JP5530670B2 - Water supply / drainage improvement structure and water supply / drainage method - Google Patents

Water supply / drainage improvement structure and water supply / drainage method Download PDF

Info

Publication number
JP5530670B2
JP5530670B2 JP2009162751A JP2009162751A JP5530670B2 JP 5530670 B2 JP5530670 B2 JP 5530670B2 JP 2009162751 A JP2009162751 A JP 2009162751A JP 2009162751 A JP2009162751 A JP 2009162751A JP 5530670 B2 JP5530670 B2 JP 5530670B2
Authority
JP
Japan
Prior art keywords
water supply
water
drainage
field
culvert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009162751A
Other languages
Japanese (ja)
Other versions
JP2011015642A (en
Inventor
利幸 奈良
幸則 奈良
Original Assignee
株式会社ナラ工業
有限会社西村瓦工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナラ工業, 有限会社西村瓦工業 filed Critical 株式会社ナラ工業
Priority to JP2009162751A priority Critical patent/JP5530670B2/en
Publication of JP2011015642A publication Critical patent/JP2011015642A/en
Application granted granted Critical
Publication of JP5530670B2 publication Critical patent/JP5530670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soil Working Implements (AREA)
  • Cultivation Of Plants (AREA)

Description

本発明は、圃場の給排水改善構造に関する。本発明は、また、前記圃場への給排水方法に関する。   The present invention relates to a structure for improving water supply / drainage in a field. The present invention also relates to a method for supplying and draining water to the field.

圃場への灌漑は、川湖などから水を引いてきて行うことが一般的である。圃場は畦畔などで区画されており、灌漑水は圃場の一角の水口から地表水として導入される。地表水としての灌漑水は、区画された圃場内にゆっくりと行きわたり土中に浸水する。   In general, irrigation of farms is performed by drawing water from river lakes. The field is divided by shores and irrigation water is introduced as surface water from one corner of the field. Irrigation water as surface water travels slowly in the partitioned fields or is submerged in the soil.

上記灌漑方法とは異なり、地下灌漑として土中から灌漑水を供給こともある(特許文献1)。この公報記載の方法は、圃場の土中に用水管理システムとしての水管理ラインを埋設し、水管理ラインへの供給水を調節することにより耕作地を水田と畑地に使い分けようとする技術である。   Unlike the irrigation method, irrigation water is sometimes supplied from the ground as underground irrigation (Patent Document 1). The method described in this publication is a technique for embedding a water management line as a water management system in the soil of a farm field and adjusting the water supplied to the water management line to properly use the cultivated land for paddy fields and field fields. .

特開2003−38048号公報JP 2003-38048 A

灌漑水を土中から供給することにより土中水位を調節することができる。しかし、土中水位を調節するだけでは不十分である。   The soil water level can be adjusted by supplying irrigation water from the soil. However, it is not enough to adjust the soil water level.

課題の1つとして、例えば、作物が稲の場合、迅速に土中水を供給し、迅速に土中水を排水する必要がある場合がある。前記公報記載の技術では、土中水位を調節はできるが、迅速に土中水位を調整することは困難である。   As one of the problems, for example, when the crop is rice, it may be necessary to quickly supply soil water and drain the soil water quickly. With the technique described in the above publication, the soil water level can be adjusted, but it is difficult to quickly adjust the soil water level.

他の課題として、作物の生育・成長には水温が大きく影響することにある。例えば、発芽時期には水温を一定の状態(稲作の場合は10〜15度)にすることが好ましい。すなわち、作物の生育状況によって水温を管理する必要がある。前記公報記載の技術では、水温管理については何ら示唆されていない。   Another problem is that the water temperature has a great influence on the growth and growth of crops. For example, it is preferable to keep the water temperature constant (10 to 15 degrees in the case of rice cultivation) at the germination time. In other words, it is necessary to manage the water temperature according to the crop growth situation. The technique described in the publication does not suggest any water temperature management.

本発明は、地下灌漑のような土中水位を管理しつつ、迅速に土中水を給水し、迅速に土中水を排水して土中水位を迅速に調整することを目的とする。   An object of the present invention is to quickly supply soil water while controlling the soil water level such as underground irrigation, and quickly drain the soil water to quickly adjust the soil water level.

本発明は、また、地下灌漑のような土中水位を管理しつつ、さらに、水温を管理することができる農地給排水改善方法を提供することを目的とする。   Another object of the present invention is to provide a farmland water supply / drainage improvement method capable of managing the water temperature while managing the soil water level such as underground irrigation.

本発明は、さらに、前記農地給排水改善方法に適した圃場形成方法を提供することを目的とする。   It is another object of the present invention to provide a field formation method suitable for the farmland water supply / drainage improvement method.

本発明は、さらに、前記農地給排水改善方法において好ましい給排水方法を提供することを目的とする。   Another object of the present invention is to provide a preferable water supply / drainage method in the farmland water supply / drainage improvement method.

請求項1に記載の発明は、圃場を長手方向に延びるように地表面から掘削された長溝と、前記長溝の底部に敷設された有孔の給排水管と、前記長溝内で前記給排水管上に形成された疎水層と、前記疎水材層を被覆する作土層を有する本暗渠と、前記給排水管より上位において前記本暗渠と交差して前記疎水材層と連通するとともに地表面まで形成された補助暗渠または明渠と、前記圃場の地表面に給水するための地表給水装置と、前記給排水管の上流側に設けられた地下給水装置と、前記給排水管の下流側に設けられた地下排水装置有する圃場の給排水改善構造特徴と有する。 According to the first aspect of the present invention, there is provided a long groove excavated from the ground surface so as to extend in the longitudinal direction of the field, a perforated water supply / drain pipe laid at the bottom of the long groove, and the water supply / drain pipe in the long groove and the hydrophobic material layer formed, the a present culvert having a plow layer coating the hydrophobic material layer is formed to the earth's surface communicates with the said hydrophobic material layer intersects with the present culvert in higher than the water lines and an auxiliary culvert or Akiramizo, and surface water supply device for supplying water to the field of the earth surface, and underground water supply device provided upstream of the water lines, underground drainage device provided downstream of the supply and drain pipes It features a structure for improving water supply and drainage in fields with

地下排水装置を閉状態にして地下給水装置を開状態にすると、灌漑水は本暗渠の給排水管を通じて圃場地下に供給される。供給された灌漑水は有孔の給排水管から溢流する。灌漑水は、本暗渠を充填するように疎水材層に供給される。補助暗渠または明渠は、給排水管とは干渉せず、すなわち、本暗渠の底部から上位において疎水材層と連通するように形成されている。疎水材層に供給され灌漑水は、次いで、補助暗渠または明渠に流れ込むか浸透する。また、表給水装置から圃場の地表面に給水する。圃場には、本暗渠を介するほか、補助暗渠または明渠を介して、灌漑水が広がる。本発明では、灌漑水の供給路として疎水材層を形成し、その疎水材層と連通するように補助暗渠または明渠が形成されているので、灌漑水は圃場に迅速に広がる。 When the underground drainage device is closed and the underground water supply device is opened, the irrigation water is supplied to the field basement through the main drainage drainage pipe. The supplied irrigation water overflows from the perforated water supply / drainage pipe. Irrigation water is supplied to the hydrophobic material layer so as to fill the underdrain. The auxiliary culvert or alum does not interfere with the water supply / drainage pipe, that is, is formed so as to communicate with the hydrophobic material layer from the bottom to the top of the main culvert. Irrigation water supplied to the hydrophobic material layer is then penetrate or flow into the auxiliary culvert or Akiramizo. In addition, water is supplied from the surface water supply device to the ground surface of the field. Irrigation water spreads through the main culvert as well as auxiliary culvert or lucid to the field. In the present invention, the hydrophobic material layer is formed as the irrigation water supply channel, and the auxiliary culvert or alum is formed so as to communicate with the hydrophobic material layer, so that the irrigation water spreads quickly in the field.

地下給水装置を閉状態・地下排水装置を開状態にして圃場を排水する際においては、補助暗渠または明渠は本暗渠の疎水材層に連通しているので、圃場に余剰に存在する水は本暗渠から迅速に排水されることになる。つまり、本暗渠の疎水材層の排水が早いと、それに連通する補助暗渠または明渠からもまた迅速に排水されることになる。 When draining the field with the underground water supply device closed and the underground drainage device open, the auxiliary culvert or alum is connected to the hydrophobic material layer of the culvert. It will drain quickly from the culvert. That is, if the drainage of the hydrophobic material layer of the main culvert is fast, it will also be swiftly drained from the auxiliary culvert or alum that communicates with it.

以上のように、本発明による圃場の給排水改善構造では、必要なときに必要な量の灌漑水を迅速に供給でき、余剰の灌漑水を迅速に排出することができる。   As described above, in the field water supply / drainage improvement structure according to the present invention, a necessary amount of irrigation water can be quickly supplied when necessary, and excess irrigation water can be quickly discharged.

また、本発明では、複数列の本暗渠が互いに並行するとともに、複数列の補助暗渠または明渠が互いに並行し、前記本暗渠と前記補助暗渠または明渠が直交する、圃場の給排水改善構造を提供する。 Further, in the present invention, together with the culvert plurality of rows are parallel to each other, in parallel auxiliary underdrain or Akiramizo multiple rows with each other, wherein the present underdrain auxiliary culvert or Akiramizo are orthogonal, provides field of plumbing improved structure .

本暗渠や補助暗渠または明渠を複数設けることで圃場の給水および排水の迅速性を高めることができる。 Providing a plurality of main culverts, auxiliary culverts or alums can increase the speed of water supply and drainage in the field.

また、本発明では、前記地表給水装置は、用水路から前記圃場の地表面に給水するための取水口を含み、前記地下給水装置は、前記用水路と前記給排水管とに連通する取水管を含み、前記取水口は隣り合う取水管の間に設けられ、前記取水管は隣り合う取水口の間に設けられている、圃場の給排水改善構造を提供する。 In the present invention, the surface water supply device includes a water intake for water from canals in the field of the earth surface, the underground water supply device comprises a water intake pipe communicating with said canal and the water lines, The water intake is provided between adjacent intake pipes, and the intake pipe is provided between adjacent intake pipes .

季節要因、天候、一日の時間帯にもよるが、灌漑水の水温は一定していない。地下給水装置から供給される灌漑水と地表給水装置から供給される灌漑水とでは水温に差が生じる。したがって、圃場への灌漑水の供給を二系統とすることで、地下給水装置から供給される灌漑水の水温と地表給水装置から供給される灌漑水の水温の差の範囲内ではあるが、灌漑水によって圃場の水温、ひいては土中温度を調節することができる。こうすることにより、作物に適した水温の灌漑水を提供しやすくなる。   The temperature of irrigation water is not constant, although it depends on seasonal factors, weather, and time of day. There is a difference in water temperature between the irrigation water supplied from the underground water supply device and the irrigation water supplied from the surface water supply device. Therefore, by irrigation water supply to the farm in two systems, it is within the range of the difference between the temperature of irrigation water supplied from the underground water supply device and the temperature of irrigation water supplied from the surface water supply device. Water can adjust the water temperature in the field, and thus the soil temperature. By doing so, it becomes easy to provide irrigation water having a water temperature suitable for crops.

また、本発明では、前記疎水材層は、砂利、貝殻、火山礫および破砕瓦のいずれか1つの素材、または、2以上の素材の組合せよりなる、圃場の給排水改善構造を提供する。   Moreover, in this invention, the said hydrophobic material layer provides the water supply / drainage improvement structure of a field which consists of any one raw material of gravel, a shell, volcanic gravel, and a shredded tile, or the combination of two or more raw materials.

それぞれの疎水材は浸透性が高いことが当然であるが、これらの疎水材のうち、破砕瓦が好ましい。特に、粒度調整5mm〜30mmに調整された破砕瓦が最も好ましい。   Naturally, each of the hydrophobic materials has high permeability, but among these hydrophobic materials, crushed tiles are preferable. In particular, a crushed roof tile adjusted to a particle size adjustment of 5 mm to 30 mm is most preferable.

また、本発明では、圃場を長手方向に延びるように地表面から掘削された長溝と、前記長溝の底部に敷設された有孔の給排水管と、前記長溝内で前記給排水管上に形成された疎水層と、前記疎水材層を被覆する作土層を有する本暗渠と、前記給排水管より上位において前記本暗渠と交差して前記疎水材層と連通するとともに地表面まで形成された補助暗渠または明渠と、前記圃場の地表面に給水するための地表給水装置と、前記給排水管の上流側に設けられた地下給水装置と、前記給排水管の下流側に設けられた地下排水装置を有する圃場の給排水方法であって、前記本暗渠の疎水材層より下位の水位で給水および排水を繰り返すことを特徴とする圃場の給排水方法を提供する。 Further, in the present invention, a long groove excavated from the ground surface so as to extend in the longitudinal direction in the field, a perforated water supply / drain pipe laid on the bottom of the long groove, and formed on the water supply / drain pipe in the long groove and the hydrophobic material layer, wherein the present culvert having a plow layer coating the hydrophobic material layer, said auxiliary culvert formed to the earth's surface communicates with the said hydrophobic material layer intersects with the present culvert in higher than plumbing line or fields having a Akiramizo, and surface water supply device for supplying water to the field of the earth surface, and underground water supply device provided upstream of the water lines, underground drainage device provided downstream of the supply and drain pipes A method for water supply and drainage in a farm, characterized in that water supply and drainage are repeated at a lower water level than the hydrophobic material layer of the main underdrain.

土中水位を疎水材層より下位とすることで、灌漑水の供給が迅速なだけでなく、土中水位の低下が迅速に生じる。給水および排水を迅速に行うことにより、特に、夏場等の高温時のような作物に悪影響を及ぼす温度になりそうなときは、給水および排水を迅速に繰り返すことにより土中の温度を迅速に調節することができる。   By making the soil water level lower than the hydrophobic material layer, not only is the irrigation water supplied quickly, but the soil water level is rapidly lowered. Rapid water supply and drainage, especially when the temperature is likely to adversely affect crops, such as during high temperatures in summer, quickly adjust the temperature in the soil by repeating water supply and drainage quickly can do.

本発明によれば、迅速に土中水を供給し、迅速に土中水を排水することができる。また、本発明によれば、圃場の土中水の水温を管理することができる。   According to the present invention, it is possible to supply soil water quickly and drain the soil water quickly. Moreover, according to this invention, the water temperature of the soil water of a farm field can be managed.

本暗渠が敷設された圃場の一部断面を含む斜視図である。It is a perspective view containing the partial cross section of the agricultural field in which this culvert was laid. 本暗渠に交差する補助暗渠(有材心破渠)および弾丸暗渠が形成された圃場の一部断面を含む斜視図である。It is a perspective view including the partial cross section of the agricultural field in which the auxiliary culvert (material heartbreak) and the bullet culvert which cross | intersect this culvert were formed. 本暗渠、補助暗渠または補助心破渠が形成された圃場の平面図、および、平面図のA−A線断面図である。It is the top view of the agricultural field in which the main underdrain, the auxiliary underdrain, or the auxiliary heart breaking was formed, and the sectional view on the AA line of the top view. 地下給水構造の一例を示す断面図である。It is sectional drawing which shows an example of an underground water supply structure. 地下排水構造の一例を示す断面図である。It is sectional drawing which shows an example of an underground drainage structure. 給水時の灌漑水の供給挙動を示す断面図、および排水時の灌漑水の排水挙動を示す断面図である。It is sectional drawing which shows the supply behavior of the irrigation water at the time of water supply, and sectional drawing which shows the drainage behavior of the irrigation water at the time of drainage. 一日を単位とした給排水サイクルを示すグラフであり、地下水位の変化、地下灌漑水または地表灌漑水を利用したときの水温変化、地下灌漑水および地表灌漑水を利用したときの水温変化を示している。This graph shows the water supply / drainage cycle in units of one day, showing changes in groundwater level, changes in water temperature when using underground irrigation water or surface irrigation water, and changes in water temperature when using underground irrigation water and surface irrigation water. ing.

以下、図面を参照して本発明の農地給排水改善方法の好適な実施形態を説明する。図1乃至図3は、圃場に暗渠または有材心破渠を形成する方法を示している。図1は主として暗渠を示し、図2は暗渠と交差する有材心破渠を示し、図3は圃場への給水構造を示している。例えば、農地のような圃場10において、互いに並行な暗渠が形成される。暗渠は有材・無材のいずれでもよい。   Hereinafter, preferred embodiments of the farmland water supply / drainage improvement method of the present invention will be described with reference to the drawings. 1 to 3 show a method of forming a culvert or timber rupture in a field. FIG. 1 mainly shows a culvert, FIG. 2 shows a material broken core that intersects the culvert, and FIG. 3 shows a water supply structure to a farm field. For example, in the field 10 such as farmland, parallel culverts are formed. The culvert may be either material or non-material.

本実施形態では本暗渠して有材暗渠を例示するとともに、補助暗渠として有材心破渠を例示するが、有材暗渠は無材暗渠であってもよいし、明渠であってもよく、有材心破渠は弾丸暗渠のような暗渠であってもよいし、明渠であってもよい。   In this embodiment, the main undermining is exemplified as a material underdrain, and the material underdrain is exemplified as an auxiliary underdrain, but the underground underdrain may be a non-material underdrain, or may be clear. The material rupture may be a culvert such as a bullet culvert, or it may be lucid.

図1に示されるように、まず、トレンチャー等によって互いに並行な掘削溝が形成される。掘削溝の間隔および深さは、土質状況によって異なるが間隔7.5m〜12m、深さ1200mm〜800mmが一般的である。掘削幅については、圃場の給水量、排水量を考慮して管径が選択されるが、本実施形態では例えば150mm〜200mmとしている。この掘削溝は上方に開く逆台形であることが好ましい。こうすることにより、圃場10への給水および圃場10からの排水が促進されるからである。   As shown in FIG. 1, first, mutually parallel excavation grooves are formed by a trencher or the like. The interval and depth of the excavation grooves vary depending on the soil condition, but are generally 7.5 to 12 m and a depth of 1200 to 800 mm. For the excavation width, the pipe diameter is selected in consideration of the amount of water supply and drainage in the field, but in this embodiment, for example, it is set to 150 mm to 200 mm. The excavation groove is preferably an inverted trapezoid that opens upward. This is because water supply to the farm field 10 and drainage from the farm field 10 are promoted.

次に、それぞれの掘削溝の底部において有孔のプラスチック管が実質的に水平に敷設される。プラスチック管は掘削溝と同様に長手方向に敷設される。このプラスチック管が給排水管14として機能し、本暗渠および有材心破渠を介して圃場10へ給水および排水の機能を担う。プラスチック管の両端の構成は後述する。   A perforated plastic tube is then laid substantially horizontally at the bottom of each excavation groove. The plastic tube is laid in the longitudinal direction as well as the excavation groove. This plastic pipe functions as the water supply / drainage pipe 14 and functions as water supply and drainage to the field 10 through the main underdrain and the material broken core. The configuration of both ends of the plastic tube will be described later.

次に、給排水管14の上に疎水材が投入され、疎水材層16が形成される。疎水材は、作土層18を覆土として投入する高さを残して投入される。作土層18は本実施形態では150mm〜200mmとしているが特にこの値に拘らない。本発明では、本暗渠における疎水材層が有材心破渠に通連することが重要である。   Next, a hydrophobic material is put on the water supply / drain pipe 14 to form the hydrophobic material layer 16. The hydrophobic material is introduced leaving a height to be introduced with the soil layer 18 as covering soil. The soil layer 18 is 150 mm to 200 mm in this embodiment, but is not particularly limited to this value. In the present invention, it is important that the hydrophobic material layer in the underdrain communicates with the core breakage.

作土層18の直下には疎水材として、セラミックチップ(粒度調整5mm〜30mmに調整された破砕瓦など)、貝殻(ホタテ殻、カキ殻)、クリンカッシュ(石炭殻)が投入されて疎水材層14が形成される。各疎水材を一層又は二層にて投入する事によって、地中の水分及び農地表面水の給排水を素早く出来るようになる。また、排水量調節水閘にて土中水分及び農地表面水深をコントロールして、植作物に適切な水分供給ができ、植作物の育成健全化に緊がり、品質の向上、収穫物の増産も期待できる。   Directly below the soil layer 18, as a hydrophobic material, ceramic chips (such as crushed roof tiles adjusted to a particle size adjustment of 5 to 30 mm), shells (scallop shells, oyster shells), and clinkers (coal shells) are added to the hydrophobic material. Layer 14 is formed. By supplying each hydrophobic material in one or two layers, water in the ground and water on the farmland surface can be quickly supplied and drained. Also, by controlling the water content in the soil and the depth of the farmland surface with a controlled drainage basin, it is possible to supply water to the planted crops properly, and to improve the quality of the planted crops and to improve the production of crops. .

次に、図2に示されるように、本暗渠12と直交するとともに、互いに並行な複数の有材心破渠20が形成される。有材心破渠20の間隔は、作物の生育及び収穫物生産量の調査データにより4m〜6mが一般的である。また、有材心破渠20の掘削幅については70mm〜100mmが一般的である。   Next, as shown in FIG. 2, a plurality of material core fractures 20 that are orthogonal to the main culvert 12 and parallel to each other are formed. The interval between the timber ruptures 20 is generally 4 m to 6 m according to the survey data on the growth of the crop and the yield of the crop. Further, the excavation width of the material core fracture 20 is generally 70 mm to 100 mm.

有材心破渠20の深さは農地へ面的に給水灌漑するのが第一目的であり、本暗渠における疎水材層16と通連するように、有材心破渠20の底部は疎水材の投入上面より深い位置にある。有材心破渠20は形成時に給排水管14との干渉を避けることが必要であるので、その底部は給排水管14より上位に位置する。具体的には本実施形態では、有材心破渠20の深さは、例えば、500mm〜700mmである。   The primary purpose of the depth of the timber core rupture 20 is to irrigate the farmland in terms of water supply, and the bottom of the timber rupture 20 is hydrophobic so as to communicate with the hydrophobic material layer 16 in this underdrain. It is in a position deeper than the top surface of the material. Since the core breaker 20 needs to avoid interference with the water supply / drainage pipe 14 at the time of formation, the bottom portion thereof is positioned higher than the water supply / drainage pipe 14. Specifically, in the present embodiment, the depth of the core broken material 20 is, for example, 500 mm to 700 mm.

有材心破渠20の機能は本暗渠から供給される土中水を圃場に面的かつ迅速に供給し、圃場に滞留する土中水を面的かつ迅速に排水するためであり、有材心破渠20の代わりにまたは有材心破渠20に追加して弾丸暗渠22などの他の給排水手段が設けられてもよい。上記のように圃場に本暗渠12と有材心破渠20を形成し、本暗渠12の疎水材層16まで有材心破渠20(さらには弾丸暗渠22)のように補助暗渠を交差融合させることにより、本暗渠12からの給水および本暗渠12への排水は、有材心破渠20を通して地中亀裂部及び地上表面部へ面的に素早く上昇または下降して、給水および排水を迅速に行うことができる。   The function of the core breaker 20 is to supply the soil water supplied from the main culvert to the field quickly and quickly, and to drain the soil water staying in the field surface and quickly. Other water supply / drainage means such as a bullet culvert 22 may be provided instead of or in addition to the core breaker 20. As described above, the main culvert 12 and the material culvert 20 are formed in the field, and the auxiliary culvert is cross-fused to the hydrophobic material layer 16 of the main culvert 12 like the material culvert 20 (and also the bullet culvert 22). As a result, the water supply from the underdrain 12 and the drainage into the underdrain 12 are quickly raised or lowered to the underground crack portion and the surface of the ground through the material core fracture 20 to quickly supply and drain the water. Can be done.

図3は、本暗渠12および有材心破渠20が形成された圃場の平面図およびA−A断面図を示している。図3の実施形態では、用水路24から2系統で取水を行う圃場10を例示している。   FIG. 3 shows a plan view and a cross-sectional view taken along line AA of the field where the main culvert 12 and the timber core fracture 20 are formed. In the embodiment of FIG. 3, the agricultural field 10 that takes water in two systems from the irrigation channel 24 is illustrated.

給排水管14は、取水管25を介して用水路24と連通している。給排水管14は本暗渠12の底部を伸びており、給排水管14に水が供給されると、その水は疎水材16の層から有材心破渠20を介して圃場10へ均一に広がろうとする。給排水管14に流れ込む水は土中水として圃場10に供給される。   The water supply / drainage pipe 14 communicates with the irrigation channel 24 through the intake pipe 25. The water supply / drainage pipe 14 extends at the bottom of the main culvert 12, and when water is supplied to the water supply / drainage pipe 14, the water spreads uniformly from the layer of the hydrophobic material 16 to the field 10 through the material core fracture 20. I will try. The water flowing into the water supply / drainage pipe 14 is supplied to the farm 10 as soil water.

また、本実施形態では圃場10に取水口26が設けられている。取水口26は、圃場10の土手・畦の一部を欠損させることで形成される。取水口25を通じる水は地表水として圃場10に供給される。   In the present embodiment, a water intake 26 is provided in the farm field 10. The water intake 26 is formed by losing a part of the bank / basket of the field 10. Water passing through the water intake 25 is supplied to the field 10 as surface water.

2系統で取水を行うことにより、圃場10の温度調整が行いやすい。すなわち、土中水は、地中を通じて圃場10の地下から作物が植えつけられる圃場表面に供給されるので、圃場10の温度変化を伴いにくい。一方、地表水は、用水路24から直接的に圃場10の表面に供給されるので、圃場10の温度変化を伴いやすい。圃場10の温度変化への影響に差があることを利用して、2系統で圃場10への水の供給を行うことにより圃場10の水温の管理を行うことができる。   By taking water in two systems, the temperature of the farm 10 can be easily adjusted. That is, since the soil water is supplied from the basement of the field 10 through the ground to the field surface where the crop is planted, it is difficult to be accompanied by a temperature change of the field 10. On the other hand, the surface water is supplied directly from the irrigation channel 24 to the surface of the farm field 10, and therefore is easily accompanied by a temperature change of the farm field 10. Utilizing the fact that there is a difference in the influence on the temperature change of the field 10, the water temperature of the field 10 can be managed by supplying water to the field 10 in two systems.

図4は、用水路ではなく、給水用パイプライン30から圃場10に土中水を供給する実施形態を示す断面図である。   FIG. 4 is a cross-sectional view showing an embodiment in which soil water is supplied from the water supply pipeline 30 to the agricultural field 10 instead of the water channel.

給排水管14の上流側には、圃場への土中給水装置が設けられている。給水装置は、例えば、給水枡28と、その給水枡28に取り付けられたゲートバルブ32よりなる。圃場10には、上方を開口する中空の給水枡28が敷設されている。給水枡28の底部にはその内部にゲートバルブ32が設置されている。このゲートバルブ32は圃場10の表面から調整ハンドル34を操作することにより開閉される。ゲートバルブ32が開状態に操作されると、給水用パイプライン30から給排水管14に水が供給され、その水は疎水材16の層から有材心破渠20を介して圃場10へ均一に広がろうとする。   On the upstream side of the water supply / drainage pipe 14, a soil water supply device for the farm is provided. The water supply apparatus includes, for example, a water supply basin 28 and a gate valve 32 attached to the water supply basin 28. In the agricultural field 10, a hollow water supply rod 28 that opens upward is laid. A gate valve 32 is installed at the bottom of the water tank 28. The gate valve 32 is opened and closed by operating the adjustment handle 34 from the surface of the field 10. When the gate valve 32 is operated in the open state, water is supplied from the water supply pipeline 30 to the water supply / drainage pipe 14, and the water is uniformly supplied to the field 10 from the layer of the hydrophobic material 16 through the material core fracture 20. Try to spread.

図5に示されるように、給排水管14の下流側には排水装置が設けられている。排水装置は、給排水管14に連通する排水量調節水閘36と、その排水量調節水閘36によって分岐するバイパス39およびパイプよりなる。排水量調節水閘36は、土中水の排出機能(排出をさせないことにより給水のバルブとしても機能)、および、土中水の水位調整機能を有する。   As shown in FIG. 5, a drainage device is provided on the downstream side of the water supply / drainage pipe 14. The drainage device includes a drainage amount adjustment water tank 36 communicating with the water supply / drainage pipe 14, a bypass 39 and a pipe branched by the drainage amount adjustment water tank 36. The drainage amount adjustment water tank 36 has a soil water discharge function (also functions as a water supply valve by not discharging the water) and a soil water level adjustment function.

排水量調節水閘36は、給排水管14の下流端においてシャッターバルブ37を備えている。シャッターバルブ37が開状態のとき、給排水管14は、排水路に連通するパイプを介して排水路38につながる。その結果、既に貯留されている土中水があるときは、その土中水が迅速に排出される。   The drainage amount adjusting water tank 36 includes a shutter valve 37 at the downstream end of the water supply / drainage pipe 14. When the shutter valve 37 is in the open state, the water supply / drainage pipe 14 is connected to the drainage channel 38 via a pipe communicating with the drainage channel. As a result, when there is soil water already stored, the soil water is quickly discharged.

シャッターバルブ37が閉状態のとき、給排水管14は排水量調節水閘36と連通し、給排水管14内の水は排水量調節水閘36内を上昇する。排水量調節水閘36内の水位が所定の高さになると、水は水閘36内に溢流してバイパス39およびパイプを介して排水路38に排出される。   When the shutter valve 37 is closed, the water supply / drainage pipe 14 communicates with the drainage amount adjustment water tank 36, and the water in the water supply / drainage pipe 14 rises in the drainage amount adjustment water tank 36. When the water level in the drainage adjustment water tank 36 reaches a predetermined height, the water overflows into the water tank 36 and is discharged to the drainage channel 38 via the bypass 39 and the pipe.

排水量調節水閘36は内部にロッド等を備えており、このロッドの操作することにより排出水位の調節ができる。すなわち、排水量調節水閘36を操作することにより圃場10における土中水の水位を調節することができる。   The drainage amount adjustment water tank 36 has a rod or the like inside, and the discharge water level can be adjusted by operating this rod. That is, the water level of the soil water in the field 10 can be adjusted by operating the drainage adjustment water tank 36.

次に図6および図7を参照して、圃場における給排水方法を説明する。図6は、給水時の灌漑水の供給挙動を示す断面図、および排水時の灌漑水の排水挙動を示す断面である。図7は、一日を単位とした給排水サイクルを示すグラフであり、地下水位の変化、地下灌漑水または地表灌漑水を利用したときの水温変化、地下灌漑水および地表灌漑水を利用したときの水温変化を示している。   Next, with reference to FIG. 6 and FIG. 7, the water supply / drainage method in a farm field is demonstrated. FIG. 6 is a cross-sectional view showing the supply behavior of irrigation water during water supply, and a cross-section showing the discharge behavior of irrigation water during drainage. Fig. 7 is a graph showing the water supply / drainage cycle in units of one day. Changes in groundwater level, changes in water temperature when using underground irrigation water or surface irrigation water, and when using underground irrigation water and surface irrigation water It shows changes in water temperature.

給水装置を操作することにより、図6(A)に示されるように、給排水管14に灌漑水が供給される。灌漑水はプラスチック管の有孔から溢流し、まず疎水材層16に供給される。灌漑水は所定の水位まで本暗渠12中の疎水材層16を上昇する。所定の水位とは作物に応じて、その他の季節要因や温度要因を基準にして定められた水位のことである。   By operating the water supply device, irrigation water is supplied to the water supply / drainage pipe 14 as shown in FIG. The irrigation water overflows from the perforated plastic tube and is first supplied to the hydrophobic material layer 16. Irrigation water ascends the hydrophobic material layer 16 in the main culvert 12 to a predetermined water level. The predetermined water level is a water level determined based on other seasonal and temperature factors according to the crop.

灌漑水は作土層18に到達する前に、有材心破渠20に浸透する。灌漑水の一部は作土層18にも浸透する。本暗渠12の疎水材層14から有材心破渠20に浸透した灌漑水は毛細管現象等により水平に面的に圃場10を広がる。圃場全体にわたり複数の本暗渠12および複数の有材心破渠20を設けることにより、その圃場10へ迅速かつ均等に灌漑水を供給することができる。   The irrigation water penetrates the timber core fracture 20 before reaching the soil layer 18. Part of the irrigation water also penetrates into the soil layer 18. Irrigation water that has penetrated from the hydrophobic material layer 14 of the main culvert 12 into the timber core breaker 20 spreads across the field 10 horizontally and horizontally due to a capillary phenomenon or the like. By providing a plurality of main culverts 12 and a plurality of material heartbreaks 20 throughout the field, irrigation water can be supplied to the field 10 quickly and evenly.

排水装置を操作することにより、図6(B)に示されるように、給排水管14を介して圃場10から灌漑水が排水される。まず、疎水材層16から迅速に排水されるが、その疎水材層16に連通する有材心破渠20からも疎水材層16を介して灌漑水が迅速に排出される。   By operating the drainage device, as shown in FIG. 6B, irrigation water is drained from the field 10 through the water supply / drainage pipe 14. First, water is quickly drained from the hydrophobic material layer 16, and irrigation water is also quickly drained through the hydrophobic material layer 16 from the core material rupture 20 communicating with the hydrophobic material layer 16.

次に図7に示されるように、土中給水装置、地表給水装置と排水装置を操作することにより、土中水位と土中水温を調節する。図7において横軸は一日の時間サイクルであり、縦軸は本暗渠12の高さに相当する。   Next, as shown in FIG. 7, the soil water level and the soil water temperature are adjusted by operating the soil water supply device, the surface water supply device, and the drainage device. In FIG. 7, the horizontal axis represents the daily time cycle, and the vertical axis corresponds to the height of the main culvert 12.

圃場10では減水深があるので、灌漑水を供給しても徐々に土中水位は低下する。土中水位の右傾斜は前記減水深を示す。作物の種類にもよるが、例えば、稲の場合は、生育状況によって土中水の温度管理が重要となる。本実施形態では、日の出および日の入りを基準事項として、給排水の操作を行うとともに、水温管理のために給排水を行う。   Since there is a reduced water depth in the field 10, the soil water level gradually decreases even if irrigation water is supplied. The right slope of the soil water level indicates the water reduction depth. Depending on the type of crop, for example, in the case of rice, temperature control of soil water is important depending on the growing conditions. In the present embodiment, the operation of water supply / drainage is performed on the basis of sunrise and sunset, and water supply / drainage is performed for water temperature management.

具体的には、日の出の前(午前5〜7時)に土中給水装置を操作して土中から灌漑水を供給する。灌漑水は本暗渠12の疎水材層16を介して急激に上昇し、そこから有材心破渠20を介して作土層の亀裂部を浸透して面的に圃場10に広がる。稲作の場合、土中水の上昇および下降を迅速に行うことにより、食味に影響が出ると考えられている。   Specifically, the irrigation water is supplied from the soil by operating the soil water supply device before sunrise (5-7 am). The irrigation water rises rapidly through the hydrophobic material layer 16 of the main culvert 12 and then penetrates through the cracked portion of the soil layer through the material core breakage 20 and spreads across the field 10 in a plane. In the case of rice cultivation, it is thought that the taste is affected by the rapid rise and fall of soil water.

日の入り時刻には、排水装置を操作して土中から灌漑水を排水する。減水深さ以上に強制排水することにより、稲作の場合は食味に影響が出ると考えられている。圃場10から総ての灌漑水を排水するのではなく、土中に灌漑水を残した状態で排水することが好ましい。排水装置を操作して一定量の灌漑水を土中に残すことにより、次回の給水時に土中温度が急激に低下することがなくなるからである。   At sunset time, the drainage device is operated to drain irrigation water from the soil. In the case of rice cultivation, it is thought that the taste will be affected by forced drainage beyond the reduced water depth. Rather than draining all irrigation water from the field 10, it is preferable to drain the irrigation water in the soil. This is because by operating the drainage device and leaving a certain amount of irrigation water in the soil, the temperature in the soil will not drop rapidly during the next water supply.

図7において、点線は圃場10に供給された灌漑水の水温を示している。太い点線は土中給水装置のみを利用したときの灌漑水の水温であり、細い点線は土中給水装置と地表給水装置を併用したときの灌漑水の水温である。   In FIG. 7, the dotted line indicates the temperature of the irrigation water supplied to the farm 10. The thick dotted line is the temperature of irrigation water when only the underground water supply device is used, and the thin dotted line is the temperature of the irrigation water when the underground water supply device and the surface water supply device are used together.

例えば、フェーン現象等により一時的に圃場10の温度が上昇することが考えられる。その場合、2系統の給水装置、すなわち、土中給水装置および地表給水装置を併用することで、圃場10の灌漑水の温度を調整することができる。   For example, it is conceivable that the temperature of the farm 10 temporarily rises due to a Fern phenomenon or the like. In that case, the temperature of the irrigation water in the field 10 can be adjusted by using two systems of water supply devices, that is, an underground water supply device and a surface water supply device.

以上の実施形態では特定の装置・操作を例示したが、本発明の範囲は上記実施形態に限定されるべきものではない。当業者であれば、各種装置の変更・操作の変更が容易であり、季節要因や環境に応じて適宜変更を加えて実施することができる。   In the above embodiments, specific devices and operations have been exemplified, but the scope of the present invention should not be limited to the above embodiments. A person skilled in the art can easily change the various devices and change the operation, and can make appropriate changes according to seasonal factors and the environment.

ここに本発明による効果を列挙する。   The effects according to the present invention are listed here.

(1)圃場への濯漑給水を本暗渠排水管上流部より給水する事によって灌漑用水に混合している雑草の種子が地中に封入される事によって圃場における雑草を抑制することができる。   (1) By supplying irrigation water to the field from the upstream side of this culvert drainage pipe, weeds in the field can be suppressed by enclosing the seeds of weed mixed with irrigation water into the ground.

(2)畑地帯、転作畑等の干ばつ時には農地給排水改善化工法にて給排水管渠より給水して排水量調節水聞にて地中に水分を供給する事ができ、作物の根域部に迅速かつ均等に水分を供給して、天候に左右されずに安定した作物の収穫が確保できる。   (2) In the case of drought in upland fields, cropping fields, etc., water can be supplied from the water supply and drainage pipes using the farmland water supply and drainage improvement method, and water can be supplied to the ground using the drainage control fountain. In addition, by supplying moisture evenly, it is possible to secure a stable crop harvest regardless of the weather.

(3)給水装置からに液肥等を調合し、給排水管の上流部よりを圃場に供給する事によって、作物の根域に液肥の供給が容易にできる。   (3) Liquid fertilizer can be easily supplied to the root area of the crop by preparing liquid fertilizer and the like from the water supply device and supplying the field from the upstream of the water supply / drainage pipe to the field.

(4)灌漑水の供給・排水
農地給排水改善構造は給排水管渠と有材心破渠を交差融合させ、疎水材にはセラミックチップ、貝殻、クリンカッシュなどを使用する事によって、水管理(給水、排水)が素早くでき、給水時には給排水管渠、有材心破渠、土中の亀裂より水田表面に素早く灌漑水を供給できる。
(4) Irrigation water supply / drainage The farmland water supply / drainage improvement structure crosses and fuses water supply / drainage pipes and timber core breakage and uses ceramic chips, shells, clinkers, etc. as hydrophobic materials to manage water (water supply The irrigation water can be quickly supplied to the surface of the paddy field through the water supply / drainage pipe, the broken material core, and the crack in the soil.

排水時には地中の亀裂、有材心破渠、給排水管渠排水管を通じ、素早く排水する事ができる。それによって農地等の圃場の乾土効果の向上に繁がり、機械化作業が容易となり、省力化や生産物のコスト削減となる。   When draining, it can be quickly drained through underground cracks, broken materials, and drainage pipes. As a result, the dry soil effect of fields such as farmland is improved, and mechanization work is facilitated, saving labor and reducing product costs.

(5)高温対策
稲作の高温対策として農地給排水改善構造および給排水方法は灌漑水を地温の低い地中より灌漑する事によって温度の低い灌漑または恒温の灌漑ができる。
(5) Countermeasures against high temperatures The farmland water supply / drainage improvement structure and water supply / drainage method can be used for low temperature irrigation or constant temperature irrigation by irrigating irrigation water from underground where the ground temperature is low.

(6)減水深を排水調節水閘によって強制的に拡大させ、水を圃場内で縦移動することによって水温の上昇を抑制することができる。   (6) The increase in water temperature can be suppressed by forcibly expanding the water reduction depth by the drainage adjustment water tank and moving water vertically in the field.

(7)6月〜9月には太陽の日照によって、水田の表面水の温度が上昇してメタンガスが発生し、通常であればメタンガスは二酸化炭素の23倍もの地球温暖化の促進となる。本発明では、排水量調節水閘にて排水量の調節をして水田の土中水を縦浸透させて減水深を大幅に確保する。それによって土中水の停滞をなくし、水を縦移動させ、水田の中の有機物(炭素分C)と水の水素(H)との化学反応を発生しづらくさせることで、メタンガス発生を抑制し、地球温暖化を抑制する効果もある。   (7) From June to September, the sun's sunshine raises the temperature of the surface water of the paddy field to generate methane gas, which normally promotes global warming 23 times that of carbon dioxide. In the present invention, the amount of drainage is adjusted by a drainage adjustment water tank, and the soil water in the paddy field is infiltrated longitudinally to ensure a significant water reduction depth. As a result, the stagnation of soil water is eliminated, the water is moved vertically, and the chemical reaction between the organic matter (carbon content C) in the paddy field and the hydrogen (H) of the water is made difficult to suppress the generation of methane gas. It also has the effect of suppressing global warming.

10 圃場 12 本暗渠 14 給排水管
16 疎水材層 18 作土層 20 有材心破渠
10 fields 12 culverts 14 water supply and drainage pipes
16 Hydrophobic material layer 18 Soil layer 20 Material breakage

Claims (7)

圃場を長手方向に延びるように地表面から掘削された長溝と、前記長溝の底部に敷設された有孔の給排水管と、前記長溝内で前記給排水管上に形成された疎水層と、前記疎水材層を被覆する作土層を有する本暗渠と、
前記給排水管より上位において前記本暗渠と交差して前記疎水材層と連通するとともに地表面まで形成された補助暗渠または明渠と、
前記圃場の地表面に給水するための地表給水装置と、
前記給排水管の上流側に設けられた地下給水装置と、
前記給排水管の下流側に設けられた地下排水装置と、
を有する圃場の給排水改善構造。
A long groove excavated from the ground surface so as to extend in the longitudinal direction of the field, a perforated water supply / drain pipe laid at the bottom of the long groove, a hydrophobic material layer formed on the water supply / drain pipe in the long groove, and A main culvert having a soil layer covering the hydrophobic material layer;
Auxiliary culvert or alum formed at the upper side of the water supply / drain pipe and communicating with the hydrophobic material layer intersecting with the main culvert and reaching the ground surface ,
A surface water supply device for supplying water to the ground surface of the field;
An underground water supply apparatus provided upstream of the water supply and drainage pipe;
An underground drainage device provided downstream of the water supply and drainage pipe;
A structure for improving water supply and drainage in farms.
複数列の本暗渠が互いに並行するとともに、複数列の補助暗渠または明渠が互いに並行し、前記本暗渠と前記補助暗渠または明渠が直交する、請求項1記載の圃場の給排水改善構造。 The structure for improving water supply and drainage in a farm according to claim 1, wherein a plurality of rows of main culverts are parallel to each other, a plurality of rows of auxiliary culverts or alums are parallel to each other, and the main culvert and the auxiliary culverts or alum are perpendicular to each other. 前記地表給水装置は、用水路から前記圃場の地表面に給水するための取水口を含み、
前記地下給水装置は、前記用水路と前記給排水管とに連通する取水管を含み、
前記取水口は隣り合う取水管の間に設けられ、前記取水管は隣り合う取水口の間に設けられている、請求項1又は2記載の圃場の給排水改善構造。
The surface water supply device includes a water intake for supplying water from the water channel to the ground surface of the field,
The underground water supply apparatus includes a water intake pipe communicating with the water channel and the water supply / drain pipe,
The field water supply / drainage improvement structure according to claim 1 or 2 , wherein the water intake is provided between adjacent water intake pipes, and the water intake pipe is provided between adjacent water intakes .
前記疎水材層は、砂利、貝殻、火山礫および破砕瓦のいずれか1つの素材、または、2以上の素材の組合せよりなる、請求項1ないし3のいずれかに記載の圃場の給排水改善構造。   The water supply / drainage improvement structure for a farm field according to any one of claims 1 to 3, wherein the hydrophobic material layer is made of any one material of gravel, shells, volcanic gravel, and crushed tiles, or a combination of two or more materials. 圃場を長手方向に延びるように地表面から掘削された長溝と、前記長溝の底部に敷設された有孔の給排水管と、前記長溝内で前記給排水管上に形成された疎水層と、前記疎水材層を被覆する作土層を有する本暗渠と、前記給排水管より上位において前記本暗渠と交差して前記疎水材層と連通するとともに地表面まで形成された補助暗渠または明渠と、前記圃場の地表面に給水するための地表給水装置と、前記給排水管の上流側に設けられた地下給水装置と、前記給排水管の下流側に設けられた地下排水装置とを有する圃場の給排水方法であって、
前記本暗渠の疎水材層より下位の水位で給水および排水を繰り返すことを特徴とする、圃場の給排水方法。
A long groove excavated from the ground surface so as to extend in the longitudinal direction of the field, a perforated water supply / drain pipe laid at the bottom of the long groove, a hydrophobic material layer formed on the water supply / drain pipe in the long groove, and A main culvert having a soil layer covering the hydrophobic material layer, an auxiliary culvert or alum formed at the upper level of the water supply / drainage pipe, crossing the main culvert and communicating with the hydrophobic material layer and reaching the ground surface, and the field A surface water supply device for supplying water to the ground surface, an underground water supply device provided upstream of the water supply / drainage pipe, and a groundwater drainage device provided downstream of the water supply / drainage pipe. And
A water supply / drainage method for a farm, wherein water supply and drainage are repeated at a lower water level than the hydrophobic material layer of the main underdrain.
日の出以前に給水を開始して日の出直後に給水を停止することを特徴とする、請求項5記載の圃場の給排水方法。   The water supply / drainage method for a field according to claim 5, wherein water supply is started before sunrise and water supply is stopped immediately after sunrise. 日の入り後は、減水深以上に前記圃場を排水することを特徴とする、請求項6記載の圃場の給排水方法。   The method for supplying and draining a field according to claim 6, wherein the field is drained more than the depth of water reduction after sunset.
JP2009162751A 2009-07-09 2009-07-09 Water supply / drainage improvement structure and water supply / drainage method Expired - Fee Related JP5530670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162751A JP5530670B2 (en) 2009-07-09 2009-07-09 Water supply / drainage improvement structure and water supply / drainage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162751A JP5530670B2 (en) 2009-07-09 2009-07-09 Water supply / drainage improvement structure and water supply / drainage method

Publications (2)

Publication Number Publication Date
JP2011015642A JP2011015642A (en) 2011-01-27
JP5530670B2 true JP5530670B2 (en) 2014-06-25

Family

ID=43593947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162751A Expired - Fee Related JP5530670B2 (en) 2009-07-09 2009-07-09 Water supply / drainage improvement structure and water supply / drainage method

Country Status (1)

Country Link
JP (1) JP5530670B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234624A (en) * 2010-04-30 2011-11-24 Earth Project:Kk Culvert
JP6041190B2 (en) * 2011-07-21 2016-12-07 株式会社パディ研究所 Underground irrigation system
CN109197525B (en) * 2018-09-25 2021-07-13 华北水利水电大学 Farmland irrigation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102338A (en) * 1982-12-04 1984-06-13 溝田工業株式会社 Drain and irrigation apparatus in field to which undergroundploughing is applied
JPS60261820A (en) * 1984-06-11 1985-12-25 Iseki & Co Ltd Controlling device for water level in rice paddy
JP2003023882A (en) * 2001-07-17 2003-01-28 Japan Radio Co Ltd Automatic control system for paddy water
JP4544611B2 (en) * 2004-01-09 2010-09-15 独立行政法人農業・食品産業技術総合研究機構 Water level adjustment system
JP4134070B2 (en) * 2005-03-04 2008-08-13 財団法人 自然農法国際研究開発センター Underground irrigation drainage underdrain

Also Published As

Publication number Publication date
JP2011015642A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
CN100473271C (en) System engineering method for modifying alkaline land by use of pipe drainage method
CN101946573B (en) Method for ameliorating saline and alkaline land
CN101444155B (en) Device and method for improving saline land
CN103181258B (en) Saline-alkali soil improvement method
CN102138491B (en) Soil and ecological control method for coastal beaches
KR101054882B1 (en) Underground pipe drainage system
CN104186137A (en) Technology for cultivating and greening tall fescue grass on inshore mud flat saline-alkali soil
Hornbuckle et al. Controlled water table management as a strategy for reducing salt loads from subsurface drainage under perennial agriculture in semi-arid Australia
CN102612883B (en) Saline discharge and alkali reduction concealed conduit device for saline-alkali soil
JP5530670B2 (en) Water supply / drainage improvement structure and water supply / drainage method
CN105706555A (en) Saline-alkali soil greening engineering original soil improvement structure and construction method thereof
CN106212039A (en) The implantation methods of Paeonia suffruticosa
KR20160090862A (en) Method and system for surface and subsurface water retention
JP5970675B2 (en) Underground irrigation system
CN109566216A (en) The method for improving slope tree planting survival rate
KR100946760B1 (en) Method for planting a tree on the reclaimed land
CN109618884A (en) A kind of phreatic water seepage flow catchments hidden pipe structure
JP3270846B2 (en) Cultivation for wasabi cultivation and wasabi cultivation method using the same
CN103070036B (en) Construction method of urban three-dimensional afforesting body
CN102612884B (en) Land consolidation method capable of increasing effective cultivated land area
RU2253225C1 (en) Amelioration method (versions)
JP7534196B2 (en) Wasabi cultivation system and method
CN220383696U (en) Rock slope green planting structure
Hashimi et al. IMPACT OF LAND LEVELING ON THE WATER BALANCE FOR AGRICULTURE IN EASTERN AFGHANISTAN
CN218921148U (en) High mountain and rocky beach plant cultivation domestication seedbed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees