JP2007124750A - Charge control method of battery - Google Patents

Charge control method of battery Download PDF

Info

Publication number
JP2007124750A
JP2007124750A JP2005310916A JP2005310916A JP2007124750A JP 2007124750 A JP2007124750 A JP 2007124750A JP 2005310916 A JP2005310916 A JP 2005310916A JP 2005310916 A JP2005310916 A JP 2005310916A JP 2007124750 A JP2007124750 A JP 2007124750A
Authority
JP
Japan
Prior art keywords
battery
internal pressure
voltage
charge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310916A
Other languages
Japanese (ja)
Inventor
Ichiro Arise
一郎 有瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005310916A priority Critical patent/JP2007124750A/en
Publication of JP2007124750A publication Critical patent/JP2007124750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To charge a battery while the internal voltage of the battery is prevented from increasing, reduce the manufacturing cost and simplify maintenance, without having to provide a sensor and dedicated wiring for detecting the internal voltage to the battery. <P>SOLUTION: A charge control method of the battery detects a charging voltage and a charging current of the battery, and detects the internal voltage of the battery from the charging current and the charging voltage. The charge control method identifies the internal voltage increase voltage, at which the internal voltage of the battery starts increasing, based on the charging current. The charging current and the time are accumulated during an internal voltage increasing charge for charging the battery, excelling the internal voltage increasing voltage. The internal voltage of the battery is calculated from the accumulation values, and a charging state of the battery is controlled by the calculated internal voltage of the battery. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池の充電を制御する方法に関し、とくに車両に搭載されて車両を走行させるモーターの電源に使用される電池の充電を制御するのに適している電池の充電を制御する方法に関する。   The present invention relates to a method for controlling charging of a battery, and more particularly to a method for controlling charging of a battery that is suitable for controlling charging of a battery that is mounted on a vehicle and used as a power source of a motor that runs the vehicle.

車両を走行させるモーターに電力を供給する電源は、多数の電池を直列に接続して出力電圧を高くしている。この電源の電池は、モーターを駆動するときに放電され、ブレーキによる回生制動で充電され、またハイブリッドカーにあってはエンジンで発電機を回転して充電される。電池は、残容量が少なくなると充電され、また過充電しないように充電されて使用される。充電される電池は、充電の条件によっては、内部でガスが発生して内圧が上昇する。電池は内圧が異常に高くなると破裂することがあるので、安全弁を設けている。安全弁は、電池の内圧が設定圧力よりも高くなると開弁する。開弁する安全弁は、ガスや電解液等を内部から排出して、内圧上昇を防止して破壊しないようにする。安全弁は、開弁して外装缶の破裂を防止するが、これが開弁すると、電解液等を排出して電池としての電気特性が低下し、ひいては寿命を早めることになる。したがって、電池は、内圧が異常に上昇しないように充電をコントロールして安全弁の開弁を防止することが望ましい。   A power source that supplies electric power to a motor that drives a vehicle has a large number of batteries connected in series to increase the output voltage. The battery of this power source is discharged when the motor is driven, and is charged by regenerative braking by a brake. In the case of a hybrid car, it is charged by rotating a generator with an engine. The battery is charged when the remaining capacity is low, and is charged and used so as not to be overcharged. Depending on the charging conditions, the battery to be charged generates gas inside and the internal pressure rises. Since the battery may explode when the internal pressure becomes abnormally high, a safety valve is provided. The safety valve opens when the internal pressure of the battery becomes higher than the set pressure. The safety valve to be opened exhausts gas, electrolyte, etc. from the inside to prevent an increase in internal pressure and prevent destruction. The safety valve is opened to prevent the outer can from being ruptured. However, when the valve is opened, the electrolytic solution or the like is discharged, the electrical characteristics of the battery are lowered, and the life is shortened. Therefore, it is desirable for the battery to prevent the safety valve from opening by controlling charging so that the internal pressure does not rise abnormally.

このことを実現するには、電池の内圧を検出する必要がある。検出された内圧に基づいて、充電電流をコントロールする必要があるからである。電池の内圧を検出するために、歪計を設ける技術が、特許文献1に記載される。
特表2004−517440号公報
In order to realize this, it is necessary to detect the internal pressure of the battery. This is because it is necessary to control the charging current based on the detected internal pressure. A technique for providing a strain gauge to detect the internal pressure of a battery is described in Patent Document 1.
Special table 2004-517440 gazette

電池に歪計を設けて内圧を検出し、検出された内圧で電池の充電電流をコントロールして内圧が上昇しないように充電できる。ただ、この方法によると、電池に内圧を検出する歪計を設ける必要があって電池の構造が複雑になる。このため、電池の製造コストが高くなる。また、電池の内部で歪計が所定の体積を専有するので、外形に対する容量が小さくなる欠点もある。さらに、歪計に接続したリード線を電池の外部に互いに絶縁して引き出す必要があり、この構造もさらに複雑となる。また、電池の外部に引き出されたリード線は、電池の内圧を検出して充電をコントロールする制御回路に接続する必要があり、配線が複雑になる欠点もある。また電池から引き出されたリード線は、断線したりショートする等の故障の原因となる。このため、製造とメンテナンスに手間がかかる欠点がある。   The battery is provided with a strain gauge to detect the internal pressure, and the charging current of the battery is controlled by the detected internal pressure so that the internal pressure does not increase. However, according to this method, it is necessary to provide the battery with a strain gauge for detecting the internal pressure, which complicates the battery structure. For this reason, the manufacturing cost of a battery becomes high. In addition, since the strain gauge occupies a predetermined volume inside the battery, there is a disadvantage that the capacity with respect to the outer shape is reduced. Furthermore, it is necessary to insulate the lead wires connected to the strain gauge from the outside of the battery, and this structure is further complicated. In addition, the lead wire drawn out of the battery needs to be connected to a control circuit that detects the internal pressure of the battery and controls charging, and there is a disadvantage that wiring is complicated. Moreover, the lead wire pulled out from the battery may cause a failure such as disconnection or short circuit. For this reason, there is a drawback that it takes time and labor for manufacturing and maintenance.

本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電池に内圧を検出するセンサーを設けることなく、また内圧を検出するために専用の配線を設けることなく、電池の内圧上昇を防止しながら電池を充電して、製造コストを低減し、さらにメンテナンスを簡単にできる電池の充電制御方法を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to manufacture a battery by charging the battery while preventing an increase in the internal pressure of the battery without providing a sensor for detecting the internal pressure and without providing a dedicated wiring for detecting the internal pressure. An object of the present invention is to provide a battery charge control method capable of reducing cost and simplifying maintenance.

本発明の請求項1の電池の充電制御方法は、充電している電池の電圧と充電電流を検出して、充電電流と電圧から電池の内圧を検出する。充電制御方法は、電池の内圧が上昇を開始する内圧上昇電圧を充電電流に基づいて特定し、充電している電池電圧が内圧上昇電圧を越えて充電される内圧上昇充電において、充電電流と時間を積算し、この積算値から電池の内圧を演算し、演算された電池の内圧で電池の充電状態をコントロールする。   The battery charge control method according to claim 1 of the present invention detects the voltage and charging current of the battery being charged, and detects the internal pressure of the battery from the charging current and voltage. In the charge control method, the internal voltage increase voltage at which the internal pressure of the battery starts to increase is specified based on the charge current, and in the internal pressure increase charge in which the charged battery voltage exceeds the internal pressure increase voltage, the charging current and time The internal pressure of the battery is calculated from the integrated value, and the state of charge of the battery is controlled by the calculated internal pressure of the battery.

本発明の請求項2の電池の充電制御方法は、充電している電池の温度と電圧と充電電流を検出して、電池温度と充電電流と電圧から電池の内圧を検出する。充電制御方法は、電池の内圧が上昇を開始する内圧上昇電圧を温度と充電電流に基づいて特定し、充電している電池電圧が内圧上昇電圧を越えて充電される内圧上昇充電において、充電電流と時間を積算し、この積算値から電池の内圧を演算し、演算された電池の内圧で電池の充電状態をコントロールする。   The battery charge control method according to claim 2 of the present invention detects the temperature, voltage and charge current of the battery being charged, and detects the internal pressure of the battery from the battery temperature, charge current and voltage. The charge control method specifies the internal pressure increase voltage at which the internal pressure of the battery starts to increase based on the temperature and the charge current, and in the internal pressure increase charge in which the charged battery voltage exceeds the internal pressure increase voltage, the charge current Then, the internal pressure of the battery is calculated from the integrated value, and the state of charge of the battery is controlled by the calculated internal pressure of the battery.

本発明の電池の充電制御方法は、安全弁を備える電池の内圧を演算して検出し、演算された電池の内圧が安全弁の開弁圧よりも低くなるように、電池の充電状態をコントロールすることができる。   The battery charge control method of the present invention calculates and detects the internal pressure of a battery equipped with a safety valve, and controls the state of charge of the battery so that the calculated internal pressure of the battery is lower than the valve opening pressure of the safety valve. Can do.

本発明の電池の充電制御方法は、電流と電圧から内圧上昇電圧を特定する内圧上昇電圧特定関数を検出し、充電している電池の電圧と電流を内圧上昇特定関数に比較し、電圧が内圧上昇電圧よりも高いときに、内圧上昇充電として、充電電流と時間を積算することができる。   The battery charge control method of the present invention detects an internal pressure increase voltage specifying function for specifying an internal pressure increase voltage from current and voltage, compares the voltage and current of the battery being charged with the internal pressure increase specific function, and the voltage is When the voltage is higher than the rising voltage, charging current and time can be integrated as internal pressure rising charging.

本発明の電池の充電制御方法は、電池が充電されない状態においては、時間が経過するにしたがって検出された内圧を所定の減少率で減少させることができる。内圧の減少率は、温度で変化させることができる。   The battery charge control method of the present invention can reduce the detected internal pressure with a predetermined decrease rate as time elapses when the battery is not charged. The decreasing rate of the internal pressure can be changed with temperature.

本発明の電池の充電制御方法は、電池が充電され、かつ内圧上昇電圧を越えない状態においては、演算された電池の内圧は加算も減算もさせないようにすることができる。   The battery charge control method of the present invention can prevent the calculated internal pressure of the battery from being added or subtracted when the battery is charged and does not exceed the internal pressure increase voltage.

本発明の電池の充電制御方法は、内圧上昇電圧を時間の関数として変化させることができる。   The battery charge control method of the present invention can change the internal pressure increase voltage as a function of time.

本発明の電池の充電制御方法は、電池の充放電電流から残容量を演算して、残容量と演算された内圧の加重平均値で充電スイッチをコントロールすると共に、残容量の値で、残容量と演算された内圧を加重平均する重み(ウェート)を変化させることができる。   The battery charge control method of the present invention calculates the remaining capacity from the charge / discharge current of the battery, controls the charge switch with a weighted average value of the remaining capacity and the calculated internal pressure, and also determines the remaining capacity by the value of the remaining capacity. The weight (weight) for weighted averaging of the calculated internal pressure can be changed.

本発明の電池の充電制御方法は、同時に充放電される複数の電池の電圧と充電電流を検出し、特定の電池電圧と充電電流から演算された内圧で全ての電池の充電電流をコントロールすることができる。   The battery charge control method of the present invention detects the voltage and charge current of a plurality of batteries that are charged and discharged simultaneously, and controls the charge current of all the batteries with an internal pressure calculated from the specific battery voltage and charge current. Can do.

本発明の電池の充電制御方法は、同時に充放電される複数の電池の電圧と充電電流を検出し、各々の電池電圧と充電電流から各々の電池の内圧を演算し、演算された内圧から電池の寿命を判定することができる。   The battery charging control method of the present invention detects the voltage and charging current of a plurality of batteries that are charged and discharged simultaneously, calculates the internal pressure of each battery from each battery voltage and charging current, and calculates the battery from the calculated internal pressure. Can determine the lifetime.

本発明の電池の充電制御方法は、内圧上昇電圧を越えて充電される充電電流と時間の積算値で、充放電の電流を積算して演算される残容量を補正することができる。   The battery charging control method of the present invention can correct the remaining capacity calculated by integrating the charging / discharging current with the integrated value of the charging current and time charged exceeding the internal pressure increase voltage.

さらに、本発明の電池の充電制御方法は、電池を電動車両の駆動用電源とすることができる。さらに、本発明の電池の充電制御方法は、電池を電動車両の駆動用電源とすると共に、通常充電時もしくは過充電時にガス発生を伴う電池とすることができる。
ただし、本明細書において電動車両とは、モーターで走行する電気自動車等の車両だけでなく、モーターとエンジンの両方で走行するハイブリッドカー等を含む広い意味で使用する。
Furthermore, the battery charge control method of the present invention can use the battery as a driving power source for the electric vehicle. Furthermore, the battery charge control method of the present invention can use a battery as a power source for driving an electric vehicle and a battery that generates gas during normal charging or overcharging.
However, in this specification, the electric vehicle is used in a broad sense including not only a vehicle such as an electric vehicle that runs on a motor but also a hybrid car that runs on both a motor and an engine.

本発明は、電池に内圧を検出するセンサーを設けることなく、また内圧を検出するために専用の配線を設けることなく、電池の内圧上昇を防止しながら電池を充電できる特長がある。それは、本発明の充電制御方法が、充電している電池の電圧と充電電流から電池の内圧を検出し、あるいは、充電している電池の温度と電圧と充電電流から電池の内圧を検出するからである。本発明の充電制御方法は、電池の内圧が上昇を開始する内圧上昇電圧を、充電電流に基づいて、あるいは温度と充電電流に基づいて特定し、充電している電池電圧が内圧上昇電圧を越えて充電される時間と充電電流を積算し、この積算値から電池の内圧を演算して電池の充電状態をコントロールする。この充電制御方法は、電池の電圧、電流、温度の測定によって電池の内圧を演算するので、従来のように、電池に内圧を検出するセンサーを設けたり、専用の配線を設けることなく、製造コストを低減し、さらにメンテナンスを簡単にして、電池の内圧上昇を防止しながら理想的に充電制御できる。   The present invention has an advantage that the battery can be charged while preventing an increase in the internal pressure of the battery without providing a sensor for detecting the internal pressure of the battery and without providing a dedicated wiring for detecting the internal pressure. This is because the charge control method of the present invention detects the internal pressure of the battery from the voltage and charge current of the battery being charged, or detects the internal pressure of the battery from the temperature, voltage and charge current of the battery being charged. It is. The charging control method according to the present invention specifies an internal pressure increase voltage at which the internal pressure of a battery starts to increase based on a charging current or a temperature and a charging current, and the charging battery voltage exceeds the internal pressure increase voltage. The charging time and charging current are integrated, and the internal pressure of the battery is calculated from this integrated value to control the state of charge of the battery. This charge control method calculates the internal pressure of the battery by measuring the voltage, current, and temperature of the battery, so that it does not require a sensor for detecting the internal pressure or a dedicated wiring as in the prior art. This makes it possible to ideally control charging while reducing the internal pressure of the battery and further simplifying the maintenance.

さらに、本発明の請求項12の電池の充電制御方法は、充放電の電流を積算して演算される電池の残容量をより高い精度で演算できる特長がある。それは、この電流制御方法が、内圧上昇電圧を越えて充電される充電電流と時間の積算値で、電池の残容量を補正しているからである。通常、電池の残容量は充放電の電流を積算して演算されるが、電池の充電状態において、電池が満充電に近付くと、全ての充電電流が電池の充電に使用されず、充電電流のエネルギーが電池の内部でのガスの発生に消費され、この結果、充放電を繰り返すにしたがって残容量に誤差が生じる。これに対し、本発明の請求項12の充電制御方法では、内圧上昇電圧を越えて充電される充電電流、すなわち電池内部でガスが発生する状態における充電電流と時間の積算値を検出し、この積算値で電池の残容量を補正するので、充電に使用されない電流による損失を考慮して、より高い精度で残容量を演算できる。   Furthermore, the battery charge control method according to the twelfth aspect of the present invention is characterized in that the remaining battery capacity calculated by integrating the charge / discharge current can be calculated with higher accuracy. This is because this current control method corrects the remaining capacity of the battery with the integrated value of the charging current and time charged exceeding the internal pressure increase voltage. Normally, the remaining capacity of a battery is calculated by integrating the charging / discharging current.However, when the battery is nearly fully charged in the charging state of the battery, all the charging current is not used for charging the battery. Energy is consumed to generate gas inside the battery. As a result, an error occurs in the remaining capacity as charging and discharging are repeated. On the other hand, in the charging control method according to claim 12 of the present invention, a charging current charged exceeding the internal pressure increase voltage, that is, an integrated value of the charging current and time in a state where gas is generated inside the battery, is detected. Since the remaining capacity of the battery is corrected by the integrated value, the remaining capacity can be calculated with higher accuracy in consideration of the loss due to the current not used for charging.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の充電制御方法を例示するものであって、本発明は電池の充電制御方法を以下の方法に特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a battery charge control method for embodying the technical idea of the present invention, and the present invention does not specify the battery charge control method as the following method.

図1は、本発明の方法で電池の充電を制御する回路図を示す。この回路図は、複数の電池1を直列に接続している。電池1の電圧と電流と温度は、制御ユニット2に検出される。制御ユニット2は、電池1の電圧を検出する電圧検出回路3と、電池1に流れる充放電の電流を検出する電流検出回路4と、電池1の温度を検出する温度検出回路5とを備えている。さらに、制御ユニット2は、検出された信号を演算して電池1の内圧を演算する演算回路6と、この演算回路6で演算された内圧で、充電電流をコントロールするための充電スイッチング回路8を制御する制御回路7を備える。   FIG. 1 shows a circuit diagram for controlling battery charging in the method of the present invention. In this circuit diagram, a plurality of batteries 1 are connected in series. The voltage, current and temperature of the battery 1 are detected by the control unit 2. The control unit 2 includes a voltage detection circuit 3 that detects the voltage of the battery 1, a current detection circuit 4 that detects charge / discharge current flowing through the battery 1, and a temperature detection circuit 5 that detects the temperature of the battery 1. Yes. Further, the control unit 2 includes an arithmetic circuit 6 that calculates the detected signal to calculate the internal pressure of the battery 1, and a charge switching circuit 8 that controls the charging current with the internal pressure calculated by the arithmetic circuit 6. A control circuit 7 for controlling is provided.

図の制御ユニット2は、電圧検出回路3でもって複数の電池1の電圧を検出する。電池1は、複数の素電池を直列に接続して電池モジュールとし、さらに複数の電池モジュールを直列に接続して出力電圧を高くしている。電圧検出回路3は、各々の電池モジュールの電圧を検出する。各々の電池モジュールの電圧を電圧検出回路3で検出する制御ユニット2は、各々の電池モジュールをひとつの単位として、電池1の内圧を検出できる。制御ユニットは、全ての電池をそれぞれ独立して検出して、各々の電池の内圧を独立して検出することができる。また、全電池電圧を検出して、全ての電池を1ブロックとして、電池の内圧を検出することもできる。   The control unit 2 shown in the figure detects the voltages of a plurality of batteries 1 with a voltage detection circuit 3. In the battery 1, a plurality of unit cells are connected in series to form a battery module, and a plurality of battery modules are connected in series to increase the output voltage. The voltage detection circuit 3 detects the voltage of each battery module. The control unit 2 that detects the voltage of each battery module by the voltage detection circuit 3 can detect the internal pressure of the battery 1 with each battery module as one unit. The control unit can detect all the batteries independently, and can detect the internal pressure of each battery independently. It is also possible to detect the total battery voltage and detect the internal pressure of the battery with all the batteries as one block.

電流検出回路4は、電池1に流れる電流を検出する。複数の電池1を直列に接続するものは、全ての電池1に流れる電流が同じになる。したがって、直列に接続している電池1の電流を検出して、全電池の電流を検出できる。電池1に流れる電流は、電池1と直列に電流検出抵抗を接続し、この電流検出抵抗の両端の電圧で検出できる。電流検出抵抗の両端に誘導される電圧が、電流に比例するからである。また、電流検出抵抗の両端に誘導される電圧の正負の方向は、充電電流と放電電流で逆になるので、電圧の正負の方向で充電電流と放電電流を識別できる。   The current detection circuit 4 detects the current flowing through the battery 1. What connected the some battery 1 in series becomes the same electric current which flows into all the batteries 1. FIG. Therefore, the current of all the batteries can be detected by detecting the current of the batteries 1 connected in series. The current flowing through the battery 1 can be detected by connecting a current detection resistor in series with the battery 1 and the voltage across the current detection resistor. This is because the voltage induced across the current detection resistor is proportional to the current. Further, since the positive and negative directions of the voltage induced at both ends of the current detection resistor are reversed between the charging current and the discharging current, the charging current and the discharging current can be identified by the positive and negative directions of the voltage.

温度検出回路5は、電池1の表面に接触し、あるいは接近して電池に熱結合状態で配設している温度センサ10で検出できる。温度センサ10は、温度で電気抵抗が変化するサーミスタやPTCである。ただ、温度センサには、電池温度を検出できる全てのもの、たとえば電池から輻射される赤外線を検出して、電池温度を検出する機構も使用できる。図の温度検出回路5は、ひとつの電池1を代表電池として温度を検出するが、各々の電池温度を検出し、あるいは各々の電池モジュールの温度を検出することもできる。各々の電池温度を検出する温度検出回路の制御ユニットは、各々の電池温度の平均値を電池温度とし、あるいは最高温度を電池の温度とし、あるいはまた、各々の電池温度を加重平均して電池温度とすることができる。   The temperature detection circuit 5 can be detected by a temperature sensor 10 that is in contact with or close to the surface of the battery 1 and is thermally coupled to the battery. The temperature sensor 10 is a thermistor or PTC whose electric resistance changes with temperature. However, any temperature sensor that can detect the battery temperature, for example, a mechanism for detecting the battery temperature by detecting infrared rays radiated from the battery can be used. The temperature detection circuit 5 in the figure detects the temperature using one battery 1 as a representative battery, but can also detect the temperature of each battery or the temperature of each battery module. The control unit of the temperature detection circuit that detects each battery temperature uses the average value of each battery temperature as the battery temperature, or the maximum temperature as the battery temperature, or the weighted average of each battery temperature. It can be.

制御ユニット2は、演算された内圧が電池1の安全弁の開弁圧力よりも低くなるように充電スイッチング回路8を制御する。すなわち、制御ユニット2は、演算された内圧を充電制御内圧に比較し、演算された内圧が充電制御内圧よりも高くなると、充電を禁止する状態に充電スイッチング回路8を制御し、あるいは充電電流を小さくなるように制御する。充電制御内圧は、制御ユニット2のメモリ(図示せず)にあらかじめ記憶されている。   The control unit 2 controls the charging switching circuit 8 so that the calculated internal pressure is lower than the valve opening pressure of the safety valve of the battery 1. That is, the control unit 2 compares the calculated internal pressure with the charge control internal pressure, and when the calculated internal pressure becomes higher than the charge control internal pressure, the control unit 2 controls the charge switching circuit 8 so as to inhibit charging, or sets the charge current. Control to make it smaller. The charge control internal pressure is stored in advance in a memory (not shown) of the control unit 2.

充電制御内圧は、電池1の充電を禁止する充電禁止内圧と、電池1の充電電流を所定の範囲に小さく制限する充電制限内圧とを設けることができる。充電禁止内圧は、電池1の充電を禁止する状態、すなわち充電電流を遮断する状態である。充電制限内圧は、電池1の充電電流を遮断しないが、充電電流を電池1の内圧が上昇しない程度の小さい電流に制限する状態である。充電制限内圧は、充電禁止内圧よりも低く設定される。充電制限内圧は、たとえば充電禁止内圧の30〜80%、好ましくは40〜70%とする。さらに、制御ユニット2は、複数の充電制限内圧を記憶して、演算された内圧が、記憶している大きい充電制限内圧よりも高くなるにしたがって、充電電流を小さく制御することもできる。この制御ユニット2は、演算された内圧が高くなるにしたがって、充電電流を小さくして、電池1の内圧上昇を防止できる。さらに、制御ユニット2は、演算された内圧から充電電流の最大値を特定する関数を記憶し、この関数に基づいて、電池1の充電を許容する電流の最大値を制御することもできる。   The charge control internal pressure can be provided with a charge prohibition internal pressure that prohibits charging of the battery 1 and a charge limit internal pressure that limits the charge current of the battery 1 to a predetermined range. The charging prohibition internal pressure is a state in which charging of the battery 1 is prohibited, that is, a state in which the charging current is interrupted. The charge limiting internal pressure is a state in which the charging current of the battery 1 is not cut off, but the charging current is limited to a small current that does not increase the internal pressure of the battery 1. The charge limit internal pressure is set lower than the charge prohibition internal pressure. The charge limit internal pressure is, for example, 30 to 80%, preferably 40 to 70% of the charge prohibition internal pressure. Furthermore, the control unit 2 can store a plurality of charge limit internal pressures, and control the charge current to be smaller as the calculated internal pressure becomes higher than the stored large charge limit internal pressure. The control unit 2 can prevent the battery 1 from increasing in internal pressure by decreasing the charging current as the calculated internal pressure increases. Furthermore, the control unit 2 can store a function that specifies the maximum value of the charging current from the calculated internal pressure, and can control the maximum value of the current that allows the battery 1 to be charged based on this function.

ただ、制御ユニット2は、充電制御内圧として充電禁止内圧のみを記憶し、演算された内圧が充電禁止内圧を越えると、充電を禁止するように制御することもできる。この制御ユニット2は、簡単な回路構成で、電池1の内圧を安全弁の開弁圧よりも低く保持して充電できる。   However, the control unit 2 can store only the charge prohibition internal pressure as the charge control internal pressure, and can control to prohibit charging when the calculated internal pressure exceeds the charge prohibition internal pressure. The control unit 2 can be charged with a simple circuit configuration while keeping the internal pressure of the battery 1 lower than the opening pressure of the safety valve.

さらに、図の制御ユニット2は、電池1の残容量を演算する残容量検出回路9も備える。残容量検出回路9は、充放電の電流から電池1の残容量を演算する。制御ユニット2の制御回路7は、演算回路6で演算される電池1の内圧で充電スイッチング回路8を制御するが、演算回路6で演算される内圧と、残容量検出回路9で検出される残容量の両方で、充電スイッチング回路8を制御することもできる。   Furthermore, the control unit 2 shown in the figure also includes a remaining capacity detection circuit 9 that calculates the remaining capacity of the battery 1. The remaining capacity detection circuit 9 calculates the remaining capacity of the battery 1 from the charge / discharge current. The control circuit 7 of the control unit 2 controls the charging switching circuit 8 by the internal pressure of the battery 1 calculated by the arithmetic circuit 6, but the internal pressure calculated by the arithmetic circuit 6 and the remaining capacity detected by the remaining capacity detection circuit 9. The charge switching circuit 8 can be controlled by both of the capacities.

残容量検出回路9は、電池1を充放電させる電流を積算して残容量を演算する。電池電圧で残容量を補正し、また、電池1の内圧を検出する演算回路6の出力で演算する残容量を補正する。残容量は、充電容量から放電容量を減算して演算される。充電容量は充電電流を積算して演算され、放電容量は放電電流を積算して演算される。充放電の電流を積算値として演算される残容量は、充放電を繰り返すにしたがって誤差が発生する。全充電電流が電池の充電には使用されないために、充電効率を常に100%にはできないからである。電池の充電効率は、電池が満充電に近い状態で次第に小さくなる。この状態になると電池の内圧も上昇する。満充電に近付くと、充電電流のエネルギーが、電池の内圧を上昇させるために消費され、いいかえると電池の内部でガスを発生させるために消費されるからである。   The remaining capacity detection circuit 9 calculates the remaining capacity by integrating the current for charging and discharging the battery 1. The remaining capacity is corrected by the battery voltage, and the remaining capacity calculated by the output of the arithmetic circuit 6 that detects the internal pressure of the battery 1 is corrected. The remaining capacity is calculated by subtracting the discharge capacity from the charge capacity. The charge capacity is calculated by integrating the charge current, and the discharge capacity is calculated by integrating the discharge current. An error occurs in the remaining capacity calculated using the charge / discharge current as an integrated value as charge / discharge is repeated. This is because the entire charging current is not used for charging the battery, so that the charging efficiency cannot always be 100%. The charging efficiency of the battery gradually decreases when the battery is nearly fully charged. In this state, the internal pressure of the battery also increases. This is because when approaching full charge, the energy of the charging current is consumed to increase the internal pressure of the battery, in other words, it is consumed to generate gas inside the battery.

満充電に近い電池は、充電電流の一部を内部でガス発生に消費し、その残りが電池の充電に使用される。このことからすると、電池のガス発生が多くなる状態、言いかえると電池の内圧が上昇する状態において、充電電流のエネルギーは内圧に使用される割合が大きくなって、電池の充電に利用される割合が少なくなる。したがって、電池が内圧上昇電圧を越えて充電される充電電流と時間の積算値を検出し、この積算値が高くなると充電効率が低くなるように補正して、より正確に残容量を検出できる。   A battery that is nearly fully charged consumes a part of the charging current internally for gas generation, and the rest is used for charging the battery. From this, in a state where the gas generation of the battery is increased, in other words, in a state where the internal pressure of the battery is increased, the proportion of the charging current energy used for the internal pressure increases and the proportion used for charging the battery Less. Therefore, the remaining value can be detected more accurately by detecting the integrated value of the charging current and time at which the battery is charged exceeding the internal pressure increase voltage, and correcting the charging efficiency to be lowered when this integrated value is increased.

また、電池1の残容量は、電池電圧で補正することもできる。電池は、満充電されると最高電圧近傍となり、完全に放電されると最低電圧となるので、電池が最高電圧になると満充電されたとして残容量を100%とし、また最低電圧になると完全に放電されたとして、残容量を0%と判定できるからである。   Further, the remaining capacity of the battery 1 can be corrected by the battery voltage. The battery is near the maximum voltage when fully charged and the minimum voltage when fully discharged. Therefore, when the battery reaches the maximum voltage, the battery is fully charged and the remaining capacity is 100%. This is because it can be determined that the remaining capacity is 0% even if the battery is discharged.

演算された内圧と残容量の両方で充電スイッチング回路8を制御する制御回路7は、電池1の残容量と、演算された内圧との加重平均値で充電スイッチング回路8を制御する。この制御ユニット2は、残容量の値で、残容量と、演算された内圧とを加重平均する重み(ウェート)を変化させる。図2は、残容量と演算された内圧との重み(ウェート)を示す図である。この図に示すように、残容量が所定量を超える大きい領域では、残容量の重み(ウェート)を大きくし、残容量が所定量に満たない小さい領域では、残容量の重み(ウェート)を小さくする。制御ユニット2は、演算された内圧と残容量の加重平均値を充電制御内圧に比較して、充電状態を制御する。   A control circuit 7 that controls the charge switching circuit 8 with both the calculated internal pressure and the remaining capacity controls the charge switching circuit 8 with a weighted average value of the remaining capacity of the battery 1 and the calculated internal pressure. The control unit 2 changes the weight (weight) for weighted averaging of the remaining capacity and the calculated internal pressure with the value of the remaining capacity. FIG. 2 is a diagram showing the weight (weight) between the remaining capacity and the calculated internal pressure. As shown in this figure, the remaining capacity weight (weight) is increased in a large area where the remaining capacity exceeds a predetermined amount, and the remaining capacity weight (weight) is decreased in a small area where the remaining capacity is less than the predetermined amount. To do. The control unit 2 controls the state of charge by comparing the calculated internal pressure and the weighted average value of the remaining capacity with the charge control internal pressure.

電池1は、充電スイッチング回路8を介して発電機11と負荷12のモーターが接続される。充電スイッチング回路8は、スイッチング素子やリレー等のスイッチで実現される。ただ、ハイブリッドカーは、インバータを介して発電機とモーターを電池に接続するので、インバータで充電スイッチング回路を実現する。インバータが、充電を禁止する状態に制御されて、電池の充電を禁止する状態、実質的には充電スイッチング回路をオフにする状態に制御できるからである。   The battery 1 is connected to a generator 11 and a motor of a load 12 through a charge switching circuit 8. The charge switching circuit 8 is realized by a switch such as a switching element or a relay. However, since a hybrid car connects a generator and a motor to a battery via an inverter, a charge switching circuit is realized by the inverter. This is because the inverter is controlled to be in a state in which charging is prohibited, and can be controlled in a state in which charging of the battery is prohibited, substantially in a state in which the charge switching circuit is turned off.

電池1は、回生制動により、あるいはエンジンで回転される発電機11で充電される。また、負荷12であるモーターに電力を供給して放電される。   The battery 1 is charged by regenerative braking or by a generator 11 that is rotated by an engine. Further, electric power is supplied to the motor which is the load 12 to be discharged.

電池1は、特定の条件で充電されると、内部でガスが発生して内圧が上昇する。すなわち、本発明の充電制御方法は、通常充電時もしくは過充電時に、ガスの発生を伴う電池であれば特に電池種を問わない。この電池1は、内圧が設定圧力よりも高くなると、電池1に内蔵される安全弁が開弁して、ガスや電解液を排出するので、制御ユニット2は、安全弁が開弁しないように、充電スイッチング回路8を制御する。   When the battery 1 is charged under specific conditions, gas is generated inside and the internal pressure rises. That is, the charge control method of the present invention is not particularly limited as long as the battery is accompanied by gas generation during normal charging or overcharging. When the internal pressure of the battery 1 becomes higher than the set pressure, the safety valve built in the battery 1 is opened and gas and electrolyte are discharged. Therefore, the control unit 2 is charged so that the safety valve does not open. The switching circuit 8 is controlled.

制御ユニット2は、充電している電池1の温度と電圧と充電電流を検出して、充電電流と電圧から電池1の内圧を検出する。制御ユニット2が、電池1の温度と電圧と充電電流から、内圧を検出する原理を図3と図4に示す。   The control unit 2 detects the temperature, voltage, and charging current of the battery 1 being charged, and detects the internal pressure of the battery 1 from the charging current and voltage. The principle that the control unit 2 detects the internal pressure from the temperature, voltage and charging current of the battery 1 is shown in FIGS.

図3は、電池を所定の充電電流で充電するときに、電池の電圧と内圧が上昇するカーブを示すグラフである。この図は、横軸を電池電圧、縦軸を電池の内圧としている。この図は、電池を所定の電流で充電するとき、電池電圧が特定の電圧よりも高くなると、内圧が急激に上昇することを示す。この図において、電池の内圧が上昇を開始する電圧を内圧上昇電圧とする。   FIG. 3 is a graph showing a curve in which the battery voltage and internal pressure rise when the battery is charged with a predetermined charging current. In this figure, the horizontal axis represents the battery voltage, and the vertical axis represents the internal pressure of the battery. This figure shows that when the battery is charged with a predetermined current, the internal pressure rapidly increases when the battery voltage becomes higher than a specific voltage. In this figure, the voltage at which the internal pressure of the battery starts to rise is defined as the internal pressure rise voltage.

図4は、図3から作製されるもので、横軸を充電電流、縦軸を内圧上昇電圧とするグラフである。この図は、内圧上昇電圧を特定する内圧上昇電圧特定関数が、電流の関数として表すことができることを示す。この図は、内圧上昇電圧特定関数が電流の一次関数に近似することを示す。この図において、内圧上昇電圧特定関数Aは電池温度を40℃、内圧上昇電圧特定関数Bは電池温度を20℃、内圧上昇電圧特定関数Cは電池温度を0℃とする内圧上昇電圧を示している。この図に示すように、電池の内圧上昇電圧は、温度により変化するので、温度を考慮して内圧を検出してより正確に電池の内圧を検出できる。ただ、電池の温度を常温として、温度を検出することなく、電池の内圧を検出することもできる。   FIG. 4 is produced from FIG. 3, and is a graph in which the horizontal axis represents the charging current and the vertical axis represents the internal pressure increase voltage. This figure shows that the internal pressure increase voltage specifying function that specifies the internal pressure increase voltage can be expressed as a function of current. This figure shows that the internal pressure rising voltage specifying function approximates a linear function of current. In this figure, the internal pressure increase voltage specifying function A indicates the internal temperature increase voltage with the battery temperature of 40 ° C., the internal pressure increase voltage specific function B indicates the battery temperature of 20 ° C., and the internal pressure increase voltage specific function C indicates the battery temperature of 0 ° C. Yes. As shown in this figure, since the internal pressure increase voltage of the battery changes depending on the temperature, the internal pressure of the battery can be detected more accurately by detecting the internal pressure in consideration of the temperature. However, it is also possible to detect the internal pressure of the battery without detecting the temperature by setting the battery temperature to room temperature.

さらに、内圧上昇電圧は、時間の関数として変化させることもできる。ここで言う時間とは、電池の寿命時間のことである。電池は、寿命初期に比較して寿命末期の方が内部においてガス発生しやすく、内圧上昇が起こりやすくなる。すなわち、電池の内圧上昇電圧は、電池寿命によっても変化する。したがって、制御ユニットは、メモリ(図示せず)に電池寿命に対応する変換表もしくは変換式を記憶して、時間の関数として内圧上昇電圧を変化させることができる。たとえば、制御ユニットは、寿命初期、寿命中期、寿命末期に対する変換率をテーブルに記憶し、電池の寿命に対応させて内圧上昇電圧を変化させることができる。この場合、寿命初期〜寿命中期、寿命中期〜寿命末期における変換率は、寿命初期、寿命中期、寿命末期に対応する変換率を直線的に補間して求めることができる。電池の寿命を判定する時間は、出荷してからのトータルの使用時間とすることができる。ただ、電池寿命を判定する時間は、充放電されたトータル時間とすることもできる。このように、内圧上昇電圧を時間の関数として変化させて求める方法は、より正確に電池の内圧を演算できる。   Furthermore, the internal pressure rise voltage can be changed as a function of time. The time here refers to the lifetime of the battery. The battery tends to generate gas inside at the end of life compared to the beginning of life, and the internal pressure rises more easily. That is, the internal pressure increase voltage of the battery also changes depending on the battery life. Therefore, the control unit can store the conversion table or conversion formula corresponding to the battery life in a memory (not shown) and change the internal pressure increase voltage as a function of time. For example, the control unit can store conversion rates for the initial life, middle life, and last life in a table, and change the internal pressure increase voltage in accordance with the battery life. In this case, the conversion rates from the initial life stage to the middle life stage and from the middle life stage to the last life stage can be obtained by linearly interpolating the conversion ratios corresponding to the early life stage, the middle life stage, and the last life stage. The time for determining the life of the battery can be the total usage time after shipment. However, the time for determining the battery life can be the total time charged and discharged. As described above, the method of calculating the internal pressure increase voltage as a function of time can calculate the internal pressure of the battery more accurately.

図4は、充電される電池の内圧が上昇を開始する内圧上昇電圧を示すので、電池はこの内圧上昇電圧よりも高い電圧で充電されるときに、内圧が上昇し、内圧上昇電圧よりも低い電圧で充電されるときには、内圧が上昇しない。   FIG. 4 shows an internal pressure increase voltage at which the internal pressure of the battery to be charged starts to increase. When the battery is charged at a voltage higher than the internal pressure increase voltage, the internal pressure increases and is lower than the internal pressure increase voltage. When charged with voltage, the internal pressure does not increase.

電池の内圧が上昇する程度は、内圧上昇電圧を越えて充電される電池の充電電流の積算値により変化する。この積算値が大きくなるにしたがって、電池の内圧は次第に上昇する。図5は、この積算値により電池の内圧が上昇する状態を示すグラフである。この図は、横軸を時間とし、縦軸には、電池を充放電させる電流と、電池の電圧と、電池の内圧とを示している。この図において、曲線Aは電池を充放電する電流を示し、曲線Bは電池の電圧を示し、曲線Cは、内圧上昇電圧を越えて充電される電流の積算値から演算される電池の内圧を示している。さらに、この図において、鎖線Dは、内圧上昇電圧を示している。電池の内圧は、内圧上昇電圧を越えて充電される電流の積算値と変換係数の積で演算される。変換係数は、内圧を検出する歪みゲージや圧力センサーを内蔵する電池内圧測定装置において、試作した電池の内圧を圧力センサーで検出すると共に、内圧上昇電圧を越えて充電される電流の積算値を検出し、検出された積算値と圧力センサーの検出圧力から特定される。充電制御内圧が数MPaであるなら、変換係数は、たとえば1〜9×10−4MPa/Asとする。 The degree to which the internal pressure of the battery increases varies depending on the integrated value of the charging current of the battery charged exceeding the internal pressure increasing voltage. As the integrated value increases, the internal pressure of the battery gradually increases. FIG. 5 is a graph showing a state in which the internal pressure of the battery increases due to this integrated value. In this figure, the horizontal axis represents time, and the vertical axis represents the current for charging / discharging the battery, the voltage of the battery, and the internal pressure of the battery. In this figure, curve A shows the current for charging / discharging the battery, curve B shows the voltage of the battery, and curve C shows the internal pressure of the battery calculated from the integrated value of the current charged exceeding the internal pressure increase voltage. Show. Further, in this figure, a chain line D indicates an internal pressure increase voltage. The internal pressure of the battery is calculated by the product of the integrated value of the current charged exceeding the internal pressure increase voltage and the conversion coefficient. The conversion coefficient is a battery internal pressure measuring device with a built-in strain gauge and pressure sensor that detects internal pressure. The internal pressure of the prototype battery is detected by the pressure sensor, and the integrated value of the current charged exceeding the internal pressure rise voltage is detected. Then, it is identified from the detected integrated value and the detected pressure of the pressure sensor. If the charge control internal pressure is several MPa, the conversion coefficient is, for example, 1 to 9 × 10 −4 MPa / As.

電池の内圧は、内圧上昇電圧を越えて充電されるときに次第に上昇し、電池の充電を停止し、あるいは放電するときには、次第に低下する。したがって、電池の充電を停止し、あるいは放電するときに、演算された内圧を次第に低下させる。   The internal pressure of the battery gradually increases when charging exceeds the internal pressure increase voltage, and gradually decreases when charging of the battery is stopped or discharged. Therefore, when the charging of the battery is stopped or discharged, the calculated internal pressure is gradually reduced.

図6は、電池の内圧が低下する特性の一例を示す。電池は温度により、内圧が低下する割合が異なる。この図において、曲線A、B、Cは、温度を−20℃、0℃、50℃とする電池の内圧が低下する内圧低下関数を示している。この図に示す内圧低下関数から、電池の内圧が低下する状態は、電池の温度と時間の関数として演算できる。電池の内圧が減少する割合は、電池の温度により変化するので、内圧低下関数は、電池の温度と、時間の関数となる。内圧低下関数は、現実の電池で測定して特定される。たとえば、電池の内圧低下関数(y)は、以下の関数で近似して低下する。
y=a×Ln(t+b)+c
ただし、この式において、a、b、cは温度により特定される定数である。
FIG. 6 shows an example of the characteristic that the internal pressure of the battery decreases. The rate at which the internal pressure decreases depends on the temperature. In this figure, curves A, B, and C show an internal pressure lowering function in which the internal pressure of a battery having temperatures of −20 ° C., 0 ° C., and 50 ° C. decreases. From the internal pressure decreasing function shown in this figure, the state in which the internal pressure of the battery decreases can be calculated as a function of the battery temperature and time. Since the rate at which the internal pressure of the battery decreases varies depending on the temperature of the battery, the internal pressure decreasing function is a function of the battery temperature and time. The internal pressure lowering function is specified by measuring with an actual battery. For example, the internal pressure lowering function (y) of the battery decreases by approximating with the following function.
y = a * Ln (t + b) + c
In this formula, a, b, and c are constants specified by temperature.

図6に示すように、電池は温度で内圧の低下量が特定される。したがって、内圧上昇電圧を越えて充電される電流の積算値から演算される電池の内圧は、電池の充電を休止し、あるいは電池を放電させる状態(=電池が充電されない状態)では、次第に低下される。内圧が低下する割合は、温度の関数として演算されるので、電池温度に基づいて内圧を低下させる。   As shown in FIG. 6, the amount of decrease in internal pressure of the battery is specified by temperature. Accordingly, the internal pressure of the battery calculated from the integrated value of the current charged exceeding the internal pressure increase voltage is gradually reduced in a state where the battery is not charged or discharged (= the battery is not charged). The Since the rate at which the internal pressure decreases is calculated as a function of temperature, the internal pressure is decreased based on the battery temperature.

以上の電池の充電制御方法は、民生用電池でよく使用される定電流充電や定電流−定電圧充電、定電力充電のみでなく、ハイブリッドカーで使用されるような急速大電流充放電を頻繁に繰り返し、電流値が可変なパルス充放電パターンにおいても使用できる。   The above charging control method is not limited to constant current charging, constant current-constant voltage charging, and constant power charging, which are often used in consumer batteries. It can also be used in pulse charge / discharge patterns where the current value is variable.

図7と図8は、図1の制御ユニット2が、電池1の温度と電圧と充電電流から内圧を演算して充電スイッチング回路8をコントロールするフローチャートを示す。
図7のフローチャートは、以下のステップで電池1の充電電流をコントロールして、電池1の内圧を安全弁の開弁圧よりも低くコントロールする。
[n=1のステップ]
制御ユニット2は、このステップで電池1を充電しているかどうかを判定する。電池1を充電しているかどうかは、電流検出回路4でもって電池1に流れる電流の方向を検出して検出できる。
7 and 8 show a flowchart in which the control unit 2 of FIG. 1 calculates the internal pressure from the temperature, voltage and charging current of the battery 1 to control the charging switching circuit 8.
The flowchart of FIG. 7 controls the charging current of the battery 1 in the following steps to control the internal pressure of the battery 1 lower than the valve opening pressure of the safety valve.
[Step of n = 1]
The control unit 2 determines whether or not the battery 1 is charged in this step. Whether or not the battery 1 is charged can be detected by detecting the direction of the current flowing through the battery 1 with the current detection circuit 4.

[n=2、3のステップ]
電池1を充電していないと判定されると、充電していない時間、すなわち電池1を放電している時間、または電池1の充電を休止している時間を検出して、電池1の内圧を低下させる。電池1の内圧が0のときは内圧を低下させない。電池1の内圧が低下する割合は、図6に示すように、電池温度により変化するので、このステップにおいて、あるいはこのステップの前のステップにおいて、電池1の温度が測定される。測定された電池1の温度から、電池1の内圧が時間と共に低下する割合を示す内圧低下関数に基づいて内圧の低下を演算する。内圧が低下する内圧低下関数は、予め現実の電池の内圧が低下する状態を測定して、制御ユニット2のメモリ(図示せず)に記憶される。電池1の内圧の低下は、内圧低下関数によらず、温度と時間から特定される内圧としてテーブルに記憶し、テーブルから内圧の低下を検出することもできる。
[Steps n = 2, 3]
When it is determined that the battery 1 is not charged, the time during which the battery 1 is not charged, that is, the time when the battery 1 is discharged or the time when the battery 1 is not charged is detected, and the internal pressure of the battery 1 is determined. Reduce. When the internal pressure of the battery 1 is 0, the internal pressure is not reduced. As shown in FIG. 6, the rate at which the internal pressure of the battery 1 decreases varies depending on the battery temperature. Therefore, the temperature of the battery 1 is measured in this step or in the step before this step. Based on the measured temperature of the battery 1, a decrease in the internal pressure is calculated based on an internal pressure decrease function indicating a rate at which the internal pressure of the battery 1 decreases with time. The internal pressure decreasing function for decreasing the internal pressure is stored in a memory (not shown) of the control unit 2 by measuring a state in which the actual internal pressure of the battery decreases in advance. The decrease in the internal pressure of the battery 1 can be stored in the table as the internal pressure specified from the temperature and time regardless of the internal pressure decrease function, and the decrease in the internal pressure can be detected from the table.

[n=4のステップ]
電池1が充電していると判定されると、このステップで充電している電池1の電圧が内圧上昇電圧よりも高いかどうかを判定する。内圧上昇電圧は、図3に示すように、電池1の温度と電流により変化する。したがって、制御ユニット2は、温度と電流を関数として内圧上昇電圧を演算するための内圧上昇電圧特定関数をメモリに記憶しており、この内圧上昇電圧特定関数から、電池1の電圧が内圧上昇電圧よりも高いかどうかを判定する。ただ、制御ユニットは、温度と電流から内圧上昇電圧を特定するテーブルをメモリに記憶し、このテーブルに基づいて、電池の電圧が内圧上昇電圧よりも高いかどうかを判定することもできる。
[n=5のステップ]
充電している電池1の電圧が内圧上昇電圧よりも高くない、言いかえると内圧上昇電圧以下であると、このステップにおいて充電電流を積算しない。
[Step n = 4]
If it is determined that the battery 1 is charged, it is determined whether the voltage of the battery 1 charged in this step is higher than the internal pressure increase voltage. As shown in FIG. 3, the internal pressure increase voltage varies depending on the temperature and current of the battery 1. Therefore, the control unit 2 stores in the memory an internal pressure increase voltage specifying function for calculating the internal pressure increase voltage as a function of temperature and current, and from this internal pressure increase voltage specification function, the voltage of the battery 1 becomes the internal pressure increase voltage. To determine if it is higher. However, the control unit can also store in the memory a table for specifying the internal pressure increase voltage from the temperature and current, and determine whether or not the battery voltage is higher than the internal pressure increase voltage based on this table.
[Step n = 5]
If the voltage of the battery 1 being charged is not higher than the internal pressure increase voltage, in other words, below the internal pressure increase voltage, the charging current is not integrated in this step.

[n=6のステップ]
充電している電池1の電圧が内圧上昇電圧よりも高いと、このステップにおいて、内圧上昇電圧を越えて充電される電流と時間を積算する。すなわち、内圧上昇電圧を越えている時間と充電電流の積を演算する。演算された積算値は、前の積算値があればこれに加算される。
[n=7のステップ]
演算された積算値に変換係数を掛けて、すなわち積算値と変換係数の積から、電池の内圧を演算する。
[Step n = 6]
If the voltage of the battery 1 being charged is higher than the internal pressure increase voltage, the current and time charged exceeding the internal pressure increase voltage are integrated in this step. That is, the product of the time over which the internal pressure rise voltage is exceeded and the charging current is calculated. The calculated integrated value is added to any previous integrated value.
[Step n = 7]
The internal pressure of the battery is calculated by multiplying the calculated integrated value by the conversion coefficient, that is, from the product of the integrated value and the conversion coefficient.

[n=8のステップ]
演算された内圧を、充電禁止内圧に比較する。充電禁止内圧は、安全弁の開弁圧力よりも低く設定される圧力であって、あらかじめ制御ユニット2のメモリに記憶される。たとえば、充電禁止内圧は、安全弁の開弁圧力の30〜90%、好ましくは40〜80%、さらに好ましくは40〜70%に設定される。演算された内圧が充電禁止内圧よりも低いと、n=1のステップにループする。
[Step n = 8]
The calculated internal pressure is compared with the charge prohibition internal pressure. The charge prohibition internal pressure is a pressure set lower than the valve opening pressure of the safety valve, and is stored in the memory of the control unit 2 in advance. For example, the charging prohibition internal pressure is set to 30 to 90%, preferably 40 to 80%, more preferably 40 to 70% of the valve opening pressure of the safety valve. If the calculated internal pressure is lower than the charge-prohibited internal pressure, the process loops to a step of n = 1.

このステップは、電池1の演算された内圧と残容量の両方から加重平均値を検出し、この加重平均値を充電制御内圧に比較することもできる。   In this step, a weighted average value can be detected from both the calculated internal pressure and the remaining capacity of the battery 1, and the weighted average value can be compared with the charge control internal pressure.

[n=9のステップ]
演算された内圧、あるいは加重平均値が充電禁止内圧よりも高いと、制御ユニット2は、充電スイッチング回路8を、充電を禁止する状態とし、充電を休止して、放電のみできる状態とする。充電スイッチング回路8は、スイッチング素子やリレー等のスイッチとし、これをオフにして充電を禁止する状態にできる。ただ、ハイブリッドカーは、電池と発電機との間にインバータを接続しているので、このインバータを、充電を禁止する状態に制御して、電池の充電を休止する状態にできる。充電を禁止する状態のインバータは、充電電流を遮断するが、放電できるように制御される。
[Step n = 9]
When the calculated internal pressure or the weighted average value is higher than the charge prohibition internal pressure, the control unit 2 sets the charge switching circuit 8 in a state in which charging is prohibited, pauses charging, and allows only discharge. The charging switching circuit 8 is a switch such as a switching element or a relay, and can be turned off to prohibit charging. However, since the hybrid car has an inverter connected between the battery and the generator, the inverter can be controlled to a state in which charging is prohibited, and charging of the battery can be suspended. The inverter in a state where charging is prohibited interrupts the charging current, but is controlled so that it can be discharged.

図8のフローチャートは、以下のステップで電池1の充電電流をコントロールして、電池1の内圧を安全弁の開弁圧よりも低くコントロールする。
[n=1のステップ]
制御ユニット2は、このステップで電池1を充電しているかどうかを判定する。電池1を充電しているかどうかは、電流検出回路4でもって電池1に流れる電流の方向を検出して検出できる。
In the flowchart of FIG. 8, the charging current of the battery 1 is controlled by the following steps to control the internal pressure of the battery 1 lower than the valve opening pressure of the safety valve.
[Step of n = 1]
The control unit 2 determines whether or not the battery 1 is charged in this step. Whether or not the battery 1 is charged can be detected by detecting the direction of the current flowing through the battery 1 with the current detection circuit 4.

[n=2、3のステップ]
電池1を充電していないと判定されると、充電していない時間、すなわち電池1を放電している時間、または電池1の充電を休止している時間を検出して、電池1の内圧を低下させる。電池1の内圧が0のときは内圧を低下させない。電池1の内圧の低下は、前述のように、測定された電池1の温度から、電池1の内圧が時間と共に低下する割合を示す内圧低下関数に基づいて演算する。電池1の内圧の低下は、内圧低下関数によらず、温度と時間から特定される内圧として記憶されるテーブルから検出することもできる。
[Steps n = 2, 3]
When it is determined that the battery 1 is not charged, the time during which the battery 1 is not charged, that is, the time when the battery 1 is discharged or the time when the battery 1 is not charged is detected, and the internal pressure of the battery 1 is determined. Reduce. When the internal pressure of the battery 1 is 0, the internal pressure is not reduced. As described above, the decrease in the internal pressure of the battery 1 is calculated from the measured temperature of the battery 1 based on the internal pressure decrease function indicating the rate at which the internal pressure of the battery 1 decreases with time. The decrease in the internal pressure of the battery 1 can also be detected from a table stored as the internal pressure specified from the temperature and time, regardless of the internal pressure decrease function.

[n=4、5のステップ]
電池1が充電していると判定されると、n=4ステップで、充電している電池の電圧、充電電流、温度を検出する。さらに、n=5のステップにおいて、検出した電池電圧、充電電流、温度から0A時の電圧Xを演算する。
内圧上昇電圧と充電電流の関係は、図4に示すように、温度によって勾配が決定される一次関数として表すことができる。すなわち、温度が検出されると、内圧上昇電圧と充電電流の関係を特定する一次関数の勾配を求めることができる。制御ユニット2は、温度から内圧上昇電圧と充電電流の関係を示す一次関数の勾配を特定する関数またはテーブルをメモリに記憶し、この関数またはテーブルに基づいて、検出した温度から内圧上昇電圧と充電電流の関係を特定する一次関数の勾配を特定する。
勾配が決定された一次関数に検出された電池電圧と充電電流とを代入して、この一次関数の切片を演算する。図4に示すグラフは、横軸を充電電流としているので、演算される切片の値は、0A時の電圧に相当する。以上のようにして、検出した電池電圧、充電電流、温度から0A時の電圧Xを演算する。
[Steps n = 4, 5]
If it is determined that the battery 1 is charged, the voltage, charging current, and temperature of the battery being charged are detected in n = 4 steps. Further, in step n = 5, the voltage X at 0 A is calculated from the detected battery voltage, charging current, and temperature.
As shown in FIG. 4, the relationship between the internal pressure increase voltage and the charging current can be expressed as a linear function whose gradient is determined by temperature. That is, when the temperature is detected, a gradient of a linear function that specifies the relationship between the internal pressure increase voltage and the charging current can be obtained. The control unit 2 stores in a memory a function or table that specifies a gradient of a linear function indicating the relationship between the internal pressure increase voltage and the charging current from the temperature, and based on this function or table, the internal pressure increase voltage and the charge are detected from the detected temperature. The gradient of a linear function that specifies the current relationship is specified.
The detected battery voltage and charging current are substituted into the linear function for which the gradient is determined, and the intercept of this linear function is calculated. In the graph shown in FIG. 4, the horizontal axis represents the charging current, and thus the calculated intercept value corresponds to the voltage at 0 A. As described above, the voltage X at 0 A is calculated from the detected battery voltage, charging current, and temperature.

[n=6のステップ]
n=5のステップで求めた0A時の電圧Xが、0A時の内圧上昇電圧よりも高いかどうかを判定する。0A時の内圧上昇電圧は、制御ユニット2のメモリに記憶される、温度と電流の関数である内圧上昇電圧特定関数から求めることができる。ただ、制御ユニットは、0A時の内圧上昇電圧を温度と電流から特定するテーブルをメモリに記憶し、このテーブルに基づいて、0A時の電圧が、0A時の内圧上昇電圧よりも高いかどうかを判定することもできる。
[n=7のステップ]
0A時の電圧Xが0A時の内圧上昇電圧よりも高くない、言いかえると0A時の内圧上昇電圧以下であると、このステップにおいて充電電流を積算しない。
[Step n = 6]
It is determined whether or not the voltage X at 0A obtained in the step of n = 5 is higher than the internal pressure increase voltage at 0A. The internal pressure increase voltage at 0 A can be obtained from an internal pressure increase voltage specifying function, which is a function of temperature and current, stored in the memory of the control unit 2. However, the control unit stores in the memory a table that specifies the internal pressure increase voltage at 0A from the temperature and current, and based on this table, determines whether the voltage at 0A is higher than the internal pressure increase voltage at 0A. It can also be determined.
[Step n = 7]
If the voltage X at 0A is not higher than the internal pressure increase voltage at 0A, in other words, below the internal pressure increase voltage at 0A, the charging current is not integrated in this step.

[n=8のステップ]
充電している電池1の0A時の電圧Xが0A時の内圧上昇電圧よりも高いと、このステップにおいて、内圧上昇電圧を越えて充電される電流と時間を積算する。すなわち、内圧上昇電圧を越えている時間と充電電流の積を演算する。演算された積算値は、前の積算値があればこれに加算される。
[n=9のステップ]
演算された積算値に変換係数を掛けて、すなわち積算値と変換係数の積から、電池の内圧を演算する。
[Step n = 8]
If the voltage X at 0A of the battery 1 being charged is higher than the internal pressure increase voltage at 0A, in this step, the current and time charged exceeding the internal pressure increase voltage are integrated. That is, the product of the time over which the internal pressure rise voltage is exceeded and the charging current is calculated. The calculated integrated value is added to any previous integrated value.
[Step n = 9]
The internal pressure of the battery is calculated by multiplying the calculated integrated value by the conversion coefficient, that is, from the product of the integrated value and the conversion coefficient.

[n=10のステップ]
演算された内圧を、充電禁止内圧に比較する。充電禁止内圧は、安全弁の開弁圧力よりも低く設定される圧力であって、あらかじめ制御ユニット2のメモリに記憶される。たとえば、充電禁止内圧は、安全弁の開弁圧力の30〜90%、好ましくは40〜80%、さらに好ましくは40〜70%に設定される。演算された内圧が充電禁止内圧よりも低いと、n=1のステップにループする。
[Step n = 10]
The calculated internal pressure is compared with the charge prohibition internal pressure. The charge prohibition internal pressure is a pressure set lower than the valve opening pressure of the safety valve, and is stored in the memory of the control unit 2 in advance. For example, the charging prohibition internal pressure is set to 30 to 90%, preferably 40 to 80%, more preferably 40 to 70% of the valve opening pressure of the safety valve. If the calculated internal pressure is lower than the charge-prohibited internal pressure, the process loops to a step of n = 1.

このステップは、電池1の演算された内圧と残容量の両方から加重平均値を検出し、この加重平均値を充電制御内圧に比較することもできる。   In this step, a weighted average value can be detected from both the calculated internal pressure and the remaining capacity of the battery 1, and the weighted average value can be compared with the charge control internal pressure.

[n=11のステップ]
演算された内圧、あるいは加重平均値が充電禁止内圧よりも高いと、制御ユニット2は充電スイッチング回路8を充電を禁止する状態とし、充電を休止して、放電のみできる状態とする。充電スイッチング回路8は、スイッチング素子やリレー等のスイッチとし、これをオフにして充電を禁止する状態にできる。ただ、ハイブリッドカーは、電池と発電機との間にインバータを接続しているので、このインバータを充電を禁止する状態に制御して、電池の充電を休止する状態にできる。充電を禁止する状態のインバータは、充電電流を遮断するが、放電できるように制御される。
[Step n = 11]
When the calculated internal pressure or the weighted average value is higher than the charge prohibition internal pressure, the control unit 2 sets the charge switching circuit 8 in a state in which charging is prohibited, stops charging, and sets in a state in which only discharge is possible. The charging switching circuit 8 is a switch such as a switching element or a relay, and can be turned off to prohibit charging. However, since the hybrid car has an inverter connected between the battery and the generator, the inverter can be controlled to a state in which charging is prohibited, and charging of the battery can be suspended. The inverter in a state where charging is prohibited interrupts the charging current, but is controlled so that it can be discharged.

以上の電池の充電制御方法は、各々の電池モジュール単位で電池の内圧を演算し、あるいは各々の電池単位で内圧を演算し、演算された最高の内圧を充電制御内圧に比較し、最高内圧が充電制御内圧よりも高くなると、電池の充電を禁止し、あるいは充電電流を小さくするように制御する。また、全ての電池を1ブロックとして電池の内圧を演算して検出し、演算された内圧を充電制御内圧に比較して充電電流を制御することもできる。   In the above battery charge control method, the battery internal pressure is calculated for each battery module unit, or the internal pressure is calculated for each battery unit, the calculated maximum internal pressure is compared with the charge control internal pressure, and the maximum internal pressure is calculated. When the internal pressure becomes higher than the charging control internal pressure, the charging of the battery is prohibited or the charging current is controlled to be small. It is also possible to calculate and detect the internal pressure of the battery with all the batteries as one block, and control the charging current by comparing the calculated internal pressure with the charge control internal pressure.

各々の電池単位又は電池モジュール単位で電池の内圧を検出する方法は、演算された内圧から電池の寿命を判定することができる。それは、寿命が尽きて電気特性の低下した電池は、他の電池に比較して内圧が上昇しやすいので、寿命の尽きた電池は、同じ電流で充放電されても、演算された内圧が充電制御内圧を越える確率が高くなるからである。したがって、特定の期間において特定の回数以上、演算された内圧が充電制御内圧を越える電池や電池モジュールは、寿命が尽きたと判定できる。   In the method of detecting the internal pressure of each battery or battery module, the battery life can be determined from the calculated internal pressure. It is easy to increase the internal pressure of a battery whose lifetime has expired and whose electrical characteristics have deteriorated compared to other batteries. Therefore, even if a battery whose lifetime has expired is charged and discharged with the same current, the calculated internal pressure is charged. This is because the probability of exceeding the control internal pressure increases. Therefore, it can be determined that the battery or battery module whose calculated internal pressure exceeds the charge control internal pressure for a specific number of times or more in a specific period has expired.

本発明の一実施例にかかる電池の充電制御方法で電池の充電を制御する回路の一例を示す回路図である。It is a circuit diagram which shows an example of the circuit which controls charge of a battery with the charge control method of the battery concerning one Example of this invention. 制御回路が充電スイッチング回路を制御する重みを示す図である。It is a figure which shows the weight which a control circuit controls a charge switching circuit. 電池電圧と内圧上昇の特性を示すグラフである。It is a graph which shows the characteristic of a battery voltage and an internal pressure rise. 充電電流と内圧上昇電圧の特性を示すグラフである。It is a graph which shows the characteristic of a charging current and an internal pressure rise voltage. 内圧上昇電圧を越えて充電される電池の内圧が上昇する状態を示すグラフである。It is a graph which shows the state which the internal pressure of the battery charged exceeding internal pressure rise voltage rises. 電池の内圧が低下する特性を示すグラフである。It is a graph which shows the characteristic that the internal pressure of a battery falls. 電池の温度と電圧と充電電流から内圧を演算して電池の充電を制御する一例を示すフローチャートである。It is a flowchart which shows an example which calculates internal pressure from the temperature of a battery, a voltage, and a charging current, and controls charge of a battery. 電池の温度と電圧と充電電流から内圧を演算して電池の充電を制御する他の一例を示すフローチャートである。It is a flowchart which shows another example which calculates internal pressure from the temperature of a battery, a voltage, and a charging current, and controls charging of a battery.

符号の説明Explanation of symbols

1…電池
2…制御ユニット
3…電圧検出回路
4…電流検出回路
5…温度検出回路
6…演算回路
7…制御回路
8…充電スイッチング回路
9…残容量検出回路
10…温度センサ
11…発電機
12…負荷R
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Control unit 3 ... Voltage detection circuit 4 ... Current detection circuit 5 ... Temperature detection circuit 6 ... Arithmetic circuit 7 ... Control circuit 8 ... Charge switching circuit 9 ... Remaining capacity detection circuit 10 ... Temperature sensor 11 ... Generator 12 ... Load R

Claims (14)

充電している電池の電圧と充電電流を検出して、充電電流と電圧から電池の内圧を検出する方法であって、
電池の内圧が上昇を開始する内圧上昇電圧を充電電流に基づいて特定し、充電している電池電圧が内圧上昇電圧を越えて充電される内圧上昇充電において、充電電流と時間を積算し、この積算値から電池の内圧を演算し、演算された電池の内圧で電池の充電状態をコントロールする電池の充電制御方法。
A method for detecting a voltage and a charging current of a battery being charged, and detecting an internal pressure of the battery from the charging current and the voltage,
The internal voltage rise voltage at which the internal pressure of the battery starts to rise is specified based on the charge current, and the charge current and time are integrated in the internal pressure rise charge in which the charged battery voltage exceeds the internal pressure rise voltage. A battery charge control method that calculates the internal pressure of a battery from an integrated value and controls the state of charge of the battery by the calculated internal pressure of the battery.
充電している電池の温度と電圧と充電電流を検出して、電池温度と充電電流と電圧から電池の内圧を検出する方法であって、
電池の内圧が上昇を開始する内圧上昇電圧を温度と充電電流に基づいて特定し、充電している電池電圧が内圧上昇電圧を越えて充電される内圧上昇充電において、充電電流と時間を積算し、この積算値から電池の内圧を演算し、演算された電池の内圧で電池の充電状態をコントロールする電池の充電制御方法。
A method for detecting the internal pressure of the battery from the battery temperature, charging current and voltage by detecting the temperature, voltage and charging current of the battery being charged,
The internal voltage rise voltage at which the internal pressure of the battery starts to rise is specified based on the temperature and the charge current, and the charge current and time are integrated in the internal pressure rise charge where the charged battery voltage exceeds the internal pressure rise voltage. A battery charge control method that calculates the internal pressure of the battery from the integrated value and controls the state of charge of the battery by the calculated internal pressure of the battery.
安全弁を備える電池の内圧を演算して検出すると共に、演算された電池の内圧が安全弁の開弁圧よりも低くなるように、電池の充電状態をコントロールする請求項1又は2に記載される電池の充電制御方法。   The battery according to claim 1 or 2, wherein the internal pressure of the battery including the safety valve is calculated and detected, and the state of charge of the battery is controlled so that the calculated internal pressure of the battery is lower than the opening pressure of the safety valve. Charge control method. 電流と電圧から内圧上昇電圧を特定する内圧上昇電圧特定関数を検出し、充電している電池の電圧と電流を内圧上昇特定関数に比較し、電圧が内圧上昇電圧よりも高いときに、内圧上昇充電として、充電電流と時間を積算する請求項1又は2に記載される電池の充電制御方法。   An internal pressure increase voltage specifying function that identifies the internal pressure increase voltage from the current and voltage is detected, the voltage and current of the battery being charged are compared with the internal pressure increase specific function, and the internal pressure increases when the voltage is higher than the internal pressure increase voltage The battery charging control method according to claim 1 or 2, wherein the charging current and time are integrated as charging. 電池が充電されない状態においては、時間が経過するにしたがって検出された内圧を所定の減少率で減少させる請求項1又は2に記載される電池の充電制御方法。   3. The battery charge control method according to claim 1, wherein in a state where the battery is not charged, the detected internal pressure is decreased at a predetermined decrease rate as time elapses. 内圧の減少率を温度で変化させる請求項5に記載される電池の充電制御方法。   The battery charge control method according to claim 5, wherein the rate of decrease of the internal pressure is changed with temperature. 電池が充電され、かつ内圧上昇電圧を越えない状態においては、演算された電池の内圧は加算も減算もさせない請求項1または2に記載される電池の充電制御方法。   3. The battery charge control method according to claim 1 or 2, wherein the calculated internal pressure of the battery is neither added nor subtracted in a state where the battery is charged and does not exceed the internal pressure increase voltage. 内圧上昇電圧を時間の関数として変化させる請求項1又は2に記載される電池の充電制御方法。   The battery charge control method according to claim 1 or 2, wherein the internal pressure increase voltage is changed as a function of time. 電池の充放電電流から残容量を演算して、残容量と演算された内圧の加重平均値で充電スイッチをコントロールすると共に、残容量の値で、残容量と演算された内圧を加重平均する重み(ウェート)を変化させる請求項1又は2に記載される電池の充電制御方法。   Calculates the remaining capacity from the charge / discharge current of the battery, controls the charge switch with the weighted average value of the remaining capacity and the calculated internal pressure, and weights the weighted average of the remaining capacity and the calculated internal pressure with the remaining capacity value. The battery charge control method according to claim 1 or 2, wherein (weight) is changed. 同時に充放電される複数の電池の電圧と充電電流を検出し、特定の電池電圧と充電電流から演算された内圧で全ての電池の充電電流をコントロールする請求項1又は2に記載される電池の充電制御方法。   The battery according to claim 1 or 2, wherein the voltage and charging current of a plurality of batteries charged and discharged simultaneously are detected, and the charging current of all the batteries is controlled by an internal pressure calculated from the specific battery voltage and charging current. Charge control method. 同時に充放電される複数の電池の電圧と充電電流を検出し、各々の電池電圧と充電電流から各々の電池の内圧を演算し、演算された内圧から電池の寿命を判定する請求項1又は2に記載される電池の充電制御方法。   3. The voltage and charging current of a plurality of batteries that are charged and discharged simultaneously are detected, the internal pressure of each battery is calculated from each battery voltage and charging current, and the battery life is determined from the calculated internal pressure. The charge control method of the battery described in 2. 内圧上昇電圧を越えて充電される充電電流と時間の積算値で、充放電の電流を積算して演算される残容量を補正する請求項1又は2に記載される電池の充電制御方法。   The charge control method for a battery according to claim 1 or 2, wherein the remaining capacity calculated by integrating the charge / discharge current is corrected by an integration value of the charge current and time charged exceeding the internal pressure increase voltage. 電池が電動車両の駆動用電源である請求項1ないし12のいずれかに記載される電池の充電制御方法。   The battery charging control method according to claim 1, wherein the battery is a power source for driving an electric vehicle. 電池が電動車両の駆動用電源であって、通常充電時もしくは過充電時にガス発生を伴う電池である請求項1ないし12のいずれかに記載される電池の充電制御方法。
The battery charge control method according to any one of claims 1 to 12, wherein the battery is a power source for driving an electric vehicle and is a battery accompanied by gas generation during normal charging or overcharging.
JP2005310916A 2005-10-26 2005-10-26 Charge control method of battery Pending JP2007124750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310916A JP2007124750A (en) 2005-10-26 2005-10-26 Charge control method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310916A JP2007124750A (en) 2005-10-26 2005-10-26 Charge control method of battery

Publications (1)

Publication Number Publication Date
JP2007124750A true JP2007124750A (en) 2007-05-17

Family

ID=38147979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310916A Pending JP2007124750A (en) 2005-10-26 2005-10-26 Charge control method of battery

Country Status (1)

Country Link
JP (1) JP2007124750A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239573A (en) * 2010-05-11 2011-11-24 Toyota Motor Corp Charging control method and charging control device of secondary battery
JP2012053011A (en) * 2010-09-03 2012-03-15 Mitsubishi Materials Corp Infrared sensor and temperature sensor device
JP2012231609A (en) * 2011-04-26 2012-11-22 Toyota Motor Corp Charge controller
JP2013106500A (en) * 2011-11-16 2013-05-30 Toyota Motor Corp Battery charge and discharge management device and method for the same
KR20140087425A (en) * 2012-12-29 2014-07-09 한국단자공업 주식회사 Apparatus for shutting off Power of Battery Pack in Vehicle
KR20160036818A (en) * 2014-09-26 2016-04-05 현대자동차주식회사 Apparatus for charging battery of hybrid vehicle and method thereof
CN107310410A (en) * 2017-05-19 2017-11-03 重庆凯瑞电动汽车系统有限公司 Battery fan-out capability computational methods
WO2017199326A1 (en) * 2016-05-17 2017-11-23 三菱電機株式会社 Battery protecting device and power storage system
JP2018098900A (en) * 2016-12-13 2018-06-21 トヨタ自動車株式会社 Battery system
JP2018147742A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Battery control device
US10189477B2 (en) 2016-11-29 2019-01-29 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
FR3126503A1 (en) * 2021-09-02 2023-03-03 Psa Automobiles Sa METHOD OF EXTENDING A USETIME OF A BATTERY

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239573A (en) * 2010-05-11 2011-11-24 Toyota Motor Corp Charging control method and charging control device of secondary battery
JP2012053011A (en) * 2010-09-03 2012-03-15 Mitsubishi Materials Corp Infrared sensor and temperature sensor device
JP2012231609A (en) * 2011-04-26 2012-11-22 Toyota Motor Corp Charge controller
JP2013106500A (en) * 2011-11-16 2013-05-30 Toyota Motor Corp Battery charge and discharge management device and method for the same
KR20140087425A (en) * 2012-12-29 2014-07-09 한국단자공업 주식회사 Apparatus for shutting off Power of Battery Pack in Vehicle
KR20160036818A (en) * 2014-09-26 2016-04-05 현대자동차주식회사 Apparatus for charging battery of hybrid vehicle and method thereof
KR102042124B1 (en) 2014-09-26 2019-11-08 현대자동차주식회사 Apparatus for charging battery of hybrid vehicle and method thereof
JPWO2017199326A1 (en) * 2016-05-17 2018-09-13 三菱電機株式会社 Storage battery protection device and power storage system
WO2017199326A1 (en) * 2016-05-17 2017-11-23 三菱電機株式会社 Battery protecting device and power storage system
US10189477B2 (en) 2016-11-29 2019-01-29 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP2018098900A (en) * 2016-12-13 2018-06-21 トヨタ自動車株式会社 Battery system
JP2018147742A (en) * 2017-03-06 2018-09-20 トヨタ自動車株式会社 Battery control device
CN107310410A (en) * 2017-05-19 2017-11-03 重庆凯瑞电动汽车系统有限公司 Battery fan-out capability computational methods
FR3126503A1 (en) * 2021-09-02 2023-03-03 Psa Automobiles Sa METHOD OF EXTENDING A USETIME OF A BATTERY
WO2023031527A1 (en) * 2021-09-02 2023-03-09 Psa Automobiles Sa Method for prolonging a duration of use of a battery

Similar Documents

Publication Publication Date Title
JP2007124750A (en) Charge control method of battery
EP2083494B1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
EP2441153B1 (en) Charge control device and method for secondary battery module
US9219377B2 (en) Battery charging apparatus and battery charging method
JP5879557B2 (en) Charger
US9106104B2 (en) Power control device, power control method, and power supply system
US8148950B2 (en) Charging method
US7285936B2 (en) Charging system for battery-set
US20100057385A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
US20030186116A1 (en) Power supply unit
JP2006129588A (en) Power control method of secondary battery, and power unit
US8816642B2 (en) Method for using a stand-alone system connected to a battery
JPH08506477A (en) Device and method for dynamic adjustment and monitoring of a storage battery pack
JP4341652B2 (en) Power storage control device and power storage control method
KR101866020B1 (en) Method for controlling start of fuel cell vehicle
JP2010078530A (en) Detection method of deterioration degree of battery
JP2009044862A (en) Power supply controller and power supply system for electric vehicle
US11277011B2 (en) Management device, power storage system
US20110240320A1 (en) Electric power tool, and recording medium
JP5454027B2 (en) Charge control device and charge control method
JP5030665B2 (en) Battery remaining capacity detection method
JP2005218174A5 (en)
JP2005218174A (en) Battery pack monitor and battery pack
JP5446356B2 (en) Battery controller
JPH1032020A (en) Charge and discharge control method for sealed type lead-acid battery