JP5531241B2 - フラーレン誘導体、半導体材料、光電変換素子及び太陽電池 - Google Patents

フラーレン誘導体、半導体材料、光電変換素子及び太陽電池 Download PDF

Info

Publication number
JP5531241B2
JP5531241B2 JP2009254456A JP2009254456A JP5531241B2 JP 5531241 B2 JP5531241 B2 JP 5531241B2 JP 2009254456 A JP2009254456 A JP 2009254456A JP 2009254456 A JP2009254456 A JP 2009254456A JP 5531241 B2 JP5531241 B2 JP 5531241B2
Authority
JP
Japan
Prior art keywords
group
substituent
fullerene derivative
fullerene
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009254456A
Other languages
English (en)
Other versions
JP2011098906A (ja
Inventor
栄一 中村
豊 松尾
陽子 安部
巌 曽我
誠治 秋山
潤也 河井
美子 森竹
未紗子 岡部
高明 新実
裕平 尾込
才華 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Mitsubishi Chemical Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Mitsubishi Chemical Corp
Priority to JP2009254456A priority Critical patent/JP5531241B2/ja
Publication of JP2011098906A publication Critical patent/JP2011098906A/ja
Application granted granted Critical
Publication of JP5531241B2 publication Critical patent/JP5531241B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は新規フラーレン誘導体及びこのフラーレン誘導体を含む半導体材料、並びにこの半導体材料を用いた光電変換素子及びこの光電変換素子を用いた太陽電池に関する。
フラーレン類は球状の炭素ネットワーク構造をとり、他の有機化合物とは異なる特異な電子物性を有することから、化粧品、診断薬、医薬などのバイオ分野、ガス吸着、貯蔵分離などの環境分野、燃料電池や太陽電池などのエネルギー分野、フォトリソグラフィーや非線形光学材料などの光学分野、有機半導体、光電変換素子などの電子デバイス分野など、幅広い分野での利用が試みられている。特に置換基を有するフラーレンは、塗布製膜が容易になることから注目を集めている。
置換基を有するフラーレンの用途として最近盛んに研究が行われているのが、n型半導体特性を活かした光電変換素子である。これまで、フラーレン誘導体としてはPCBMが一般的に用いられていたが、さらなる光電変換効率の向上が望まれてきた。最近、シリルメチル基を置換基として有するフラーレン誘導体が低コストで製造が可能であり(特許文献1,2)、このフラーレン誘導体を用いた光電変換素子において、PCBMよりも高い変換効率が達成されることが報告されている(特許文献3)。
特開平7−89972号公報 国際公開WO2008/059771号パンフレット 国際公開WO2009/008323号パンフレット
本願の発明者らは、特許文献3に記載のフラーレン誘導体は溶剤への溶解性が悪く、フラーレン誘導体を溶解して調製したインクにおいてフラーレン誘導体が析出するなど、フラーレン誘導体溶液のポットライフに問題が生じることを見出した。この問題は、このフラーレン誘導体を用いる光電変換素子のロットブレに繋がる。このことは、このフラーレン誘導体を太陽電池用途へと適用する上での障害になるものと本願の発明者らは考えた。一方で、開放電圧、光電変換効率などの太陽電池の性能を維持することは当然重要であり、溶解性と太陽電池性能とを両立する光電変換素子材料としてのフラーレン誘導体が求められている。
本発明は上記従来の実情に鑑み、溶剤に対する溶解性を従来よりも向上させ、かつ太陽電池材料として用いた場合に従来と同等以上の性能を有する太陽電池を与える、新規フラーレン誘導体を提供することを目的とする。また、この新規フラーレン誘導体を用いた光電変換素子及び太陽電池を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意検討した結果、溶剤に対する溶解性が高く、太陽電池材料として用いた場合に従来と同等以上の性能を有する太陽電池を与えるフラーレン誘導体を見出し、本発明を達成するに至った。
すなわち、本発明は、下記一般式(I)で表されることを特徴とするフラーレン誘導体を要旨とする。
(式(I)中、R及びRは各々独立して置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシル基、置換基を有してもよいシリル基のうちの何れかであり、かつRとRとの少なくとも一方は下記一般式(II)で表される置換基である。
式(II)中、環1は置換基を有してもよいベンゼン環を示す。Rはアルキレン基であり、フラーレンを構成する炭素原子Cと共有結合している。R及びRは各々独立に水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基のうちの何れかである。Xは式(II)中のSiと共有結合で結ばれた前記環1上の原子であり、XはXと共有結合で結ばれた前記環1上の原子である。R、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルアミノ基、又は置換基を有してもよいアルキルチオ基を示す。)
フラーレン誘導体の溶剤に対する溶解性を従来よりも向上させるとともに、太陽電池材料として用いた場合に従来と同等以上の性能を有する太陽電池を提供できる。
本発明の光電変換素子の構造の一例を示す図である。
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。
[フラーレン誘導体]
本発明のフラーレン誘導体は、下記一般式(I)で表されるフラーレン誘導体である。
本発明で用いるフラーレンは特に限定されず、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC94、フラーレンC96等が挙げられるが、フラーレンC60が特に好ましい。式(I)中、R,Rは、各々独立して置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシル基、又は置換基を有してもよいシリル基である。
また式(1)中、R,Rのうち少なくとも1つは各々独立して以下の一般式(II)で表される置換基である。
式(II)中、Cはフラーレンを構成する原子、すなわちR又はRが結合している原子を示す。Rはアルキレン基を示し、R,Rは各々独立に水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基の何れかを示す。Rはアルキル基を含む電子供与性基を示す。また、X及びXは各々独立に任意の原子を示し、X及びXは直接結合している。X及びXは炭素原子、又は窒素原子であることが好ましいが、炭素原子であることが特に好ましい。X及びXは環状構造、すなわち式(II)中で「環1」で示される構造、の一部を形成している。すなわち、XとXとの間には、他の原子団を介したさらなる結合を有する。この環構造は、芳香環であることが好ましい。また、Rと「環1」を構成する原子との間にさらに結合を有することによって、「環1」以外の別の環状構造がさらに形成されていてもよい。
[R,Rの例]
,Rに係るアルキル基としては、上記式(II)で示した置換基、又は炭素数1〜20の置換基を有してもよいアルキル基が好ましい。炭素数1〜20のアルキル基の具体例としては、メチル基、エチル基,n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、シクロヘキシル基等が挙げられる。特に好ましい例として、メチル基が挙げられる。
,Rに係るアリール基とは、置換基を有しても良い芳香族基である。芳香族基の具体例としては、フェニル基、ナフチル基,フェナントリル基、ビフェニレニル基、トリフェニレン基,アントリル基、ピレニル基,フルオレニル基,アズレニル基,アセナフテニル基,フルオランテニル基,ナフタセニル基,ペリレニル基,ペンタセニル基,トリフェニレニル基、クオーターフェニル基などの芳香族炭化水素基;ピリジル基、チエニル基、フリル基,ピロール基,オキサゾール基、チアゾール基、オキサジアゾール基、チアジアゾール基,ピラジル基、ピリミジル基、ピラゾイル基、イミダゾイル基,ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、フェニルカルバゾイル,フェノキサチエニル基,キサンテニル基,ベンゾフラニル基,チアントレニル基,インドリジニル基,フェノキサジニル基,フェノチアジニル基,アクリジニル基,フェナントリジニル基,キノリル基,イソキノリル基,インドリル基,キノキサリニル基等の芳香族複素環基などが挙げられる。好ましくは、フェニル基、ナフチル基,フェナントリル基、トリフェニレン基,アントリル基、ピレニル基,フルオレニル基,アセナフテニル基,フルオランテニル基,ペリレニル基,トリフェニレニル基などの芳香族炭化水素基;ピリジル基、ピラジル基、ピリミジル基、ピラゾイル基、キノリル基,イソキノリル基,イミダゾイル基,アクリジニル基,フェナントリジニル基,キノキサリニル基,ジベンゾフリル基、ジベンゾチエニル基、フェニルカルバゾイル,キサンテニル基,フェノキサジニル基等の芳香族複素環基がよい。より好ましくは、フェニル基、ナフチル基,フェナントリル基、トリフェニレン基,ピレニル基,フルオレニル基,トリフェニレニル基等の芳香族炭化水素基;ピリジル基、キノリル基,イソキノリル基,イミダゾイル基,アクリジニル基,フェナントリジニル基,キノキサリニル基等芳香族複素環基がよい。特に好ましい例として、フェニル基が挙げられる。
,Rに係るアルコキシル基としては、置換基を有しても良い炭素数1〜20のアルコキシル基が好ましい。炭素数1〜20のアルコキシル基の具体例としては、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、エチルヘキシルオキシ基、ベンジルオキシ基など、直鎖及び分岐のアルコキシル基;フェノキシ基などのアリールオキシ基などが含まれる。
,Rに係るシリル基は何でも良いが、ジメチルシリル基、ジエチルシリル基、トリメチルシリル基、トリエチルシリル基、トリメトキシシリル基、トリエトキシシリル基、ジフェニルメチルシリル基、トリフェニルシリル基、トリフェノキシシリル基、ジメチルメトキシシリル基、ジメチルフェノキシシリル基、メチルメトキシフェニルシリル基、トリイソプロピルシリル基、t−ブチルジメチルシリル基、ジメチルフェニルシリル基、t−ブチルジフェニルシリル基、等が挙げられる。ただし、これらには制限されない。
以上のR,Rに係るアルキル基、アリール基、アルコキシ基、及びシリル基上には、さらに置換基を有しても良い。この置換基としては、制限するわけではないが、C〜C10の炭化水素基(例えば、メチル、エチル、プロピル、ブチル、フェニル、ナフチル、インデニル、トリル、キシリル、ベンジル等)、C〜C10のアルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、C〜C12のアリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、ビフェニルオキシ等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、メチルフェニルアミノ基、フェニルアミノ基を含む)、アルキルチオ基、アリールチオ基、チオール基、水酸基、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)又はシリル基(例えば、トリメチルシリル基、フェニルジメチルシリル基)などを挙げることができる。
この場合、R,Rに係るアルキル基、アリール基、アルコキシ基、及びシリル基上に導入される置換基は1個以上であってもよい。例えばアルキル基、アリール基、アルコキシ基、及びシリル基それぞれの置換可能な位置に2個以上、例えば2〜4個の置換基が導入されていてもよい。置換基数が2個以上である場合、各置換基は同一であっても異なっていてもよい。置換基を複数有するR,Rの好ましい例とししては、ジメチルフェニルシリルメチル基、9−アントラセニルジメチルシリルメチル基などのシリル基置換アルキル基、p−メトキシフェニル基、p−ブトキシフェニル基などのアルコキシル基置換芳香族基、などが挙げられる。
さらに、R,Rに係るアルキル基、アリール基、アルコキシ基、及びシリル基上に導入された置換基に対して、さらに置換基が導入されていてもよい。更に有しても良い置換基としては、アリール基、アリールアミノ基、アルキル基、パーフルオロアルキル基、ハライド基、カルボキシル基、シアノ基、アルコキシル基、アリールオキシ基、カルボニル基、オキシカルボニル基、カルボン酸基、複素環基などが挙げられる。好ましくは、炭素数6〜30のアリール基、炭素数12〜30のアリールアミノ基、炭素数1〜12のアルキル基、炭素数1〜12のパーフルオロアルキル基、フルオライド基、炭素数1〜10のオキシカルボニル基、シアノ基、炭素数1〜10のアルコキシ基、炭素数6〜16のアリールオキシ基、炭素数2〜16のカルボニル基、炭素数5〜20の芳香族複素環基などが挙げられる。
更に導入されても良い置換基のうち、炭素数6〜16のアリール基の例としては、フェニル基、ナフチル基、フェナントリル基、ピレニル基、ペリレニル基、アントリル基などが挙げられる。炭素数12〜30のアリールアミノ基の例としては、ジフェニルアミノ基、カルバゾイル基、フェニルカルバゾイル基などが挙げられる。炭素数1〜12のアルキル基の例としては、メチル基、エチル基、ブチル基、t−ブチル基などが挙げられる。炭素数1〜12のパーフルオロアルキル基の例としては、トリフルオロメチル基などが挙げられる。
炭素数1〜10のオキシカルボニル基の例としては、メトキシカルボニル基、エトキシカルボニル基などが挙げられる。炭素数1〜10のアルコキシ基の例としては、メトキシ基、エトキシ基などが挙げられる。炭素数6〜16のアリールオキシ基の例としては、フェニルオキシ基などが挙げられる。炭素数2〜16のカルボニル基の例としては、アセチル基、フェニルカルボニル基などが挙げられる。炭素数5〜20の芳香族複素環基の例としては、ピリジル基、チエニル基、オキサゾール基、オキサジアゾール基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、ピラジル基、ピリミジル基、ピラゾイル基、イミダゾイル基などが挙げられる。
,Rに係るアルキル基、アリール基、アルコキシ基、及びシリル基上に導入された置換基に対して、さらに置換基が導入された置換基の好ましい例としては、例えば以下のような置換基が挙げられる。p−ブトキシフェニルジメチルシリルメチル基、4−n−ブタノキシフェニルジメチルシリルメチル基、3,5−ジ(10−アミノメチル−9−アントラセニロキシ)フェニルジメチルシリルメチル基などの、アルコキシフェニル基を有するシリル基で置換されたアルキル基;p−(5−メチル−2−チアゾリル)フェニルジメチルシリルメチル基、p−(5−エテニル−2−チアゾリル)フェニルジメチルシリルメチル基、p−(5−メチル−2−フリル)フェニルジメチルシリルメチル基などの、複素環基で置換された芳香族基を有するシリル基で置換されたアルキル基;芳香族基でさらに置換された芳香族基を有するシリル基で置換されたアルキル基;5−(5−メチル−2−チアゾリル)2−フリルジメチルシリルメチル基などの、複素環を有するシリル基で置換されたアルキル基。
[一般式(II)で表される置換基の例]
上に説明したとおり、本発明の化合物(I)において、R,Rの少なくとも一方は一般式(II)で表される置換基である。
[Rの例]
に係るアルキレン基としては,通常炭素数1〜20のものであり、好ましくは炭素数1〜10のものであり、より好ましくは、メチレン基又はエチレン基である。
[R,Rの例]
,Rは各々独立に水素原子、置換基を有してもよいアルキル基、又は置換基を有してもよいアリール基である。置換基を有してもよいアルキル基、置換基を有してもよいアリール基としては、上記R,Rと同様のものから選択することが出来る。とりわけ、メチル基、エチル基、i−プロピル基、t−ブチル基、フェニル基の中から選択することが好ましい。
[環1の例]
本発明に係る環1は脂肪族環でも芳香族環でもよいが、芳香族環であることが好ましい。である。芳香族環としては、上記R,Rについて説明した芳香族基と同様のものを用いることができる。
環1には、置換基Rが置換されている。本発明のフラーレン誘導体は溶媒に対する溶解度が従来のものに比べて高い。その理由の一つとして、一般式(II)のSi原子上に置換基Rを有する環1を導入することによって、置換基Rがフラーレンに近づくことが考えられる。置換基Rがフラーレンに近づくことにより、フラーレン分子間のπ−π相互作用を弱めることが可能となり、フラーレン誘導体の溶解度を向上させたのではないかと考えられる。また。環1上で、Si原子が結合している原子(X)に隣接している原子(X)が有する置換基(R)は、環1上の他の炭素が置換基を有する場合のその置換基と比べて、フラーレン環により近い位置にあると考えられる。従って、置換基Rが原子X上にあることにより、フラーレン分子間のπ−π相互作用を一層弱める効果があるものと考えられる。
また、環1は、上記R以外の置換基を有していてもよい。環1が有していてもよい置換基としては、特に限定はないが、好ましくはハロゲン原子、水酸基、シアノ基、アミノ基、カルボキシル基、カルボニル基,アセチル基、スルホニル基,シリル基,ボリル基,ニトリル基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基である。これらの置換基同士がさらに連結して、環1とは別の環を形成していても良い。芳香族炭化水素基としては、上記R及びRと同様のものを用いることができるが、炭素数6〜20であることが好ましく、フェニル基、又はナフチル基であることがさらに好ましい。芳香族複素環基も、上記R及びRと同様のものを用いることができるが、炭素数5〜20のものが好ましく、ピリジル基、チエニル基、ベンゾチエニル基、ジベンゾフリル基、ジベンゾチエニル基、又はフェナントリル基であることがさらに好ましい。
[Rの例]
本発明に係るRとしては,環1の電子密度を増加させる電子供与性基であれば,特に限定はないが,好ましくは置換しても良いアルキル基、置換しても良いアルコキシル基、置換しても良いシリル基、置換しても良い複素環基、置換しても良いアミノ基、チオール基、置換しても良いアルキルチオ基、置換しても良いアリールチオ基、水酸基などが挙げられる。本発明のフラーレン誘導体を電子受容体として光電変換素子に使用する場合、同時に用いる電子供与体の種類により本発明フラーレンの誘導体の好ましいLUMOレベルは異なるものの、一般的にはLUMOレベルをより高くすることが望ましい。一般的には、電子受容体のLUMOレベルと電子供与体のHOMOレベルとの差が大きいほど太陽電池の性能は向上するためである。置換基Rを電子供与性基とすることが好ましい理由としては、電子供与性基を環1に導入することにより、本発明のフラーレン誘導体のLUMOレベルをより高くすることが可能となるためと考える。
アルキル基、アルコキシル基、シリル基、複素環基、チオール基、アルキルチオ基、アリールチオ基、アミノ基としては、上記のR,Rについて述べたものと同様のものを用いることができる。より好ましくは、メチル基、エチル基などのCアルキル基;メトキシ基、エトキシ基、i−プロポキシ基、n−プロポキシ基、n−ブトキシ基、2−メチルブトキシ基、2−エチルヘキシロキシ基、ベンジルオキシ基、p−エチルベンジルオキシ基などのC12脂肪族アルコキシ基;フェノキシ基、p−フェニルフェノキシ基などのC〜C20芳香族アルコキシ基;フリル基、チエニル基などのC12複素環基;ジメチルアミノ基などのC10アルキルアミノ基;ジフェニルアミノ基などのC20アリールアミノ基;イソプロピルチオ基などのCアルキルチオ基;フェニルチオ基などのC20アリールチオ基;などがあげられる。
また、環1を構成する原子は、置換基Rを構成する原子と直接結合し、又は他の基を介して置換基Rを構成する原子と結合することで、環1以外の環をさらに構成してもよい。さらに構成される環としては、ベンゼン環のような芳香族炭化水素環であってもよいし、フラン環のような複素環であってもよいし、ジオキサン環又はシクロペンタン環のような脂肪族環であってもよい。とりわけ、式(II)における原子Xに酸素原子が直接結合する、フラン環、テトラヒドロフラン環、テトラヒドロピラン環、ジオキサン環であることが好ましい。
置換基R,Rのうち、式(II)の構造を有さない置換基は上述のとおり置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシル基、又は置換基を有してもよいシリル基であればよいが、以下の式(III)の構造を有することがさらに好ましい。
はアルキレン基であり、具体的には上記Rと同様のものであればよい。R,R及びR10Rは、各々独立して水素原子、置換しても良いアルキル基、又は置換しても良いアリール基であり、具体的にはそれぞれR,Rと同様のものであればよい。
[本発明のフラーレン誘導体の具体例]
本発明のフラーレン誘導体の具体例としては、次のようなものが挙げられる。以下の式において、Cはフラーレンを構成する炭素原子を示す。
[本発明のフラーレン誘導体の特性]
本発明のフラーレン誘導体は、成膜性に優れるものであるが好ましい。特に、本発明のフラーレン誘導体を塗布することによって本発明のフラーレン誘導体の膜を製造する場合、当該フラーレン誘導体自体が液状で塗布可能であるか、当該フラーレン誘導体が何らかの溶媒に対して溶解性が高く溶液として塗布可能であることが好ましい。本発明のフラーレン誘導体を溶解するための溶媒は、本発明のフラーレン誘導体を溶解できれば何でもよいが、例えば非極性有機溶媒が挙げられる。
非極性有機溶媒としてはジクロロベンゼンなどのハロゲン系溶媒を用いることも可能であるが、環境負荷の面等から非ハロゲン系溶媒を用いることが求められている。非ハロゲン系溶媒としては、例えば、非ハロゲン系芳香族炭化水素類が挙げられる。その中でも好ましくはトルエン、キシレン、シクロヘキシルベンゼンなどが挙げられる。本発明のフラーレン誘導体の溶解度の範囲は、例えば溶媒をトルエンとした場合には、通常0.8重量%より大きく、好ましくは0.9重量%以上、より好ましくは1.0重量%以上である。
[フラーレン誘導体の製造方法]
本発明のフラーレン誘導体の製造方法には、特段に制限はないが、
(1)置換基R,Rの合成工程
(2)合成した置換基R,Rをフラーレン又はフラーレン誘導体に付加する工程
に大別される。(1)の工程は、例えばBull. Chem. Soc. Jpn., 59, 3581-3587(1986)に記載されているような公知技術によって、実施することが可能である。また(2)の工程は、例えば国際公開WO2008/059771号パンフレットに記載されているような公知技術によって、実施することが可能である。
一例として、(1)の工程で置換基Rを有する化合物のブロモ化物を調製してグリニャール試薬に変換するなどの方法によって、置換基Rを有する化合物の有機金属試薬を合成する。さらに、置換基Rを有する化合物のハロゲン化物も調製しておく。続いて(2)の工程で置換基Rを有する有機金属試薬をフラーレンに付加反応させる。さらに、置換基Rで置換したフラーレン誘導体に塩基を作用させ、置換基Rを有するハロゲン化物への置換反応を行う。このような方法によって、本発明のフラーレン誘導体は合成可能であるが、本発明のフラーレン誘導体の合成方法はこれに限られない。
[本発明のフラーレン誘導体を用いる光電変換素子及び太陽電池]
本発明の光電変換素子は基板と1対の電極を有し、当該1対の電極間に、少なくとも電子受容体である本発明のフラーレン誘導体と、電子供与体の化合物とを有する。図1は本発明の光電変換素子の一例を示す図である。図1において、1は基板、2は電極(正極)、3は正孔取り出し層、4は混合物層、5は電極(負極)、6は電子取り出し層、7はp型半導体層、8はn型半導体層を示す。混合物層4に、電子受容体である本発明のフラーレン誘導体と、電子供与体の化合物とが含まれる。ただし、全ての層が存在することは本発明にとって必須ではない。各層については以下で詳細に説明する。
[基板(1)]
本発明の光電変換素子の基板は電極等の支持体となるものである。基板の材料(基板材料)は電極等の支持体となり得るであれば特に限定されない。ただし、本発明の光電変換素子において、基板に照射された光を素子内に取り込むため、基板には透光性の材料が用いられる。基板材料としては、当該基板を透過する可視光の透過率が、60%以上が好ましく、80%以上がさらに好ましい。
基板材料の好適な例としては、石英、ガラス、サファイア、チタニア等の無機材料;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリイミド、ナイロン、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂フィルム、塩化ビニル、ポリエチレン、セルロース、ポリ塩化ビニリデ
ン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン等の有機材料;紙、合成紙等の紙材料;ステンレス、チタン、アルミニウム等の金属に、絶縁性を付与するために表面をコート或いはラミネートしたもの等の複合材料などが挙げられる。これらの中でも、ガラス、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンが好ましい。なお、基板材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
基板のガスバリヤ性が低いと、基板を通過する外気により有機光電変換素子1が劣化する可能性がある。そこで、基板材料としてガスバリヤ性の低い材料(例えば合成樹脂)を用いる場合には、基板のどちらか片側もしくは両側に、ガスバリヤ性を有する層(ガスバリヤ層)を形成することが好ましい。このガスバリヤ層としては、例えば、緻密なシリコン酸化膜などが挙げられる。
基板の形状に制限はなく、例えば、板、フィルム、シートなどの形状を用いることができる。基板の厚みには制限はないが、5μm〜20mmが好ましく、20μm〜10mmがさらに好ましい。基板が薄すぎると強度が不足する可能性があり、厚すぎるとコストが高くなったり、重量が重くなりすぎたりする可能性があるからである。
[電極(2,5)]
本発明の光電変換素子において、電極に用いられる材料は、導電性を有するものであれば特に限定されるものではないが、例えば、ITO、酸化スズ、酸化亜鉛、Au、Co、Ni、Ptなどの仕事関数が高い材料と、Al、Ag、Li、In、Ca、Mg、LiFなどを組み合わせて用いることが好ましい。なかでも、光が透過する位置にある電極は、ITO、酸化スズ、酸化亜鉛などの透明電極を用いることが好ましい。これら電極の製造方法及び膜厚などは適宜選択することができる。
本発明の光電変換素子において、電子受容体のフラーレン誘導体と、電子供与体の化合物との混合物層が設けられている場合、その混合物層の厚さは特に限定されないが、0.1nm未満では均一性が十分ではなく、短絡を起こしやすいという問題が生じる。他方、混合物層の厚さが5000nmを超えると内部抵抗が大きくなり、また素子1個当たりの固体層の占める体積割合が高くなるため、容量が低下し好ましくない。また、電極間の距離が離れるので、電荷の拡散が悪くなる問題が生じる。そこで、混合物層の厚さは0.1〜5000nmが好ましく、1〜1000nmがさらに好ましい。より好ましくは20〜500nmがさらに好ましい。
[混合物層(4)]
混合物層は、電子供与体として用いられる化合物と電子受容体として用いられる化合物とを含めば特に限定されない。電子供与体及び電子受容体には、1種の化合物を単独で用いてもよいし、2種以上の化合物を任意の組み合わせ及び比率で併用しても良い。また、混合物層に電子供与体又は電子受容体として働かない他の化合物を含んでもよい。
また、混合物層は、電子供与体と電子受容体の化合物との混合物の層の他に、電子供与体を含む層(電子供与体層)、電子受容体を含む層(電子受容体層)、及び電子供与体層と電子受容体層とを含む層、のうちの少なくとも1つの層をさらに含んでもよい。
本発明のフラーレン誘導体は電子受容体として、電子供与体の化合物は電子供与体として機能する。具体的には、電子供与体と電子受容体を含む層(たとえば、混合物層)に光が照射されると、照射による励起によって発生した電子は当該層中のフラーレン誘導体を通って対極に移動する。また、フラーレン誘導体に電子が移動すると電子供与体の化合物は酸化された状態になり、正孔が作用電極に移動する。このようにして、電流が流れることになる。
混合物層の製造方法は特に限定されないが、電子供与体と電子受容体の化合物とを共に溶解した溶液を、基板や基板上に設けられた層にスピンコート等を用いて塗布することによって製造できる(塗布型の混合物層)。また、電子供与体と電子受容体の化合物とを、基板や基板上に設けられた層に蒸着させることによっても製造できる(蒸着型の混合物層)。
混合物層の厚さは特に限定されないが、0.1nm未満では均一性が十分ではなく、短絡を起こしやすいという問題が生じる。他方、混合物層の厚さが5000nmを超えると内部抵抗が大きくなり、また素子1個当たりの固体層の占める体積割合が高くなるため、容量が低下し好ましくない。また、電極間の距離が離れるので、電荷の拡散が悪くなる問題が生じる。そこで、混合物層の厚さは0.1〜5000nmが好ましく、1〜1000nmがさらに好ましい。より好ましくは20〜500nmがさらに好ましい。
電子供与体化合物としては例えば、高分子化合物、ポルフィリン化合物またはフタロシアニン化合物を用いることができる。電子供与体として用いられる高分子化合物としては、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリフラン、ポリピリジン、ポリカルバゾール、ポリフェニレンビニレンなどの芳香族を有する高分子を用いることができる。これらの中でも、ポリチオフェン、ポリピロール、ポリフラン、ポリフェニレンビニレンは、種々の置換基が結合しているものが存在し、種々の構造が存在するために、多種多様なポリマーを合成できることで好ましい。
電子供与体として用いられるポルフィリン化合物としては、例えば、5,10,15,20−テトラフェニル−21H,23H−ポルフィン、5,10,15,20−テトラフェニル−21H,23H−ポルフィンコバルト(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィン銅(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィン亜鉛(II)、5,10,15,20−テトラフェニル−21H,23H−ポルフィンバナジウム(IV)オキシド、5,10,15,20−テトラ(4−ピリジル)−21H,23H−ポルフィン等が挙げられる。
また、電子供与体として用いられるフタロシアニン化合物としては、例えば、29H,31H−フタロシアニン、銅フタロシアニン錯体、亜鉛フタロシアニン錯体、チタンフタロシアニンオキシド錯体、マグネシウムフタロシアニン錯体、鉛フタロシアニン錯体、銅4,4’,4’’,4’’’−テトラアザ−29H,31H−フタロシアニン錯体が挙げられる。これらの中でも、銅フタロシアニン錯体が好ましい。
また、電子受容体化合物としては、本発明のフラーレン誘導体を用いることができる。また、本発明のフラーレン誘導体とともに用いることが可能な他の電子受容体化合物の好ましい例を挙げると、フラーレン誘導体;8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体;アントラセン、ピレン、ナフタセン、ペンタセン等の縮合多環芳香族の全フッ化物;単層カーボンナノチューブ;二酸化チタン等の無機半導体;等があげられる。
[p型半導体層(7)]
電子受容体のフラーレン誘導体と電子供与体を含む混合物層と電極(正極)との間に、p型半導体層を設けることができる。p型半導体層の材料(p型半導体材料)としては、混合物層で生成した正孔を効率よく正極へ輸送できるものが好ましい。そのためには、p型半導体材料は、正孔移動度が高いこと、導電率が高いこと、正極との間の正孔注入障壁が小さいこと、混合物層からp型半導体層への正孔注入障壁が小さいこと、などの性質を有することが好ましい。
また、p型半導体層を有する光電変換素子では、p型半導体層を通じて光電変換素子内に光を取り込むので、p型半導体層は透明であることが望ましい。通常は光のうちでも可視光を光電変換素子の内に取り込むことになるため、透明なp型半導体材料としては、当該p型半導体層を透過する可視光の透過率が、60%以上が好ましく、80%以上がさらに好ましい。
光電変換素子の製造コストの抑制、大面積化などを実現するためには、p型半導体材料として有機半導体材料を用い、p型半導体層をp型有機半導体層として形成することが好ましい。
p型半導体材料の好ましい例を挙げると、顔料が挙げられ、好ましくはポルフィリン化合物又はフタロシアニン化合物が挙げられる。これらの化合物は、中心金属を有していてもよいし、無金属のものでもよい。その具体例としては、29H,31H−フタロシアニン、銅(II)フタロシアニン、亜鉛(II)フタロシアニン、チタンフタロシアニンオキシド、銅(II)4,4’,4’’,4’’’−テトラアザ−29H,31H−フタロシアニン等のフタロシアニン化合物;テトラベンゾポルフィリン、テトラベンゾ銅ポルフィリン、テトラベンゾ亜鉛ポルフィリン等のポルフィリン化合物;などが挙げられる。
また、ポルフィリン化合物及びフタロシアニン化合物等の顔料以外の好ましいp型半導体材料の例としては、正孔輸送性高分子にドーパントを混合した系が挙げられる。この場合、正孔輸送性高分子の例としては、ポリ(エチレンジオキシチオフェン)、ポリチオフェン、ポリアニリン、ポリピロールなどが挙げられる。一方、ドーパントの例としては、ヨウ素;ポリ(スチレンスルホン酸)、カンファースルホン酸等の酸;PF、AsF、FeCl等のルイス酸;などが挙げられる。
なお、p型半導体材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
p型半導体層の厚みに制限はないが、厚すぎると透過率が低下したり、直列抵抗が増大したりする可能性があり、薄すぎると不均一な膜となる可能性がある。そこで、p型半導体層の厚みは3nm〜200nmが好ましく、10nm〜100nmがさらに好ましい。なお、p型半導体層の形成方法に制限は無いが、顔料を含むp型半導体層を形成する場合には、潜在顔料を塗布して、変更する方法が好ましい。
[n型半導体層(8)]
電子受容体のフラーレン誘導体と電子供与体とを含む混合物層と電極(負極)との間に、n型半導体層を設けることもできる。n型半導体層の材料(n型半導体材料)としては、混合物層で生成した電子を効率よく負極へ輸送できるものが好ましい。混合物層で生成される励起子(エキシトン)が負極により消光されるのを防ぐために、電子供与体と電子受容体が有する光学的ギャップより大きい光学的ギャップを、n型半導体層の材料(n型半導体材料)が有することが好ましい。
n型半導体材料の好ましい例を挙げると、フラーレン誘導体;8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体;ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸ジイミド等の縮合環テトラカルボン酸ジイミド類;ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体;アントラセン、ピレン、ナフタセン、ペンタセン等の縮合多環芳香族の全フッ化物;単層カーボンナノチューブ;二酸化チタン等の無機半導体;等があげられる。また、本発明のフラーレン誘導体をn型半導体層に用いることもできる。なお、n型半導体材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。n型半導体層の厚みに制限はないが、2nm〜200nmが好ましく、5nm〜100nmがさらに好ましい。
[正孔取り出し層(3)及び電子取り出し層(6)]
本発明の光電変換素子は、1対の電極、およびその間に配置された電子受容体のフラーレン誘導体と電子供与体の化合物の他に、さらに正孔取り出し層と電子取り出し層とからなる群から選ばれる1以上を有することができる。
正孔取り出し層の材料は、電子受容体と電子供与体を含む層から電極(正極)へ正孔の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミンなどの導電性有機化合物などが挙げられる。また、Au、In、Ag、Pdなどの金属などの薄膜も使用することができる。さらに、金属などの薄膜は、単独で形成してもよく、上記の有機材料と組み合わせて用いることもできる。
電子取り出し層の材料は、電子受容体と電子供与体を含む層から電極(負極)へ電子の取り出し効率を向上させることが可能な材料であれば特に限定されない。具体的には、バソキュプロイン(BCP)または、バソフェナントレン(Bphen)、及びこれらにアルカリ金属あるいはアルカリ金属土類をドープした層が挙げられる。また、電子取り出し層の材料にフラーレン類やシロール類などを用いることも可能であり、たとえば、上記のバソキュプロイン(BCP)、バソフェナントレン(Bphen)、または、バソキュプロイン(BCP)とバソフェナントレン(Bphen)にアルカリ金属もしくはアルカリ金属土類をドープした層を組み合わせたものも用いることができる。
正孔取り出し層と電子取り出し層は1対の電極間に、電子受容体と電子供与体(たとえば、混合物層、または、混合物層とn型半導体層とp型半導体層)を挟むように配置される。すなわち、本発明の光電変換素子が正孔取り出し層と電子取り出し層の両者を含む場合、電極、正孔取り出し層、電子受容体と電子供与体(たとえば、混合物層、または、混合物層とn型半導体層とp型半導体層)、電子取り出し層、電極の順に配置される構成を有する。また、本発明の光電変換素子が正孔取り出し層を含み電子取り出し層を含まない場合、電極、正孔取り出し層、電子受容体と電子供与体(たとえば、混合物層、または、混合物層とn型半導体層とp型半導体層)、電極の順に配置される構成を有する。本発明の光電変換素子が電子取り出し層を含み正孔取り出し層を含まない場合、電極、電子受容体と電子供与体(たとえば、混合物層、または、混合物層とn型半導体層とp型半導体層)、電子取り出し層、電極の順に配置される構成を有する。
2.5 光電変換素子の用途
本発明の光電変換素子は、太陽電池に限らず、光スイッチング装置、センサなどの各種の光電変換装置に好適に使用することができる。
[実施例]
以下、本発明を実施例および比較例を用いて説明するが、本発明はこれらの実施例に限定されるものではない。以下において、NMR測定にはBRUKER社のAVANCE 400を使用した。以下で行う各種分析測定方法の詳細は次の通りである。
[有機溶媒溶解性試験]
本発明のフラーレン誘導体の粉末とトルエンとを40℃において混合した。この時用いたトルエンの量は、40℃において溶解していることが確認できる最少量とした。その後、室温に戻して析出が無いことを確認し、この時のトルエン溶液の濃度を溶解度とした。室温で析出が見られた場合は、溶解するまでさらにトルエンを加え、最終的に溶解が確認できた時点のトルエン溶液の濃度を溶解度とした。
[1.フラーレン誘導体の合成例]
[中間体1]
クロロメチル(2−メトキシフェニル)ジメチルシラン,(o-An)Me2SiCH2Cl
500-mL三口ナスフラスコに、窒素雰囲気下、臭化2-メトキシフェニルマグネシウムの1.0M THF溶液(100 mL, 0.1 mol)を入れて室温で攪拌した。ここに、クロロメチルジメチルクロロシラン(11.25 mL, 0.085 mol)をゆっくり滴下した。室温で1時間攪拌後、40℃で3時間攪拌した。室温に戻し、ゆっくりと水を加えた。酢酸エチルで抽出し、食塩水洗浄後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。得られた液体を減圧蒸留することにより、目的物を無色液体として収率 52% (11.2 g, 0.0522 mol)で得た。
1H NMR (400 MHz, CDCl3): δ 0.39 (s, 6H), 3.07 (s, 2H), 3.81 (s, 3H), 6.84 (d, 1H, J = 8.8 Hz), 6.95-6.99 (m, 1H), 7.36-7.40 (m, 1H), 7.39 (d, 1H, J = 7.2 Hz)
[中間体2]
クロロメチルジメチル(2−イソプロポキシフェニル)シラン,(o-i-PrOPh)Me2SiCH2Cl
窒素雰囲気下、500 mL三口フラスコにマグネシウム2.58 g(0.106 mol)、THF 100 mLを加えた。滴下漏斗に1-ブロモ-2-イソプロポキシベンゼン25.42 g(0.118 mol)を加え、このうちの少量をフラスコ中に滴下した後、50度で30分攪拌した。残りの1-ブロモ-2-イソプロポキシベンゼンをゆっくり滴下し、1時間加熱還流した後、50度まで放冷した。クロロメチルジメチルクロロシラン14.31 g(0.100 mol)を滴下した後、4時間加熱還流させた。室温まで冷却後、水でクエンチ後減圧留去により濃縮した。酢酸エチルと水を加えて分液後、硫酸ナトリウムを用いて乾燥させ減圧留去により薄く黄色がかったオイルを得た。減圧蒸留にて精製を行い、クロロメチルジメチル(2−イソプロポキシフェニル)シラン12.1 gを得た。
1H NMR (400 MHz, CDCl3): δ 0.39(s, 6H, -SiCH3 ), 1.34(d, J =6.4Hz, 6H, -CH3), 3.08(s, 2H, -SiCH2Cl) 4.56-4.67(m, 1H, -CH-), 6.79 (d, J =8.4Hz, 1H, ArH), 6.88-6.94(m, 1H, ArH ), 7.31-7.40 (m, 2H, ArH )
[中間体3]
1−ブロモ−2−n−ブトキシベンゼン
1-Lナスフラスコに、窒素雰囲気下、2-ブロモフェノール(30 mL, 258.7 mmol)、トルエン(259 mL)、1−ブロモブタン(55.4 mL, 517 mmol)、1N水酸化ナトリウム水溶液(259 mL)、ヨウ化テトラ−n−ブチルアンモニウム(2.87 g)を入れ、100 ℃にて20時間加熱した。室温に冷却し、下層を除去した。有機層を炭酸カリウム水溶液で洗浄、次いで水で洗浄後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。得られた液体を減圧蒸留することにより、目的物を無色液体として収率 71% (42.3 g, 0.185 mol)で得た。
1H NMR (400 MHz, CDCl3): δ 0.99 (t, 3H, J = 7.2 Hz), 1.50-1.59 (m, 2H), 1.79-1.86 (m, 2H), 4.03 (t, 2H, J = 6.4 Hz), 6.79-6.83 (m, 1H), 6.88 (dd, 1H, J = 8.0, 1.6 Hz), 7.21-7.26 (m, 1H), 7.52 (dd, 1H, J = 7.6, 1.6 Hz)
[中間体4]
(2−n−ブトキシフェニル)クロロメチルジメチルシラン,(o-n-BuOPh)Me2SiCH2Cl
窒素雰囲気下、500-mL三口フラスコにマグネシウム2.39 g(0.109 mol)、THF(90 mL)を加えた。50℃で攪拌しながら、滴下漏斗を用いて1−ブロモ−2−n−ブトキシベンゼン (25 g, 0.109 mol)を約2.5時間かけてゆっくりと加えた後、クロロメチルジメチルクロロシラン13.34 mL(0.0932 mol)を約1時間かけて滴下し、さら50℃で5時間攪拌した。室温に冷却後、水でクエンチし、減圧留去によりTHFを留去した後、酢酸エチルと水を加えて分液後、水で洗浄し、硫酸ナトリウムを用いて乾燥させ、減圧留去により淡黄色液体を得た。減圧蒸留を行うことにより、目的物を収率75% (20.88 g, 81.30 mmol) で得た。
1H NMR (400 MHz, CDCl3): δ 0.40 (s, 6H), 0.99 (t, 3H, J = 7.2 Hz), 1.46-1.55 (m, 2H), 1.75-1.83 (m, 2H), 3.08 (s, 2H), 3.96 (t, 2H, J = 6.4 Hz), 6.81 (d, 1H, J = 8.0 Hz), 6.93-6.96 (m, 1H), 7.33-7.39 (m, 2H)
[中間体5]
1−ブロモ−2,4−ジ−n−ブトキシベンゼン
500 mL四ッ口ナスフラスコに、窒素雰囲気下、4-Bromoresorcinol(25 g, 0.13 mol)、アセトン(250 mL)、炭酸カリウム(45.7 g, 0.33 mol)を入れ、1-ヨードブタン(75 g, 0.40 mol)をゆっくり加えた。室温にて2時間攪拌した後、59時間還流を行った。溶媒の除去後、酢酸エチルに溶解させ、沈殿物のろ過分離後、食塩水にて洗浄後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。目的物を黄色液体として収率 69 % (27.67 g, 0.0918 mol)で得た。
1H NMR (400 MHz, CDCl3):δ 0.95-1.00 (m, 6H, 2(CH3)), 1.45-1.56 (m, 4H, 2(CH2)), 1.73-1.83 (m, 4H, 2(CH2)), 3.92 (t, 2H, J = 6.6 Hz, CH2), 3.98 (t, 2H, J = 6.6 Hz, CH2), 6.36 (dd, 1H, J = 2.8 and 10.2 Hz, C6H3), 6.47 (d, 1H, J = 2.8 Hz, C6H3), 7.37 (d, 1H, J = 10.2 Hz, C6H3)
[中間体6]
(2,4−ジ−n−ブトキシフェニル)クロロメチルジメチルシラン, [2,4-(n-BuO)2Ph]Me2SiCH2Cl
200 mL四ッ口ナスフラスコに、窒素雰囲気下、マグネシウム(1.65 g, 0.068 mol)、テトラヒドロフラン(43 mL)、ヨウ素1欠片を入れて45 ℃にて攪拌した。ここに、1−ブロモ−2,4−ジ−n−ブトキシベンゼン(15 g, 0.050 mol)をゆっくり滴下した。65 ℃で2時間攪拌後、40 ℃まで戻し、クロロメチルジメチルクロロシラン(7.13 g, 0.050 mol)をゆっくり滴下した。65 ℃で3.5時間攪拌した。室温に戻し、ゆっくりと水を加えた。酢酸エチルで抽出し飽和食塩水洗浄後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。得られた液体を減圧蒸留することにより、目的物を無色液体として収率 56 % (9.19 g, 0.0279 mol)で得た。
1H NMR (400 MHz, CDCl3):δ 0.37 (s, 6H, Si(CH3)2), 0.95-1.00 (m, 6H, 2(CH3)), 1.44-1.53 (m, 4H, 2(CH2)), 1.72-1.81 (m, 4H, 2(CH2)), 3.04(s, 2H, SiCH2), 3.90-3.98 (m, 4H, CH2), 6.39 (d, 1H, J = 2.3 Hz, C6H3), 6.48 (dd, 1H, J = 2.3 and 9.1 Hz, C6H3), 7.26 (d, 1H, J = 9.1 Hz, C6H3)
[中間体7]
1−ブロモ−2−(2−エチルヘキシルオキシ)ベンゼン
300-mL四ッ口ナスフラスコに、窒素雰囲気下、2-ブロモフェノール(12.85 g, 74.24 mmol)、アセトン(100 mL)、炭酸カリウム(20.52 g, 148.5 mmol)を入れ、2−エチル−1−ヨードヘキサン(20 mL, 111.4 mmol)をゆっくり加えた。室温にて1時間、次いで45℃にて2.5時間、次いで60℃にて5時間攪拌した後、さらに24時間加熱還流した。水を加え、酢酸エチルで抽出し、水洗後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。これをシリカゲルカラムクロマトグラフィー精製(ヘキサンー酢酸エチル=10:1)に供することにより、目的物を淡黄色液体として収率 79% (16.7 g, 0.0586 mol)で得た。
1H NMR (400 MHz, CDCl3): δ 0.89-0.96 (m, 6H), 1.31-1.62 (m, 8H), 1.73-1.82 (m, 1H), 3.90 (d, 2H, J = 6.0 Hz), 6.78-6.82 (m, 1H), 6.88 (dd, 1H, J = 8.0, 1.6 Hz), 7.21-7.26 (m, 1H), 7.52 (dd, 1H, J = 7.6, 1.6 Hz)
[中間体8]
クロロメチル[o−(2−エチルヘキシルオキシ)フェニル]ジメチルシラン,[o-(2-Ethylhexyloxy)Ph]Me2SiCH2Cl
窒素置換した100-mL三ッ口フラスコ中に、マグネシウム (0.511 g, 21.0 mmol)を入れ、THF (13 mL)を加えた。ヨウ素を少量加えた後、50 ℃に加熱し、1−ブロモ−2−(2−エチルヘキシルオキシ)ベンゼン (2.76 g, 19.3 mmol) をゆっくりと滴下した。滴下終了後、4.5 時間加熱還流した後、室温に戻した。以上の様にして調製したGrignard試薬溶液を、別に脱気、乾燥、窒素置換した100-mL四ッ口フラスコ中にシリンジを用いて移した。45 ℃に加熱攪拌し、クロロメチルジメチルクロロシラン(2.76 g, 19.3 mmol)をゆっくりと滴下した後、1.5 時間加熱還流させた。室温に戻した後、水をゆっくりと加え、酢酸エチルで抽出、飽和食塩水にて洗浄を行い、硫酸ナトリウム上で乾燥、ろ過した後、濃縮し、得られた液体を100 °Cにて真空乾燥することにより、目的物を収率83% (4.53 g, 14.4 mmol)で得た。
1H NMR (400 MHz, CDCl3): δ 0.41 (s, 6H, Si(CH3)2), 0.89-0.96 (m, 6H, 2(CH3)), 1.30-1.54 (m, 8H, (CH2)4), 1.71-1.76 (m, 1H, CH), 3.08 (s, 2H, SiCH2), 3.85 (d, 2H, J = 5.6 Hz, OCH2), 6.85 (d, 1H, J = 8.0 Hz, C6H4), 6.93-6.97 (m,1H, C6H4), 7.34-7.41 (m, 2H, C6H4)
[中間体9]
クロロメチル(4−メトキシフェニル)ジメチルシラン,(p-An)Me2SiCH2Cl
500-mL三口ナスフラスコに、窒素雰囲気下、臭化4-メトキシフェニルマグネシウムの1.0M THF溶液(100 mL, 0.1 mol)を入れて室温で攪拌した。ここに、クロロメチルジメチルクロロシラン(11.25 mL, 0.085 mol)をゆっくり滴下した後、45℃で3.5 時間攪拌した。室温に戻し、ゆっくりと水を加えた。酢酸エチルで抽出し、食塩水洗浄後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。得られた液体を減圧蒸留することにより、目的物を無色液体として収率 50% (10.8 g, 0.0503 mol)で得た。
1H NMR (400 MHz, CDCl3): δ 0.39 (s, 6H), 2.92 (s, 2H), 3.82 (s, 3H), 6.93 (d, 2H, J = 8.8 Hz), 7.47 (d, 2H, J = 8.8 Hz)
[中間体10]
クロロメチル(4−n−プロポキシフェニル)ジメチルシラン,(p-n-PrOPh)Me2SiCH2Cl
200-mL三口ナスフラスコに、窒素雰囲気下、マグネシウム (1.02 g, 41.9 mmol)、ジエチルエーテル (15 mL) を入れて室温で攪拌した。ここに、1,2−ジブロモエタンを触媒量加えた後、加熱還流した。ここに、1−ブロモ−4−n−プロポキシベンゼン (10 g, 46.49 mmol) をゆっくりと滴下した。さらに1時間攪拌した後、クロロメチルジメチルクロロシラン (5.26 mL, 39.73 mmol) をゆっくりと滴下した。さらに1時間攪拌した後、氷冷し、ゆっくりと水を加えた。酢酸エチルで抽出し、食塩水洗浄後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。得られた液体を減圧蒸留することにより、目的物を無色液体として収率 53% (6.0 g, 0.0247 mol)で得た。
1H NMR (400 MHz, CDCl3): δ 0.39 (s, 6H), 1.03 (t, 3H, J = 7.2 Hz), 1.76-1.85 (m, 2H), 2.92 (s, 2H), 3.93 (t, 2H, J = 6.8 Hz), 6.91 (d, 2H, J = 8.8 Hz), 7.45 (d, 2H, J = 8.8 Hz)
[中間体11]
クロロメチル(4−n−ブトキシフェニル)ジメチルシラン,(p-n-BuOPh)Me2SiCH2Cl
500-mL三口ナスフラスコに、窒素雰囲気下、マグネシウム (2.39 g, 98.2 mmol)、THF (90 mL) を入れて40 ℃で攪拌した。ここに、1−ブロモ−4−n−ブトキシベンゼン (25 g, 109.12 mmol) をゆっくりと滴下した。さらに1時間攪拌した後、クロロメチルジメチルクロロシラン (13.34 mL, 93.24 mmol) をゆっくりと滴下した。さらに30分間攪拌した後、室温に戻し、ゆっくりと水を加えた。酢酸エチルで抽出し、食塩水洗浄後、硫酸ナトリウム上で乾燥、ろ過し、減圧下濃縮した。得られた液体を減圧蒸留することにより、目的物を無色液体として収率 82% (23 g, 0.0895 mol)で得た。
1H NMR (400 MHz, CDCl3): δ 0.39 (s, 6H), 0.97 (t, 3H, J = 7.2 Hz), 1.44-1.54 (m, 2H), 1.73-1.80 (m, 2H), 2.92 (s, 2H), 3.97 (t, 2H, J = 6.4 Hz), 6.91 (d, 2H, J = 8.8 Hz), 7.45 (d, 2H, J = 8.8 Hz)
[中間体12]
1−(ジメチルフェニルシリルメチル)―1,9−ジヒドロ(C60-Ih)[5,6]フラーレン,C60(CH2SiMe2Ph)H
窒素雰囲気下、N,N-ジメチルホルムアミド (6.45 mL, 83.3 mmol)、フラーレンC60 (2.00 g, 2.78 mmol) 、1,2−ジクロロベンゼン溶液 (500 mL) を混合し、脱気した後、窒素で復圧した。ここに、PhMe2SiCH2MgCl (9.80 mL, 0.850 M, 8.33 mmol)のTHF溶液を25℃で加えた。10分間攪拌した後,脱気した飽和塩化アンモニウム水溶液 (1.0 mL) を加え攪拌した。得られた溶液を濃縮した後,トルエン (200 mL)に溶解させ, シリカゲルろ過カラムを通した後、濃縮した。メタノール(約100~200 mL)を加え,再沈させることにより茶色の固体を得た。得られた固体をHPLC (Buckyprep column, eluent: toluene/2-propanol = 7/3) 分取することにより,目的物(1.99 g, 2.28 mmol, 82% isolated yield, analytically pure)を得た。
1H NMR (500 MHz, CDCl3): d 0.89 (s, 6H, SiCH3), 3.16 (s, 2H, CH2), 6.39 (s, 1H, C60H), 7.44-7.46 (m, 3H, Ph), 7.88-7.90 (m, 2H, Ph); 13C NMR (125 MHz, CDCl3): d -0.75 (2C, SiCH3), 38.03 (1C, CH2), 61.57 (1C, C60H), 62.23 (1C, C60CH2), 128.19 (2C, Ph), 129.68 (1C, Ph), 134.16 (2C, Ph), 134.89 (2C, C60), 136.57 (2C, C60), 138.22 (1C, Ph), 140.05 (2C, C60), 140.20 (2C, C60), 141.63 (2C, C60), 141.64 (2C, C60), 141.94 (2C, C60), 141.97 (2C, C60), 142.03 (2C, C60), 142.06 (2C, C60), 142.54 (2C+2C, C60), 143.27 (2C, C60), 144.66 (2C, C60), 144.71 (2C, C60), 145.28 (2C, C60), 145.36 (2C, C60), 145.39 (2C+2C, C60), 145.64 (2C, C60), 145.88 (2C, C60), 146.18 (2C, C60), 146.22 (2C, C60), 146.30 (2C, C60), 146.41 (2C, C60), 149.92 (2C, C60), 147.35 (1C, C60), 147.49 (1C, C60), 154.05 (2C, C60), 157.86 (2C, C60); APCI-HRMS (-): m/z calcd for C69H13Si (M-H+), 869.0787; found, 869.0743.
[中間体13]
1−[(2−メトキシフェニル)ジメチルシリルメチル]―1,9−ジヒドロ(C60-Ih)[5,6]フラーレン:C60[CH2SiMe2(o-An)]H
窒素置換した50-mL三ッ口フラスコ中に、Mg (0.709 g, 29.2 mmol)を入れ、THF (12.5 mL)を添加した。I2を欠片加えた後45 ℃に加熱攪拌し、(o-An)Me2SiCH2Cl (5.20 g, 24.3 mmol) をゆっくりと滴下した。滴下終了後、4.5 時間加熱還流し、室温に戻した。別に、窒素置換した500-mL二ッ口フラスコを用意し、そこへフラーレンC60 (5 g, 6.94 mmol)、N,N-ジメチルホルムアミド (15.2 g, 208 mmol)、1,2-dichlorobenzene (375 mL)を加え、脱気した後、窒素で復圧した。ここに、上述のGrignard試薬をシリンジで加え、室温で2 時間攪拌した後、脱気した飽和NH4Cl aq.を6.3 mL加え攪拌した。得られた溶液を濃縮後、二硫化炭素で希釈し、シリカゲルろ過カラムを行った。溶媒を濃縮した後、少量のトルエンで希釈し、MeOHを加えて再沈させ、析出した固体を濾取、乾燥した。CS2/Hexane = 1 : 1を展開溶媒としてシリカゲルカラムクロマトグラフィー精製を行うことにより、目的物(3.13 g, 3.47 mmol, 50% isolate yield)を茶色固体として得た。
1H NMR (400 MHz, CDCl3/CS2): δ 0.83 (s, 6H, (SiCH3)2), 3.22 (s, 2H, SiCH2), 3.96 (s, 3H, OCH3), 6.51 (s, 1H, C60H), 6.85 (d, 1H, J = 8.8 Hz, C6H4), 6.99-7.03 (m, 1H, C6H4), 7.36-7.41 (m, 1H, C6H4), 7.64-7.67 (m, 1H, C6H4)
[フラーレン誘導体1]
C60(CH2SiMe2Ph)[CH2SiMe2(o-An)]
窒素雰囲気下、C60(CH2SiMe2Ph)H (1.02 g, 1.17 mmol) のベンゾニトリル溶液を脱気した後、t−ブトキシカリウム (1.41 mL, 1.0 M, 1.41 mmol) のTHF溶液を25 °Cで加えた。10分間攪拌した後,(o-An)Me2SiCH2Cl (5.03g, 23.4 mmol)とヨウ化カリウムを加え110℃で17時間攪拌した。得られた溶液に飽和塩化アンモニウム水溶液1.0 mL を加え,濃縮した。得られた粗生成物にトルエン (100 mL)を加え,ろ過濃縮した後,メタノール (ca. 50~100 mL) を加え,再沈を行った。得られた粗生成物をシリカゲルカラムクロマトグラフィー (eluent: CS2/hexane = 1/1) 精製に供し、続いてHPLC分取 (Buckyprep column, eluents: toluene/2-propanol = 7/3)精製を行うことにより,目的物 (0.810 g, 0.772 mmol, 66% isolated yield) を得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (500 MHz, CDCl3/CS2): δ 0.60 (s, 3H, SiCH3), 0.63 (s, 3H, SiCH3), 0.70 (s, 3H, SiCH3), 0.73 (s, 3H, SiCH3), 2.67 (d, 1H, 2J = 14.3 Hz, CH2), 2.72 (d, 1H, 2J = 14.3 Hz, CH2), 2.81 (d, 1H, 2J = 14.3 Hz, CH2), 2.84 (d, 1H, 2J = 14.3 Hz, CH2), 3.78 (s, 3H, OCH3), 6.71 (d, 1H, J = 8.0 Hz, C6H4), 6.89 (m, 1H, C6H4), 7.30-7.35 (m, 1H, C6H4), 7.36-7.40 (m, 3H, Ph), 7.44-7.47 (m, 1H, C6H4), 7.70-7.72 (m, 2H, Ph); 13C NMR (125 MHz, CDCl3/CS2): δ -0.92 (1C, SiCH3), -0.89 (1C, SiCH3), -0.72 (1C, SiCH3), -0.66 (1C, SiCH3), 31.56 (1C, CH2), 32.56 (1C, CH2), 54.77 (1C, OCH3), 55.65 (1C, C60CH2), 56.00 (1C, C60CH2), 109.23 (1C, C6H4), 120.62 (1C, C6H4), 125.43 (1C, C6H4), 127.84 (2C, Ph), 129.37 (2C, Ph), 131.56 (1C, C6H4), 137.89 (1C, C6H4), 133.90 (2C, Ph), 135.78 (1C, C6H4), 138.16 (1C, C60), 138.22 (1C, C60), 138.38 (1C, C60), 138.73 (1C, C60), 140.42 (1C, C60), 141.20 (1C, C60), 141.52 (1C, C60), 141.76 (1C, C60), 142.29 (1C, C60), 142.36 (1C, C60), 142.40 (1C, C60), 142.45 (1C, C60), 142.47 (1C, C60), 142.60 (1C, C60), 142.64 (1C, C60), 142.88 (1C, C60), 142.90 (1C, C60), 143.03 (2C, C60), 143.05 (1C, C60), 143.15 (1C, C60), 143.17 (1C, C60), 143.32 (1C, C60), 143.39 (1C, C60), 143.73 (1C, C60), 143.76 (1C, C60), 143.98 (1C, C60), 144.00 (1C, C60), 144.04 (1C, C60), 144.06 (1C, C60), 144.27 (1C, C60), 144.30 (1C, C60), 144.33 (1C, C60), 144.48 (1C, C60), 144.52 (1C, C60), 144.53 (1C, C60), 144.66 (1C, C60), 144.73 (1C, C60), 144.90 (1C, C60), 145.19 (1C, C60), 145.21 (1C, C60), 146.55 (2C, C60), 146.56 (1C, C60), 146.72 (1C, C60), 146.74 (1C, C60), 146.75 (1C, C60), 146.88 (1C, C60), 146.89 (1C, C60), 147.19 (1C, C60), 147.24 (1C, C60), 147.44 (1C, C60), 147.73 (1C, C60), 147.82 (1C, C60), 148.29 (1C, C60), 148.33 (1C, C60), 153.21 (1C, C60), 153.51 (1C, C60), 157.34 (1C, C60), 157.50 (1C, C60), 164.23 (1C, COCH3).
[フラーレン誘導体2]
C60(CH2SiMe2Ph)[CH2SiMe2(o-i-PrOPh)]
脱気、乾燥、N2置換した100 mL四ッ口フラスコ中に、C60(CH2SiMe2Ph)H (0.30 g, 0.34 mmol mol)とBenzonitrile (30 mL)、KI (0.858 g, 5.167 mmol)を室温で混合させた後、脱気し、tBuOK/ 1M THF(0.41 mL)を添加し攪拌した。その後、(o-i-PrOPh)Me2SiCH2Cl (1.26 g, 5.17 mmol)を加え120 ℃にて16 時間加熱攪拌した。室温まで放冷後、脱気した飽和塩化アンモニウム水溶液を0.4 mL加え、エバポレーターにて溶媒を除去した。得られた粗生成物は、CS2に溶解させToluene/ Hexane = 1/ 4の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィー精製を行った。続いてHPLC分取精製(Buckyprep column, eluents: toluene/2-propanol = 7/3)に供することにより,収率37%で目的物(138 mg, 0.128 mmol)を得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (400 MHz, CDCl3/CS2): δ 0.63 (s, 3H), 0.68 (s, 3H), 0.68 (s, 3H), 0.69 (s, 3H), 1.34 (d, 3H, J = 5.8 Hz), 1.42 (d, 3H, J = 5.8 Hz), 2.67 (d, 1H, J = 14.7 Hz), 2.73 (d, 1H, J = 14.3 Hz), 2.81 (d, 1H, J = 14.7 Hz), 2.84 (d, 1H, J = 14.3 Hz), 4.48-4.57 (m, 1H), 6.66 (d, 1H, J = 8.4 Hz), 6.81-6.85 (m, 1H), 7.23-7.27 (m, 1H), 7.34-7.37 (m, 3H), 7.45 (dd, 1H, J = 7.3, 1.8 Hz), 7.67-7.71 (m, 2H)
[フラーレン誘導体3]
C60(CH2SiMe2Ph)[CH2SiMe2(o-n-BuOPh)]
窒素雰囲気下、C60(CH2SiMe2Ph)H (300 mg, 0.345 mmol) とベンゾニトリル(30 mL)とを室温で混合し、脱気し、t−ブトキシカリウム (0.414 mL, 1.0 M, 0.414 mmol) のTHF溶液を加えた。約10分間攪拌した後,(o-n-BuOPh)Me2SiCH2Cl (1.33 g, 5.18 mmol)とヨウ化カリウム (0.859 g, 5.18 mmol) を加え120℃で 20 時間攪拌した。室温まで放冷後、脱気した飽和塩化アンモニウム水溶液 1 mL を加え,濃縮した。 得られた粗生成物をシリカゲルカラムクロマトグラフィー (eluent: toluene/hexane = 1/4 ~ 1/2) に供し,続いてHPLC分取精製(Buckyprep column, eluents: toluene/2-propanol = 7/3)に供することにより,目的物 (71 mg, 0.0651 mmol, 19% isolated yield) を得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (400 MHz, CDCl3/CS2): δ 0.63 (s, 3H), 0.68 (s, 9H), 0.98 (t, 3H, J = 7.4 Hz), 1.51-1.60 (m, 2H), 1.82-1.89 (m, 2H), 2.66 (d, 1H, J = 14.7 Hz), 2.73 (d, 1H, J = 14.2 Hz), 2.80 (d, 1H, J = 14.7 Hz), 2.85 (d, 1H, J = 14.2 Hz), 3.79-3.93 (m, 2H), 6.65 (d, 1H, J = 8.4 Hz), 6.84-6.87 (m, 1H), 7.23-7.28 (m, 1H), 7.34-7.38 (m, 3H), 7.45 (dd, 1H, J = 7.4, 1.9 Hz), 7.67-7.71 (m, 2H)
[フラーレン誘導体 4]
C60[CH2SiMe2(o-An)]2
窒素雰囲気下、C60[CH2SiMe2(o-An)]H (900 mg, 0.999 mmol) とベンゾニトリル(90 mL)とを室温で混合し、脱気し、t−ブトキシカリウム (1.24 mL, 1.0 M, 1.24 mmol) のTHF溶液を加えた。約10分間攪拌した後,(o-An)Me2SiCH2Cl (4.32 g, 20.12 mmol)とヨウ化カリウム (3.44 g, 20.72 mmol) を加え120℃で 15 時間攪拌した。室温まで放冷後、脱気した飽和塩化アンモニウム水溶液 0.45 mL を加え,濃縮した。 得られた粗生成物をシリカゲルカラムクロマトグラフィー (eluent: toluene/hexane = 1/4 ~ 1/2) に供し,続いてHPLC分取精製(Buckyprep column, eluents: toluene/2-propanol = 7/3)に供することにより,目的物 (0.232 g, 0.215 mmol, 22% isolated yield) を得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (400 MHz, CDCl3/CS2): δ 0.63 (s, 6H), 0.66 (s, 6H), 2.75 (d, 2H, J = 14.3 Hz), 2.87 (d, 2H, J = 14.3 Hz), 3.82 (s, 6H), 6.71 (d, 2H, J = 8.0 Hz), 6.86-6.90 (m, 2H), 7.27-7.31 (m, 2H), 7.45 (dd, 2H, J = 7.3, 1.8 Hz)
[フラーレン誘導体5]
C60[CH2SiMe2(o-An)][CH2SiMe2(p-An)]
窒素雰囲気下、C60[CH2SiMe2(o-An)]H (900 mg, 0.999 mmol) とベンゾニトリル(90 mL)とを室温で混合し、脱気し、t−ブトキシカリウム (1.24 mL, 1.0 M, 1.24 mmol) のTHF溶液を加えた。約10分間攪拌した後,(p-An)Me2SiCH2Cl (4.32 g, 20.12 mmol)とヨウ化カリウム (3.44 g, 20.72 mmol) を加え120℃で 15 時間攪拌した。室温まで放冷後、脱気した飽和塩化アンモニウム水溶液 0.45 mL を加え,濃縮した。 得られた粗精製物をシリカゲルカラムクロマトグラフィー (eluent: toluene/hexane = 1/4 ~ 1/1) に供し,続いてHPLC分取精製(Buckyprep column, eluents: toluene/2-propanol = 7/3)に供することにより,目的物 (0.130 g, 0.120 mmol, 12% isolated yield) を得た。
1H NMR (400 MHz, CDCl3/CS2): δ 0.62 (s, 3H), 0.66 (s, 3H), 0.66 (s, 3H), 0.66 (s, 3H), 2.64 (d, 1H, J = 14.7 Hz), 2.72 (d, 1H, J = 14.3 Hz), 2.79 (d, 1H, J = 14.7 Hz), 2.84 (d, 1H, J = 14.3 Hz), 3.78 (s, 3H), 3.80 (s, 3H), 6.71 (d, 1H, J = 8.0 Hz), 6.87-6.93 (m, 3H), 7.29-7.32 (m, 1H), 7.46 (dd, 1H, J = 7.3, 1.8 Hz), 7.60-7.64 (m, 2H)
[フラーレン誘導体6]
C60[CH2SiMe2(o-An)][CH2SiMe2(p-n-BuOPh)]
窒素雰囲気下、C60[CH2SiMe2(o-An)]H (175 mg, 0.194 mmol) とベンゾニトリル(18 mL)とを室温で混合し、脱気し、t−ブトキシカリウム (0.233 mL, 1.0 M, 0.233 mmol) のTHF溶液を加えた。約10分間攪拌した後,(p-n-BuOPh)Me2SiCH2Cl (0.747 g, 2.91 mmol)とヨウ化カリウム (0.483 g, 2.91 mmol) を加え120℃で 13 時間攪拌した。室温まで放冷後、脱気した飽和塩化アンモニウム水溶液 0.5 mL を加え,濃縮した。 得られた粗生成物をシリカゲルカラムクロマトグラフィー (eluent: toluene/hexane = 1/4 ~ 1/3) に供し,続いてHPLC分取精製(Buckyprep column, eluents: toluene/2-propanol = 7/3)に供することにより,目的物 (65 mg, 0.058 mmol, 30% isolated yield) を得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (400 MHz, CDCl3/CS2): δ 0.62 (s, 3H), 0.65 (s, 9H), 0.96 (t, 3H, J = 7.4 Hz), 1.43-1.51 (m, 2H), 1.72-1.79 (m, 2H), 2.63 (d, 1H, J = 14.6 Hz), 2.72 (d, 1H, J = 14.3 Hz), 2.78 (d, 1H, J = 14.6 Hz), 2.84 (d, 1H, J = 14.3 Hz), 3.78 (s, 3H), 3.96 (t, 2H, J = 6.7 Hz), 6.71 (d, 1H, J = 8.0 Hz), 6.87-6.91 (m, 3H), 7.28-7.32 (m, 1H), 7.45 (dd, 1H, J = 7.3, 1.9 Hz), 7.58-7.61 (m, 2H)
[フラーレン誘導体7]
C60[CH2SiMe2(o-An)][CH2SiMe2{2,4-(n-BuO)2Ph}]
窒素雰囲気下、C60[CH2SiMe2(o-An)]H (0.60 g, 0.67 mmol) とベンゾニトリル(66 mL)とを室温で混合し、脱気し、t−ブトキシカリウム (0.8 mL, 1.0 M, 0.80 mmol) のTHF溶液を加えた。約10分間攪拌した後,[2,5-(n-BuO)2Ph]Me2SiCH2Cl (3.29 g, 10 mmol)とヨウ化カリウム (1.66 g, 10 mmol) を加え120℃で約20 時間攪拌した。室温まで放冷後、脱気した飽和塩化アンモニウム水溶液0.8 mL を加え,濃縮した。 得られた粗生成物をシリカゲルカラムクロマトグラフィー (eluent: toluene/ hexane = 1/ 3 ~ 1/ 2) に供し,続いてHPLC分取精製(Buckyprep column, eluents: toluene/2-propanol = 7/3)に供することにより,目的物 (0.23 g, 0.19 mmol, 29 % isolated yield) を得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (400 MHz, CDCl3/CS2): δ 0.61 (s, 3H, Si(CH3)2), 0.63 (s, 3H, Si(CH3)2), 0.65 (s, 3H, Si(CH3)2), 0.66 (s, 3H, Si(CH3)2), 0.93 (t, 3H, J = 7.2 Hz, CH3), 1.00 (t, 3H, J = 7.2 Hz, CH3), 1.40-1.46 (m, 2H, CH2), 1.56-1.60 (m, 2H, CH2), 1.65-1.73 (m, 2H, CH2), 1.85-1.92 (m, 2H, CH2), 2.72(d, 1H, J = 14.0 Hz, SiCH2), 2.75(d, 1H, J = 14.0 Hz, SiCH2), 2.85 (d, 1H, J = 14.0 Hz, SiCH2), 2.87 (d, 1H, J = 14.0 Hz, SiCH2), 3.81 (s, 3H, OCH3), 3.90 (t, 4H, J = 6.4 Hz, OCH2), 6.24 (d, 1H, J = 1.8 Hz, C6H3), 6.38 (dd, 1H, J = 1.8 and 6.4 Hz, C6H3), 6.71 (d, 1H, J = 8.8 Hz, C6H4), 6.87-6.90 (m, 1H, C6H4), 7.30-7.33 (m, 2H, C6H3, C6H4), 7.45-7.47 (m, 1H, C6H4)
[フラーレン誘導体8]
C60[CH2SiMe2{o-(2-Ethylhexyloxy)Ph}]Me
窒素置換した50-mL三ッ口フラスコ中に、Mg (0.142 g, 5.83 mmol)を入れ、THF (5 mL)を添加した。I2を欠片加えた後45 ℃に加熱攪拌し、-[o-(2-Ethylhexyloxy)Ph]Me2SiCH2Cl (1.52 g, 4.86 mmol) をゆっくりと滴下した。滴下終了後、4 時間加熱還流し、室温に戻した。別に、窒素置換した300-mL二ッ口フラスコを用意し、そこへフラーレンC60 (1 g, 1.39 mmol)、N,N-ジメチルホルムアミド (3.05 g, 41.7 mmol)、1,2-dichlorobenzene (100 mL)を加え、脱気した後、窒素で復圧した。ここに、上述のGrignard試薬をシリンジで加え、室温で1.5 時間攪拌した後、脱気した飽和NH4Cl aq.を1.2 mL加え攪拌した。得られた溶液を濃縮後、トルエンで希釈し、シリカゲルろ過カラムを行った。トルエンを濃縮した後、MeOHを用いて再沈させ、析出した固体を濾取、乾燥することにより、1.37 gの茶色粉末を得た。
窒素置換した300-mL三ッ口フラスコに、上記粉末のうち1.2gを入れ、ベンゾニトリル (120 mL)を加えて、脱気後、窒素で復圧した。室温で撹拌しt-ブトキシカリウムの1M THF溶液 (1.44 mL, 1.44 mmol)を加えた。緑色に変化したことを確認し、ヨウ化メチル (4.61 g, 24.0 mmol)を加えた。5.5 時間室温にて攪拌後、脱気した飽和塩化アンモニウム水溶液を1.1 mL加えた。溶媒を除去し、トルエンで希釈し、シリカゲルろ過カラムに供した。トルエンを濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー (eluent: toluene/hexane = 1/5) に供し,続いてHPLC分取精製 (Buckyprep column, eluents: toluene/2-propanol = 7/3) に供することにより,目的物を347 mg(0.340 mmol)得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (400 MHz, CDCl3/CS2): δ 0.64 (s, 3H/2, Si(CH3)2), 0.64 (s, 3H/2, Si(CH3)2), 0.69 (s, 3H/2, Si(CH3)2), 0.70 (s, 3H/2, Si(CH3)2), 0.88-0.98 (m, 6H, 2(CH3)), 1.31-1.37 (m, 4H, 2(CH2)), 1.47-1.65 (m, 4H, 2(CH2)), 1.84-1.91 (m, 1H, CH), 2.80 (s, 3H, C60CH3), 2.76-2.93 (m, 2H, SiCH2), 3.73-3.85 (m, 2H, OCH2), 6.71 (d, 1H, J = 8.4 Hz, C6H4), 6.87 (m, 1H, C6H4), 7.23-7.30 (m, 1H, C6H4), 7,46-7.49 (m, 1H, C6H4)
[フラーレン誘導体9(比較例)]
C60(CH2SiMe2Ph)2)
製造方法は、国際公開WO2009/008323号パンフレットに記載の方法で合成を行った。また、上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
[フラーレン誘導体10(比較例)]
C60(CH2SiMe2Ph)[CH2SiMe2(p-n-PrOPh)]
窒素雰囲気下、C60(CH2SiMe2Ph)H (300 mg, 0.345 mmol) とベンゾニトリル(30 mL)とを室温で混合し、脱気し、t−ブトキシカリウム (0.414 mL, 1.0 M, 0.414 mmol) のTHF溶液を加えた。約10分間攪拌した後,(p-n-PrOPh)Me2SiCH2Cl (1.68 g, 6.5 mmol)とヨウ化カリウム (1.15 g, 6.9 mmol) を加え120℃で 17 時間攪拌した。室温まで放冷後、脱気した飽和塩化アンモニウム水溶液 1 mLを加え,濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー (eluent: toluene/hexane = 1/10 ~ 2/1) に供し,続いてHPLC分取精製(Buckyprep column, eluents: toluene/2-propanol = 7/3)に供することにより,目的物 (161 mg, 0.149 mmol, 43% isolated yield) を得た。上記に記載の方法で、有機溶媒への溶解度を測定し、表1に記載した。
1H NMR (400 MHz, CDCl3/CS2): δ 0.64 (s, 3H), 0.65 (s, 3H), 0.67 (s, 3H), 0.67 (s, 3H), 1.02 (t, 3H, J = 7.3 Hz), 1.74-1.83 (m, 2H), 2.59 (d, 1H, J = 14.6 Hz), 2.62 (d, 1H, J = 14.6 Hz), 2.74 (d, 1H, J = 14.6 Hz), 2.77 (d, 1H, J = 14.6 Hz), 3.91 (t, 2H, J = 6.6 Hz), 6.86-6.90 (m, 2H), 7.35-7.38 (m, 3H), 7.55-7.60 (m, 2H), 7.67-7.71 (m, 2H)
[フラーレン誘導体11(比較例)]
C60(CH2SiMe2Ph)[CH2SiMe2(p-An)]
C60(CH2SiMe2Ph)[CH2SiMe2(o-An)]の合成例において,(o-An)Me2SiCH2Clの代わりに,(p-An)Me2SiCH2Clを用いた以外は同様の方法で合成を行い,目的物を68%の収率で得た。
1H NMR (500 MHz, CDCl3/CS2): δ 0.63 (s, 3H, SiCH3), 0.64 (s, 3H, SiCH3), 0.66 (s, 3H, SiCH3), 0.70 (s, 3H, SiCH3), 2.58 (d, 1H, 2J = 14.3 Hz, CH2), 2.61 (d, 1H, 2J = 14.3 Hz, CH2), 2.73 (d, 1H, 2J = 14.3 Hz, CH2), 2.75 (d, 1H, 2J = 14.3 Hz, CH2), 3.77 (s, 3H, OCH3), 6.85-6.87 (m, 2H, C6H4), 7.33-7.34 (m, 3H, Ph), 7.55-7.57 (m, 2H, C6H4), 7.65-7.66 (m, 2H, Ph); 13C NMR (125 MHz, CDCl3/CS2): d -0.99 (1C, SiCH3), -0.93 (1C, SiCH3), -0.81 (1C, SiCH3), -0.73 (1C, SiCH3), 32.52 (1C, CH2), 32.82 (1C, CH2), 54.81 (1C, OCH3), 55.66 (1C, C60CH2), 55.73 (1C, C60CH2), 113.63 (2C, C6H4), 127.84 (2C, Ph), 128.80 (1C, C6H4), 129.37 (2C, Ph), 133.90 (2C, Ph), 135.39 (2C, C6H4), 138.09 (2C, C60), 138.15 (2C, C60), 138.16 (1C, C60), 138.48 (1C, C60), 138.52 (1C, C60), 140.57 (1C, C60), 141.52 (1C, C60), 141.54 (2C, C60), 141.77 (2C, C60), 142.36 (2C, C60), 142.37 (1C, C60), 142.48 (1C, C60), 142.50 (1C, C60), 142.69 (2C, C60), 142.94 (1C, C60), 143.07 (2C, C60), 143.26 (2C, C60), 143.42 (1C, C60), 143.45 (1C, C60), 143.79 (1C, C60), 143.81 (1C, C60), 144.05 (1C, C60), 144.07 (2C, C60), 144.29 (2C, C60), 144.33 (1C, C60), 144.54 (2C, C60), 144.63 (1C, C60), 144.66 (1C, C60), 144.89 (1C, C60), 144.90 (1C, C60), 145.26 (2C, C60), 146.62 (1C, C60), 146.76 (1C, C60), 146.93 (2C, C60), 147.10 (1C, C60), 147.20 (1C, C60), 147.21 (1C, C60), 147.72 (2C, C60), 148.36 (1C, C60), 148.37 (1C, C60), 153.21 (1C, C60), 153.26 (1C, C60), 157.30 (1C, C60), 157.38 (1C, C60), 160.59 (1C, COCH3).
[実施例2]フラーレン誘導体を用いた太陽電池の作製
[実施例2−1]フラーレン誘導体1を用いた太陽電池の作製
電極としてITO電極がパターニングされたガラス基板上に、正孔取り出し層としてポリ(3,4)−エチレンジオキシチオフェン/ポリスチレンスルフォネート水分散液)(スタルクヴィテック社製 商品名「Clevios PH」)をスピンコートにより塗布した後、当該基板を120℃のホットプレート上で大気中10分間、加熱処理を施した。その膜厚は40nmであった。
基板をグローブボックス中に持ち込み、窒素雰囲気下で上記基板を180℃で3分間加熱処理した。その後、クロロホルム/モノクロロベンゼンの1:2混合溶媒(重量)に下記式(E1)で表される化合物(化合物E1)を0.5重量%溶解した液をろ過し、得られたろ液を1500rpmでスピンコートし、180℃で20分間加熱した。これによって、正孔取り出し層の上に約25nmのテトラベンゾポルフィリン(化合物E2)の層(p型半導体層)を形成した。
クロロホルム/モノクロロベンゼンの1:1混合溶媒(重量)に、化合物(E1)を0.6重量%とフラーレン誘導体1を1.4重量%溶解した液を調製し、ろ過した。窒素雰囲気下で、得られたろ液をp型半導体層上に1500rpmでスピンコートし、180℃で20分間加熱した。これによって、p型半導体の層上に約100nmのテトラベンゾポルフィリン(化合物E2)と、上で説明した方法で作製したフラーレン誘導体1とを含む混合物層を形成した。
次に、トルエンにフラーレン誘導体1を1.2重量%溶解した液を調整し、ろ過し、窒素雰囲気下で得られたろ液を3000rpmでスピンコートし、65℃で5分間加熱処理を施した。基板加熱処理を施した基板上を真空蒸着装置内に設置し、クライオポンプを用いて排気した。これによって、混合物層上に約50nmのフラーレン誘導体1の層を形成した。
そして、真空蒸着装置内に配置されたメタルボートにフェナントロリン誘導体(バソキュプロイン)(BCP)を入れ、加熱して、膜厚6nmになるまで蒸着し、フラーレン誘導体1の層上に電子取り出し層を形成した。
更に、電子取り出し層の上に真空蒸着により厚さが80nmのアルミニウム膜を電極として設け、窒素雰囲気下でITOガラス基板に透明ガラス基板(非図示)を封止剤によって貼り付けてシールすることにより、太陽電池を作成した。
作成した太陽電池にITO電極側からソーラシミュレーター(AM1.5G)で100mW/cm2の強度の光を照射し、ソースメーター(ケイスレー社製,2400型)にて、ITO電極とアルミニウム電極と間における電流−電圧特性について測定を行った。開放電圧(Voc)、短絡電流密度(Jsc)、フィルファクター(FF)、及び光電変換効率(PCE)をそれぞれ表2に記載した。
[実施例2−2]フラーレン誘導体4を用いた太陽電池の作製
フラーレン誘導体1の代わりに、下記式で表されるフラーレン誘導体4を用いた以外は、実施例2−1と同様の条件で太陽電池を作製した。作製した太陽電池の性能測定も、実施例2−1と同様に行った。各パラメータを表2に示す。
[実施例2−3]フラーレン誘導体5を用いた太陽電池の作製
フラーレン誘導体1の代わりに、下記式で表されるフラーレン誘導体5を用いた以外は、実施例2−1と同様の条件で太陽電池を作製した。作製した太陽電池の性能測定も、実施例2−1と同様に行った。各パラメータを表2に示す。
[比較例2−4]フラーレン誘導体9を用いた太陽電池の作製
フラーレン誘導体1の代わりに、下記式で表されるフラーレン誘導体9を用いた以外は、実施例2−1と同様の条件で太陽電池を作製した。作製した太陽電池の性能測定も、実施例2−1と同様に行った。各パラメータを表2に示す。
[比較例2−5]フラーレン誘導体10を用いた太陽電池の作製
フラーレン誘導体1の代わりに、下記式で表されるフラーレン誘導体10を用いた以外は、実施例2−1と同様の条件で太陽電池を作製した。作製した太陽電池の性能測定も、実施例2−1と同様に行った。各パラメータを表2に示す。
表1より、実施例の化合物は比較例の化合物と比較して、有機溶媒への溶解度が向上したことが判る。また表2より、実施例の化合物を用いた太陽電池は、比較例の化合物を用いた太陽電池と比べて、光電変換効率を同程度に保持しつつ、開放電圧の値が改善されたことが判る。

Claims (6)

  1. 下記一般式(I)で表されることを特徴とするフラーレン誘導体。
    (式(I)中、R及びRは各々独立して置換基を有してもよいアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシル基、置換基を有してもよいシリル基のうちの何れかであり、かつRとRとの少なくとも一方は下記一般式(II)で表される置換基である。
    式(II)中、環1は置換基を有してもよいベンゼン環を示す。Rはアルキレン基であり、フラーレンを構成する炭素原子Cと共有結合している。R及びRは各々独立に水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアリール基のうちの何れかである。Xは式(II)中のSiと共有結合で結ばれた前記環1上の原子であり、XはXと共有結合で結ばれた前記環1上の原子である。R、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキルアミノ基、又は置換基を有してもよいアルキルチオ基を示す。)
  2. 前記RとRとのうちの一方が前記一般式(II)で表される置換基であり、前記RとRとのうちの他方は下記一般式(III)で表される置換基であることを特徴とする、請求項1に記載のフラーレン誘導体。
    (式(III)中、Rはアルキレン基を示し、フラーレンを構成する炭素原子Cと共有結合している。R、R及びR10は、各々独立して水素原子、置換基を有しても良いアルキル基、又は置換基を有しても良いアリール基を表す。
  3. 請求項1又は2に記載のフラーレン誘導体を含む半導体材料。
  4. 請求項に記載の半導体材料を用いた光電変換素子。
  5. 請求項に記載の光電変換素子を用いた太陽電池。
  6. がメチレン基であることを特徴とする請求項1又は2に記載のフラーレン誘導体。
JP2009254456A 2009-11-05 2009-11-05 フラーレン誘導体、半導体材料、光電変換素子及び太陽電池 Expired - Fee Related JP5531241B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254456A JP5531241B2 (ja) 2009-11-05 2009-11-05 フラーレン誘導体、半導体材料、光電変換素子及び太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254456A JP5531241B2 (ja) 2009-11-05 2009-11-05 フラーレン誘導体、半導体材料、光電変換素子及び太陽電池

Publications (2)

Publication Number Publication Date
JP2011098906A JP2011098906A (ja) 2011-05-19
JP5531241B2 true JP5531241B2 (ja) 2014-06-25

Family

ID=44190405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254456A Expired - Fee Related JP5531241B2 (ja) 2009-11-05 2009-11-05 フラーレン誘導体、半導体材料、光電変換素子及び太陽電池

Country Status (1)

Country Link
JP (1) JP5531241B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196843B2 (en) 2012-07-17 2015-11-24 Ricoh Company, Ltd. Fullerene derivative, and method of preparing the same
EP3044217B1 (en) 2013-09-11 2019-03-13 Merck Patent GmbH Cyclohexadiene fullerene derivatives
JP6340782B2 (ja) 2013-12-11 2018-06-13 株式会社リコー フラーレン誘導体およびその製造方法
EP3126317B1 (en) 2014-03-31 2020-11-25 Raynergy Tek Inc. Fused bis-aryl fullerene derivatives
EP4008708A1 (en) 2014-06-17 2022-06-08 Nano-C, Inc. Fullerene derivatives for organic semiconductors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560992B2 (ja) * 1993-09-24 2004-09-02 浜松ホトニクス株式会社 フラーレン誘導体およびその製造方法
EP2116521B1 (en) * 2006-11-14 2016-07-06 Japan Science and Technology Agency Process for producing fullerene derivative
JP5548933B2 (ja) * 2007-07-09 2014-07-16 独立行政法人科学技術振興機構 光電変換素子およびその素子を用いた太陽電池

Also Published As

Publication number Publication date
JP2011098906A (ja) 2011-05-19

Similar Documents

Publication Publication Date Title
EP2266982B1 (en) Electron donating organic material, material for photovoltaic element, and photovoltaic element
TWI382063B (zh) Photosensitive pigments
Chen et al. Facilely Synthesized spiro [fluorene‐9, 9′‐phenanthren‐10′‐one] in Donor–Acceptor–Donor Hole‐Transporting Materials for Perovskite Solar Cells
CN110010765B (zh) 使用有机小分子半导体化合物的电子器件
Mishra et al. Synthesis and Characterization of Acceptor‐Substituted Oligothiophenes for Solar Cell Applications
JP5417039B2 (ja) インドール誘導体及びそれを用いた有機薄膜太陽電池
JP5778162B2 (ja) N型材料および有機電子デバイス
JP7049321B2 (ja) 増感色素、光電変換用増感色素組成物およびそれを用いた光電変換素子ならびに色素増感太陽電池
JP5531241B2 (ja) フラーレン誘導体、半導体材料、光電変換素子及び太陽電池
WO2017117477A1 (en) Electron acceptors based on alpha-position substituted pdi for opv solar cells
TWI671303B (zh) 用於高效率有機光伏之卟啉材料之設計及合成
WO2012175536A1 (en) Dyes, method of making them, and their use in dye-sensitized solar cells
CN115785076B (zh) 用于有机光电装置的化合物、用于有机光电装置的组合物、有机光电装置以及显示装置
JP5757609B2 (ja) ドナー―π―アクセプター型化合物、蛍光色素化合物及び色素増感太陽電池用蛍光色素化合物
CN109517142B (zh) 基于三茚并五元芳杂环的星型d-a结构共轭分子及其制备方法和应用
Liu et al. C− H Direct Arylation: A Robust Tool to Tailor the π‐Conjugation Lengths of Non‐Fullerene Acceptors
WO2016068162A1 (ja) 縮合多環芳香族骨格を有するポリマー及びそれを用いた発光素子及び電極
Liu et al. Synthesis and photovoltaic properties of A–D–A type non-fullerene acceptors containing isoindigo terminal units
WO2013108894A1 (ja) フルバレン化合物及びその製造方法、フルバレン重合体、並びに、太陽電池用材料及び有機トランジスタ用材料
Weng et al. Effect of intermolecular interaction with phenothiazine core on inverted organic photovoltaics by using different acceptor moiety
Zhu et al. Asymmetrical planar acridine-based hole-transporting materials for highly efficient perovskite solar cells
KR20190057057A (ko) 증감 색소, 광전 변환용 증감 색소 및 그것을 사용한 광전 변환 소자 그리고 색소 증감 태양 전지
JP6526557B2 (ja) 有機色素材料及びそれを用いた色素増感太陽電池
KR101833215B1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 포함하는 유기 전자 소자
JP5574410B2 (ja) 電荷輸送材料、それを用いた薄膜及び有機電子デバイス、並びにパイ電子系化合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5531241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees