して揺動自在に取り付けられてもよい。この場合、ホーンアーム部材は、舵面102に対してこの舵面102とともに揺動可能に取り付けられる(即ち、舵面102に対して固定される)とともに、アクチュエータ11のロッド部14の先端側に対して揺動自在に連結される部材として構成される。このため、アクチュエータ11は、ホーンアーム部材を介して舵面102を駆動することになる。
リアクションリンク12は、図2に示すように、機体100における機体フレーム101に対して取り付けられ、機体フレーム101に舵面102の受ける負荷が直接影響しないようにするために設けられる。また、図1及び図2に示すように、リアクションリンク12は、アクチュエータ11に対して連結され、リアクションリンク本体15、軸受16、ブッシュ17、締結部材18などを備えて構成されている。
図3は、リアクションリンク12の斜視図である。また、図4は、リアクションリンク12の平面図であり、図5は、リアクションリンク12の側面図である。図1乃至図5に示すリアクションリンク12におけるリアクションリンク本体15は、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)によって形成されている。そして、このリアクションリンク本体15は、門型の形状に形成され、一対の直線部19(19a、19b)、連結部20、支点軸取付部21及びアクチュエータ取付部22を備えて構成されている。尚、リアクションリンク本体15は、後述するように、炭素繊維強化プラスチックで形成された複数の部材(23〜28)を有している。そして、リアクションリンク本体15は、これらの複数の部材(23〜28)が結合されることで一体化されて構成され、上述した一対の直線部19、連結部20、支点軸取付部21及びアクチュエータ取付部22が構成されている。また、この構成により、一対の直線部19及び連結部20を構成する材料は、繊維強化プラスチックとなっている。
尚、リアクションリンク本体15は、上述した炭素繊維強化プラスチック以外の強化プラスチックによって形成されていてもよい。例えば、リアクションリンク本体15は、ガラス繊維強化プラスチック、ガラス長繊維強化プラスチック、ボロン繊維強化プラスチック、アラミド繊維強化プラスチック、ポリエチレン繊維強化プラスチック、ザイロン強化プラスチック等の繊維強化プラスチックによって形成されていてもよい。
リアクションリンク本体15における一対の直線部19は、直線状にそれぞれ延びるとともに略平行に並んで配置される直線部19a及び直線部19bで構成されている。連結部20は、一対の直線部19のそれぞれにおける一方の端部に対して屈曲部分(29a、29b)を介して接続するとともにその端部同士を連結するように延びる部分として形成されている。尚、連結部20は、直線部19a及び直線部19bに対して略直交する方向に延びるように形成され、各屈曲部分(29a、29b)は略直角に屈曲した部分として形成されている。そして、連結部20は、直線部19aの一方の端部に対して屈曲部分29aを介して接続し、直線部19bの一方の端部に対して屈曲部分29bを介して接続し、直線部19a及び直線部19bにおける一方の端部同士を連結するように形成されている。
また、リアクションリンク本体15における支点軸取付部21は、連結部20の中央部分(一対の直線部19を連結する方向における中央部分)から舵面102側に向かって突出するように設けられている。そして、この支点軸取付部21は、舵面102を機体フレ
ーム101に対して回転自在に支持する支点軸30(図2参照)に対して軸受16を介して揺動自在に取り付けられる部分として設けられている。また、支点軸取付部21は、連結部20に一体化されて軸方向長さが短い円筒状の部分として形成されており、内周に上記の軸受16の外輪が嵌合により固定されている。このように支点軸取付部21及び軸受16が設けられていることで、リアクションリンク本体15は、支点軸取付部21において舵面102に対して揺動自在に連結されている。
また、リアクションリンク本体15におけるアクチュエータ取付部22は、一対の直線部19のそれぞれにおける連結部20とは反対側である他方の端部として設けられている。そして、アクチュエータ取付部22は、直線部19aにおける他方の端部であるアクチュエータ取付部22aと直線部19bにおける他方の端部であるアクチュエータ取付部22bとで構成されている。
また、各アクチュエータ取付部(22a、22b)には、貫通孔がそれぞれ形成され、この貫通孔にブッシュ17が嵌合により取り付けられている。ブッシュ17は、アクチュエータ取付部22aに固定されるブッシュ17aと、アクチュエータ取付部22bに固定されるブッシュ17bとで構成されている。ブッシュ17a及びブッシュ17bは、後述する揺動軸31が貫通する貫通孔が設けられた円筒状に形成されている。そして、各ブッシュ(17a、17b)は、その内周が揺動軸31の外周に摺接する摺動部材として構成されている。これにより、シリンダ取付部(22a、22b)のそれぞれが、揺動軸31に対して揺動自在に取り付けられている。
尚、図1に示すように、上述した揺動軸31は、アクチュエータ11のシリンダ本体13の他端側(ロッド部14の突出する側と反対側)においてシリンダ本体13と一体に形成された一対の円筒状の部分として設けられている。そして、揺動軸31は、シリンダ本体13の他端側の両側方において、同一直線上に沿って互いに反対側に向かって突出するように形成されている。この揺動軸31がブッシュ17に対して摺接して回転自在な状態で支持される。これにより、リアクションリンク本体15は、アクチュエータ取付部(22a、22b)のそれぞれが、ブッシュ17及び揺動軸31を介して、アクチュエータ11の他端側に対して揺動自在に取り付けられている。よって、リアクションリンク12は、アクチュエータ11及び舵面102に対して揺動自在に連結されている。
尚、上記において、揺動軸31がシリンダ本体13と一体に形成されたものを例にとって説明したが、この通りでなくてもよい。例えば、別体に形成された揺動軸31がシリンダ本体13に固定されているものであってもよく、また、別体の揺動軸31に対してシリンダ本体13の他端側の端部が回転自在に取り付けられるものであってもよい。また、本実施形態では、揺動軸31をシリンダ取付部22に対して回転自在に保持する要素としてブッシュ17を例にとって説明したが、この通りでなくてもよい。例えば、揺動軸31をシリンダ取付部22に対して回転自在に保持する要素として軸受が設けられていてもよい。
また、リアクションリンク本体15は、前述のように、炭素繊維強化プラスチックで形成された複数の部材(23〜28)が一体化されることで構成されている。これらの複数の部材(23〜28)として、リアクションリンク本体15においては、本体部材23、連結部側表面部材(24、25)、連結部側端部部材26、直線部側端部部材(27、28)が設けられている。
本体部材23は、一対の直線部19及び連結部20の基本骨格部分を構成しており、一対の直線部19及び連結部20に亘って延びる部材として設けられている。この本体部材23は、一対の平板状部分(23a、23a)と架橋部分23bとを有し、これらが一体
に形成されて構成されている。一対の平板状部分(23a、23a)は、それぞれ平板状に形成されるとともに平行に配置された一対の部分として設けられている。架橋部分23bは、一対の平板状部分(23a、23a)に対してそれぞれにおける一方の縁部において略垂直に接続されるとともに一対の平板状部分23aを連結して架橋する部分として設けられている。このため、本体部材23における一対の平板状部分(23a、23a)及び架橋部分23bに垂直な断面は、角パイプにおける1辺の部分が欠落して開放された状態のような断面形状に形成されている。このような断面形状に形成されることで、大きな断面二次モーメントが確保されるように構成されている。
また、一対の平板状部分(23a、23a)及び架橋部分23bは、一対の直線部19及び連結部20に亘って延びるように配置されている。また、一対の平板状部分23aは、リアクションリンク本体15の厚み方向(図5において両端矢印Cで示す方向)において並んで配置されている。尚、リアクションリンク本体15の厚み方向は、リアクションリンク本体15の幅方向(図4における両端矢印Aで示す方向)と一対の直線部19(19a、19b)の長手方向(図4における両端矢印Bで示す方向)との両方に対して垂直な方向として規定される。また、リアクションリンク本体15の幅方向は、一対の直線部19(19a、19b)が並んで配置される方向として規定される。
連結部側表面部材(24、25)は、2つの湾曲して延びる部分を有する平板状の部材として設けられ、連結部20から一対の直線部19における一方の端部側のそれぞれに亘って配置されている。そして、連結部側表面部材24と連結部側表面部材25とは、リアクションリンク本体15の厚み方向における両側の表面にそれぞれ配置され、本体部材23に対して対称に配置されている。これらの連結部側表面部材(24、25)は、本体部材23における一対の平板状部分(23a、23a)の表面にそれぞれ取り付けられている。
連結部側端部部材26は、連結部20の一部を構成する基部32と、この基部32に一体に形成されて軸受16を保持する前述の支点軸取付部21と、を備えて構成されている。基部32は、連結部20に沿って配置されるとともに、リアクションリンク本体15の幅方向において対称な形状で舵面102側に向かって先細り形状で突出するブロック状に形成されている。そして、基部32は、本体部材23に対して、一対の平板状部分(23a、23a)の間に挟まれた状態で取り付けられている。また、軸方向長さが短い円筒状の部分として設けられて基部27aの先端側に一体に形成された支点軸取付部21は、その軸方向(円筒軸方向)がリアクションリンク本体15の幅方向と平行に配置されている。
直線部側端部部材(27、28)は、一対の直線部19における他方の端部をそれぞれ構成する部材として設けられている。直線部側端部部材27が直線部19aにおける他方の端部を構成し、直線部側端部部材28が直線部19bにおける他方の端部を構成するように設けられている。また、直線部側端部部材27には、ブッシュ17aを保持する貫通孔が形成されたブッシュ保持部分と、このブッシュ保持部分から直線部19aの長手方向に沿って突出して平行に延びる平板状に形成された一対の突出部分とが設けられている。同様に、直線部側端部部材28には、ブッシュ17bを保持する貫通孔が形成されたブッシュ保持部分と、このブッシュ保持部分から直線部19bの長手方向に沿って突出して平行に延びる平板状に形成された一対の突出部分とが設けられている。そして、各直線部側端部部材(27、28)における一対の突出部分は、本体部材23における一対の平板状部分(23a、23a)に対して、リアクションリンク本体15の厚み方向における両側の表面に取り付けられている。
図3乃至図5によく示すように、締結部材18は、複数のボルト33と、各ボルト33
に螺合する複数のナット34と、複数のストレートブッシュ35とを備え、複数の部材(23〜28)を結合して一体化するように構成されている。そして、締結部材18における各ボルト33に各ナット34が螺合することによって、複数の部材(23〜28)が、リアクションリンク本体15の厚み方向において重なって配置された状態で結合される。尚、ストレートブッシュ35は、円筒状の部材として形成されている。
また、締結部材18における複数(本実施形態では8つ)のボルト33のうちの一部のボルト33(本実施形態では4つのボルト33)は、連結部20に沿って並んで配置されている。更に、連結部20に沿って配置されたボルト33のそれぞれにおけるボルト軸部は、連結部側表面部材24、一対の平板状部分(23a、23a)の一方、連結部側端部部材26の基部32、一対の平板状部分(23a、23a)の他方、及び連結部側表面部材25に亘ってこれらの部材を貫通している。そして、これらの各ボルト33は、ボルト頭部が連結部側表面部材24に当接するとともに、ボルト頭部の反対側の端部が連結部側表面部材25から突出して各ナット34に螺合している。これにより、複数の部材(23、24、25、26)がリアクションリンク本体15の厚み方向において重なって配置されて締結部材18によって結合されている。尚、連結部側表面部材(24、25)と、本体部材23と、連結部側端部部材26とは、例えば、リアクションリンク本体15の厚み方向に対して垂直な方向における炭素繊維の配列方向が互いに異なる部材として設けられている。
一方、締結部材18における残りのボルト33(本実施形態では、4つのボルト33)は、一対の直線部19(19a、19b)における他方の端部のそれぞれに配置されている。直線部19aにおける他方の端部に配置されたボルト33のそれぞれにおけるボルト軸部は、直線部側端部部材27における一対の突出部分と、本体部材23における一対の平板状部分(23a、23a)と、ストレートブッシュ35とを貫通している。そして、これらの各ボルト33は、ボルト頭部が直線部側端部部材27における一対の突出部分の一方に当接し、ボルト頭部の反対側の端部が一対の突出部分の他方から突出してナット34に螺合している。
尚、ストレートブッシュ35は、一対の平板状部分(23a、23a)の間において、円筒軸方向における両端部が一対の平板状部分(23a、23a)にそれぞれ当接した状態で配置されている。このストレートブッシュ35によって、ボルト33とナット34とが螺合した際における締結力による一対の平板状部分(23a、23a)の変形が防止されている。
上記のように、直線部19aにおける他方の端部に配置された締結部材18(33、34、35)によって複数の部材(23、27)がリアクションリンク本体15の厚み方向において重なって配置されて結合されている。また、直線部19bにおける他方の端部に配置された締結部材18(33、34、35)についても、直線部19aにおける他方の端部に配置された締結部材18(33、34、35)と同様に、リアクションリンク本体15に対して設けられている。そして、複数の部材(23、28)がリアクションリンク本体15の厚み方向において重なって配置されて締結部材18(33、34、35)によって結合されている。尚、直線部側端部部材(27、28)と、本体部材23とは、例えば、リアクションリンク本体15の厚み方向に対して垂直な方向における炭素繊維の配列方向が互いに異なる部材として設けられている。
次に、上述した舵面駆動ユニット1の作動について説明する。舵面102の駆動が行われる際には、図示しないコントローラからの指令に基づいて油圧装置が作動し、アクチュエータ11のシリンダ本体13に対して圧油の供給及び排出が行われる。この圧油の給排に伴って、ロッド部14がシリンダ本体13に対して伸張又は収縮する変位を行うことに
なる。これにより、揺動軸31を中心として揺動可能なアクチュエータ11におけるロッド部14の一端側で舵面102が駆動されることになる。このとき、前述のように、リアクションリンク本体15は一方側が舵面102の支点軸30に対して他方側が揺動軸31に対してそれぞれ揺動自在に取り付けられているため、舵面102が支点軸30を中心として揺動して駆動されることになる。
以上説明したように、舵面駆動ユニット(アクチュエータ及びリンク)1によると、アクチュエータ11の作動に伴って舵面102を安定して駆動させるように、一対の直線部19とこの一対の直線部19に対して屈曲部分(29a、29b)を介して連結する連結部20とを備えた門型の形状に形成されるリアクションリンク(リンク)12が備えられる。従来のようにチタン合金やステンレス鋼といった金属材料により形成されて屈曲部分を有する門型形状のリンクの場合、強度及び剛性をバランスよく確保しつつ更に軽量化を図ることは困難である。しかしながら、舵面駆動ユニット1によると、リアクションリンク12における一対の直線部19及び連結部20が繊維強化プラスチックにより形成されている。このため、チタン合金製のものよりも比重が大幅に小さくて(即ち、密度も大幅に小さくて)且つ比強度及び比剛性が大幅に大きく、更にステンレス鋼製のものよりも比強度及び比剛性が大幅に大きい舵面駆動ユニット1を実現することができる。これにより、舵面駆動ユニット(アクチュエータ及びリンク)において、より高い水準で強度及び剛性をバランスよく確保するとともに大幅な軽量化を図ることができる。よって、本実施形態によると、門型形状のリアクションリンクを備える舵面駆動ユニット(アクチュエータ及びリンク)において、従来のようなチタン合金やステンレス鋼といった金属により構成されたものに比して、軽量化を図ることができるとともに、同等又はそれ以上の強度及び剛性を確保することができる。
[アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法]
次に、本実施形態に係るアクチュエータ及びリンクの製造方法と、本実施形態に係るアクチュエータ及びリンクの設計方法とについて説明する。本実施形態に係るアクチュエータ及びリンクの製造方法は、舵面駆動ユニット1のアクチュエータ11とリアクションリンク(リンク)12とを製造する製造方法を構成している。また、本実施形態に係るアクチュエータ及びリンクの設計方法は、舵面駆動ユニット1のアクチュエータ11とリアクションリンク(リンク)12とを設計する設計方法を構成している。尚、本実施形態に係るアクチュエータ及びリンクの製造方法は、本実施形態に係るアクチュエータ及びリンクの設計方法を構成要素として含んで構成されている。
図6は、本実施形態に係るアクチュエータ及びリンクの製造方法(以下、単に「本実施形態の製造方法」ともいう)を説明するための工程図である。この図6に示すように、本実施形態の製造方法は、本実施形態にかかるアクチュエータ及びリンクの設計方法(以下、単に「本実施形態の設計方法」ともいう)を構成する設計工程S101と、製作工程S102とを備えて構成されている。
設計工程S101は、材料決定ステップS101aと、演算ステップS101bと、剛性決定ステップS101cと、形状決定ステップS101dと、を備えて構成されている。そして、この設計工程S101は、図7に示す設計装置51が図示しないユーザ(操作者)による入力装置52からの入力操作に基づいて作動することによって実行される。尚、図7は、設計装置51について、入力装置52及び出力装置53とともに示す機能ブロック図である。
設計工程S101を実行する設計装置51は、プログラムを実行可能なコンピュータ装置として設けられ、図示しないCPU(Central Processing Unit)、メモリ、入出力インターフェース、等を備えて構成されている。そして、この設計装置51において、メモ
リに記憶されるとともに設計工程S101を遂行するためのプログラムが、CPUにより読み出されて実行される。これにより、設計装置51において、材料決定ステップS101aを実行する材料決定部51a、演算ステップS101bを実行する演算部51b、剛性決定ステップS101cを実行する剛性決定部51c、形状決定ステップS101dを実行する形状決定部51d、演算部51dでの演算結果等を出力装置53に表示させる表示部51e、等がそれぞれ構築されることになる。
また、設計装置51は、入力装置52及び出力装置53に接続されている。入力装置52は、ユーザが設計装置51に対する操作を入力するための装置である。入力装置52は、例えば、キーボード、マウス等のポインティングデバイス、等の入力機器として設けられる。ユーザは、入力装置52を用いて、設計装置51に対して設計工程S101の遂行に必要な所定のデータを入力することができるとともにその設計装置51の操作を行うことができる。また、出力装置53は、例えば、表示画面を備えたディスプレイ装置として設けられ、設計装置51の表示部51eの制御に基づいて演算部51d等における処理結果を表示する。
設計工程S101の材料決定ステップS101aは、アクチュエータ11を構成する材料とリアクションリンク12を構成する材料とを決定するステップとして構成されている。この材料決定ステップS101aにおいては、アクチュエータ11の材料は、例えば、ステンレス鋼に決定される。また、リアクションリンク12については、例えば、軸受16及び締結部材18の材料はステンレス鋼、ブッシュ17の材料はブロンズ、リアクションリンク本体15の材料は炭素繊維強化プラスチックに決定される。
上記のように材料が決定されるため、リアクションリンク本体15を構成する複数の部材(23〜28)の材料は炭素繊維強化プラスチックに決定され、リアクションリンク12における一対の直線部19及び連結部20を構成する材料は炭素繊維強化プラスチックに決定されることになる。尚、材料決定ステップS101aにおける材料の決定形態については、上記の例示に限らず、アクチュエータ11を構成する材料とリアクションリンク12を構成する材料とのうちの少なくともいずれかの材料に繊維強化プラスチックが含まれるように材料の決定が行われてもよい。
設計工程S101の演算ステップS101bは、後述する演算モデルを用い、アクチュエータ11の剛性に対するリアクションリンク12の剛性の比である剛性比の変化に伴うゲイン余裕の変化を演算するステップとして構成されている。この演算ステップS101bにおいて用いられる演算モデルは、舵面102の慣性質量、舵面102の剛性、アクチュエータ11の剛性、リアクションリンク12の剛性を各パラメータとして含むとともにこれらの各パラメータの関係を規定する演算モデルとして構成される。尚、舵面102の慣性質量及び剛性のパラメータについては、舵面駆動ユニット1が適用される舵面102に対応する慣性質量及び剛性のデータとして、ユーザによる入力装置52の操作が行われることで設計装置51に対して入力される。また、舵面102に対応する慣性質量及び剛性のデータ以外のデータであって演算ステップS101bでの演算に必要な所定のデータについても、ユーザによる入力装置52の操作が行われることで設計装置51に対して入力される。
図8は、演算ステップS101bにおいて用いられる演算モデルを説明するための図である。この図8に示すように、演算ステップS101bで用いられる演算モデルは、舵面102の慣性質量Mと、舵面102の剛性をモデル化したバネ定数Kcのバネと、アクチュエータ11の剛性をモデル化したバネ定数Kactのバネと、リアクションリンク12の剛性をモデル化したバネ定数Krのバネとが直列に連結されたバネマスモデルとして各パラメータの関係を規定するように構成される。また、この演算モデルを用いた演算ステ
ップS101bでは、図8にて両端矢印Dで示す方向に振動を行う条件のもと、演算が行われる。
演算ステップS101bでは、上記の演算モデルを用い、アクチュエータ11の剛性(Kact)に対するリアクションリンク12の剛性(Kr)の比である剛性比(Kr/Kact)の変化に伴うゲイン余裕の変化が演算される。図9は、剛性比(Kr/Kact)の変化に伴うゲイン余裕の変化についての演算結果を説明するための図である。図9においては、縦軸にゲイン余裕が表され、横軸に剛性比(Kr/Kact)が対数軸で表されている。尚、設計装置51においては、例えば、図9に示す演算結果が表示部51eの制御に基づいて出力装置53に表示され、この演算結果をユーザが確認可能に構成されている。
設計工程S101の剛性決定ステップS101cは、演算ステップS101bでの演算結果に基づいて、剛性比(Kr/Kact)及びゲイン余裕がそれぞれ予め定められた所定の範囲に収まるように、アクチュエータ11及びリアクションリンク12の剛性を決定するステップとして構成されている。尚、上記の所定の範囲における剛性比(Kr/Kact)及びゲイン余裕の下限値は、例えば、アクチュエータ11の材料をステンレス鋼で構成するとともにリアクションリンク12の材料をチタン合金で構成した舵面駆動ユニット1よりも高剛性で高いゲイン余裕を確保できるように、剛性比(Kr/Kact)が1.0でゲイン余裕が18.0に定められている。また、上記の所定の範囲における剛性比(Kr/Kact)及びゲイン余裕の上限値は、例えば、剛性比(Kr/Kact)の上昇に伴うゲイン余裕の変化がほぼ収束してしまい剛性比(Kr/Kact)の上昇に伴うゲイン余裕の更なる上昇効果(即ち、制御安定性の更なる向上効果)が得られない領域よりも剛性比(Kr/Kact)が小さい範囲となるように(即ち、制御安定性の向上効果が見込める範囲となるように)、剛性比(Kr/Kact)が10.0でゲイン余裕が20.0に定められている。尚、剛性決定ステップS101cでは、上記の所定の範囲において、重量や強度等に関する所定の条件に基づいて、剛性比(Kr/Kact)及びゲイン余裕が所定の値に決定され、更に、その剛性比(Kr/Kact)に基づいてアクチュエータ11の剛性とリアクションリンク12の剛性とが決定される。尚、設計装置51においては、例えば、剛性決定ステップS101cにて決定されたアクチュエータ11及びリアクションリンク12の剛性値が、表示部51eの制御に基づいて出力装置53に表示され、この処理結果をユーザが確認可能に構成されている。
図10は、アクチュエータ11の材料をステンレス鋼で構成し、リアクションリンク12の材料を炭素繊維強化プラスチック、チタン合金、ステンレス鋼でそれぞれ構成した場合において、リアクションリンク12の重量(g)と剛性比(Kr/Kact)との関係について解析した結果を説明するための図である。尚、リアクションリンク12の構成材料が炭素繊維強化プラスチックの場合の解析結果については実線で、リアクションリンク12の構成材料がチタン合金の場合の解析結果については破線で、リアクションリンク12の構成材料がステンレス鋼の場合の解析結果については一点鎖線で示している。各解析結果については、リアクションリンク本体15を構成する部材(23〜28)の厚み寸法の条件を変化させることで、重量及び剛性比(Kr/Kact)を変化させて計算を行っている。また、舵面102を駆動する駆動ユニット1のリアクションリンク12として要求される下限の強度を確保可能な計算条件(下限条件)について、それぞれ黒い丸印で示している。
図10に示すように、リアクションリンク12の構成材料が炭素繊維強化プラスチックの場合、リアクションリンク12の構成材料がステンレス鋼やチタン合金の場合に比して、同等又はそれ以上の強度を確保できるとともに、より高い剛性を確保することができ、更に、大幅な軽量化を図ることができる。また、この図10に示すように、リアクション
リンク12の構成材料が炭素繊維強化プラスチックの場合、剛性比(Kr/Kact)が1.0以上となるように設定されることで、リアクションリンク12の構成材料がチタン合金で最も軽量化が図られた下限条件の場合よりも、より高剛性で軽量化を図ることができることになる。
設計工程S101の形状決定ステップS101dは、アクチュエータ11の剛性とリアクションリンク12の剛性とが剛性決定ステップS101cで決定された剛性に設定されるように、アクチュエータ11及びリアクションリンク12の形状が決定される。
形状決定ステップS101dにおいては、アクチュエータ11の形状については、例えば、剛性決定ステップS101cで決定された剛性に設定されるように、シリンダ本体13の円筒部分の肉厚寸法やロッド部14の軸部の直径寸法が決定され、アクチュエータ11の形状が決定されることになる。尚、本実施形態では、シリンダ本体13の形状が円筒形状に設定され、ロッド部14の形状が円形断面の丸棒状の形状に設定される場合を例示したが、この通りでなくてもよく、他の断面形状に設定されてもよい。また、形状決定ステップS101dは、複数の断面形状のうちから所定の断面形状が選択される形態であってもよく、この場合、例えば、剛性決定ステップS101bで決定された剛性を最も少ない材料で(最も軽量化を図って)構成可能な断面形状が選択される形態であってもよい。
また、形状決定ステップS101dにおいては、リアクションリンク12の形状については、例えば、剛性決定ステップS101cで決定された剛性に設定されるように、リアクションリンク本体15の各部材(23〜28)の厚み寸法や幅寸法、軸受16の直径寸法、ブッシュ17の直径寸法、等の形状寸法が決定され、リアクションリンク12の形状が決定されることになる。尚、本実施形態では、リアクションリンク本体15が図3乃至図5に示す所定の断面形状に設定される場合を例示したが、この通りでなくてもよく、角筒状の断面形状を有する形態や平板状の断面形状を有する形態等の他の断面形状を有する形態に設定されてもよい。また、複数の断面形状のうちから所定の断面形状が選択される形態であってもよく、この場合、例えば、剛性決定ステップS101cで決定された剛性を最も少ない材料で(最も軽量化を図って)構成可能な断面形状が選択される形態であってもよい。尚、設計装置51においては、例えば、形状決定ステップS101dにて決定されたアクチュエータ11及びリアクションリンク12の形状が、表示部51eの制御に基づいて出力装置53に表示され、この処理結果をユーザが確認可能に構成されている。
製作工程S102は、形成ステップS102aと、組み立てステップS102bと、を備えて構成されている。そして、この製作工程S102においては、設計工程S101で設計されたアクチュエータ11及びリアクションリンク12の製作が行われる。
製作工程S102の形成ステップS102aは、形状決定ステップS101dで決定された形状となるようにアクチュエータ11及びリアクションリンク12を形成するステップとして構成されている。この形成ステップS102aにおいて、円筒形状のシリンダ本体13と丸棒状のロッド部14とがステンレス鋼を用いて所定の形状寸法に加工され、アクチュエータ11として一体に組み立てられて形成される。
また、形成ステップS102aでは、図3乃至図5に示す所定の形状の各部材(23〜28)が炭素繊維強化プラスチックにより所定の形状寸法に形成される。そして、これらの各部材(23〜28)が締結部材18によって結合されてリアクションリンク本体15として一体化されるとともに、このリアクションリンク本体15に軸受16及びブッシュ17も組み付けられ、リアクションリンク12が形成される。尚、軸受16及びブッシュ17の組み付け作業については、各部材(23〜28)の結合作業の後でなくてもよく、結合作業の前や結合作業の過程において行われてもよい。
製作工程S102の組み立てステップS102bは、形成ステップS102aで形成されたアクチュエータ11及びリアクションリンク12を連結して組み立てるステップとして構成されている。この組み立てステップS102bにおいては、アクチュエータ11のシリンダ本体13に一体に形成された揺動軸31がリアクションリンク12のブッシュ17に挿通され、アクチュエータ11及びリアクションリンク12が連結されて組み立てられる。尚、形成ステップS102aと組み立てステップS102bとは、並行して行われてもよく、例えば、形成ステップS102aの過程中に揺動軸31のブッシュ17への挿通作業が行われ、その後にリアクションリンク12の形成が完了する形態であってもよい。
上記の製作工程S102が終了することで、図6に示す本実施形態の製造方法が完了し、図1に示す舵面駆動ユニット(アクチュエータ及びリンク)1が製造されることになる。
以上説明したように、本実施形態に係るアクチュエータ及びリンクの製造方法と、本実施形態に係るアクチュエータ及びリンクの設計方法によると、リアクションリンク12を構成する材料に繊維強化プラスチックが含まれるように決定される。このため、チタン合金製のものよりも比重が大幅に小さくて(即ち、密度も大幅に小さくて)且つ比強度及び比剛性が大幅に大きく、更にステンレス鋼製のものよりも比強度及び比剛性が大幅に大きい舵面駆動ユニット(アクチュエータ及びリンク)1を実現することができる。そして、舵面102、アクチュエータ11、及びリアクションリンク12についての演算モデルでの演算結果に基づいて、アクチュエータ11に対するリアクションリンク12の剛性比(Kr/Kact)とゲイン余裕とがそれぞれ設定された所定の範囲に収まるように、アクチュエータ11及びリアクションリンク12の剛性が決定される。これにより、構成素材として繊維強化プラスチックを含む舵面駆動ユニット(アクチュエータ及びリンク)1の剛性が、変形が十分に抑制されるとともに舵面102を駆動する制御システムとしての安定性が十分に確保される水準に確実に決定されることになる。そして、アクチュエータ11及びリアクションリンク12の設計は、上記のように決定された剛性に設定されるように形状が決定されることで完了することになる。また、アクチュエータ11及びリアクションリンク12が、上記のように決定された形状に形成され、更に連結されて組み立てられることで、舵面駆動ユニット(アクチュエータ及びリンク)1の製造が完了することになる。よって、従来のようなチタン合金やステンレス鋼といった金属により構成されたアクチュエータ及びリンクに比して、軽量化を図ることができるとともに、同等又はそれ以上の強度及び剛性を確保することができる舵面駆動ユニット(アクチュエータ及びリンク)1を設計及び製造することができる。
従って、本実施形態に係るアクチュエータ及びリンクの製造方法によると、従来と同等又はそれ以上の強度及び剛性を確保できるとともに、更に軽量化を図ることができる舵面駆動ユニット(アクチュエータ及びリンク)1を設計及び製造することができる。
また、本実施形態に係るアクチュエータ及びリンクの設計方法によると、アクチュエータ11の作動に伴って舵面102を安定して駆動させるように、一対の直線部19とこの一対の直線部19に対して屈曲部分(29a、29b)を介して連結する連結部20とを備えた門型の形状に形成されるリアクションリンク12が設計される。屈曲部分を有する門型形状のリアクションリンクの場合、軽量化を図りつつ強度及び剛性をバランスよく確保することは困難である。しかしながら、本実施形態の設計方法によると、リアクションリンク12における一対の直線部19及び連結部20の構成材料が、繊維強化プラスチックに決定されるため、より高い水準で強度及び剛性をバランスよく確保するとともに大幅な軽量化を図ることができる。
また、本実施形態に係るアクチュエータ及びリンクの設計方法によると、演算ステップS101bで用いられる演算モデルが、舵面102、アクチュエータ11、及びリアクションリンク12について、それらの慣性質量やバネが直列に連結されたバネマスモデルとして構成される。このため、直列に連結される実際の舵面102、アクチュエータ11、及びリアクションリンク12の関係に即して、舵面102の慣性質量M、舵面102の剛性(バネ定数Kc)、アクチュエータ11の剛性(バネ定数Kact)、及びリアクションリンク12の剛性(バネ定数Kr)の各パラメータの関係をより正確に規定する演算モデルを簡易な演算モデルにて実現することができる。
以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することができる。例えば、次のように変更して実施することができる。
(1)本実施形態では、リンクを構成する材料に繊維強化プラスチックが含まれる形態を例にとって説明したが、この通りでなくてもよい。即ち、アクチュエータを構成する材料のみに繊維強化プラスチックが含まれる形態であってもよく、また、リンクを構成する材料とアクチュエータを構成する材料とのいずれにも繊維強化プラスチックが含まれる形態であってもよい。
(2)アクチュエータ及びリアクションリンクの形状については、本実施形態で例示した形状に限らず、種々変更して実施してもよい。また、本実施形態で例示したリアクションリンク以外の形態のリンクに対して本発明が適用されるものであってもよい。
本発明は、航空機の舵面又はホーンアーム部材に取り付けられて舵面を駆動するアクチュエータ及びこのアクチュエータに対して連結されるリンクを備える、アクチュエータ及びリンクと、そのアクチュエータ及びリンクを製造する製造方法と、そのアクチュエータ及びリンクを設計する設計方法とに関して、広く適用することができるものである。
1 舵面駆動ユニット(アクチュエータ及びリンク)
11 アクチュエータ
12 リアクションリンク(リンク)
102 舵面
S101a 材料決定ステップ
S101b 演算ステップ
S101c 剛性決定ステップ
S101d 形状決定ステップ
S102a 形成ステップ
S102b 組み立てステップ

Claims (8)

  1. 航空機の舵面に又は当該舵面に取り付けられたホーンアーム部材に一端側が揺動自在に取り付けられて前記舵面を駆動するアクチュエータと当該アクチュエータに対して連結されるリンクとを製造する、アクチュエータ及びリンクの製造方法であって、
    前記アクチュエータを構成する材料と前記リンクを構成する材料とを決定する、材料決定ステップと、
    前記舵面の慣性質量、前記舵面の剛性、前記アクチュエータの剛性、及び前記リンクの剛性を各パラメータとして含むとともに当該各パラメータの関係を規定する演算モデルを用い、前記アクチュエータの剛性に対する前記リンクの剛性の比である剛性比の変化に伴うゲイン余裕の変化を演算する、演算ステップと、
    前記演算ステップでの演算結果に基づいて、前記剛性比及び前記ゲイン余裕がそれぞれ所定の範囲に収まるように、前記アクチュエータ及び前記リンクの剛性を決定する、剛性決定ステップと、
    前記アクチュエータ及び前記リンクの剛性が前記剛性決定ステップで決定された剛性に設定されるように、前記アクチュエータ及び前記リンクの形状を決定する、形状決定ステップと、
    前記形状決定ステップで決定された形状となるように前記アクチュエータ及び前記リンクを形成する形成ステップと、
    前記形成ステップで形成される前記アクチュエータ及び前記リンクを連結して組み立てる組み立てステップと、
    を備え、
    前記リンクは、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられるとともに、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられ、
    前記材料決定ステップにおいて、前記アクチュエータを構成する材料と前記リンクを構成する材料とのうちの少なくともいずれかの材料に繊維強化プラスチックが含まれるように材料の決定が行われることを特徴とする、アクチュエータ及びリンクの製造方法。
  2. 請求項1に記載のアクチュエータ及びリンクの製造方法であって、
    前記剛性決定ステップにおいて、前記所定の範囲における前記剛性比及び前記ゲイン余裕の下限値は、前記剛性比が1.0で前記ゲイン余裕が18.0に定められ、前記所定の範囲における前記剛性比及び前記ゲイン余裕の上限値は、前記剛性比が10.0で前記ゲイン余裕が20.0に定められていることを特徴とする、アクチュエータ及びリンクの製造方法。
  3. 航空機の舵面に又は当該舵面に取り付けられたホーンアーム部材に一端側が揺動自在に取り付けられて前記舵面を駆動するアクチュエータと当該アクチュエータに対して連結されるリンクとを設計する、アクチュエータ及びリンクの設計方法であって、
    前記アクチュエータを構成する材料と前記リンクを構成する材料とを決定する、材料決定ステップと、
    前記舵面の慣性質量、前記舵面の剛性、前記アクチュエータの剛性、及び前記リンクの剛性を各パラメータとして含むとともに当該各パラメータの関係を規定する演算モデルを用い、前記アクチュエータの剛性に対する前記リンクの剛性の比である剛性比の変化に伴うゲイン余裕の変化を演算する、演算ステップと、
    前記演算ステップでの演算結果に基づいて、前記剛性比及び前記ゲイン余裕がそれぞれ所定の範囲に収まるように、前記アクチュエータ及び前記リンクの剛性を決定する、剛性決定ステップと、
    前記アクチュエータ及び前記リンクの剛性が前記剛性決定ステップで決定された剛性に設定されるように、前記アクチュエータ及び前記リンクの形状を決定する、形状決定ステップと、
    を備え、
    前記リンクは、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられるとともに、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられ、
    前記材料決定ステップにおいて、前記アクチュエータを構成する材料と前記リンクを構成する材料とのうちの少なくともいずれかの材料に繊維強化プラスチックが含まれるように材料の決定が行われることを特徴とする、アクチュエータ及びリンクの設計方法。
  4. 請求項3に記載のアクチュエータ及びリンクの設計方法であって、
    前記剛性決定ステップにおいて、前記所定の範囲における前記剛性比及び前記ゲイン余裕の下限値は、前記剛性比が1.0で前記ゲイン余裕が18.0に定められ、前記所定の範囲における前記剛性比及び前記ゲイン余裕の上限値は、前記剛性比が10.0で前記ゲイン余裕が20.0に定められていることを特徴とする、アクチュエータ及びリンクの設計方法。
  5. 請求項3又は請求項4に記載のアクチュエータ及びリンクの設計方法であって、
    前記リンクは、
    直線状にそれぞれ延びるとともに並んで配置される一対の直線部と、
    当該一対の直線部のそれぞれにおける一方の端部に対して屈曲部分を介して接続するとともに当該端部同士を連結するように延びる連結部と、
    前記連結部の中央部分から突出するように設けられ、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられる支点軸取付部と、
    前記一対の直線部のそれぞれにおける他方の端部として設けられ、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられるアクチュエータ取付部と、
    を有し、
    前記材料決定ステップにおいて、前記一対の直線部及び前記連結部を構成する材料に繊維強化プラスチックが含まれるように材料の決定が行われることを特徴とする、アクチュエータ及びリンクの設計方法。
  6. 請求項3乃至請求項5のいずれか1項に記載のアクチュエータ及びリンクの設計方法であって、
    前記演算ステップで用いられる前記演算モデルは、前記舵面の慣性質量と、前記舵面の剛性をモデル化したバネと、前記アクチュエータの剛性をモデル化したバネと、前記リンクの剛性をモデル化したバネとが直列に連結されたバネマスモデルとして前記各パラメータの関係を規定することを特徴とする、アクチュエータ及びリンクの設計方法。
  7. 航空機の舵面に又は当該舵面に取り付けられたホーンアーム部材に一端側が揺動自在に取り付けられて前記舵面を駆動するアクチュエータと当該アクチュエータに対して連結されるリンクとを備える、アクチュエータ及びリンクであって、
    前記リンクは、
    直線状にそれぞれ延びるとともに並んで配置される一対の直線部と、
    当該一対の直線部のそれぞれにおける一方の端部に対して屈曲部分を介して接続するとともに当該端部同士を連結するように延びる連結部と、
    前記連結部の中央部分から突出するように設けられ、前記舵面を回転自在に支持する支点軸に対して揺動自在に取り付けられる支点軸取付部と、
    前記一対の直線部のそれぞれにおける他方の端部として設けられ、前記アクチュエータの他端側に対して揺動軸を介して揺動自在に取り付けられるアクチュエータ取付部と、
    を有し、
    前記一対の直線部及び前記連結部を構成する材料に繊維強化プラスチックが含まれ
    当該アクチュエータ及びリンクは、材料決定ステップ、演算ステップ、剛性決定ステップ、形状決定ステップ、形成ステップ、及び組み立てステップ、を備える、アクチュエータ及びリンクの製造方法によって製造され、
    前記材料決定ステップは、前記アクチュエータを構成する材料と前記リンクを構成する材料とを決定し、
    前記演算ステップは、前記舵面の慣性質量、前記舵面の剛性、前記アクチュエータの剛性、及び前記リンクの剛性を各パラメータとして含むとともに当該各パラメータの関係を規定する演算モデルを用い、前記アクチュエータの剛性に対する前記リンクの剛性の比である剛性比の変化に伴うゲイン余裕の変化を演算し、
    前記剛性決定ステップは、前記演算ステップでの演算結果に基づいて、前記剛性比及び前記ゲイン余裕がそれぞれ所定の範囲に収まるように、前記アクチュエータ及び前記リンクの剛性を決定し、
    前記形状決定ステップは、前記アクチュエータ及び前記リンクの剛性が前記剛性決定ステップで決定された剛性に設定されるように、前記アクチュエータ及び前記リンクの形状を決定し、
    前記形成ステップは、前記形状決定ステップで決定された形状となるように前記アクチュエータ及び前記リンクを形成し、
    前記組み立てステップは、前記形成ステップで形成される前記アクチュエータ及び前記リンクを連結して組み立て、
    更に、前記材料決定ステップにおいて、前記一対の直線部及び前記連結部を構成する材料に繊維強化プラスチックが含まれるように材料の決定が行われることを特徴とする、アクチュエータ及びリンク。
  8. 請求項7に記載のアクチュエータ及びリンクであって、
    前記剛性決定ステップにおいて、前記所定の範囲における前記剛性比及び前記ゲイン余裕の下限値は、前記剛性比が1.0で前記ゲイン余裕が18.0に定められ、前記所定の範囲における前記剛性比及び前記ゲイン余裕の上限値は、前記剛性比が10.0で前記ゲイン余裕が20.0に定められていることを特徴とする、アクチュエータ及びリンク。
JP2010056922A 2010-03-15 2010-03-15 アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク Active JP5552340B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010056922A JP5552340B2 (ja) 2010-03-15 2010-03-15 アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク
US13/037,907 US8688255B2 (en) 2010-03-15 2011-03-01 Actuator-link assembly manufacturing method, actuator-link assembly designing method, and actuator-link assembly
EP11156337.5A EP2368796B8 (en) 2010-03-15 2011-03-01 Actuator-link assembly manufacturing method, actuator-link assembly designing method, and actuator-link assembly
US14/174,661 US9097327B2 (en) 2010-03-15 2014-02-06 Actuator-link assembly for aircraft control surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056922A JP5552340B2 (ja) 2010-03-15 2010-03-15 アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク

Publications (2)

Publication Number Publication Date
JP2011189818A JP2011189818A (ja) 2011-09-29
JP5552340B2 true JP5552340B2 (ja) 2014-07-16

Family

ID=44063893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056922A Active JP5552340B2 (ja) 2010-03-15 2010-03-15 アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク

Country Status (3)

Country Link
US (2) US8688255B2 (ja)
EP (1) EP2368796B8 (ja)
JP (1) JP5552340B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562575B2 (ja) * 2009-04-27 2014-07-30 ナブテスコ株式会社 航空機用アクチュエータ
JP5552340B2 (ja) * 2010-03-15 2014-07-16 ナブテスコ株式会社 アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク
US8511608B1 (en) * 2010-11-15 2013-08-20 The Boeing Company Trailing edge flap system
JP5784370B2 (ja) * 2011-06-02 2015-09-24 ナブテスコ株式会社 航空機用舵面駆動機構
KR101242518B1 (ko) * 2012-11-07 2013-03-12 엘아이지넥스원 주식회사 리니어 액츄에이터 및 이를 적용한 착용로봇
JP6178571B2 (ja) * 2012-12-26 2017-08-09 三菱航空機株式会社 動翼のアクチュエータ装置、航空機の動翼、及び、航空機
JP6262042B2 (ja) * 2013-05-07 2018-01-17 ナブテスコ株式会社 航空機用リアクションリンク及び動翼駆動装置
EP3559836A1 (en) 2016-12-21 2019-10-30 Bombardier Inc. Modeling and testing of hinged flight control surfaces of aircraft
JP7379116B2 (ja) * 2019-11-27 2023-11-14 ナブテスコ株式会社 駆動ユニット及び駆動ユニットの保守方法
USD1022843S1 (en) * 2021-06-17 2024-04-16 Nabtesco Corporation Reaction link for aircraft

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243148A (en) * 1964-01-28 1966-03-29 Northrop Corp Aircraft horizontal tail control mechanism
US3874617A (en) * 1974-07-17 1975-04-01 Mc Donnell Douglas Corp Stol flaps
US4231284A (en) * 1978-08-31 1980-11-04 Textron, Inc. Load equilization feedback for parallel channel servo actuators
US4531448A (en) * 1984-05-14 1985-07-30 United Technologies Corporation Balanced output hydraulic actuator system
JPH0676801B2 (ja) * 1986-01-10 1994-09-28 三菱重工業株式会社 油圧駆動機構のトリム操作装置
US4962902A (en) * 1989-03-20 1990-10-16 The Boeing Company Aircraft control surface linkage
JPH0597095A (ja) * 1991-10-09 1993-04-20 Mitsubishi Heavy Ind Ltd 航空機用非常操舵システム
JPH0689322A (ja) * 1992-09-08 1994-03-29 Toyota Motor Corp 最適設計システム
US5388788A (en) * 1993-12-16 1995-02-14 The Boeing Company Hinge fairings for control surfaces
JP2963382B2 (ja) * 1995-10-26 1999-10-18 川崎重工業株式会社 空力ブレーキ装置
JP3620907B2 (ja) * 1995-11-16 2005-02-16 カヤバ工業株式会社 航空機舵面のサーボ制御システム
JP3490561B2 (ja) * 1995-11-27 2004-01-26 カヤバ工業株式会社 サーボ制御システム
AT410656B (de) * 2001-10-24 2003-06-25 Fischer Adv Components Gmbh Trag- bzw. führungsvorrichtung für flugzeugkomponenten
CA2465163C (en) * 2003-04-29 2008-09-02 The Boeing Company Apparatus and methods for actuating rotatable members
GR1005481B (el) * 2005-07-28 2007-04-02 Συστημα και μεθοδος για την εκπονηση και διαχειριση μελετων εφαρμογης για την οπλιση κτιριακων εργων.
US7500641B2 (en) * 2005-08-10 2009-03-10 The Boeing Company Aerospace vehicle flow body systems and associated methods
GB0722933D0 (en) * 2007-11-23 2008-01-02 Dewhurst Mike Mechanical connection between composite tubular structure and an end fitting of any engineering material
JP5224975B2 (ja) 2008-08-28 2013-07-03 京セラ株式会社 移動局
FR2942038B1 (fr) * 2009-02-09 2012-06-08 Airbus France Procede de determination d'une valeur rigide d'un coefficient aerodynamique
JP5562575B2 (ja) * 2009-04-27 2014-07-30 ナブテスコ株式会社 航空機用アクチュエータ
JP5514527B2 (ja) * 2009-12-11 2014-06-04 ナブテスコ株式会社 航空機用リアクションリンク
JP5552340B2 (ja) * 2010-03-15 2014-07-16 ナブテスコ株式会社 アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク
US8511608B1 (en) * 2010-11-15 2013-08-20 The Boeing Company Trailing edge flap system
JP5784370B2 (ja) * 2011-06-02 2015-09-24 ナブテスコ株式会社 航空機用舵面駆動機構

Also Published As

Publication number Publication date
US20140150605A1 (en) 2014-06-05
JP2011189818A (ja) 2011-09-29
EP2368796B8 (en) 2018-01-24
EP2368796A2 (en) 2011-09-28
US20110220761A1 (en) 2011-09-15
US9097327B2 (en) 2015-08-04
US8688255B2 (en) 2014-04-01
EP2368796A3 (en) 2014-10-01
EP2368796B1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5552340B2 (ja) アクチュエータ及びリンクの製造方法、アクチュエータ及びリンクの設計方法、アクチュエータ及びリンク
KR101613051B1 (ko) 형상 최적화 해석(analysis of shape optimization) 방법 및 장치
US11046378B2 (en) Analysis method and apparatus of optimizing joint location of automotive body
CN109416707B (zh) 车身的接合位置的最优化分析方法及装置
Babu et al. Stress analysis on steering knuckle of the automobile steering system
EP3751435A1 (en) Automotive body adhesive bonding position optimization analysis method and optimization analysis device
JP2013025593A (ja) 構造体の接合位置の最適化解析方法及び装置
Chiu et al. Optimal structural design of biplane wind turbine blades
CN106326502B (zh) 一种支架静刚度计算方法
Chen et al. Effects of perforated creases on the mechanical behavior and fatigue life of thick origami structures
JP6958670B1 (ja) 車体の接着位置の最適化解析方法及び装置
KR20220164609A (ko) 차체의 접합 위치의 최적화 해석 방법 및 장치
JP7287336B2 (ja) 車体の接合位置の最適化解析方法及び装置
Twu et al. Structural Topology Optimization of Multilink Suspension System Using ATOM
JP7327577B1 (ja) 車体の接合位置の最適化解析方法、装置及びプログラム
Çalişkan Automated design analysis of anti-roll bars
García et al. Parametric design and structural analysis of sustainable bamboo grid shells in Mexico
CN113378293B (zh) 一种飞机机翼翼盒载荷设计严重情况的确定方法
Özturan Multibody simulation of helicopter rotor with structural flexibility
Boryga et al. Stress analysis of the sugar beet lifter with the finite element method (FEM)
KR101101409B1 (ko) 튜브형 토션빔 현가계의 편측 스프링강성 산출방법
Khozeimeh Sarbisheh Static and vibration analysis of composite structures for robotic application
Forte et al. Design of an automotive short-long arm suspension for misuse impact
Zaki et al. Analysis of Crank End of Connecting Rod using Finite Element Method
CN112329123A (zh) 框架车身碰撞概念设计方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5552340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250