JP5418417B2 - Charge control method and charge control device for secondary battery - Google Patents

Charge control method and charge control device for secondary battery Download PDF

Info

Publication number
JP5418417B2
JP5418417B2 JP2010130962A JP2010130962A JP5418417B2 JP 5418417 B2 JP5418417 B2 JP 5418417B2 JP 2010130962 A JP2010130962 A JP 2010130962A JP 2010130962 A JP2010130962 A JP 2010130962A JP 5418417 B2 JP5418417 B2 JP 5418417B2
Authority
JP
Japan
Prior art keywords
secondary battery
charging efficiency
remaining capacity
determination value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010130962A
Other languages
Japanese (ja)
Other versions
JP2011259582A (en
Inventor
義晃 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010130962A priority Critical patent/JP5418417B2/en
Publication of JP2011259582A publication Critical patent/JP2011259582A/en
Application granted granted Critical
Publication of JP5418417B2 publication Critical patent/JP5418417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池の充電制御方法及び充電制御装置の技術に関する。   The present invention relates to a secondary battery charge control method and a charge control device technology.

電動機を搭載した電気自動車(ハイブリッド自動車等も含む)は、二次電池に蓄えられた電力により、電動機を駆動している。このような電気自動車の特有な機能として、回生制動がある。回生制動は、車両制動時、電動機を発電機として機能させることにより、車両の運動エネルギーを電気エネルギーに変換し、制動を行うものである。また、得られた電気エネルギーは二次電池に充電され、加速等を行う時に再利用される。   An electric vehicle (including a hybrid vehicle) equipped with an electric motor drives the electric motor with electric power stored in a secondary battery. There is regenerative braking as a characteristic function of such an electric vehicle. In regenerative braking, the motor is made to function as a generator during vehicle braking, so that the kinetic energy of the vehicle is converted into electric energy and braking is performed. The obtained electrical energy is charged in the secondary battery and reused when accelerating or the like.

通常、二次電池の充電制御は、適正残存容量範囲内に残存容量目標値を設定し、この残存容量目標値を中心に行われる。具体的には、二次電池の残存容量が残存容量目標値より小さい場合には、二次電池の充電が進められ、二次電池の残存容量が残存容量目標値より大きい場合には、二次電池の充電が停止又は充電量が制限される。   Normally, the charging control of the secondary battery is performed around the remaining capacity target value by setting the remaining capacity target value within the appropriate remaining capacity range. Specifically, when the remaining capacity of the secondary battery is smaller than the target remaining capacity value, the secondary battery is charged. When the remaining capacity of the secondary battery is larger than the target remaining capacity value, the secondary battery is charged. Charging of the battery is stopped or the amount of charge is limited.

例えば、特許文献1〜3には、二次電池の出力を安定して供給することができるように、二次電池の温度、電圧、電流に基づいて残存容量目標値を設定し、この残存容量目標値を中心に二次電池の充電制御を行う技術が開示されている。   For example, in Patent Documents 1 to 3, a remaining capacity target value is set based on the temperature, voltage, and current of the secondary battery so that the output of the secondary battery can be stably supplied. A technique for performing charging control of a secondary battery around a target value is disclosed.

特開2002−345165号公報JP 2002-345165 A 特開2003−47108号公報JP 2003-47108 A 特開2005−261034号公報Japanese Patent Laid-Open No. 2005-261034

ところで、通常二次電池は、二次電池の電圧上昇等に伴って、二次電池内でガス発生が起こり、充電効率が低下する。そのため、充電効率を考慮して二次電池の充電制御を行い、充電効率の低下を抑制することが好ましい。   By the way, in a normal secondary battery, gas generation occurs in the secondary battery as the voltage of the secondary battery increases, and the charging efficiency decreases. For this reason, it is preferable to control charging of the secondary battery in consideration of charging efficiency and suppress a decrease in charging efficiency.

そこで、本発明の目的は、二次電池の充電効率の低下を抑制することができる二次電池の充電制御方法及び充電制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a charge control method and a charge control device for a secondary battery that can suppress a decrease in charge efficiency of the secondary battery.

本発明は、残存容量目標値を中心として二次電池の充電を制御する二次電池の充電制御方法であって、前記二次電池の充電効率を算出するステップと、前記二次電池の残存容量と温度とに基づいて、第1の充電効率判定値を算出するステップと、前記充電効率が前記第1の充電効率判定値以上の場合には、前記残存容量目標値を所定量引き下げるステップと、を備える。   The present invention is a secondary battery charge control method for controlling the charge of a secondary battery centering on a remaining capacity target value, the step of calculating the charge efficiency of the secondary battery, and the remaining capacity of the secondary battery Calculating a first charging efficiency determination value based on the temperature and the temperature; and, if the charging efficiency is equal to or higher than the first charging efficiency determination value, reducing the remaining capacity target value by a predetermined amount; Is provided.

また、前記二次電池の充電制御方法において、前記残存容量目標値を所定量引き下げるステップでは、前記充電効率と前記第1の充電効率判定値との差に応じて、前記所定量を決定することが好ましい。   In the secondary battery charge control method, in the step of lowering the remaining capacity target value by a predetermined amount, the predetermined amount is determined according to a difference between the charge efficiency and the first charge efficiency determination value. Is preferred.

また、前記二次電池の充電制御方法において、前記二次電池の残存容量と温度とに基づいて、前記第1の充電効率判定値より小さい第2の充電効率判定値を算出するステップと、前記充電効率が、前記第2の充電効率判定値以下の場合には、前記残存容量目標値を所定量引き下げるステップで、引き下げられた残存容量目標値を回復させるステップと、を備えることが好ましい。   In the secondary battery charge control method, a step of calculating a second charge efficiency determination value smaller than the first charge efficiency determination value based on a remaining capacity and temperature of the secondary battery; When the charging efficiency is equal to or lower than the second charging efficiency determination value, it is preferable to include a step of reducing the remaining capacity target value by reducing the remaining capacity target value by a predetermined amount.

また、本発明は、予め設定した残存容量目標値となるように二次電池の充電を制御する二次電池の充電制御装置であって、前記二次電池の充電効率を算出する手段と、前記二次電池の残存容量と温度とに基づいて、第1の充電効率判定値を算出する手段と、前記充電効率が前記第1の充電効率判定値以上の場合には、前記残存容量目標値を所定量引き下げる手段と、を備える。   Further, the present invention is a secondary battery charge control device for controlling the charging of the secondary battery so as to become a preset remaining capacity target value, the means for calculating the charging efficiency of the secondary battery, Based on the remaining capacity and temperature of the secondary battery, the means for calculating the first charging efficiency determination value, and when the charging efficiency is equal to or higher than the first charging efficiency determination value, the remaining capacity target value is Means for lowering the predetermined amount.

また、前記二次電池の充電制御装置において、前記残存容量目標値を所定量引き下げる手段では、前記充電効率と前記第1の充電効率判定値との差に応じて、前記所定量を決定することが好ましい。   In the secondary battery charge control device, the means for lowering the remaining capacity target value by a predetermined amount determines the predetermined amount according to a difference between the charge efficiency and the first charge efficiency determination value. Is preferred.

また、前記二次電池の充電制御装置において、前記二次電池の残存容量と温度とに基づいて、前記第1の充電効率判定値より小さい第2の充電効率判定値を算出する手段と、前記充電効率が、前記第2の充電効率判定値以下の場合には、前記残存容量目標値を所定量引き下げる手段で、引き下げられた残存容量目標値を回復させる手段と、を備えることが好ましい。   Further, in the secondary battery charge control device, a means for calculating a second charge efficiency determination value smaller than the first charge efficiency determination value based on the remaining capacity and temperature of the secondary battery; When charging efficiency is less than or equal to the second charging efficiency determination value, it is preferable to include means for recovering the lowered remaining capacity target value by means for lowering the remaining capacity target value by a predetermined amount.

本発明によれば、二次電池の充電効率の低下を抑制することができる二次電池の充電制御方法及び充電制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the charging control method and charging control apparatus of a secondary battery which can suppress the fall of the charging efficiency of a secondary battery can be provided.

本実施形態に係る二次電池の充電制御装置が搭載された車両のパワーユニットの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the power unit of the vehicle by which the charging control apparatus of the secondary battery which concerns on this embodiment is mounted. 二次電池の極板間電圧と充電効率との関係を表すマップである。It is a map showing the relationship between the voltage between electrode plates of a secondary battery and charging efficiency. 二次電池の残存容量と第1の充電効率判定値との関係を表すマップである。It is a map showing the relationship between the remaining capacity of a secondary battery and a 1st charging efficiency determination value. 二次電池の残存容量と第1の充電効率判定値より小さく設定した第2の充電効率判定値との関係を表すマップである。It is a map showing the relationship between the remaining capacity of a secondary battery and the 2nd charging efficiency determination value set smaller than the 1st charging efficiency determination value. 二次電池の残存容量と第1の充電効率判定値及び第3の充電効率判定値との関係を表すマップである。It is a map showing the relationship between the remaining capacity of a secondary battery, a 1st charging efficiency determination value, and a 3rd charging efficiency determination value. 二次電池の温度又は車両の車速と残存容量目標値との関係を表すマップである。It is a map showing the relationship between the temperature of a secondary battery or the vehicle speed of a vehicle, and a remaining capacity target value. 二次電池の温度又は車両の車速と残存容量目標値との関係を表すマップである。It is a map showing the relationship between the temperature of a secondary battery or the vehicle speed of a vehicle, and a remaining capacity target value. 二次電池の温度又は車両の車速と残存容量目標値との関係を表すマップである。It is a map showing the relationship between the temperature of a secondary battery or the vehicle speed of a vehicle, and a remaining capacity target value. 本実施形態に係る二次電池の充電制御装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the charge control apparatus of the secondary battery which concerns on this embodiment.

本発明の実施の形態について以下説明する。   Embodiments of the present invention will be described below.

図1は、本実施形態に係る二次電池の充電制御装置が搭載された車両のパワーユニットの構成の一例を示す模式図である。本実施形態に係る充電制御装置は、二次電池を搭載した電気自動車(ハイブリッド自動車等も含む)等の車両等に適用可能である。図1に示す車両のパワーユニット1は、モータジェネレータ10、モータジェネレータ10に接続されたインバータ12、インバータ12に接続された二次電池14、二次電池14の充電を制御するための充電制御装置として機能するECU18を備える。ECU18は、モータジェネレータ10、インバータ12及び二次電池14と電気的に接続されている。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a power unit of a vehicle in which the secondary battery charge control device according to the present embodiment is mounted. The charge control device according to the present embodiment can be applied to a vehicle such as an electric vehicle (including a hybrid vehicle) equipped with a secondary battery. The vehicle power unit 1 shown in FIG. 1 is a motor generator 10, an inverter 12 connected to the motor generator 10, a secondary battery 14 connected to the inverter 12, and a charge control device for controlling charging of the secondary battery 14. A functioning ECU 18 is provided. The ECU 18 is electrically connected to the motor generator 10, the inverter 12, and the secondary battery 14.

モータジェネレータ10は、二次電池14より供給される電力等により駆動力を発生させる。また、車両が回生制御中である場合は、発電機として作動し、車両の運動エネルギーを電気エネルギーに変換して二次電池14を充電する。   The motor generator 10 generates a driving force by the electric power supplied from the secondary battery 14 or the like. Further, when the vehicle is under regenerative control, it operates as a generator, converts the kinetic energy of the vehicle into electrical energy, and charges the secondary battery 14.

インバータ12は、二次電池14等から供給される直流電流を交流電流に変換し、モータジェネレータ10を駆動させる。また、モータジェネレータ10が発電した交流電流を直流電流に変換し、二次電池14を充電する。   Inverter 12 converts a direct current supplied from secondary battery 14 or the like into an alternating current, and drives motor generator 10. Further, the alternating current generated by the motor generator 10 is converted into a direct current, and the secondary battery 14 is charged.

通常、二次電池14は、ある程度の電圧を確保するために、複数のセルを直列に接続した電池モジュールとして構成されている。本実施形態の充電制御装置によって充電制御される二次電池14は、どのような用途の二次電池14であっても適用可能であるが、高い電圧及び温度等で充電が行われると、充電反応とは異なる副反応により、ガスが発生して、充電効率が低下し易いニッケル水素二次電池が好適である。   Usually, the secondary battery 14 is configured as a battery module in which a plurality of cells are connected in series in order to ensure a certain voltage. The secondary battery 14 whose charge is controlled by the charge control device according to the present embodiment can be applied to any secondary battery 14, but when charged at a high voltage, temperature, or the like, it is charged. A nickel metal hydride secondary battery in which gas is generated due to a side reaction different from the reaction and the charging efficiency tends to decrease is suitable.

二次電池14には、二次電池14の端子電圧を検出する電圧センサ20、二次電池14に流れる電流を検出する電流センサ22、二次電池14の複数箇所に二次電池14の温度を検出する温度センサ24が設置されている。また、各センサはECU18に電気的に接続されており、各センサにより検出されたデータがECU18に送信される。   The secondary battery 14 includes a voltage sensor 20 that detects a terminal voltage of the secondary battery 14, a current sensor 22 that detects a current flowing through the secondary battery 14, and the temperature of the secondary battery 14 at a plurality of locations of the secondary battery 14. A temperature sensor 24 to detect is installed. Each sensor is electrically connected to the ECU 18, and data detected by each sensor is transmitted to the ECU 18.

通常、ECU18は、制御上限値及び制御下限値で規定される適正残存容量範囲に二次電池14の残存容量を維持するために、適正残存容量範囲内に残存容量目標値を設定し、この残存容量目標値を中心に、二次電池14の充電制御を行う。例えば、制御上限値を二次電池14の残存容量で80%、制御下限値を二次電池14の残存容量で20%とし(すなわち、適正残存容量範囲を20〜80%とし)、また、残存容量目標値を二次電池14の残存容量で60%に設定する。そして、二次電池14の残存容量が60%より下であると、モータジェネレータ10から供給される電気エネルギーを二次電池14へ供給して、二次電池14の充電を進める。また、二次電池14の残存容量が60%より上であると、モータジェネレータ10から供給される電気エネルギーを制限して二次電池14へ供給し(電気エネルギーの供給を停止してもよい)、二次電池14の充電量を制限(又は停止)する。なお、制限上限値は二次電池14が過充電になる可能性がある範囲で設定され、制限下限値は二次電池14が過放電になる可能性がある範囲で設定される。   Normally, the ECU 18 sets a remaining capacity target value within the appropriate remaining capacity range in order to maintain the remaining capacity of the secondary battery 14 within the appropriate remaining capacity range defined by the control upper limit value and the control lower limit value. The charging control of the secondary battery 14 is performed around the capacity target value. For example, the control upper limit value is 80% of the remaining capacity of the secondary battery 14, the control lower limit value is 20% of the remaining capacity of the secondary battery 14 (that is, the appropriate remaining capacity range is 20 to 80%), The target capacity value is set to 60% as the remaining capacity of the secondary battery 14. When the remaining capacity of the secondary battery 14 is lower than 60%, the electric energy supplied from the motor generator 10 is supplied to the secondary battery 14 and the charging of the secondary battery 14 is advanced. If the remaining capacity of the secondary battery 14 is higher than 60%, the electric energy supplied from the motor generator 10 is limited and supplied to the secondary battery 14 (the supply of electric energy may be stopped). The charge amount of the secondary battery 14 is limited (or stopped). The upper limit limit is set in a range where the secondary battery 14 may be overcharged, and the lower limit limit is set in a range where the secondary battery 14 may be overdischarged.

通常、ECU18は、上記のような二次電池14の充電制御を行うが、さらに、本実施形態では、二次電池14の充電効率に基づいて、残存容量目標値を変化させ、二次電池14の充電制御を行う。以下に、その制御について説明する。   Normally, the ECU 18 performs the charging control of the secondary battery 14 as described above. Furthermore, in the present embodiment, the remaining capacity target value is changed based on the charging efficiency of the secondary battery 14, and the secondary battery 14 is changed. Charge control. The control will be described below.

ECU18は、二次電池14の極板間電圧を算出する。ここで、二次電池14の極板間電圧とは、二次電池14の正・負極間電圧であり、電圧センサ20により検出される二次電池14の端子電圧から、二次電池14に流れる電流及び二次電池14の内部抵抗のIR分を除外することにより求められる(下式(1)参照)。
=VB+(IB×R) (1)
:二次電池14の極板間電圧
VB:二次電池14の端子電圧
IB:二次電池14の電流値(充電側を負とする。)
R:二次電池14の内部抵抗
The ECU 18 calculates the voltage between the electrode plates of the secondary battery 14. Here, the voltage between the plates of the secondary battery 14 is the voltage between the positive and negative electrodes of the secondary battery 14, and flows from the terminal voltage of the secondary battery 14 detected by the voltage sensor 20 to the secondary battery 14. It is obtained by excluding the IR component of the current and the internal resistance of the secondary battery 14 (see the following formula (1)).
V 0 = VB + (IB × R) (1)
V 0 : Voltage between electrode plates of the secondary battery 14 VB: Terminal voltage of the secondary battery 14 IB: Current value of the secondary battery 14 (the charging side is negative)
R: Internal resistance of the secondary battery 14

二次電池14の内部抵抗の算出は特に制限されるものではないが、例えば、複数の電流値及び電圧値を電圧・電流座標上にプロットし、プロットされた各点に沿って一次近似式を求め、この近似式で表される直線の傾きを内部抵抗として算出する。また、内部抵抗は二次電池14の温度に依存して変化することから、内部抵抗と二次電池14の温度との関係を表すマップをECU18に記憶させておき、温度センサ24により検出された温度データを該マップに当てはめて、内部抵抗を算出してもよい。   The calculation of the internal resistance of the secondary battery 14 is not particularly limited. For example, a plurality of current values and voltage values are plotted on the voltage / current coordinates, and a primary approximate expression is plotted along each plotted point. Then, the slope of the straight line represented by this approximate expression is calculated as the internal resistance. Further, since the internal resistance changes depending on the temperature of the secondary battery 14, a map representing the relationship between the internal resistance and the temperature of the secondary battery 14 is stored in the ECU 18 and detected by the temperature sensor 24. The internal resistance may be calculated by applying temperature data to the map.

そして、極板間電圧は、ECU18により、電流センサ22及び電圧センサ20により検出された端子電圧及び電流値、及び上記算出した内部抵抗を上記式(1)に当てはめることにより求められる。極板間電圧を算出する際には、例えば、数秒程度のなまし(フィルター)を各センサ又はECU18に設定して、ノイズ等の影響を除去することが好ましい。また、電圧センサ20を複数設置する場合には、二次電池14の充電制御を効率的に行うことができる点で、複数の電圧センサ20から検出された電圧のうち最も高い電圧を極板間電圧の算出に用いることが好ましい。なお、上記方法が、簡易で精度よく極板間電圧を求めることができる方法であるが、必ずしもこれに制限されるものではなく、例えば、正極及び負極に電圧センサ20を設置し、直接二次電池14の極板間電圧を検出する等でもよい。   The voltage between the electrode plates is obtained by applying the terminal voltage and current value detected by the current sensor 22 and the voltage sensor 20 and the calculated internal resistance to the equation (1) by the ECU 18. When calculating the voltage between the electrode plates, for example, it is preferable to set an annealing (filter) of about several seconds in each sensor or ECU 18 to remove the influence of noise or the like. In addition, when a plurality of voltage sensors 20 are installed, the highest voltage among the voltages detected from the plurality of voltage sensors 20 is set between the electrode plates in that the charging control of the secondary battery 14 can be performed efficiently. It is preferable to use for calculation of voltage. The above method is a method that can easily and accurately obtain the voltage between the electrode plates, but is not necessarily limited thereto. For example, the voltage sensor 20 is installed on the positive electrode and the negative electrode, and the secondary voltage is directly obtained. For example, the voltage between the electrodes of the battery 14 may be detected.

ECU18は、二次電池14の温度又は電流値と、極板間電圧とに基づいて、二次電池14の充電効率を算出する。二次電池14の充電効率の算出には、例えば、図2に示すような二次電池14の極板間電圧と充電効率との関係を表すマップが用いられる。ここで、充電効率とは充電電荷量に対する実際に蓄えられた電気量の比(η)又はガス発生等により蓄えることができなかった電気量の比(β=1−η)である。   The ECU 18 calculates the charging efficiency of the secondary battery 14 based on the temperature or current value of the secondary battery 14 and the electrode plate voltage. For calculation of the charging efficiency of the secondary battery 14, for example, a map representing the relationship between the voltage between the electrodes of the secondary battery 14 and the charging efficiency as shown in FIG. 2 is used. Here, the charging efficiency is the ratio of the amount of electricity actually stored with respect to the amount of charge (η) or the ratio of the amount of electricity that could not be stored due to gas generation (β = 1−η).

二次電池14の極板間電圧と充電効率との関係は、二次電池14の温度又は電流値に依存するため、図2(A)に示すように、例えば、二次電池14の温度が40℃、50℃、60℃の時等のように、いくつかの二次電池14の温度の時の極板間電圧と充電効率との関係を表すマップを用意するか、又は図2(B)に示すように、例えば、二次電池14の電流値が5A、25A、50Aの時等のように、いくつかの二次電池14の電流値の時の極板間電圧と充電効率との関係を表すマップを用意することが望ましい。   Since the relationship between the voltage between the electrode plates of the secondary battery 14 and the charging efficiency depends on the temperature or current value of the secondary battery 14, for example, as shown in FIG. Prepare a map showing the relationship between the voltage between the electrode plates and the charging efficiency at the temperature of several secondary batteries 14 as in the case of 40 ° C., 50 ° C., 60 ° C., or the like. ), For example, when the current value of the secondary battery 14 is 5A, 25A, 50A, etc. It is desirable to prepare a map that represents the relationship.

例えば、温度センサ24により検出された温度が40℃の場合、ECU18により40℃の時の極板間電圧と充電効率との関係を表すマップ(図2(A)参照)に、上記算出した極板間電圧を当てはめることにより、充電効率が算出される。また、例えば、電流センサ22により検出された電流値が5Aの場合、ECU18により5Aの時の極板間電圧と充電効率との関係を表すマップ(図2(B)参照)に、上記算出した極板間電圧を当てはめることにより、充電効率が算出される。また、温度センサ24により検出された温度や電流センサ22により検出された電流値が該マップの温度又は電流値以外の場合には、例えば、直線補間法等によりマップを補正する等して、充電効率を求めることができる。また、より正確に充電効率を算出する場合には、温度又は電流値の間隔を細かく設定した(例えば、1℃毎、1A毎)極板間電圧と充電効率との関係を表すマップを用意してもよい。   For example, when the temperature detected by the temperature sensor 24 is 40 ° C., a map (see FIG. 2A) showing the relationship between the voltage between the electrode plates and the charging efficiency when the temperature is 40 ° C. by the ECU 18 is used. By applying the inter-plate voltage, the charging efficiency is calculated. Further, for example, when the current value detected by the current sensor 22 is 5A, the ECU 18 calculates the above in a map (see FIG. 2B) that represents the relationship between the electrode plate voltage and the charging efficiency at 5A. By applying the voltage between the electrode plates, the charging efficiency is calculated. In addition, when the temperature detected by the temperature sensor 24 or the current value detected by the current sensor 22 is other than the temperature or current value of the map, for example, charging is performed by correcting the map by a linear interpolation method or the like. Efficiency can be sought. In order to calculate the charging efficiency more accurately, prepare a map that shows the relationship between the voltage between the electrodes and the charging efficiency with finely set intervals of temperature or current (for example, every 1 ° C., every 1A). May be.

また、温度センサ24を複数設置する場合には、二次電池14の充電制御を効率的に行うことができる点で、各温度センサ24から検出された温度の時の充電効率を算出し、そのうち最大の充電効率を採用することが好ましい。なお、充電効率の算出方法は必ずしも上記方法に制限されるものではなく、従来知られている全ての算出方法又は検出方法を採用することができる。   Further, when a plurality of temperature sensors 24 are installed, the charging efficiency at the temperature detected from each temperature sensor 24 is calculated in that the charging control of the secondary battery 14 can be efficiently performed, It is preferable to employ the maximum charging efficiency. Note that the calculation method of the charging efficiency is not necessarily limited to the above method, and any conventionally known calculation method or detection method can be employed.

ECU18は、二次電池14の残存容量及び温度に基づいて、第1の充電効率判定値を算出する。第1の充電効率判定値の算出には、例えば、図3に示すような二次電池14の残存容量と第1の充電効率判定値との関係を表すマップが用いられる。ここで、二次電池14の充電効率は温度に依存するため、第1の充電効率判定値も温度に依存させる必要があり、図3に示すように、例えば、二次電池14の温度が、30℃、40℃の時等のように、いくつかの二次電池14の温度の時の二次電池14の残存容量と第1の充電効率判定値との関係を表すマップを用意する。   The ECU 18 calculates a first charging efficiency determination value based on the remaining capacity and temperature of the secondary battery 14. For example, a map representing the relationship between the remaining capacity of the secondary battery 14 and the first charging efficiency determination value as shown in FIG. 3 is used to calculate the first charging efficiency determination value. Here, since the charging efficiency of the secondary battery 14 depends on the temperature, the first charging efficiency determination value also needs to depend on the temperature. For example, as shown in FIG. As in the case of 30 ° C., 40 ° C., etc., a map is prepared that represents the relationship between the remaining capacity of the secondary battery 14 and the first charging efficiency judgment value at the temperature of several secondary batteries 14.

例えば、温度センサ24により検出された温度が40℃の場合、ECU18により40℃の時の二次電池14の残存容量と第1の充電効率判定値との関係を表すマップ(図3参照)に、その時の二次電池14の残存容量を当てはめることにより、第1の充電効率判定値が算出される。また、温度センサ24により検出された温度が該マップの温度以外の場合には、例えば、直線補間法等によりマップを補正する等して、第1の充電効率判定値を求めることができる。また、より正確に第1の充電効率判定値を算出する場合には、温度の間隔を細かく設定した(例えば、1℃毎)二次電池14の残存容量と第1の充電効率判定値との関係を表すマップを用意してもよい。   For example, when the temperature detected by the temperature sensor 24 is 40 ° C., a map (see FIG. 3) showing the relationship between the remaining capacity of the secondary battery 14 and the first charging efficiency determination value when the temperature is 40 ° C. by the ECU 18. The first charging efficiency determination value is calculated by applying the remaining capacity of the secondary battery 14 at that time. Further, when the temperature detected by the temperature sensor 24 is other than the temperature of the map, for example, the first charging efficiency determination value can be obtained by correcting the map by a linear interpolation method or the like. Further, when calculating the first charging efficiency determination value more accurately, the temperature interval is set finely (for example, every 1 ° C.) between the remaining capacity of the secondary battery 14 and the first charging efficiency determination value. You may prepare the map showing a relationship.

また、温度センサ24を複数設置する場合には、二次電池14の充電制御を効率的に行うことができる点で、各温度センサ24から検出された温度のうち最も高い温度を採用することが好ましい。   Further, when a plurality of temperature sensors 24 are installed, the highest temperature among the temperatures detected from each temperature sensor 24 can be adopted in that the charging control of the secondary battery 14 can be performed efficiently. preferable.

上記二次電池14の残存容量の検出は、従来知られている方法等特に制限されるものではないが、例えば、充電時における二次電池14の電圧電流特性(I−V特性)と残存容量との関係を利用する検出方法や、充電電流の積算により検出する方法等が挙げられる。   The detection of the remaining capacity of the secondary battery 14 is not particularly limited by a conventionally known method. For example, the voltage-current characteristics (IV characteristics) and the remaining capacity of the secondary battery 14 at the time of charging are used. And a detection method using the relationship between the charging current and a method of detecting by integrating the charging current.

ECU18は、上記算出した二次電池14の充電効率と第1の充電効率判定値とを比較して、二次電池14の充電効率が第1の充電効率判定値以上の時は、残存容量目標値を所定量(第1所定量)分引き下げる。ここで、第1所定量は、予め規定しておいてもよいが(例えば、10%)、二次電池14の充電効率と第1の充電効率判定値との差が大きいほど、第1所定量を大きくする等、二次電池14の充電効率と第1の充電効率判定値との差に応じて、第1所定量を決定することが望ましい。   The ECU 18 compares the calculated charging efficiency of the secondary battery 14 with the first charging efficiency determination value, and when the charging efficiency of the secondary battery 14 is equal to or higher than the first charging efficiency determination value, the remaining capacity target The value is reduced by a predetermined amount (first predetermined amount). Here, the first predetermined amount may be defined in advance (for example, 10%). However, the larger the difference between the charging efficiency of the secondary battery 14 and the first charging efficiency determination value, the first place. It is desirable to determine the first predetermined amount according to the difference between the charging efficiency of the secondary battery 14 and the first charging efficiency determination value, such as increasing the fixed amount.

そして、二次電池14の充電制御は、この引き下げた残存容量目標値を中心に行われる。すなわち、残存容量目標値が60%から50%に引き下げられた場合、二次電池14の残存容量が50%より下であると、モータジェネレータ10から供給される電気エネルギーを二次電池14へ供給して、二次電池14の充電を進める。また、二次電池14の残存容量が50%より上であると、モータジェネレータ10から供給される電気エネルギーを制限して二次電池14へ供給し(電気エネルギーの供給を停止してもよい)、二次電池14の充電量を制限(又は停止)する。このように、充電効率に判定基準を設けて、その判定を基に残存容量目標値を変更することにより、二次電池14の充電効率の悪化を抑制し、二次電池14を保護することができる。   Then, the charging control of the secondary battery 14 is performed around the lowered remaining capacity target value. That is, when the remaining capacity target value is reduced from 60% to 50%, if the remaining capacity of the secondary battery 14 is lower than 50%, the electric energy supplied from the motor generator 10 is supplied to the secondary battery 14. Then, the secondary battery 14 is charged. If the remaining capacity of the secondary battery 14 is higher than 50%, the electric energy supplied from the motor generator 10 is limited and supplied to the secondary battery 14 (the supply of electric energy may be stopped). The charge amount of the secondary battery 14 is limited (or stopped). In this way, by setting a determination criterion for charging efficiency and changing the remaining capacity target value based on the determination, deterioration of the charging efficiency of the secondary battery 14 can be suppressed and the secondary battery 14 can be protected. it can.

また、ECU18は、二次電池14の残存容量及び温度に基づいて、第1の充電効率判定値より小さい第2の充電効率判定値を算出する。第2の充電効率判定値の算出には、例えば、図4に示すような二次電池14の残存容量と第1の充電効率判定値より小さく設定した第2の充電効率判定値との関係を表すマップが用いられる。ここで、図での説明は省略するが、第1の充電効率判定値と同様、第2の充電効率判定値も温度に依存させる必要があり、例えば、二次電池14の温度が、30℃、40℃の時等のように、いくつかの二次電池14の温度の時の二次電池14の残存容量と第2の充電効率判定値との関係を表すマップを用意する。   Further, the ECU 18 calculates a second charging efficiency determination value smaller than the first charging efficiency determination value based on the remaining capacity and temperature of the secondary battery 14. In calculating the second charging efficiency determination value, for example, the relationship between the remaining capacity of the secondary battery 14 and the second charging efficiency determination value set smaller than the first charging efficiency determination value as shown in FIG. A map that represents is used. Here, although explanation in the figure is omitted, it is necessary to make the second charging efficiency judgment value dependent on the temperature as well as the first charging efficiency judgment value. For example, the temperature of the secondary battery 14 is 30 ° C. As in the case of 40 ° C., etc., a map is prepared that represents the relationship between the remaining capacity of the secondary battery 14 and the second charging efficiency determination value at the temperature of several secondary batteries 14.

例えば、温度センサ24により検出された温度が40℃の場合、ECU18により40℃の時の二次電池14の残存容量と第2の充電効率判定値との関係を表すマップ(図4参照)に、二次電池14の残存容量を当てはめることにより、第2の充電効率判定値が算出される。また、温度センサ24により検出された温度が該マップの温度以外の場合には、例えば、直線補間法等によりマップを補正する等して、第2の充電効率判定値が求められる。   For example, when the temperature detected by the temperature sensor 24 is 40 ° C., the ECU 18 displays a map (see FIG. 4) showing the relationship between the remaining capacity of the secondary battery 14 and the second charging efficiency determination value when the temperature is 40 ° C. By applying the remaining capacity of the secondary battery 14, a second charging efficiency determination value is calculated. Further, when the temperature detected by the temperature sensor 24 is other than the temperature of the map, for example, the second charging efficiency determination value is obtained by correcting the map by a linear interpolation method or the like.

そして、ECU18は、上記算出した二次電池14の充電効率と第2の充電効率判定値とを比較して、二次電池14の充電効率が第2の充電効率判定値以下の時は、引き下げた残存容量目標値を通常の残存容量目標値に回復させる。すなわち、二次電池14の充電制御は、通常の残存容量目標値を中心に行われる。   Then, the ECU 18 compares the calculated charging efficiency of the secondary battery 14 with the second charging efficiency determination value, and reduces the charging efficiency when the charging efficiency of the secondary battery 14 is equal to or lower than the second charging efficiency determination value. The remaining target capacity value is restored to the normal remaining capacity target value. That is, the charging control of the secondary battery 14 is performed around the normal remaining capacity target value.

これまで、二次電池14の残存容量目標値の引き下げには、1つの充電効率判定値を基に決定しているが、必ずしもこれに制限されるものではなく、残存容量目標値の引き下げに用いる充電効率判定値を複数設定してもよい。例えば、ECU18は、二次電池14の残存容量及び温度に基づいて、第1の充電効率判定値及び第1の充電効率判定値より大きい第3の充電効率判定値を算出する。第1及び第3の充電効率判定値の算出には、例えば、図5に示すような二次電池14の残存容量と第1の充電効率判定値及び第3の充電効率判定値との関係を表すマップが用いられる。ここで、図での説明は省略するが、上記同様、第1及び第3の充電効率判定値も温度に依存させる必要があり、例えば、二次電池14の温度が、30℃、40℃の時等のように、いくつかの二次電池14の温度の時の二次電池14の残存容量と第1及び第3の充電効率判定値との関係を表すマップを用意する。   Until now, the reduction of the target remaining capacity value of the secondary battery 14 has been determined based on one charging efficiency determination value, but the present invention is not necessarily limited to this and is used to reduce the target remaining capacity value. A plurality of charging efficiency determination values may be set. For example, the ECU 18 calculates a first charging efficiency determination value and a third charging efficiency determination value larger than the first charging efficiency determination value based on the remaining capacity and temperature of the secondary battery 14. For the calculation of the first and third charging efficiency determination values, for example, the relationship between the remaining capacity of the secondary battery 14 and the first charging efficiency determination value and the third charging efficiency determination value as shown in FIG. A map that represents is used. Here, although explanation in the figure is omitted, the first and third charging efficiency determination values also need to depend on the temperature, as described above. For example, the temperature of the secondary battery 14 is 30 ° C. or 40 ° C. As in the case of time, a map representing the relationship between the remaining capacity of the secondary battery 14 at the temperature of several secondary batteries 14 and the first and third charging efficiency determination values is prepared.

例えば、温度センサ24により検出された温度が40℃の場合、ECU18により40℃の時の二次電池14の残存容量と第1及び第3の充電効率判定値との関係を表すマップ(図5参照)に、その時の二次電池14の残存容量を当てはめることにより、第1及び第3の充電効率判定値が算出される。また、温度センサ24により検出された温度が該マップの温度以外の場合には、例えば、直線補間法等によりマップを補正する等して、第1及び第3の充電効率判定値が求められる。   For example, when the temperature detected by the temperature sensor 24 is 40 ° C., a map representing the relationship between the remaining capacity of the secondary battery 14 and the first and third charging efficiency determination values when the temperature is 40 ° C. by the ECU 18 (FIG. 5). The first and third charging efficiency determination values are calculated by applying the remaining capacity of the secondary battery 14 at that time to the reference). Further, when the temperature detected by the temperature sensor 24 is other than the temperature of the map, for example, the first and third charging efficiency determination values are obtained by correcting the map by a linear interpolation method or the like.

そして、ECU18は、上記算出した二次電池14の充電効率と第1及び第3の充電効率判定値とを比較する。二次電池14の充電効率が第1の充電効率判定値以上で、第3の充電効率判定値未満の時は、残存容量目標値を第1所定量(例えば、5%)分引き下げる。また、二次電池14の充電効率が第3の充電効率判定値以上の時は、残存容量目標値を第1所定量より大きい第2所定量(例えば、10%)分引き下げる。そして、二次電池14の充電制御は、この引き下げた残存容量目標値を中心に行われる。このように、充電効率の判定基準を細かく設定することにより、より効率的に二次電池14の充電効率の悪化を抑制し、二次電池14を保護することができる。   Then, the ECU 18 compares the calculated charging efficiency of the secondary battery 14 with the first and third charging efficiency determination values. When the charging efficiency of the secondary battery 14 is not less than the first charging efficiency determination value and less than the third charging efficiency determination value, the remaining capacity target value is lowered by a first predetermined amount (for example, 5%). When the charging efficiency of the secondary battery 14 is equal to or higher than the third charging efficiency determination value, the remaining capacity target value is lowered by a second predetermined amount (for example, 10%) that is larger than the first predetermined amount. Then, the charging control of the secondary battery 14 is performed around the lowered remaining capacity target value. Thus, by setting the determination criteria for the charging efficiency in detail, the deterioration of the charging efficiency of the secondary battery 14 can be suppressed more efficiently and the secondary battery 14 can be protected.

本実施形態では、引き下げ前の残存容量目標値(例えば、60%)を、温度等によらず一定としているが、必ずしもこれに制限されるものではなく、二次電池14の温度、車両用であれば車速等に応じて、残存容量目標値を変化させてもよい。具体的には、図6に示すような二次電池14の温度又は車両の車速と残存容量目標値との関係を表すマップ等を、ECU18に記憶させ、二次電池14の温度や車速に応じて、引き下げ前の残存容量目標値を変化させる。そして、その際、例えば、二次電池14の充電効率が第1の充電効率判定値以上の時は、二次電池14の温度や車速に応じて決定した残存容量目標値から第1所定量(例えば、5%)分引き下げる(図6に示す点線)。   In the present embodiment, the remaining capacity target value (for example, 60%) before the reduction is constant regardless of the temperature or the like, but is not necessarily limited to this. If there is, the remaining capacity target value may be changed according to the vehicle speed or the like. Specifically, a map or the like representing the relationship between the temperature of the secondary battery 14 or the vehicle speed of the vehicle and the remaining capacity target value as shown in FIG. 6 is stored in the ECU 18, according to the temperature and the vehicle speed of the secondary battery 14. Thus, the remaining capacity target value before the reduction is changed. At that time, for example, when the charging efficiency of the secondary battery 14 is equal to or higher than the first charging efficiency determination value, the first predetermined amount (from the remaining capacity target value determined according to the temperature of the secondary battery 14 and the vehicle speed ( For example, it is reduced by 5% (dotted line shown in FIG. 6).

また、本実施形態では、残存容量目標値を引き下げる所定量を、予め設定したり又は二次電池14の充電効率と第1の充電効率判定値との差に応じて決定しているが、必ずしもこれに制限されるものではない。例えば、残存容量目標値を引き下げる所定量を、二次電池14の温度、車両の車速等に応じて、変化させてもよい。具体的には、図7に示すように、充電効率の悪い二次電池14の高温域や回生電気量が多くなる車両の高速域では、残存容量目標値を引き下げる所定量を多くして、残存容量目標値を低く設定してもよい。すなわち、二次電池14の充電効率が第1の充電効率判定値以上の時であって、二次電池14の高温域や車両の高速域の場合には、残存容量目標値から例えば10%引き下げ、二次電池14の充電効率が第1の充電効率判定値以上の時であっても、二次電池14の高温域や車両の高速域でない場合には、残存容量目標値から例えば5%だけ引き下げるように設定することも可能である。このような設定は、引き下げ前の残存容量目標値が二次電池14の温度や車速に依存せず一定に設定される場合に好適である。   In the present embodiment, the predetermined amount for reducing the remaining capacity target value is set in advance or determined according to the difference between the charging efficiency of the secondary battery 14 and the first charging efficiency determination value. This is not a limitation. For example, the predetermined amount for lowering the remaining capacity target value may be changed according to the temperature of the secondary battery 14, the vehicle speed of the vehicle, and the like. Specifically, as shown in FIG. 7, in the high temperature range of the secondary battery 14 with poor charging efficiency and the high speed range of the vehicle in which the amount of regenerative electricity increases, the predetermined amount for lowering the remaining capacity target value is increased to increase the remaining capacity. The capacity target value may be set low. That is, when the charging efficiency of the secondary battery 14 is equal to or higher than the first charging efficiency determination value and the secondary battery 14 is in a high temperature range or a vehicle high speed range, it is reduced by, for example, 10% from the remaining capacity target value. Even when the charging efficiency of the secondary battery 14 is equal to or higher than the first charging efficiency judgment value, if the secondary battery 14 is not in a high temperature range or a high speed range of the vehicle, it is only 5% from the remaining capacity target value. It is also possible to set so as to lower. Such a setting is suitable when the remaining capacity target value before the reduction is set to be constant without depending on the temperature of the secondary battery 14 or the vehicle speed.

一方、引き下げ前の残存容量目標値が二次電池14の温度や車速の増加に応じて小さくなるように設定される場合には、図8に示すように、二次電池14の高温域や高速域で、残存容量目標値を引き下げる所定量を小さくして、残存容量目標値が低くなり過ぎないように設定してもよい。すなわち、二次電池14の充電効率が第1の充電効率判定値以上の時であって、二次電池14の高温域や車両の高速域の場合には、残存容量目標値から例えば5%引き下げ、二次電池14の充電効率が第1の充電効率判定値以上の時であっても、二次電池14の高温域や車両の高速域でない場合には、残存容量目標値から例えば10%だけ引き下げるように設定することが好ましい。   On the other hand, when the remaining capacity target value before the reduction is set so as to decrease as the temperature of the secondary battery 14 and the vehicle speed increase, as shown in FIG. A predetermined amount for lowering the remaining capacity target value may be reduced in a range so that the remaining capacity target value does not become too low. That is, when the charging efficiency of the secondary battery 14 is equal to or higher than the first charging efficiency determination value and the secondary battery 14 is in a high temperature range or a high speed range of the vehicle, it is reduced by, for example, 5% from the remaining capacity target value. Even when the charging efficiency of the secondary battery 14 is equal to or higher than the first charging efficiency determination value, if the secondary battery 14 is not in the high temperature range or the high speed range of the vehicle, it is only 10% from the remaining capacity target value, for example. It is preferable to set so as to lower.

本実施形態の充電制御方法では、所定の時間間隔で充電効率判定値等を逐次算出し、二次電池14の充電効率と充電効率判定値とを比較して、二次電池14の充電制御を実施してもよいし、二次電池14の充電効率が悪化しやすい状態、例えば、二次電池14の高温域、車両の高速域の時に、充電効率判定値等を算出し、二次電池14の充電効率と充電効率判定値とを比較して、二次電池14の充電制御を行ってもよい。   In the charge control method of the present embodiment, the charging efficiency determination value and the like are sequentially calculated at predetermined time intervals, and the charging efficiency of the secondary battery 14 is compared with the charging efficiency of the secondary battery 14 and the charging efficiency determination value. The charging efficiency determination value or the like may be calculated in a state where the charging efficiency of the secondary battery 14 is likely to deteriorate, for example, in the high temperature range of the secondary battery 14 or in the high speed range of the vehicle. The charging efficiency of the secondary battery 14 may be controlled by comparing the charging efficiency and the charging efficiency determination value.

図9は、本実施形態に係る二次電池14の充電制御装置の動作の一例を示すフローチャートである。図9に示すように、ステップS10では、電圧センサ20及び電流センサ22により、二次電池14の端子電圧及び電流値を検出し、さらに、端子電圧及び電流値に基づいて内部抵抗を検出する。この際、温度センサ24による温度データを内部抵抗と温度との関係を表すマップに当てはめて内部抵抗を算出してもよい。ステップS12では、ECU18は、上式(1)に二次電池14の端子電圧、電流値及び内部抵抗を当てはめて、二次電池14の極板間電圧を算出する。ステップS14では、ECU18は、二次電池14の各温度における極板間電圧と充電効率(η又はβ)との関係を表すマップ(図2(A)参照)や二次電池14の各電流値における極板間電圧と充電効率(η又はβ)との関係を表すマップ(図2(B)参照)に、上記検出した二次電池14の温度又は電流値、及び上記算出した極板間電圧を当てはめて、充電効率を算出する。   FIG. 9 is a flowchart showing an example of the operation of the charge control device for the secondary battery 14 according to the present embodiment. As shown in FIG. 9, in step S10, the voltage sensor 20 and the current sensor 22 detect the terminal voltage and current value of the secondary battery 14, and further detect the internal resistance based on the terminal voltage and current value. At this time, the internal resistance may be calculated by applying temperature data from the temperature sensor 24 to a map representing the relationship between the internal resistance and the temperature. In step S12, the ECU 18 applies the terminal voltage, current value, and internal resistance of the secondary battery 14 to the above equation (1) to calculate the voltage between the electrode plates of the secondary battery 14. In step S <b> 14, the ECU 18 displays a map (see FIG. 2A) representing the relationship between the voltage between the electrode plates and the charging efficiency (η or β) at each temperature of the secondary battery 14 and each current value of the secondary battery 14. In the map (see FIG. 2B) showing the relationship between the voltage between the electrode plates and the charging efficiency (η or β) in FIG. 2, the detected temperature or current value of the secondary battery 14 and the calculated voltage between the electrode plates. Is applied to calculate the charging efficiency.

ステップS16では、ECU18は、二次電池14の残存容量を算出する。ステップS18では、各温度における二次電池14の残存容量と第1の充電効率判定値との関係を表すマップ(図3参照)に、二次電池14の温度及び上記算出した二次電池14の残存容量を当てはめて、第1の充電効率判定値を算出する。   In step S16, the ECU 18 calculates the remaining capacity of the secondary battery 14. In step S18, the map of the relationship between the remaining capacity of the secondary battery 14 at each temperature and the first charging efficiency determination value (see FIG. 3) is displayed on the temperature of the secondary battery 14 and the calculated value of the secondary battery 14. A first charging efficiency determination value is calculated by applying the remaining capacity.

そして、ECU18は、上記算出した充電効率と第1の充電効率判定値を比較し、算出した充電効率が第1の充電効率判定値以上の場合には、ステップS20に進み、残存容量目標値を所定量(例えば、10%)引き下げる。そして、二次電池14の充電制御は、引き下げられた残存容量目標値(又は初期の残存容量目標値)を中心に行われる。   Then, the ECU 18 compares the calculated charging efficiency with the first charging efficiency determination value. If the calculated charging efficiency is equal to or higher than the first charging efficiency determination value, the ECU 18 proceeds to step S20 and sets the remaining capacity target value. Reduce by a predetermined amount (for example, 10%). The charging control of the secondary battery 14 is performed centering on the lowered remaining capacity target value (or the initial remaining capacity target value).

以上のように、二次電池の充電効率を考慮して二次電池の充電制御を行うことにより、二次電池の充電効率の悪化を抑制し、二次電池の保護を図ることができる。   As described above, by performing charging control of the secondary battery in consideration of the charging efficiency of the secondary battery, it is possible to suppress the deterioration of the charging efficiency of the secondary battery and protect the secondary battery.

1 パワーユニット、10 モータジェネレータ、12 インバータ、14 二次電池、18 ECU、20 電圧センサ、22 電流センサ、24 温度センサ。   1 power unit, 10 motor generator, 12 inverter, 14 secondary battery, 18 ECU, 20 voltage sensor, 22 current sensor, 24 temperature sensor.

Claims (6)

残存容量目標値を中心として二次電池の充電を制御する二次電池の充電制御方法であって、
前記二次電池の充電効率を算出するステップと、
前記二次電池の残存容量と温度とに基づいて、第1の充電効率判定値を算出するステップと、
前記充電効率が前記第1の充電効率判定値以上の場合には、前記残存容量目標値を所定量引き下げるステップと、を備えることを特徴とする二次電池の充電制御方法。
A charge control method for a secondary battery that controls the charge of the secondary battery around the remaining capacity target value,
Calculating the charging efficiency of the secondary battery;
Calculating a first charging efficiency determination value based on the remaining capacity and temperature of the secondary battery;
And a step of lowering the remaining capacity target value by a predetermined amount when the charging efficiency is equal to or higher than the first charging efficiency determination value.
請求項1記載の二次電池の充電制御方法であって、前記残存容量目標値を所定量引き下げるステップでは、前記充電効率と前記第1の充電効率判定値との差に応じて、前記所定量を決定することを特徴とする二次電池の充電制御方法。   2. The secondary battery charge control method according to claim 1, wherein in the step of lowering the remaining capacity target value by a predetermined amount, the predetermined amount is determined according to a difference between the charging efficiency and the first charging efficiency determination value. A charge control method for a secondary battery, wherein: 請求項1又は2に記載の二次電池の充電制御方法であって、前記二次電池の残存容量と温度とに基づいて、前記第1の充電効率判定値より小さい第2の充電効率判定値を算出するステップと、
前記充電効率が、前記第2の充電効率判定値以下の場合には、前記残存容量目標値を所定量引き下げるステップで、引き下げられた残存容量目標値を回復させるステップと、を備えることを特徴とする二次電池の充電制御方法。
The secondary battery charging control method according to claim 1 or 2, wherein the second charging efficiency determination value is smaller than the first charging efficiency determination value based on the remaining capacity and temperature of the secondary battery. Calculating steps,
A step of lowering the remaining capacity target value by a predetermined amount when the charging efficiency is equal to or lower than the second charging efficiency determination value, and a step of recovering the lowered remaining capacity target value. Secondary battery charge control method.
予め設定した残存容量目標値となるように二次電池の充電を制御する二次電池の充電制御装置であって、
前記二次電池の充電効率を算出する手段と、
前記二次電池の残存容量と温度とに基づいて、第1の充電効率判定値を算出する手段と、
前記充電効率が前記第1の充電効率判定値以上の場合には、前記残存容量目標値を所定量引き下げる手段と、を備えることを特徴とする二次電池の充電制御装置。
A charging control device for a secondary battery that controls charging of the secondary battery so as to be a preset remaining capacity target value,
Means for calculating the charging efficiency of the secondary battery;
Means for calculating a first charging efficiency determination value based on the remaining capacity and temperature of the secondary battery;
Means for lowering the remaining capacity target value by a predetermined amount when the charging efficiency is equal to or higher than the first charging efficiency determination value.
請求項4記載の二次電池の充電制御装置であって、前記残存容量目標値を所定量引き下げる手段では、前記充電効率と前記第1の充電効率判定値との差に応じて、前記所定量を決定することを特徴とする二次電池の充電制御装置。   5. The charging control device for a secondary battery according to claim 4, wherein the means for lowering the remaining capacity target value by a predetermined amount is configured to reduce the predetermined amount according to a difference between the charging efficiency and the first charging efficiency determination value. A charge control device for a secondary battery, wherein 請求項4又は5に記載の二次電池の充電制御装置であって、前記二次電池の残存容量と温度とに基づいて、前記第1の充電効率判定値より小さい第2の充電効率判定値を算出する手段と、
前記充電効率が、前記第2の充電効率判定値以下の場合には、前記残存容量目標値を所定量引き下げる手段で、引き下げられた残存容量目標値を回復させる手段と、を備えることを特徴とする二次電池の充電制御装置。
6. The secondary battery charge control device according to claim 4, wherein the second charge efficiency determination value is smaller than the first charge efficiency determination value based on a remaining capacity and a temperature of the secondary battery. Means for calculating
Means for reducing the remaining capacity target value by a means for reducing the remaining capacity target value by a predetermined amount when the charging efficiency is equal to or less than the second charging efficiency determination value, Secondary battery charge control device.
JP2010130962A 2010-06-08 2010-06-08 Charge control method and charge control device for secondary battery Active JP5418417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010130962A JP5418417B2 (en) 2010-06-08 2010-06-08 Charge control method and charge control device for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130962A JP5418417B2 (en) 2010-06-08 2010-06-08 Charge control method and charge control device for secondary battery

Publications (2)

Publication Number Publication Date
JP2011259582A JP2011259582A (en) 2011-12-22
JP5418417B2 true JP5418417B2 (en) 2014-02-19

Family

ID=45475134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130962A Active JP5418417B2 (en) 2010-06-08 2010-06-08 Charge control method and charge control device for secondary battery

Country Status (1)

Country Link
JP (1) JP5418417B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4308408B2 (en) * 2000-04-28 2009-08-05 パナソニック株式会社 Secondary battery input / output controller
JP4479123B2 (en) * 2001-05-17 2010-06-09 トヨタ自動車株式会社 Vehicle battery control apparatus and method
JP4118035B2 (en) * 2001-08-03 2008-07-16 トヨタ自動車株式会社 Battery control device
JP2005261034A (en) * 2004-03-10 2005-09-22 Toyota Motor Corp Controller of electric storage mechanism

Also Published As

Publication number Publication date
JP2011259582A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5019010B2 (en) Secondary battery charge control method and control device
JP4586832B2 (en) Electric vehicle
JP5527001B2 (en) Charge control method and charge control device for secondary battery
US8907622B2 (en) Vehicle charging system and electrically powered vehicle provided with the same
JP4530078B2 (en) Power storage control device and vehicle
CN102447140A (en) Lithium-ion battery controlling apparatus
JP5720538B2 (en) Storage device control device
US9796294B2 (en) Vehicle driven by electric motor and control method for vehicle
JP4527048B2 (en) Secondary battery control device and secondary battery input control method
JP2018014210A (en) Battery system
JP5822779B2 (en) Power storage system and charge / discharge control method thereof
JP2015215258A (en) State-of-charge detector and state-of-charge detection method
JP2008276972A (en) Control device of lithium secondary battery, motor driving device, control method of lithium secondary battery, and computer readable recording medium having recorded program to make computer perform control method of lithium secondary battery
JP5418417B2 (en) Charge control method and charge control device for secondary battery
JP5678915B2 (en) Battery charge control device
JP2016152718A (en) Charge and discharge controller, mobile and power sharing amount determination method
JP2019100933A (en) Secondary battery degradation state estimation method
JP2009290984A (en) Charge/discharge controller for vehicle battery
JP6950502B2 (en) Lithium-ion secondary battery controller
JP6696460B2 (en) Battery system
JP2002048848A (en) Remaining capacity detector for accumulator
JP2014081268A (en) Battery system, and electrically driven vehicle and power storage device having the same
JP6627669B2 (en) Battery system
JP6702043B2 (en) Battery system
JP2018006239A (en) Battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R151 Written notification of patent or utility model registration

Ref document number: 5418417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151