JP5527001B2 - Charge control method and charge control device for secondary battery - Google Patents

Charge control method and charge control device for secondary battery Download PDF

Info

Publication number
JP5527001B2
JP5527001B2 JP2010109096A JP2010109096A JP5527001B2 JP 5527001 B2 JP5527001 B2 JP 5527001B2 JP 2010109096 A JP2010109096 A JP 2010109096A JP 2010109096 A JP2010109096 A JP 2010109096A JP 5527001 B2 JP5527001 B2 JP 5527001B2
Authority
JP
Japan
Prior art keywords
secondary battery
charging power
internal pressure
charging
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010109096A
Other languages
Japanese (ja)
Other versions
JP2011239573A (en
Inventor
義晃 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010109096A priority Critical patent/JP5527001B2/en
Publication of JP2011239573A publication Critical patent/JP2011239573A/en
Application granted granted Critical
Publication of JP5527001B2 publication Critical patent/JP5527001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池の充電制御方法及び充電制御装置の技術に関する。   The present invention relates to a secondary battery charge control method and a charge control device technology.

電動機を搭載した電気自動車(ハイブリッド自動車等も含む)は、二次電池に蓄えられた電力により、電動機を駆動している。このような電気自動車の特有な機能として、回生制動がある。回生制動は、車両制動時、電動機を発電機として機能させることにより、車両の運動エネルギーを電気エネルギーに変換し、制動を行うものである。また、得られた電気エネルギーは二次電池に充電され、加速等を行う時に再利用される。   An electric vehicle (including a hybrid vehicle) equipped with an electric motor drives the electric motor with electric power stored in a secondary battery. There is regenerative braking as a characteristic function of such an electric vehicle. In regenerative braking, the motor is made to function as a generator during vehicle braking, so that the kinetic energy of the vehicle is converted into electric energy and braking is performed. The obtained electrical energy is charged in the secondary battery and reused when accelerating or the like.

二次電池は、充電の際の電圧上昇に伴い充電の副反応でガスが発生し、二次電池の内圧が上昇する。例えば、ニッケル水素二次電池では主に酸素ガスが発生し、内圧が上昇する。   In the secondary battery, gas is generated due to a side reaction of charging as the voltage increases during charging, and the internal pressure of the secondary battery increases. For example, in a nickel metal hydride secondary battery, oxygen gas is mainly generated and the internal pressure rises.

従来から、このような二次電池の内圧上昇に伴って充電制御を行い、二次電池を保護する技術が開示されている。   Conventionally, a technique for protecting a secondary battery by performing charge control as the internal pressure of the secondary battery increases has been disclosed.

例えば、特許文献1には、二次電池の内圧に影響を与える二次電池の物理量と、該物理量に基づいて算出される二次電池の内圧特性の変化を表す指数(特性変化指数)から二次電池の内圧を推定し、その推定した二次電池の内圧に基づいて二次電池の充電制御を行う技術が開示されている。   For example, Patent Document 1 discloses that a physical quantity of a secondary battery that affects the internal pressure of the secondary battery and an index (characteristic change index) representing a change in the internal pressure characteristics of the secondary battery calculated based on the physical quantity. A technique for estimating the internal pressure of a secondary battery and performing charge control of the secondary battery based on the estimated internal pressure of the secondary battery is disclosed.

また、例えば、特許文献2には、二次電池の充電の際に発生する振動を測定し、その測定値が予め定めた値より大きい時に、二次電池内でガスが発生したと判定し、二次電池の充電を停止する、又は二次電池の充電電流値を下げる制御を行う技術が開示されている。   In addition, for example, in Patent Document 2, vibration generated when the secondary battery is charged is measured, and when the measured value is larger than a predetermined value, it is determined that gas is generated in the secondary battery, A technique for performing control to stop charging of the secondary battery or to lower the charging current value of the secondary battery is disclosed.

また、例えば、特許文献3には、二次電池の内圧が上昇するまでは、第1の電流によって第1のレートで二次電池を充電し、二次電池の内圧が上昇を開始した後に、第1の電流より低い第2の電流によって第1のレートより低い第2のレートで二次電池の充電を行う制御技術が開示されている。   Further, for example, in Patent Document 3, the secondary battery is charged at the first rate with the first current until the internal pressure of the secondary battery rises, and after the internal pressure of the secondary battery starts to rise, A control technique for charging a secondary battery at a second rate lower than the first rate by a second current lower than the first current is disclosed.

特開2007−53058号公報JP 2007-53058 A 特開平11−329510号公報JP 11-329510 A 特開2002−27681号公報JP 2002-27681 A

ところで、通常二次電池内で発生したガスはガス発生する電極と反対側の極に吸収される。例えば、ニッケル水素二次電池は、正極で酸素ガスが発生し、発生した酸素ガスは負極の水素との再結合反応により水に戻り、上昇した二次電池の内圧は低下する。   By the way, normally, the gas generated in the secondary battery is absorbed by the electrode on the opposite side of the gas generating electrode. For example, in a nickel metal hydride secondary battery, oxygen gas is generated at the positive electrode, and the generated oxygen gas returns to water by a recombination reaction with hydrogen at the negative electrode, and the internal pressure of the increased secondary battery decreases.

しかし、上記のような再結合反応等のガス吸収反応は、二次電池の内圧と温度に依存し、二次電池の温度が低いとその反応は遅くなる。したがって、推定した二次電池の内圧に基づいて二次電池の充電電力を制限する制御を行う方法では、上昇した二次電池の内圧を低下させることは可能であるが、上昇した二次電池の内圧が回復するまで時間が掛かるため、長時間に亘って二次電池の充電電力を制限する制御が行われ、回生制動による電気エネルギーの回収率が低下する場合がある。   However, the gas absorption reaction such as the recombination reaction as described above depends on the internal pressure and temperature of the secondary battery, and the reaction is delayed when the temperature of the secondary battery is low. Therefore, in the method of performing the control to limit the charging power of the secondary battery based on the estimated internal pressure of the secondary battery, it is possible to reduce the internal pressure of the increased secondary battery, but the Since it takes time until the internal pressure recovers, control for limiting the charging power of the secondary battery over a long period of time is performed, and the recovery rate of electric energy by regenerative braking may decrease.

そこで、本発明は、二次電池の内圧上昇を緩和・抑制することができる二次電池の充電制御方法及び充電制御装置を提供することにある。   Then, this invention is providing the charge control method and charge control apparatus of a secondary battery which can relieve and suppress the internal pressure rise of a secondary battery.

本発明の二次電池の充電制御方法は、二次電池の極板間電圧に基づいて、二次電池内でガスが発生するガス発生電位まで電圧上昇しないように設定される第1の充電電力制限値を算出するステップと、二次電池の内圧に基づいて、二次電池の安全弁が作動する内圧まで上昇しないように設定される第2の充電電力制限値を算出するステップと、前記二次電池の内圧に応じて、前記第1の充電電力制限値又は前記第2の充電電力制限値を選択し、二次電池の充電電力を制限するステップと、二次電池の電流値と充電効率に基づいて、二次電池内の酸素ガス発生量を算出するステップと、二次電池の温度に基づいて、二次電池内の酸素ガス減少量を算出するステップと、前記酸素ガス発生量と前記酸素ガス減少量に基づいて、二次電池の酸素圧を算出するステップと、二次電池の温度に基づいて、二次電池の平衡水素圧を算出するステップと、を備え、前記二次電池の内圧は、前記算出した前記酸素圧と前記平衡水素圧との和により、求められるThe charge control method for a secondary battery according to the present invention is based on the voltage between the electrodes of the secondary battery, and the first charge power is set so that the voltage does not rise to the gas generation potential at which gas is generated in the secondary battery. A step of calculating a limit value, a step of calculating a second charge power limit value set so as not to increase to an internal pressure at which the safety valve of the secondary battery operates based on the internal pressure of the secondary battery, and the secondary battery The step of selecting the first charging power limit value or the second charging power limit value according to the internal pressure of the battery and limiting the charging power of the secondary battery, and the current value and charging efficiency of the secondary battery A step of calculating an oxygen gas generation amount in the secondary battery, a step of calculating an oxygen gas decrease amount in the secondary battery based on the temperature of the secondary battery, the oxygen gas generation amount and the oxygen Based on the amount of gas reduction, the oxygen pressure of the secondary battery And calculating the equilibrium hydrogen pressure of the secondary battery based on the temperature of the secondary battery, and the internal pressure of the secondary battery includes the calculated oxygen pressure and the equilibrium hydrogen pressure. It is calculated by the sum of

また、前記二次電池の充電制御方法において、前記二次電池の充電電力を制限するステップでは、前記二次電池の内圧が所定値を超えた場合に、前記第1の充電電力制限値及び前記第2の充電電力制限値のうち低い方の充電電力制限値を選択し、二次電池の充電電力を制限することが好ましい。   In the secondary battery charging control method, in the step of limiting the charging power of the secondary battery, when the internal pressure of the secondary battery exceeds a predetermined value, the first charging power limit value and the It is preferable to select the lower charging power limit value of the second charging power limit values to limit the charging power of the secondary battery.

また、前記二次電池の充電制御方法において、前記所定値は、二次電池の温度に基づいて設定されることが好ましい。   In the secondary battery charge control method, the predetermined value is preferably set based on a temperature of the secondary battery.

また、前記二次電池の充電制御方法において、前記ガス発生電位は、二次電池の温度に基づいて規定されることが好ましい。   In the secondary battery charge control method, the gas generation potential is preferably defined based on a temperature of the secondary battery.

また、本発明の二次電池の充電制御装置は、二次電池の極板間電圧に基づいて、二次電池内でガスが発生するガス発生電位まで電圧上昇しないように設定される第1の充電電力制限値を算出する手段と、二次電池の内圧に基づいて、二次電池の安全弁が作動する内圧まで上昇しないように設定される第2の充電電力制限値を算出する手段と、前記二次電池の内圧に応じて、前記第1の充電電力制限値又は前記第2の充電電力制限値を選択し、二次電池の充電電力を制限する手段と、二次電池の電流値と充電効率に基づいて、二次電池内の酸素ガス発生量を算出する手段と、二次電池の温度に基づいて、二次電池内の酸素ガス減少量を算出する手段と、前記酸素ガス発生量と前記酸素ガス減少量に基づいて、二次電池の酸素圧を算出する手段と、二次電池の温度に基づいて、二次電池の平衡水素圧を算出する手段と、を備え、前記二次電池の内圧は、前記算出した前記酸素圧と前記平衡水素圧との和により、求められるFurther, the charge control device for a secondary battery according to the present invention is configured so that the voltage does not rise to a gas generation potential at which gas is generated in the secondary battery based on the voltage between the electrode plates of the secondary battery. Means for calculating a charge power limit value; means for calculating a second charge power limit value set so as not to increase to an internal pressure at which the safety valve of the secondary battery operates based on the internal pressure of the secondary battery; Means for selecting the first charging power limit value or the second charging power limit value in accordance with the internal pressure of the secondary battery and limiting the charging power of the secondary battery; and the current value and charging of the secondary battery Means for calculating an oxygen gas generation amount in the secondary battery based on the efficiency; means for calculating an oxygen gas decrease amount in the secondary battery based on the temperature of the secondary battery; and Means for calculating an oxygen pressure of the secondary battery based on the oxygen gas reduction amount; Means for calculating the equilibrium hydrogen pressure of the secondary battery based on the temperature of the secondary battery, and the internal pressure of the secondary battery is determined by the sum of the calculated oxygen pressure and the equilibrium hydrogen pressure. It is done .

また、前記二次電池の充電制御装置において、前記二次電池の充電電力を制限する手段は、前記二次電池の内圧が所定値を超えた場合に、前記第1の充電電力制限値及び前記第2の充電電力制限値のうち低い方の充電電力制限値を選択し、二次電池の充電電力を制限することが好ましい。   Further, in the secondary battery charge control device, the means for limiting the charging power of the secondary battery is configured such that when the internal pressure of the secondary battery exceeds a predetermined value, the first charging power limit value and the It is preferable to select the lower charging power limit value of the second charging power limit values to limit the charging power of the secondary battery.

また、前記二次電池の充電制御装置において、前記所定値は、二次電池の温度に基づいて設定されることが好ましい。   In the secondary battery charge control apparatus, the predetermined value is preferably set based on a temperature of the secondary battery.

また、前記二次電池の充電制御装置において、前記ガス発生電位は、二次電池の温度に基づいて規定されることが好ましい。   In the charge control device for the secondary battery, it is preferable that the gas generation potential is defined based on a temperature of the secondary battery.

本発明によれば、二次電池の内圧上昇を緩和・抑制することができる二次電池の充電制御方法及び充電制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the charge control method and charge control apparatus of a secondary battery which can relieve | moderate and suppress the internal pressure rise of a secondary battery can be provided.

本実施形態に係る二次電池の充電制御装置が搭載された車両のパワーユニットの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the power unit of the vehicle by which the charging control apparatus of the secondary battery which concerns on this embodiment is mounted. 二次電池の温度とガス発生電位との関係を表すマップである。It is a map showing the relationship between the temperature of a secondary battery, and gas generation potential. 二次電池の極板間電圧と第1の充電電力制限値との関係を表すマップである。It is a map showing the relationship between the electrode plate voltage of a secondary battery, and the 1st charging power limit value. 二次電池の内圧と第2の充電電力制限値との関係を表すマップである。It is a map showing the relationship between the internal pressure of a secondary battery, and the 2nd charging power limit value. 二次電池の極板間電圧と充電効率との関係を表すマップである。It is a map showing the relationship between the voltage between electrode plates of a secondary battery and charging efficiency. 二次電池内の酸素圧と単位時間当たりの酸素ガス減少量との関係を表すマップである。It is a map showing the relationship between the oxygen pressure in a secondary battery, and the amount of oxygen gas reduction per unit time. 二次電池の温度と二次電池内の平衡水素圧との関係を表すマップである。It is a map showing the relationship between the temperature of a secondary battery, and the equilibrium hydrogen pressure in a secondary battery. 本実施形態に係る二次電池の充電制御装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the charge control apparatus of the secondary battery which concerns on this embodiment. 本実施形態に係る二次電池の内圧の推定方法の一例を示すフローチャートである。It is a flowchart which shows an example of the estimation method of the internal pressure of the secondary battery which concerns on this embodiment.

本発明の実施の形態について以下説明する。   Embodiments of the present invention will be described below.

図1は、本実施形態に係る二次電池の充電制御装置が搭載された車両のパワーユニットの構成の一例を示す模式図である。本実施形態に係る充電制御装置は、二次電池14を搭載した電気自動車(ハイブリッド自動車等も含む)等の車両等に適用可能である。図1に示す車両のパワーユニット1は、モータジェネレータ10、モータジェネレータ10に接続されたインバータ12、インバータ12に接続された二次電池14、二次電池14の充電電力を制御するための充電制御装置として機能するECU18を備える。ECU18は、モータジェネレータ10、インバータ12及び二次電池14と電気的に接続されている。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a power unit of a vehicle in which the secondary battery charge control device according to the present embodiment is mounted. The charge control device according to the present embodiment can be applied to a vehicle such as an electric vehicle (including a hybrid vehicle) on which the secondary battery 14 is mounted. A vehicle power unit 1 shown in FIG. 1 includes a motor generator 10, an inverter 12 connected to the motor generator 10, a secondary battery 14 connected to the inverter 12, and a charge control device for controlling the charging power of the secondary battery 14. ECU18 which functions as. The ECU 18 is electrically connected to the motor generator 10, the inverter 12, and the secondary battery 14.

モータジェネレータ10は、二次電池14より供給される電力等により駆動力を発生させる。また、車両が回生制御中である場合は、発電機として作動し、車両の運動エネルギーを電気エネルギーに変換して二次電池14を充電する。   The motor generator 10 generates a driving force by the electric power supplied from the secondary battery 14 or the like. Further, when the vehicle is under regenerative control, it operates as a generator, converts the kinetic energy of the vehicle into electrical energy, and charges the secondary battery 14.

インバータ12は、二次電池14等から供給される直流電流を交流電流に変換し、モータジェネレータ10を駆動させる。また、モータジェネレータ10が発電した交流電流を直流電流に変換し、二次電池14を充電する。   Inverter 12 converts a direct current supplied from secondary battery 14 or the like into an alternating current, and drives motor generator 10. Further, the alternating current generated by the motor generator 10 is converted into a direct current, and the secondary battery 14 is charged.

通常、二次電池14は、ある程度の電圧を確保するために、複数のセルを直列に接続した電池モジュールとして構成されている。本実施形態の充電制御装置によって充電制御される二次電池14は、どのような用途の二次電池14であっても適用可能であるが、ニッケル水素二次電池が好適である。ニッケル水素二次電池は、高い電圧及び温度等で充電が行われると、充電反応とは異なる副反応により、ガスが発生し、充電効率が低下してしまう。しかし、本実施形態の充電制御方法では、後述するように二次電池14の極板間電圧がガス発生電位まで電圧上昇しないように充電電力を制限するため、二次電池14の内圧上昇を緩和・抑制し、効率的に二次電池14を充電させることができる。これに対して、推定した二次電池14の内圧に基づいて二次電池14の充電電力を制限する等の従来の制御方法では、上昇した二次電池14の内圧を低下させることは可能であるが、上昇した二次電池14の内圧が回復するまで時間が掛かるため、長時間に亘って二次電池14の充電電力を制限する制御が行われ、回生制動による電気エネルギーの回収率が低下する場合等、効率的に二次電池14を充電させることができない。   Usually, the secondary battery 14 is configured as a battery module in which a plurality of cells are connected in series in order to ensure a certain voltage. The secondary battery 14 that is charge-controlled by the charge control device of the present embodiment can be applied to any type of secondary battery 14, but a nickel-hydrogen secondary battery is suitable. When a nickel hydride secondary battery is charged at a high voltage, temperature, etc., gas is generated due to a side reaction different from the charging reaction, and the charging efficiency is lowered. However, in the charge control method of the present embodiment, as will be described later, the charging power is limited so that the voltage between the electrode plates of the secondary battery 14 does not increase to the gas generation potential, so the increase in the internal pressure of the secondary battery 14 is mitigated. -It can suppress and can charge the secondary battery 14 efficiently. On the other hand, in the conventional control method such as limiting the charging power of the secondary battery 14 based on the estimated internal pressure of the secondary battery 14, it is possible to reduce the increased internal pressure of the secondary battery 14. However, since it takes time until the internal pressure of the raised secondary battery 14 recovers, control for limiting the charging power of the secondary battery 14 is performed for a long time, and the recovery rate of electric energy by regenerative braking is reduced. In some cases, the secondary battery 14 cannot be charged efficiently.

二次電池14には、二次電池14の端子電圧を検出する電圧センサ20、二次電池14に流れる電流を検出する電流センサ22、二次電池14の複数箇所に二次電池14の温度を検出する温度センサ24が設置されている。また、各センサはECU18に電気的に接続されており、各センサにより検出されたデータがECU18に送信される。   The secondary battery 14 includes a voltage sensor 20 that detects a terminal voltage of the secondary battery 14, a current sensor 22 that detects a current flowing through the secondary battery 14, and the temperature of the secondary battery 14 at a plurality of locations of the secondary battery 14. A temperature sensor 24 to detect is installed. Each sensor is electrically connected to the ECU 18, and data detected by each sensor is transmitted to the ECU 18.

ECU18は、二次電池14の極板間電圧を算出する。ここで、二次電池14の極板間電圧とは、二次電池14の正・負極間電圧であり、電圧センサ20により検出される二次電池14の端子電圧から、二次電池14に流れる電流及び二次電池14の内部抵抗のIR分を除外することにより求められる(下式(1)参照)。
=VB+(IB×R) (1)
:二次電池の極板間電圧
VB:二次電池の端子電圧
IB:二次電池の電流値(充電側を負とする。)
R:二次電池の内部抵抗
The ECU 18 calculates the voltage between the electrode plates of the secondary battery 14. Here, the voltage between the plates of the secondary battery 14 is the voltage between the positive and negative electrodes of the secondary battery 14, and flows from the terminal voltage of the secondary battery 14 detected by the voltage sensor 20 to the secondary battery 14. It is obtained by excluding the IR component of the current and the internal resistance of the secondary battery 14 (see the following formula (1)).
V 0 = VB + (IB × R) (1)
V 0 : Voltage between the plates of the secondary battery VB: Terminal voltage of the secondary battery IB: Current value of the secondary battery (the charging side is negative)
R: Internal resistance of the secondary battery

二次電池14の内部抵抗の算出は特に制限されるものではないが、例えば、複数の電流値及び電圧値を電圧・電流座標上にプロットし、プロットされた各点に沿って一次近似式を求め、この近似式で表される直線の傾きを内部抵抗として算出する。また、内部抵抗は二次電池14の温度に依存して変化することから、内部抵抗と二次電池14の温度との関係を表すマップをECU18に記憶させておき、温度センサ24により検出された温度データを該マップに当てはめて、内部抵抗を算出してもよい。   The calculation of the internal resistance of the secondary battery 14 is not particularly limited. For example, a plurality of current values and voltage values are plotted on the voltage / current coordinates, and a primary approximate expression is plotted along each plotted point. Then, the slope of the straight line represented by this approximate expression is calculated as the internal resistance. Further, since the internal resistance changes depending on the temperature of the secondary battery 14, a map representing the relationship between the internal resistance and the temperature of the secondary battery 14 is stored in the ECU 18 and detected by the temperature sensor 24. The internal resistance may be calculated by applying temperature data to the map.

そして、極板間電圧は、ECU18により、電流センサ22及び電圧センサ20により検出された端子電圧及び電流値、及び上記算出した内部抵抗を上記式(1)に当てはめることにより求められる。極板間電圧を算出する際には、例えば、数秒程度のなまし(フィルター)を各センサ又はECU18に設定して、ノイズ等の影響を除去することが好ましい。また、電圧センサ20を複数設置する場合には、二次電池14の充電制御を効率的に行うことができる点で、複数の電圧センサ20から検出された電圧のうち最も高い電圧を極板間電圧の算出に用いることが好ましい。なお、上記方法が、簡易で精度よく極板間電圧を求めることができるが、必ずしもこれに制限されるものではなく、例えば、正極及び負極に電圧センサ20を設置し、直接二次電池14の極板間電圧を検出する等でもよい。   The voltage between the electrode plates is obtained by applying the terminal voltage and current value detected by the current sensor 22 and the voltage sensor 20 and the calculated internal resistance to the equation (1) by the ECU 18. When calculating the voltage between the electrode plates, for example, it is preferable to set an annealing (filter) of about several seconds in each sensor or ECU 18 to remove the influence of noise or the like. In addition, when a plurality of voltage sensors 20 are installed, the highest voltage among the voltages detected from the plurality of voltage sensors 20 is set between the electrode plates in that the charging control of the secondary battery 14 can be performed efficiently. It is preferable to use for calculation of voltage. In addition, although the said method can obtain | require the voltage between electrode plates simply and accurately, it is not necessarily restricted to this, For example, the voltage sensor 20 is installed in a positive electrode and a negative electrode, and the secondary battery 14 of direct For example, the voltage between the electrode plates may be detected.

ECU18は、二次電池14内でガスが発生するガス発生電位を算出する。ガス発生電位は二次電池14の温度に依存するため、図2に示すように、二次電池14の温度とガス発生電位との関係を表すマップを用意することが望ましい。例えば、ECU18により、二次電池14の温度とガス発生電位との関係を表すマップに温度センサ24により検出された二次電池14の温度を当てはめることにより、ガス発生電位を算出する。ガス発生電位は二次電池14の温度に依存するため、上記方法で算出することが望ましいが、必ずしも温度に基づいてガス発生電位を設定することに制限されるものではなく、ガス発生電位を予め定めた所定値(固定値)、例えば、二次電池14の使用温度から予想される最も低いガス発生電位を予め定めた所定値(固定値)として用いてもよい。   The ECU 18 calculates a gas generation potential at which gas is generated in the secondary battery 14. Since the gas generation potential depends on the temperature of the secondary battery 14, it is desirable to prepare a map representing the relationship between the temperature of the secondary battery 14 and the gas generation potential, as shown in FIG. For example, the ECU 18 calculates the gas generation potential by applying the temperature of the secondary battery 14 detected by the temperature sensor 24 to a map representing the relationship between the temperature of the secondary battery 14 and the gas generation potential. Since the gas generation potential depends on the temperature of the secondary battery 14, it is desirable to calculate by the above method. However, the gas generation potential is not necessarily limited to setting the gas generation potential based on the temperature, and the gas generation potential is set in advance. A predetermined predetermined value (fixed value), for example, the lowest gas generation potential expected from the operating temperature of the secondary battery 14 may be used as the predetermined value (fixed value).

ECU18は、二次電池14の極板間電圧に基づいて、二次電池14内でガスが発生するガス発生電位まで二次電池14の電圧が上昇しないように設定される第1の充電電力制限値を算出する。具体的には、図3に示すマップのように、二次電池14の極板間電圧が、上記算出又は規定したガス発生電位から所定値(Y)を引いた値に達してから充電電力を減少させ(充電電力を制限し)、また、二次電池14の極板間電圧が、ガス発生電位から所定値(X)を引いた値に達した場合に、充電電力を零にするマップを用意し、該マップに二次電池14の極板間電圧を当てはめて、第1の充電電力制限値を算出する。また、本実施形態では、二次電池14の極板間電圧が充電によってガス発生電位まで上昇しない充電電力制限値が規定されるものであれば、図3に示すマップに制限されるものではない。また、例えば、低温域(例えば0℃以下)では所定値Xが大きくなるように、高温域(例えば40℃以上)では所定値Xが小さくなるように、二次電池14の温度に応じて、マップを変更してもよい。 The ECU 18 is a first charging power limit that is set so that the voltage of the secondary battery 14 does not rise to the gas generation potential at which gas is generated in the secondary battery 14 based on the voltage between the plates of the secondary battery 14. Calculate the value. Specifically, as shown in the map of FIG. 3, the charging power is reached after the voltage between the electrode plates of the secondary battery 14 reaches a value obtained by subtracting a predetermined value (Y 1 ) from the gas generation potential calculated or specified above. (The charging power is limited), and when the voltage between the electrodes of the secondary battery 14 reaches a value obtained by subtracting a predetermined value (X 1 ) from the gas generation potential, the charging power is made zero. A map is prepared, and the voltage between the electrode plates of the secondary battery 14 is applied to the map to calculate the first charging power limit value. Further, in the present embodiment, as long as a charging power limit value that does not increase the voltage between the electrode plates of the secondary battery 14 to the gas generation potential by charging is specified, the map is not limited to the map shown in FIG. . Further, for example, as low temperature range (e.g., 0 ℃ below), the predetermined value X 1 becomes large, so that the high temperature range (e.g. 40 ° C. or higher), the predetermined value X 1 becomes smaller, depending on the temperature of the secondary battery 14 The map may be changed.

ECU18は、二次電池14の内圧に基づいて、二次電池14の内圧を緩和するために取り付けられる二次電池14の安全弁が作動する内圧まで、二次電池14の内圧が上昇しないように設定される第2の充電電力制限値を算出する。具体的には、図4に示すマップのように、検出又は算出した二次電池14の内圧が、二次電池14の安全弁が作動する内圧から所定値(Y)を引いた値(P)に達してから充電電力を減少させ(充電電力を制限し)、また、二次電池14の安全弁が作動する二次電池14の内圧から所定値(X)を引いた値(P)に達した場合に、充電電力を零にするマップを用意し、該マップに二次電池14の内圧を当てはめて、第2の充電電力制限値を算出する。また、本実施形態では、二次電池14の内圧が充電によって安全弁が作動する内圧まで上昇しない充電電力制限値が規定されるものであれば、図4に示すマップに制限されるものではない。また、例えば、低温域(例えば0℃以下)では所定値Xが大きくなるように、高温域(例えば40℃以上)では所定値Xが小さくなるように、二次電池14の温度に応じて、マップを変更してもよい。 The ECU 18 is set based on the internal pressure of the secondary battery 14 so that the internal pressure of the secondary battery 14 does not increase up to the internal pressure at which the safety valve of the secondary battery 14 attached to relieve the internal pressure of the secondary battery 14 operates. The second charging power limit value is calculated. Specifically, as shown in the map of FIG. 4, the internal pressure of the detected or calculated secondary battery 14, a value obtained by subtracting a predetermined value from the internal pressure relief valve of the secondary battery 14 is operated (Y 2) (P B ), The charging power is decreased (charging power is limited), and a value (P 0 ) obtained by subtracting a predetermined value (X 2 ) from the internal pressure of the secondary battery 14 at which the safety valve of the secondary battery 14 operates. When reaching the above, a map for reducing the charging power to zero is prepared, and the internal pressure of the secondary battery 14 is applied to the map to calculate the second charging power limit value. In the present embodiment, the map is not limited to the map shown in FIG. 4 as long as the charging power limit value that does not increase the internal pressure of the secondary battery 14 to the internal pressure at which the safety valve operates by charging is specified. Further, for example, as low temperature range (e.g., 0 ℃ below), the predetermined value X 2 increases, so that the high temperature range (e.g. 40 ° C. or higher), the predetermined value X 2 is reduced, depending on the temperature of the secondary battery 14 The map may be changed.

次に、ECU18は、二次電池14の内圧に応じて、上記算出した第1の充電電力制限値及び第2の充電電力制限値を選択し、二次電池14の充電電力を制限する。例えば、図4に示すマップにおいて、二次電池14の内圧が所定値P未満の場合には、充電電力の制限を掛けず、二次電池14の内圧が所定値P以上となった場合に、第1の充電電力制限値及び第2の充電電力制限値のうち低い方の充電電力制限値を選択し、その充電電力制限値に基づいて二次電池14の充電電力を制限する。 Next, the ECU 18 selects the calculated first charging power limit value and the second charging power limit value according to the internal pressure of the secondary battery 14 and limits the charging power of the secondary battery 14. For example, in the map shown in FIG. 4, when the internal pressure of the rechargeable battery 14 in the case of less than the predetermined value P A is the without taking limit charging power, the internal pressure of the rechargeable battery 14 is equal to or greater than a predetermined value P A Then, the lower one of the first charging power limit value and the second charging power limit value is selected, and the charging power of the secondary battery 14 is limited based on the charging power limit value.

また、二次電池14の内圧が所定値P以上となった場合には、第1の充電電力制限値を選択し、二次電池14の充電電力を制限してもよい。この場合、所定値Pの時には、図3に示すマップにおいて充電電力が制限される領域(ガス発生電位から所定値(Y)を引いた値以降の領域)に達している必要がある。 Also, when the internal pressure of the rechargeable battery 14 is equal to or greater than a predetermined value P A, select the first limit charging power may limit the charging power of the secondary battery 14. In this case, when the predetermined value P A, it is necessary to have reached the area where the charging power is limited in the map shown in FIG. 3 (a predetermined value from the gas evolution potential (Y 1) value after the region minus).

また、例えば、図4に示すマップでは、二次電池14の内圧が所定値P未満の場合、充電電力を制限していないが、二次電池14の内圧が所定値P未満から充電電力を制限したマップを用いて、二次電池14の内圧が所定値P未満の場合には、第2の充電電力制限値を選択し、二次電池14の内圧が所定値P以上となった場合に、第1の充電電力制限値及び第2の充電電力制限値のうち低い方の充電電力制限値を選択し、充電電力を制限してもよい。この所定値Pは適宜設定されるものであるが、効率的に二次電池14の充電制御が行えるように、二次電池14の温度により変更することが好ましい。 Further, for example, in the map shown in FIG. 4, when the internal pressure of the rechargeable battery 14 is less than the predetermined value P A, but not to limit the charging power, charging power internal pressure of the rechargeable battery 14 is from less than a predetermined value P A using the map with a limited, if the internal pressure of the rechargeable battery 14 is less than the predetermined value P a, select the second limit charging power, become the internal pressure of the rechargeable battery 14 is equal to or larger than a predetermined value P a In this case, the lower charging power limit value of the first charging power limit value and the second charging power limit value may be selected to limit the charging power. This predetermined value P A is set as appropriate, effectively to allow the charge control of the secondary battery 14, it is preferable to change the temperature of the secondary battery 14.

次に、二次電池14の内圧の推定方法について説明する。なお、本実施形態では、二次電池14の内圧の推定精度が高い点で以下に説明する内圧の推定方法を採用することが好ましいが、必ずしもこれに限定されるものではなく、二次電池14の内圧を直接検出することができるセンサにより、二次電池14の内圧を検出してもよい。   Next, a method for estimating the internal pressure of the secondary battery 14 will be described. In the present embodiment, it is preferable to adopt the internal pressure estimation method described below in terms of high estimation accuracy of the internal pressure of the secondary battery 14, but the present invention is not necessarily limited thereto, and the secondary battery 14 is not necessarily limited thereto. The internal pressure of the secondary battery 14 may be detected by a sensor that can directly detect the internal pressure of the secondary battery 14.

まず、二次電池14の内圧の推定に当たって、ECU18では、二次電池14の温度又は電流値と、極板間電圧とに基づいて、二次電池14の充電効率を算出する。二次電池14の充電効率の算出には、例えば、図5に示すような二次電池14の極板間電圧と充電効率との関係を表すマップが用いられる。ここで、充電効率とは充電可能電荷量に対する実際に蓄えられた電気量の比(η)又はガス発生等により蓄えることができなかった電気量の比(β=1−η)である。   First, in estimating the internal pressure of the secondary battery 14, the ECU 18 calculates the charging efficiency of the secondary battery 14 based on the temperature or current value of the secondary battery 14 and the voltage between the electrodes. For calculation of the charging efficiency of the secondary battery 14, for example, a map representing the relationship between the voltage between the electrodes of the secondary battery 14 and the charging efficiency as shown in FIG. 5 is used. Here, the charging efficiency is the ratio (η) of the amount of electricity actually stored to the chargeable charge amount or the ratio of the amount of electricity that could not be stored due to gas generation (β = 1−η).

二次電池14の極板間電圧と充電効率との関係は、二次電池14の温度又は電流値に依存するため、図5(A)に示すように、例えば、二次電池14の温度が40℃、50℃、60℃の時等のように、いくつかの二次電池14の温度の時の極板間電圧と充電効率との関係を表すマップを用意するか、又は図5(B)に示すように、例えば、二次電池14の電流値が5A、25A、50Aの時等のように、いくつかの二次電池14の電流値の時の極板間電圧と充電効率との関係を表すマップを用意することが望ましい。   Since the relationship between the voltage between the electrode plates of the secondary battery 14 and the charging efficiency depends on the temperature or current value of the secondary battery 14, for example, as shown in FIG. Prepare a map showing the relationship between the voltage between the electrode plates and the charging efficiency at the temperature of several secondary batteries 14 as in the case of 40 ° C., 50 ° C., 60 ° C., or the like. ), For example, when the current value of the secondary battery 14 is 5A, 25A, 50A, etc. It is desirable to prepare a map that represents the relationship.

例えば、温度センサ24により検出された温度が40℃の場合、ECU18により40℃の時の極板間電圧と充電効率との関係を表すマップ(図5(A)参照)に、上記算出した極板間電圧を当てはめることにより、充電効率が算出される。また、例えば、電流センサ22により検出された電流値が5Aの場合、ECU18により5Aの時の極板間電圧と充電効率との関係を表すマップ(図5(B)参照)に、上記算出した極板間電圧を当てはめることにより、充電効率が算出される。また、温度センサ24により検出された温度や電流センサ22により検出された電流値が該マップの温度又は電流値以外の場合には、例えば、直線補間法等によりマップを補正する等して、充電効率を求めることができる。また、より正確に充電効率を算出する場合には、温度又は電流値の間隔を細かく設定した(例えば、1℃毎、1A毎)極板間電圧と充電効率との関係を表すマップを用意してもよい。   For example, when the temperature detected by the temperature sensor 24 is 40 ° C., the ECU 18 calculates the above calculated poles on a map (see FIG. 5A) that represents the relationship between the electrode plate voltage and the charging efficiency at 40 ° C. By applying the inter-plate voltage, the charging efficiency is calculated. Further, for example, when the current value detected by the current sensor 22 is 5A, the ECU 18 calculates the above in a map (see FIG. 5B) that represents the relationship between the electrode plate voltage and the charging efficiency at 5A. By applying the voltage between the electrode plates, the charging efficiency is calculated. In addition, when the temperature detected by the temperature sensor 24 or the current value detected by the current sensor 22 is other than the temperature or current value of the map, for example, charging is performed by correcting the map by a linear interpolation method or the like. Efficiency can be sought. In order to calculate the charging efficiency more accurately, prepare a map that shows the relationship between the voltage between the electrodes and the charging efficiency with finely set intervals of temperature or current (for example, every 1 ° C., every 1A). May be.

また、温度センサ24を複数設置する場合には、二次電池14の充電制御を効率的に行うことができる点で、各温度センサ24から検出された温度の時の充電効率を算出し、そのうち最大の充電効率を採用することが好ましい。なお、充電効率の算出方法は必ずしも上記方法に制限されるものではなく、従来知られている全ての算出方法又は検出方法を採用することができる。   Further, when a plurality of temperature sensors 24 are installed, the charging efficiency at the temperature detected from each temperature sensor 24 is calculated in that the charging control of the secondary battery 14 can be efficiently performed, It is preferable to employ the maximum charging efficiency. Note that the calculation method of the charging efficiency is not necessarily limited to the above method, and any conventionally known calculation method or detection method can be employed.

次に、ECU18は、二次電池14の充電効率と電流値とに基づいて、単位時間当たりの酸素ガス発生量を算出する。具体的には下式(2)又は(3)により算出する。
α=(−IB)×β×Kα (2)
α=(−IB)×(1−η)×Kα (3)
α:単位時間ΔT当たりの酸素ガス発生量
IB:二次電池の電流(充電側を負とする。)
β,η:充電効率
α:所定の定数(αの単位によって適宜選択されるものであり、例えば、αをモル(mol)数で表す場合には、単位時間ΔTを1secとすればファラデー定数の逆数÷4となる。)
Next, the ECU 18 calculates the amount of oxygen gas generated per unit time based on the charging efficiency and current value of the secondary battery 14. Specifically, it is calculated by the following formula (2) or (3).
α = (− IB) × β × K α (2)
α = (− IB) × (1−η) × K α (3)
α: Oxygen gas generation amount per unit time ΔT IB: Current of secondary battery (charge side is negative)
β, η: charging efficiency K α : a predetermined constant (which is appropriately selected depending on the unit of α. For example, when α is expressed in moles, if the unit time ΔT is 1 sec, the Faraday constant (Reciprocal of ÷ 4)

二次電池14では、充電の際の副反応により酸素ガスが発生するが、その一方でガス発生した電極と反対の電極で酸素ガスが吸収されるため、ECU18では、二次電池14の温度及び二次電池14内の酸素圧に基づいて、酸素ガス減少量を算出する。   In the secondary battery 14, oxygen gas is generated by a side reaction during charging. On the other hand, oxygen gas is absorbed by an electrode opposite to the gas generating electrode. Based on the oxygen pressure in the secondary battery 14, the oxygen gas decrease amount is calculated.

ECU18により算出される二次電池14の酸素ガス減少量の算出には、例えば、二次電池14内の酸素圧と単位時間当たりの酸素ガス減少量との関係を表すマップが用いられる。但し、二次電池14内の酸素圧と単位時間当たりの酸素ガス減少量との関係は、二次電池14の温度に依存するため、図6に示すように、例えば、二次電池14の温度が40℃、50℃の時等のように、いくつかの二次電池14の温度における二次電池14内の酸素圧と単位時間当たりの酸素ガス減少量との関係を表すマップを用意することが好ましい。   For example, a map representing the relationship between the oxygen pressure in the secondary battery 14 and the oxygen gas reduction amount per unit time is used to calculate the oxygen gas reduction amount of the secondary battery 14 calculated by the ECU 18. However, since the relationship between the oxygen pressure in the secondary battery 14 and the amount of oxygen gas decrease per unit time depends on the temperature of the secondary battery 14, for example, as shown in FIG. Prepare a map showing the relationship between the oxygen pressure in the secondary battery 14 and the amount of oxygen gas reduction per unit time at several secondary battery 14 temperatures, such as when the temperature is 40 ° C. or 50 ° C. Is preferred.

ECU18は、酸素ガス発生量と酸素ガス減少量との差、すなわち二次電池14内の酸素ガス量に基づく酸素圧を単位時間毎に推定する。具体的には下式(4)により算出する。
=P+K×(α−γ)×ΔT (4)
:酸素圧
:前回算出した酸素圧
α:酸素ガス発生量
γ:酸素ガス減少量
:所定の定数(二次電池14内の酸素ガス量を酸素圧に換算するための定数である。)
The ECU 18 estimates the oxygen pressure based on the difference between the oxygen gas generation amount and the oxygen gas decrease amount, that is, the oxygen gas amount in the secondary battery 14 every unit time. Specifically, it is calculated by the following equation (4).
P 0 = P x + K p × (α−γ) × ΔT (4)
P 0 : Oxygen pressure P x : Previously calculated oxygen pressure α: Oxygen gas generation amount γ: Oxygen gas decrease amount K p : Predetermined constant (a constant for converting the oxygen gas amount in the secondary battery 14 into the oxygen pressure) .)

ここで、初回の酸素圧Pは、前回算出した酸素圧推定値(P)を所定値(例えば、大気圧等)として設定し、また、二次電池14内の酸素圧と単位時間当たりの酸素ガス減少量との関係を表すマップ(図6参照)に、大気圧等に設定した所定値を当てはめて算出した値を酸素ガス減少量(γ)として、上式(4)により算出される。次に、ΔT後の酸素圧Pは、前回算出した酸素圧をPとし、また、二次電池14内の酸素圧と単位時間当たりの酸素ガス減少量との関係を表すマップ(図6参照)に、前回算出した酸素圧(P)を当てはめて算出した値を酸素ガス減少量(γ)として、上式(4)により算出される。 Here, as the initial oxygen pressure P 0 , the previously calculated oxygen pressure estimated value (P x ) is set as a predetermined value (for example, atmospheric pressure), and the oxygen pressure in the secondary battery 14 and per unit time are set. The value calculated by applying a predetermined value set to atmospheric pressure or the like to a map (see FIG. 6) showing the relationship between the oxygen gas decrease amount and the oxygen gas decrease amount is calculated by the above equation (4) as the oxygen gas decrease amount (γ). The Next, for the oxygen pressure P 0 after ΔT, the previously calculated oxygen pressure is P x, and the map represents the relationship between the oxygen pressure in the secondary battery 14 and the amount of oxygen gas decrease per unit time (FIG. 6). The value calculated by applying the previously calculated oxygen pressure (P x ) to the oxygen gas decrease amount (γ) is calculated by the above equation (4).

上記例では、二次電池14の温度に応じた二次電池14内の酸素圧と単位時間当たりの酸素ガス減少量との関係を表すマップ(図6参照)から、酸素ガス減少量を算出しているが、必ずしもこれに制限されるものではない。酸素ガス減少量は温度に依存するため、二次電池14の温度と単位時間当たりの酸素ガス減少量との関係を表すマップに二次電池14の温度を当てはめることにより、酸素ガス減少量を算出するものであってもよい。すなわち、本実施形態では、少なくとも二次電池14の温度に基づいて酸素ガス減少量が算出されるものであれば特に制限されるものではない。   In the above example, the oxygen gas decrease amount is calculated from the map (see FIG. 6) showing the relationship between the oxygen pressure in the secondary battery 14 corresponding to the temperature of the secondary battery 14 and the oxygen gas decrease amount per unit time. However, it is not necessarily limited to this. Since the oxygen gas reduction amount depends on the temperature, the oxygen gas reduction amount is calculated by applying the temperature of the secondary battery 14 to a map representing the relationship between the temperature of the secondary battery 14 and the oxygen gas reduction amount per unit time. You may do. That is, in the present embodiment, there is no particular limitation as long as the oxygen gas reduction amount is calculated based on at least the temperature of the secondary battery 14.

また、温度センサ24を複数設置する場合には、二次電池14の充電制御を効率的に行うことができる点で、各温度センサ24から検出された温度の時の酸素ガス減少量を算出し、そのうち最小の酸素ガス減少量を採用することが好ましい。   Further, when a plurality of temperature sensors 24 are installed, the amount of oxygen gas decrease at the temperature detected from each temperature sensor 24 is calculated in that the charging control of the secondary battery 14 can be performed efficiently. Of these, it is preferable to employ the minimum oxygen gas reduction amount.

ECU18は、二次電池14内の平衡水素圧を算出し、算出した平衡水素圧と酸素圧との和により二次電池14内の内圧を算出する。ここで、二次電池14内の平衡水素圧は二次電池14の温度に依存するため、図7に示す二次電池14の温度と二次電池14内の平衡水素圧との関係を表すマップに二次電池14の温度を当てはめることにより、二次電池14の平衡水素圧を算出する。   The ECU 18 calculates the equilibrium hydrogen pressure in the secondary battery 14 and calculates the internal pressure in the secondary battery 14 by the sum of the calculated equilibrium hydrogen pressure and oxygen pressure. Here, since the equilibrium hydrogen pressure in the secondary battery 14 depends on the temperature of the secondary battery 14, the map showing the relationship between the temperature of the secondary battery 14 and the equilibrium hydrogen pressure in the secondary battery 14 shown in FIG. 7. The equilibrium hydrogen pressure of the secondary battery 14 is calculated by applying the temperature of the secondary battery 14 to the secondary battery 14.

本実施形態の充電制御方法は、例えば、二次電池14の蓄電量と温度に基づいて充電電力を制限する等の従来の制御方法と併用することが可能である。従来の制御方法と併用する場合には、例えば、本実施形態において制限された充電電力と、従来の制御方法において制限された充電電力とを比較して、最も小さい充電電力を採用する等して、充電電力を制限することが好ましい。また、例えば、ある状況では二次電池14の蓄電量と温度に基づいて充電電力を制限する等の従来の制御方法を採用し、他の状況では本実施形態の充電制御方法を採用する方法も可能である。例えば、ガスが発生してもガス吸収反応が非常に速い状態(例えば二次電池14の温度が高い状態)では従来の制御方法を採用し、ガス吸収反応が非常に遅い状態(例えば二次電池14の温度が低い状態)では、本実施形態の充電制御方法を採用する等して充電電力を制限してもよい。具体的には、二次電池14の温度が所定値以上であれば従来の制御方法を採用し、二次電池14の温度が所定値未満であれば本実施形態の充電制御方法を採用する。   The charge control method of the present embodiment can be used in combination with a conventional control method such as, for example, limiting the charge power based on the storage amount and temperature of the secondary battery 14. When used together with the conventional control method, for example, the charging power limited in the present embodiment is compared with the charging power limited in the conventional control method, and the smallest charging power is adopted. It is preferable to limit the charging power. In addition, for example, a conventional control method such as limiting the charging power based on the storage amount and temperature of the secondary battery 14 in a certain situation is adopted, and a charging control method according to the present embodiment is adopted in another situation. Is possible. For example, in the state where the gas absorption reaction is very fast even when gas is generated (for example, the temperature of the secondary battery 14 is high), the conventional control method is adopted, and the gas absorption reaction is very slow (for example, the secondary battery). In a state where the temperature of 14 is low), the charging power may be limited by adopting the charging control method of the present embodiment. Specifically, the conventional control method is adopted if the temperature of the secondary battery 14 is equal to or higher than a predetermined value, and the charge control method of the present embodiment is adopted if the temperature of the secondary battery 14 is less than the predetermined value.

図8は、本実施形態に係る二次電池14の充電制御装置の動作の一例を示すフローチャートである。図8に示すように、ステップS10では、電圧センサ20及び電流センサ22により、二次電池14の端子電圧及び電流値を検出し、さらに、端子電圧及び電流値に基づいて内部抵抗を検出する。この際、温度センサ24による温度データを内部抵抗と温度との関係を表すマップに当てはめて内部抵抗を算出してもよい。ステップS12では、ECU18は、上式(1)に二次電池14の端子電圧、電流値及び内部抵抗を当てはめて、二次電池14の極板間電圧を算出する。ステップS14では、ECU18は、二次電池14の温度とガス発生電位(V)との関係を表すマップ(図2参照)に、上記検出した二次電池14の温度を当てはめて、ガス発生電位を算出する。ステップS16では、ECU18は、二次電池14の極板間電圧とガス発生電位まで二次電池14の電圧が上昇しないように設定された充電電力制限値との関係を規定したマップ(図3参照)に、算出した二次電池14の極板間電圧を当てはめて第1の充電電力制限値を算出する。ステップS18では、ECU18は、二次電池14の内圧を算出する(詳細は後述する)。ステップS20では、二次電池14の内圧と二次電池14の安全弁が作動する内圧まで上昇しないように設定された充電電力制限値との関係を規定したマップ(図4参照)に、算出した二次電池14の内圧を当てはめて第2の充電電力制限値を算出する。 FIG. 8 is a flowchart showing an example of the operation of the charge control device for the secondary battery 14 according to the present embodiment. As shown in FIG. 8, in step S10, the voltage sensor 20 and the current sensor 22 detect the terminal voltage and current value of the secondary battery 14, and further detect the internal resistance based on the terminal voltage and current value. At this time, the internal resistance may be calculated by applying temperature data from the temperature sensor 24 to a map representing the relationship between the internal resistance and the temperature. In step S12, the ECU 18 applies the terminal voltage, current value, and internal resistance of the secondary battery 14 to the above equation (1) to calculate the voltage between the electrode plates of the secondary battery 14. In step S14, the ECU 18 applies the detected temperature of the secondary battery 14 to a map (see FIG. 2) representing the relationship between the temperature of the secondary battery 14 and the gas generation potential (V G ), thereby generating the gas generation potential. Is calculated. In step S16, the ECU 18 defines a relationship between the voltage between the electrodes of the secondary battery 14 and the charge power limit value set so that the voltage of the secondary battery 14 does not increase to the gas generation potential (see FIG. 3). ) And the calculated inter-electrode voltage of the secondary battery 14 to calculate the first charging power limit value. In step S18, the ECU 18 calculates the internal pressure of the secondary battery 14 (details will be described later). In step S20, the calculated second power is calculated on a map (see FIG. 4) that defines the relationship between the internal pressure of the secondary battery 14 and the charge power limit value set so as not to increase to the internal pressure at which the safety valve of the secondary battery 14 operates. The second charging power limit value is calculated by applying the internal pressure of the secondary battery 14.

そして、ECU18は、推定した二次電池14の内圧が所定値P未満の場合には、ステップS22に進み充電電力の制限を掛けず、二次電池14の内圧が所定値P以上の場合には、ステップS24に進み、第1の充電電力制限値及び第2の充電電力制限値のうち低い方の充電電力制限値を選択し、その充電電力制限値に基づいて二次電池14の充電電力を制限する。なお、上記でも説明したように、例えば、二次電池14の内圧が所定値P以上の場合には、第1の充電電力制限値を選択し、二次電池14の充電電力を制限する等でもよく、二次電池14の内圧に応じて、上記算出した第1の充電電力制限値及び第2の充電電力制限値を選択し、二次電池14の充電電力を制限する。 Then, ECU 18, when the internal pressure of the estimated secondary battery 14 is less than the predetermined value P A is not multiplied by the limit of the charging power flow proceeds to step S22, when the internal pressure of the rechargeable battery 14 is a predetermined value or more P A In step S24, the lower charging power limit value of the first charging power limit value and the second charging power limit value is selected, and the secondary battery 14 is charged based on the charging power limit value. Limit power. Note that, as explained above, for example, in the case the internal pressure of the rechargeable battery 14 is a predetermined value or more P A selects a first charge power limit value, etc. which limits the charging power of the secondary battery 14 Alternatively, the calculated first charging power limit value and the second charging power limit value are selected according to the internal pressure of the secondary battery 14, and the charging power of the secondary battery 14 is limited.

以上のように、二次電池の充電制御を行うことにより、二次電池内の内圧の上昇を緩和・抑制することができるため、二次電池の充電電力の制限は短時間で済み、回生制動による電気エネルギーの回収率を向上させることができる。   As described above, by controlling the charging of the secondary battery, the increase in internal pressure in the secondary battery can be mitigated / suppressed, so the charging power of the secondary battery can be limited in a short time, and regenerative braking The recovery rate of electrical energy can be improved.

図9は、本実施形態に係る二次電池14の内圧の推定方法の一例を示すフローチャートである。図9に示すように、ステップS30では、ECU18は、二次電池14の各温度における極板間電圧と充電効率(η又はβ)との関係を表すマップ(図5(A)参照)や二次電池14の各電流値における極板間電圧と充電効率(η又はβ)との関係を表すマップ(図5(B)参照)に、上記検出した二次電池14の温度又は電流値、及び上記算出した極板間電圧を当てはめて、充電効率を算出する。ステップS32では、ECU18は、上式(2)又は(3)に、二次電池14の充電効率と電流値を当てはめて、単位時間当たりの酸素ガス発生量を算出する。ステップS34では、ECU18は、二次電池14の各温度における二次電池14内の酸素圧と単位時間当たりの酸素ガス減少量との関係を表すマップ(図6参照)に、大気圧等の所定値を当てはめて酸素ガス減少量(β)を算出する。ステップS36では、ECU18は、上式(4)に、酸素ガス発生量、酸素ガス減少量及び大気圧等の所定値を当てはめて酸素圧を算出する。なお、これを基に、ECU18は、ステップS30〜S36を繰り返して所定時間(ΔT)毎の酸素圧を推定する。ステップS38では、ECU18は、二次電池14の温度と二次電池14内の平衡水素圧との関係を表すマップ(図7参照)に、検出した二次電池14の温度を当てはめて二次電池14内の平衡水素圧を算出する。ステップS40では、ECU18は、算出した平衡水素圧と酸素圧との和により二次電池14内の内圧を算出する。以上により、二次電池内の内圧を精度よく推定することが可能となる。   FIG. 9 is a flowchart illustrating an example of a method for estimating the internal pressure of the secondary battery 14 according to the present embodiment. As shown in FIG. 9, in step S <b> 30, the ECU 18 displays a map (see FIG. 5 (A)) or a two-dimensional relationship that represents the relationship between the electrode plate voltage and the charging efficiency (η or β) at each temperature of the secondary battery 14. In the map (see FIG. 5B) showing the relationship between the voltage between the electrode plates and the charging efficiency (η or β) at each current value of the secondary battery 14, the detected temperature or current value of the secondary battery 14, and The charging efficiency is calculated by applying the calculated electrode plate voltage. In step S32, the ECU 18 applies the charging efficiency and current value of the secondary battery 14 to the above formula (2) or (3) to calculate the oxygen gas generation amount per unit time. In step S34, the ECU 18 sets a predetermined value such as atmospheric pressure on a map (see FIG. 6) that represents the relationship between the oxygen pressure in the secondary battery 14 at each temperature of the secondary battery 14 and the amount of oxygen gas decrease per unit time. The value is applied to calculate the oxygen gas reduction amount (β). In step S36, the ECU 18 calculates the oxygen pressure by applying predetermined values such as the oxygen gas generation amount, the oxygen gas decrease amount, and the atmospheric pressure to the above equation (4). Based on this, the ECU 18 repeats steps S30 to S36 to estimate the oxygen pressure for every predetermined time (ΔT). In step S <b> 38, the ECU 18 applies the detected temperature of the secondary battery 14 to a map (see FIG. 7) that represents the relationship between the temperature of the secondary battery 14 and the equilibrium hydrogen pressure in the secondary battery 14. The equilibrium hydrogen pressure in 14 is calculated. In step S40, the ECU 18 calculates the internal pressure in the secondary battery 14 based on the sum of the calculated equilibrium hydrogen pressure and oxygen pressure. As described above, the internal pressure in the secondary battery can be accurately estimated.

1 パワーユニット、10 モータジェネレータ、12 インバータ、14 二次電池、18 ECU、20 電圧センサ、22 電流センサ、24 温度センサ。   1 power unit, 10 motor generator, 12 inverter, 14 secondary battery, 18 ECU, 20 voltage sensor, 22 current sensor, 24 temperature sensor.

Claims (8)

二次電池の極板間電圧に基づいて、二次電池内でガスが発生するガス発生電位まで電圧上昇しないように設定される第1の充電電力制限値を算出するステップと、
二次電池の内圧に基づいて、二次電池の安全弁が作動する内圧まで上昇しないように設定される第2の充電電力制限値を算出するステップと、
前記二次電池の内圧に応じて、前記第1の充電電力制限値又は前記第2の充電電力制限値を選択し、二次電池の充電電力を制限するステップと、
二次電池の電流値と充電効率に基づいて、二次電池内の酸素ガス発生量を算出するステップと、二次電池の温度に基づいて、二次電池内の酸素ガス減少量を算出するステップと、前記酸素ガス発生量と前記酸素ガス減少量に基づいて、二次電池の酸素圧を算出するステップと、二次電池の温度に基づいて、二次電池の平衡水素圧を算出するステップと、を備え、前記二次電池の内圧は、前記算出した前記酸素圧と前記平衡水素圧との和により、求められることを特徴とする二次電池の充電制御方法。
Calculating a first charging power limit value set so as not to increase the voltage to the gas generation potential at which gas is generated in the secondary battery based on the voltage between the electrode plates of the secondary battery;
Calculating a second charging power limit value set so as not to increase to an internal pressure at which the safety valve of the secondary battery operates based on the internal pressure of the secondary battery;
Selecting the first charging power limit value or the second charging power limit value according to the internal pressure of the secondary battery, and limiting the charging power of the secondary battery;
Calculating the amount of oxygen gas generated in the secondary battery based on the current value and charging efficiency of the secondary battery, and calculating the amount of oxygen gas decrease in the secondary battery based on the temperature of the secondary battery Calculating the oxygen pressure of the secondary battery based on the oxygen gas generation amount and the oxygen gas decrease amount; calculating the equilibrium hydrogen pressure of the secondary battery based on the temperature of the secondary battery; , And the internal pressure of the secondary battery is obtained by the sum of the calculated oxygen pressure and the equilibrium hydrogen pressure.
請求項1記載の二次電池の充電制御方法であって、前記二次電池の充電電力を制限するステップでは、前記二次電池の内圧が所定値を超えた場合に、前記第1の充電電力制限値及び前記第2の充電電力制限値のうち低い方の充電電力制限値を選択し、二次電池の充電電力を制限することを特徴とする二次電池の充電制御方法。   2. The method for controlling charging of a secondary battery according to claim 1, wherein in the step of limiting the charging power of the secondary battery, the first charging power when the internal pressure of the secondary battery exceeds a predetermined value. A charging control method for a secondary battery, wherein a charging power limiting value of a lower one of the limiting value and the second charging power limiting value is selected to limit the charging power of the secondary battery. 請求項2記載の二次電池の充電制御方法であって、前記所定値は、二次電池の温度に基づいて設定されることを特徴とする二次電池の充電制御方法。 3. The secondary battery charge control method according to claim 2 , wherein the predetermined value is set based on a temperature of the secondary battery. 請求項1〜3のいずれか1項に記載の二次電池の充電制御方法であって、前記ガス発生電位は、二次電池の温度に基づいて規定されることを特徴とする二次電池の充電制御方法。   The secondary battery charging control method according to claim 1, wherein the gas generation potential is defined based on a temperature of the secondary battery. Charge control method. 二次電池の極板間電圧に基づいて、二次電池内でガスが発生するガス発生電位まで電圧上昇しないように設定される第1の充電電力制限値を算出する手段と、
二次電池の内圧に基づいて、二次電池の安全弁が作動する内圧まで上昇しないように設定される第2の充電電力制限値を算出する手段と、
前記二次電池の内圧に応じて、前記第1の充電電力制限値又は前記第2の充電電力制限値を選択し、二次電池の充電電力を制限する手段と、
二次電池の電流値と充電効率に基づいて、二次電池内の酸素ガス発生量を算出する手段と、二次電池の温度に基づいて、二次電池内の酸素ガス減少量を算出する手段と、前記酸素ガス発生量と前記酸素ガス減少量に基づいて、二次電池の酸素圧を算出する手段と、二次電池の温度に基づいて、二次電池の平衡水素圧を算出する手段と、を備え、前記二次電池の内圧は、前記算出した前記酸素圧と前記平衡水素圧との和により、求められることを特徴とする二次電池の充電制御装置。
Means for calculating a first charging power limit value set so as not to increase the voltage to the gas generation potential at which gas is generated in the secondary battery based on the voltage between the electrode plates of the secondary battery;
Means for calculating a second charging power limit value set so as not to increase to an internal pressure at which the safety valve of the secondary battery operates based on the internal pressure of the secondary battery;
Means for selecting the first charging power limit value or the second charging power limit value according to the internal pressure of the secondary battery and limiting the charging power of the secondary battery;
Means for calculating the amount of oxygen gas generated in the secondary battery based on the current value and charging efficiency of the secondary battery, and means for calculating the amount of oxygen gas decrease in the secondary battery based on the temperature of the secondary battery Means for calculating the oxygen pressure of the secondary battery based on the oxygen gas generation amount and the oxygen gas decrease amount, and means for calculating the equilibrium hydrogen pressure of the secondary battery based on the temperature of the secondary battery; , And the internal pressure of the secondary battery is obtained by the sum of the calculated oxygen pressure and the equilibrium hydrogen pressure.
請求項5記載の二次電池の充電制御装置であって、前記二次電池の充電電力を制限する手段は、前記二次電池の内圧が所定値を超えた場合に、前記第1の充電電力制限値及び前記第2の充電電力制限値のうち低い方の充電電力制限値を選択し、二次電池の充電電力を制限することを特徴とする二次電池の充電制御装置。   6. The secondary battery charging control apparatus according to claim 5, wherein the means for limiting the charging power of the secondary battery is configured to reduce the first charging power when an internal pressure of the secondary battery exceeds a predetermined value. A charging control device for a secondary battery, wherein a charging power limiting value of a lower one of the limiting value and the second charging power limiting value is selected to limit the charging power of the secondary battery. 請求項6記載の二次電池の充電制御装置であって、前記所定値は、二次電池の温度に基づいて設定されることを特徴とする二次電池の充電制御装置。 7. The secondary battery charge control device according to claim 6 , wherein the predetermined value is set based on a temperature of the secondary battery. 請求項5〜7のいずれか1項に記載の二次電池の充電制御装置であって、前記ガス発生電位は、二次電池の温度に基づいて規定されることを特徴とする二次電池の充電制御装置。   The secondary battery charge control device according to any one of claims 5 to 7, wherein the gas generation potential is defined based on a temperature of the secondary battery. Charge control device.
JP2010109096A 2010-05-11 2010-05-11 Charge control method and charge control device for secondary battery Active JP5527001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109096A JP5527001B2 (en) 2010-05-11 2010-05-11 Charge control method and charge control device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109096A JP5527001B2 (en) 2010-05-11 2010-05-11 Charge control method and charge control device for secondary battery

Publications (2)

Publication Number Publication Date
JP2011239573A JP2011239573A (en) 2011-11-24
JP5527001B2 true JP5527001B2 (en) 2014-06-18

Family

ID=45326915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109096A Active JP5527001B2 (en) 2010-05-11 2010-05-11 Charge control method and charge control device for secondary battery

Country Status (1)

Country Link
JP (1) JP5527001B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869655B2 (en) 2002-08-12 2014-10-28 Wagic, Inc. Customizable light bulb changer
US9627191B2 (en) 2009-09-17 2017-04-18 Wagic, Inc. Extendable multi-tool including interchangable light bulb changer and accessories

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087425A (en) * 2012-12-29 2014-07-09 한국단자공업 주식회사 Apparatus for shutting off Power of Battery Pack in Vehicle
JP6406217B2 (en) * 2015-11-10 2018-10-17 トヨタ自動車株式会社 Internal pressure estimation system for nickel metal hydride batteries for vehicles
JP6624035B2 (en) * 2016-12-13 2019-12-25 トヨタ自動車株式会社 Battery system
JP6731159B2 (en) * 2017-03-06 2020-07-29 トヨタ自動車株式会社 Battery control device
JP6951041B2 (en) * 2017-07-12 2021-10-20 株式会社Soken Rechargeable battery system
JP7039963B2 (en) * 2017-11-28 2022-03-23 株式会社デンソー Battery control system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245740A (en) * 1990-02-23 1991-11-01 Sanyo Electric Co Ltd Charger
JPH07107673A (en) * 1993-10-04 1995-04-21 Toyota Motor Corp Setting device for dischargeable capacity value
JPH08237878A (en) * 1995-02-24 1996-09-13 Toyota Motor Corp Method and apparatus for controlling charging of secondary cell
JP2001103608A (en) * 1999-09-28 2001-04-13 Yamaha Motor Co Ltd Series hybrid type motor-driven vehicle
JP2007124750A (en) * 2005-10-26 2007-05-17 Sanyo Electric Co Ltd Charge control method of battery
JP4930482B2 (en) * 2008-09-30 2012-05-16 株式会社デンソー Battery charge / discharge control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8869655B2 (en) 2002-08-12 2014-10-28 Wagic, Inc. Customizable light bulb changer
US9679760B2 (en) 2002-08-12 2017-06-13 Wagic, Inc. Customizable light bulb changer
US9627191B2 (en) 2009-09-17 2017-04-18 Wagic, Inc. Extendable multi-tool including interchangable light bulb changer and accessories
US10371360B2 (en) 2009-09-17 2019-08-06 Wagic, Inc. Extendable multi-tool including interchangable light bulb changer and accessories

Also Published As

Publication number Publication date
JP2011239573A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5527001B2 (en) Charge control method and charge control device for secondary battery
JP5019010B2 (en) Secondary battery charge control method and control device
JP5401366B2 (en) Control device for hybrid vehicle
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
KR102007360B1 (en) Vehicle driven by motor and control method of charging and discharging of secondary battery provided in vehicle
JP5983683B2 (en) Temperature raising system
JP2009042176A (en) Electromotive vehicle
JP6496496B2 (en) Power storage system and control method thereof
JP4810417B2 (en) Remaining capacity calculation device for power storage device
JP5673512B2 (en) Power storage system and temperature estimation method for power storage element
JP2006351421A (en) Fuel cell system and control method
WO2019131740A1 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JP6624035B2 (en) Battery system
JP2019061786A (en) State estimation device of alkaline secondary battery
JP2018098899A (en) Battery system
JP6406217B2 (en) Internal pressure estimation system for nickel metal hydride batteries for vehicles
JP5418417B2 (en) Charge control method and charge control device for secondary battery
JP5655744B2 (en) Secondary battery degradation estimation apparatus and degradation estimation method
JP6696460B2 (en) Battery system
JP2017221076A (en) Cell system
JP6350366B2 (en) Charge / discharge control device
JP2020187050A (en) Battery system, vehicle, and method for controlling battery system
JP6702043B2 (en) Battery system
JP6951041B2 (en) Rechargeable battery system
WO2013157041A1 (en) Accumulator element state estimation method and state estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R151 Written notification of patent or utility model registration

Ref document number: 5527001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151