JP4118035B2 - Battery control device - Google Patents

Battery control device Download PDF

Info

Publication number
JP4118035B2
JP4118035B2 JP2001235841A JP2001235841A JP4118035B2 JP 4118035 B2 JP4118035 B2 JP 4118035B2 JP 2001235841 A JP2001235841 A JP 2001235841A JP 2001235841 A JP2001235841 A JP 2001235841A JP 4118035 B2 JP4118035 B2 JP 4118035B2
Authority
JP
Japan
Prior art keywords
level
battery
memory effect
target
storage amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001235841A
Other languages
Japanese (ja)
Other versions
JP2003047108A (en
Inventor
義晃 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001235841A priority Critical patent/JP4118035B2/en
Priority to US10/202,836 priority patent/US6600293B2/en
Priority to DE10235458A priority patent/DE10235458B4/en
Priority to FR0209948A priority patent/FR2828348B1/en
Publication of JP2003047108A publication Critical patent/JP2003047108A/en
Application granted granted Critical
Publication of JP4118035B2 publication Critical patent/JP4118035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッド車に搭載される蓄電池の蓄電量を制御する電池制御装置に関し、特にニッケル化合物を用いた蓄電池において知られているメモリ効果の解消に関する。
【0002】
【従来の技術】
従来より、車両駆動用モータの他に、エンジン駆動される発電機を搭載したハイブリッド車が知られている。このハイブリッド車においては、電池(メインバッテリ)を搭載しており、この電池からの電力によって駆動用モータを駆動すると共に、発電機からの電力によって電池の充電を行う。また、駆動用モータおよびエンジンによって車輪を回転させ走行する。
【0003】
電池の蓄電量はSOC(充電状態:State of Charge)と呼ぶ指標により監視、制御される。このSOCは満充電電流量に対する残存電流量の比で定義される。このSOCの検出方法として現状、一般には、充電時(或いは放電時)における電池の電圧電流特性(I−V特性)とSOCとの相関関係を利用する検出方法と、充放電電流量の積算による検出方法とが組み合わされて用いられている。
【0004】
電池制御装置は、このSOCに基づいて電池の充放電を制御する。充放電の制御において、SOCは充電禁止範囲、放電禁止範囲、適正蓄電量範囲の3つの範囲に区分される。充電禁止範囲は、過充電になる可能性があり、充電が禁止される範囲であり、例えば、SOCが80〜100%の範囲である。放電禁止範囲は、過放電になる可能性があり、放電が禁止される範囲であり、例えば、SOCが0〜20%の範囲である。適正蓄電量範囲は、過充電及び過放電となる可能性が低く、充電及び放電の両方が許可される範囲であり、例えば、SOCが20〜80%の範囲である。
【0005】
充電禁止範囲では、充電が禁止されることにより、余剰のエネルギーが電力として回生されずに、例えば熱等の形で放出されるので燃費が低下する。一方、放電禁止範囲では、放電が禁止されることにより、モータが駆動されず、またエンジンパワーが電池の充電に振り向けられるので、車両動力性能が低下する。
【0006】
そこで、電池制御装置は、SOCが適正蓄電量範囲に維持されるように制御を行う。具体的には、通常の走行においては、SOCが所定の目標蓄電量レベル(例えば50%程度)を中心とした所定の制御幅内で変動するように、モータの駆動および発電機の駆動が制御される。
【0007】
さて、ハイブリッド車の電池には、NiMH電池が用いられることが多い。このようにニッケル化合物を用いる電池では、上述の目標蓄電量レベル付近の所定の制御幅内での充放電を繰り返すと、メモリ効果が発生する。
【0008】
一般の電気製品に関して知られているメモリ効果は、電池が完全に放電される前に充電を行う動作を繰り返すことにより発生し、満充電状態にして放電を開始しても本来より少ない放電量で起電力が低下し、電池の動作可能時間が短くなる現象であり、過放電を行うことにより解消することが知られている。このメモリ効果を放電メモリ効果と呼び、次に述べる充電メモリ効果と区別する。
【0009】
充電メモリ効果は、電池が満充電となる前に放電を行う動作を繰り返すことにより発生し、充電受け入れ性が低下する現象である。つまり、充電時に、本来より少ない充電量で起電力は満充電と同等レベルに達する。すなわち、電池の満充電容量が低下する。
【0010】
一般の電気製品では、充電は基本的に満充電状態となるまで行われるのに対し、ハイブリッド車では上述のように、適正蓄電量範囲内の所定の制御幅以内にて基本的に充放電が繰り返されるように制御される。このため、ハイブリッド車では一般の電気製品と同様、放電メモリ効果が発生する一方、一般の電気製品に関しては起こりにくい充電メモリ効果が発生し易い。
【0011】
ハイブリッド車は、上述のように電池からのエネルギー出力により、動力性能を向上させ、また回生ブレーキにより運動エネルギーを電気エネルギーに変換して電池に蓄積して燃費を向上させている。このハイブリッド車において、充電メモリ効果が発生し、満充電容量が低下すると、出力可能なエネルギー量及び回収可能なエネルギー量が低下し、車両性能が低下する。
【0012】
この充電メモリ効果は、過充電により解消することができる。例えば、特開2001−69608号公報には、SOCの変動の制御幅を拡大し、完全放電・満充電に近づけることによりメモリ効果を解消する技術が提案されている。
【0013】
【発明が解決しようとする課題】
上述のように充電メモリ効果は過電により解消することが可能である。しかし、過電を行うと、電池内での水の電気分解により水素分子(H2)及び酸素分子(O2)が発生して内圧が上昇し、またH2とO2との再結合反応での発熱により温度が上昇する。これら内圧及び温度の上昇は電池の劣化を促進するという問題があった。
【0014】
また、ハイブリッド車では走行中の電気的な負荷変動が大きい。そのため、温度・内圧が上昇しないように低レートで安定した充電を実施して充電メモリ効果を解消することも困難である。
【0015】
一方、放電メモリ効果を解消するために過放電とすることは、動力性能を著しく低下させることとなるため、ハイブリッド車の走行中に行うことは好ましくない。
【0016】
さらに、上述のSOCの変動の制御幅を拡大し、完全放電・満充電とする技術では、完全放電・満充電とならない中間領域である適正蓄電範囲にてSOCが推移している時間が長くなり、メモリ効果解消に長時間を要するという問題があった。
【0017】
本発明は上記問題点を解消するためになされたもので、ハイブリッド車に搭載される電池におけるメモリ効果を、車両性能の低下、電池の劣化を回避しつつ、比較的速やかに解消する電池制御装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明に係る電池制御装置は、ハイブリッド車に搭載される蓄電池の蓄電量を、過充電及び過放電とならない適正蓄電量範囲内に設定される所定の目標蓄電量レベル付近に維持するように制御を行う電池制御装置において、前記蓄電量は、前記適正蓄電量範囲に含まれ前記目標蓄電量レベルを中心とする所定の制御幅内で変動するように制御され、前記蓄電池の充電メモリ効果の発生及び前記蓄電池の放電メモリ効果の発生を検知するメモリ効果検知手段と、前記充電メモリ効果及び放電メモリ効果のいずれの発生も検知されない場合は、前記目標蓄電量レベルを所定の通常レベルに設定し、充電メモリ効果の発生が検知された場合は、前記目標蓄電量レベルを前記通常レベルから前記適正蓄電量範囲の上限に近い限度近傍レベルに変更し、放電メモリ効果の発生が検知された場合は、前記目標蓄電量レベルを前記通常レベルから前記適正蓄電量範囲の下限に近い限度近傍レベルに変更する目標レベル設定手段と、を有し、上限及び下限の限度近傍レベルに対する制御幅は、前記通常レベルに対する制御幅に対して同一又はそれよりも狭く設定されることを特徴とする。また、前記目標レベル設定手段は、充電メモリ効果の発生が検知された場合に、前記目標蓄電量レベルを所定時間だけ上限の限度近傍レベルとし、放電メモリ効果の発生が検知された場合に、前記目標蓄電量レベルを所定時間だけ下限の限度近傍レベルとすることを特徴とする。
【0019】
本発明によれば、メモリ効果の発生が検知された場合には、目標蓄電量レベルを通常レベルから適正蓄電量範囲の上限近傍まで引き上げること、及び目標蓄電量レベルを通常レベルから適正蓄電量範囲の下限近傍まで引き下げることの少なくともいずれか一方が行われる。目標蓄電量レベルを上限近傍レベルへ引き上げることにより充電メモリ効果の解消が図られ、また目標蓄電量レベルを下限近傍レベルへ引き下げることにより放電メモリ効果の解消が図られる。
【0020】
他の本発明に係る電池制御装置においては、前記蓄電量が、前記適正蓄電量範囲に含まれ前記目標蓄電量レベルを中心とする所定の制御幅内で変動するように制御され、前記限度近傍レベルに対する前記制御幅は、前記通常レベルに対する前記制御幅の同一以下に設定される。
【0021】
本発明によれば、蓄電量の目標制御範囲として、目標蓄電量レベルを中心とした所定の制御幅が適正蓄電量範囲内に設定される。大抵の走行状態ではこの制御幅内で変動するように蓄電量が制御される。限度近傍レベルに対する制御幅が、通常レベルに対する制御幅の同一以下であるということは、限度近傍レベルに対する制御幅は必然的に適正蓄電量範囲より小さく、それは適正蓄電量範囲の上限又は下限に寄って位置することを意味する。これにより、蓄電量が上限又は下限に近い位置で推移しやすく、例えば制御幅を適正蓄電量範囲全体とする場合などに比べて速やかに充電メモリ効果、放電メモリ効果が解消される。
【0022】
本発明の好適な態様は、前記目標レベル設定手段が、前記メモリ効果の発生が検知された場合に、前記目標蓄電量レベルを所定時間だけ前記限度近傍レベルとする電池制御装置である。本態様では、メモリ効果の発生が検知された場合に、目標蓄電量レベルは所定時間、限度近傍レベルに変更され、その後、通常レベルに戻される。限度近傍レベルが維持される所定時間は、メモリ効果の解消に必要な時間に基づいて定められる。限度近傍レベルによってメモリ効果が解消されるのに必要な時間は、例えば限度近傍レベルと適正蓄電量範囲の上限又は下限との距離や限度近傍レベルを中心とした蓄電量の制御幅の大きさに応じて変わり得る。
【0023】
本発明の他の好適な態様は、前記限度近傍レベルが、前記適正蓄電量範囲の前記上限の近傍に設定される電池制御装置である。ハイブリッド車に搭載される蓄電池は通常、複数の電池(単位セル)が直列に接続された組電池であり、蓄電量は単位セル毎に異なり得る。本態様によれば、目標蓄電量レベルを適正蓄電量範囲の上限近くまで引き上げることにより、蓄電池を構成する各単位セル間の蓄電量のばらつきを縮小し蓄電量の均一化を図ることができる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)であるハイブリッド車の電池制御システムについて、図面に基づいて説明する。図1は、実施形態の電池制御システムの概略の全体構成を示すブロック図であり、ハイブリッド車のメインバッテリである電池10は、ニッケル金属水素(NiMH)電池である。電池10は、複数の電池セルの直列接続からなる組電池であり、これにより、例えば280Vといった高電圧を得ることができる。
【0025】
電池10は、数個ずつの電池セルの直列接続からなる電池ブロックに区分され、各電池ブロック毎の電圧を電圧センサ12が検出している。図においては、電池ブロックの1つを1つの電池記号として示している。電圧センサ12の測定結果は、電池ECU14に供給される。
【0026】
また、電流センサ16は、電池10の充放電電流を計測し、その測定結果は電池ECU14に供給される。また電池10には、その温度を検知する温度センサ18が取り付けられ、その測定結果も電池ECU14へ供給される。
【0027】
電池ECU14は、電池10の充放電電流を積算して電池10のSOCを推定する。
【0028】
また、電池ECU14は、電圧センサ12、電流センサ16、温度センサ18から得られる充放電中における電圧、電流、温度の情報から電池10における充電メモリ効果の発生を検知する。図2は、充電時の電圧特性の模式的なグラフであり、電池10の充電メモリ効果を説明するためのものである。図において、横軸は、電池10の蓄電量を示し、縦軸は電池10の起電力を示す。実線は充電メモリ効果の発生前又は解消後の初期電圧特性20を示し、点線は、充電メモリ効果が発生した状態での電圧特性22を示す。充電メモリ効果が発生すると、充電量の増加と共に起電力が早期に上昇し、満充電容量が低下する。電池ECU14は、例えば、初期電圧特性20の情報を記憶している。ここで電圧特性は温度に応じて変わり得るので、電池ECU14は異なる温度に対する複数の初期電圧特性20を記憶する。そして、電池ECU14は電圧センサ12にて測定される電池10の起電力と、電流センサ16の測定結果に基づいて算出される充電量とから現在の電圧特性を検知する。電池ECU14は、これと、温度センサ18で検知された温度に対応する初期電圧特性20と比較して、満充電容量の低下を検出し、充電メモリ効果が発生したと判定する。また、電池10に圧力センサなど他のセンサを設け、電池ECU14がさらに圧力等の他の情報を用いて充電メモリ効果に伴う満充電容量の低下を検出する構成としてもよい。
【0029】
電池ECU14は、求めたSOCをHVECU30へ出力し、また充電メモリ効果が発生した場合には、これをHVECU30へ通知する。HVECU30は、電池ECU14から入力されるSOCに基づいて、負荷32の動作を制御する。ここで、この負荷32は、駆動用モータ、発電機、インバータなどからなっており、電池10からの電力の消費が負荷32の制御によって制御される。すなわち、電池10からの電力は、インバータ34を介し、駆動用モータ36に供給される。HVECU30は、アクセル踏み込み量などにより、駆動モータ36の出力トルクを決定し、決定した出力トルクになるようにインバータ34を制御して、駆動モータ36を制御する。また、HVECU30は、エンジンECU40に対してパワー要求を出力することによって、エンジン出力の発電機42の駆動力および車輪駆動力についても制御する。これによって、電池10への充電量が制御される。
【0030】
次に、本システムの充電メモリ効果の解消動作を説明する。図3は、この充電メモリ効果の解消動作を説明するフロー図である。
【0031】
まず、本システムでは基本的に、SOCを制御上限値及び制御下限値で規定される適正SOC範囲(適正蓄電量範囲)内に維持し、電池10を保護する。具体的には、適正SOC範囲内に目標SOC(目標蓄電量レベル)が設定され、この目標SOCを中心とした所定の制御幅内でSOCが変動するように制御が行われる。
【0032】
制御上限値、制御下限値は例えばそれぞれSOCで80%、20%とされる。電池ECU14は、電圧センサ12及び電流センサ16の出力から得られるI−V特性に基づいて、電池10のSOCが、制御下限値になったことを検知する下限判定及び、制御上限値になったことを検知する上限判定を行う。例えば、下限判定が発生すると、HVECU30は電池10からの放電を禁止する。すなわち、負荷32を制御して発電機42による発電量以上の電力を駆動モータ36が消費することを禁止する。一方、上限判定が発生すると、HVECU30は電池10への充電を禁止する。
【0033】
さて、本システムの電池ECU14は、電池10に取り付けられた各種センサの出力に基づいて、充電メモリ効果の発生の有無を監視する。充電メモリ効果が発生したとの判定がなされていない場合には(S50)、HVECU30は通常時の蓄電量制御として、電池10の目標SOCを通常値である50%に設定する(S55)。すなわち、HVECU30は、SOCが50%より大きい場合には、エンジン出力による発電量が少なくなるように設定し、電池10からの放電が進むようにする。また、SOCが50%より小さい場合には、エンジン出力による発電量が多くなるようにして、電池10への充電が進むようにする(S60)。
【0034】
図4は、本システムの蓄電量制御によるSOCの時間変動の一例を示すグラフであり、同図(a)は、上述の通常時の制御を示し、同図(b)は後述する充電メモリ効果発生時の制御を示すものである。図4(a)に示すように、通常時には、HVECU30は、SOCが50%を中心として所定の制御幅(例えば±10%)以内にて変動するように制御を行う。
【0035】
一方、電池ECU14が充電メモリ効果の発生を検知した場合(S50)、これがHVECU30に通知される。HVECU30は、充電メモリ効果発生の通知を受けると、タイマ処理を起動して、所定時間の経過を計時する。このタイマ処理がタイムアップしていない場合には(S65)、HVECU30は充電メモリ発生時の蓄電量制御として、電池10の目標SOCを制御上限値の近傍に引き上げる(S70)。例えば、その目標SOCは、それを中心とした変動の制御幅の上限が適正SOC範囲の制御上限値を越えないように設定される。ここでは、制御幅を通常時と同じ±10%に設定し、制御上限値80%に対応して、目標SOCを70%に設定する。そしてHVECU30は、SOCが70%より大きい場合には、エンジン出力による発電量が少なくなるように設定し、電池10からの放電が進むようにする。また、SOCが70%より小さい場合には、エンジン出力による発電量が多くなるようにして、電池10への充電が進むようにする(S75)。図4(b)はこの制御におけるSOCの変動を示したものである。
【0036】
目標SOCを制御上限値近傍に引き上げて充放電を行う制御は、タイマ処理がタイムアップするまで継続される。ステップS65にてタイムアップが判定されると、目標SOCは通常値である50%に復元され、通常時の充放電制御が行われる(S55,S60)。ここで、タイマ処理に設定される所定時間は、充電メモリ効果の解消に必要な時間に基づいて定められ、この充電メモリ効果が解消されるのに必要な時間は、例えば、充電メモリ効果発生時の制御にて設定される目標SOCと制御上限値との距離や、目標SOCを中心としたSOCの制御幅の大きさに応じて変わり得る。
【0037】
なお、以上の説明では、充電メモリ効果の解消を行う構成を述べたが、放電メモリ効果の解消を行うように構成することもできる。その場合には、電池ECU14が放電メモリ効果の発生を判定し、それが発生すると、HVECU30が目標SOCを所定時間だけ制御下限値近傍(例えば30%)に引き下げ、制御幅を±10%とする充放電制御を行う。
【0038】
【発明の効果】
本発明の電池制御装置によれば、電池を過充電・過放電とすることなくメモリ効果が解消される。すなわち、メモリ効果を解消する際に、電池の劣化、車両性能の低下が生じることが回避される。また、充電メモリ効果を解消する場合には、目標蓄電量レベルが所定の高水準に設定され、かつそれを中心とした蓄電量の変動の制御幅が適正蓄電量範囲よりも狭く設定される。これにより、蓄電量が充電メモリ効果の解消に有効な高蓄電量範囲で推移しやすく、充電メモリ効果が速やかに解消される効果が得られる。また同様の効果が放電メモリ効果を解消する場合にも得られる。
【図面の簡単な説明】
【図1】 本発明の実施形態である電池制御システムの概略の全体構成を示すブロック図である。
【図2】 充電時の電圧特性の模式的なグラフである。
【図3】 充電メモリ効果の解消動作を説明するフロー図である。
【図4】 本システムの蓄電量制御によるSOCの時間変動の一例を示すグラフである。
【符号の説明】
10 電池、12 電圧センサ、14 電池ECU、16 電流センサ、18温度センサ、30 HVECU、32 負荷、34 インバータ、36 駆動用モータ、40 エンジンECU、42 発電機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery control device that controls the amount of electricity stored in a storage battery mounted on a hybrid vehicle, and more particularly to the elimination of the memory effect known in storage batteries using nickel compounds.
[0002]
[Prior art]
Conventionally, in addition to a vehicle driving motor, a hybrid vehicle equipped with an engine driven generator is known. In this hybrid vehicle, a battery (main battery) is mounted, and a driving motor is driven by the electric power from the battery, and the battery is charged by the electric power from the generator. Further, the vehicle travels by rotating wheels by a driving motor and an engine.
[0003]
The amount of electricity stored in the battery is monitored and controlled by an index called SOC (State of Charge). This SOC is defined by the ratio of the remaining current amount to the full charge current amount. As a detection method of this SOC, in general, a detection method that uses the correlation between the voltage-current characteristic (IV characteristic) of the battery during charging (or discharging) and the SOC, and the integration of the charge / discharge current amount It is used in combination with a detection method.
[0004]
The battery control device controls charging / discharging of the battery based on this SOC. In charge / discharge control, the SOC is divided into three ranges: a charge prohibited range, a discharge prohibited range, and an appropriate charged amount range. The charge prohibition range may be overcharge, and is a range where charge is prohibited. For example, the SOC is in a range of 80 to 100%. The discharge prohibition range is a range in which overdischarge may occur and discharge is prohibited. For example, the SOC is in a range of 0 to 20%. The appropriate storage amount range has a low possibility of being overcharged and overdischarged, and is a range in which both charging and discharging are permitted. For example, the SOC is in a range of 20 to 80%.
[0005]
In the charge prohibition range, by prohibiting charging, surplus energy is not regenerated as electric power, but is released in the form of heat, for example, and fuel efficiency is reduced. On the other hand, in the discharge prohibition range, since the discharge is prohibited, the motor is not driven and the engine power is diverted to charge the battery, so that the vehicle power performance is deteriorated.
[0006]
Therefore, the battery control device performs control so that the SOC is maintained in the appropriate charged amount range. Specifically, during normal travel, the motor drive and the generator drive are controlled so that the SOC fluctuates within a predetermined control range centered on a predetermined target charged amount level (for example, about 50%). Is done.
[0007]
Now, NiMH batteries are often used for hybrid vehicle batteries. As described above, in a battery using a nickel compound, a memory effect occurs when charging and discharging are repeated within a predetermined control range near the above-described target charged amount level.
[0008]
The memory effect known for general electrical products is generated by repeating the operation of charging before the battery is completely discharged, and even when the discharge is started with a fully charged state, the discharge amount is smaller than the original amount. This is a phenomenon in which the electromotive force is lowered and the battery operable time is shortened, and it is known to be solved by overdischarge. This memory effect is called a discharge memory effect, and is distinguished from the charge memory effect described below.
[0009]
The charge memory effect is a phenomenon that occurs by repeating the operation of discharging before the battery is fully charged, and the charge acceptance is reduced. That is, at the time of charging, the electromotive force reaches the same level as the full charge with a smaller amount of charge than originally intended. That is, the full charge capacity of the battery is reduced.
[0010]
In general electric products, charging is basically performed until the battery is fully charged, whereas in hybrid vehicles, as described above, charging / discharging is basically performed within a predetermined control range within the appropriate storage amount range. Controlled to be repeated. For this reason, in the hybrid vehicle, the discharge memory effect occurs as in the case of general electric products, while the charge memory effect that hardly occurs in general electric products tends to occur.
[0011]
In the hybrid vehicle, as described above, the power performance is improved by the energy output from the battery, and the kinetic energy is converted into the electric energy by the regenerative brake and accumulated in the battery to improve the fuel consumption. In this hybrid vehicle, when the charging memory effect occurs and the full charge capacity decreases, the amount of energy that can be output and the amount of energy that can be recovered decreases, and the vehicle performance decreases.
[0012]
This charging memory effect can be eliminated by overcharging. For example, Japanese Patent Application Laid-Open No. 2001-69608 proposes a technique for eliminating the memory effect by expanding the control range of the SOC fluctuation and bringing it closer to full discharge / full charge.
[0013]
[Problems to be solved by the invention]
Charging the memory effect as described above can be solved by over-charging. However, recombination is performed over charging, hydrogen molecules (H 2) and oxygen molecules (O 2) is the internal pressure rise generated by electrolysis of water in the battery, also the H 2 and O 2 The temperature rises due to the exotherm of the reaction. The increase in the internal pressure and temperature has a problem of promoting the deterioration of the battery.
[0014]
In addition, the hybrid vehicle has a large electric load fluctuation during traveling. For this reason, it is difficult to eliminate the charge memory effect by performing stable charging at a low rate so that the temperature and internal pressure do not increase.
[0015]
On the other hand, it is not preferable to perform over-discharge in order to eliminate the discharge memory effect, because the power performance is remarkably lowered.
[0016]
Furthermore, with the above-described technology for expanding the control range of SOC fluctuations to complete discharge and full charge, the time during which the SOC has changed in the appropriate power storage range, which is an intermediate region that does not become full discharge and full charge, becomes longer. There is a problem that it takes a long time to eliminate the memory effect.
[0017]
The present invention has been made to solve the above-mentioned problems, and a battery control device that eliminates a memory effect in a battery mounted on a hybrid vehicle relatively quickly while avoiding a decrease in vehicle performance and a deterioration of the battery. The purpose is to provide.
[0018]
[Means for Solving the Problems]
The battery control device according to the present invention controls the power storage amount of a storage battery mounted on a hybrid vehicle so as to maintain it near a predetermined target power storage amount level set within an appropriate power storage amount range that does not cause overcharge and overdischarge. In the battery control device that performs the control, the storage amount is controlled to vary within a predetermined control range that is included in the appropriate storage amount range and that is centered on the target storage amount level, thereby generating a charge memory effect of the storage battery And the memory effect detection means for detecting the occurrence of the discharge memory effect of the storage battery, and if neither occurrence of the charge memory effect or the discharge memory effect is detected, the target storage amount level is set to a predetermined normal level, When the occurrence of the charging memory effect is detected, the target storage amount level is changed from the normal level to a limit vicinity level close to the upper limit of the appropriate storage amount range, A target level setting means for changing the target storage amount level from the normal level to a limit vicinity level close to a lower limit of the appropriate storage amount range when occurrence of an electric memory effect is detected, and an upper limit and a lower limit The control width for the limit vicinity level is set equal to or narrower than the control width for the normal level. The target level setting means sets the target power storage level to a level near the upper limit for a predetermined time when the occurrence of a charge memory effect is detected, and when the occurrence of a discharge memory effect is detected, The target power storage amount level is set to a lower limit limit vicinity level for a predetermined time .
[0019]
According to the present invention, when the occurrence of the memory effect is detected, the target charged amount level is raised from the normal level to near the upper limit of the appropriate charged amount range, and the target charged amount level is changed from the normal level to the appropriate charged amount range. At least one of lowering to the vicinity of the lower limit is performed. The charge memory effect is eliminated by raising the target charged amount level to the level near the upper limit, and the discharge memory effect is eliminated by lowering the target charged amount level to the level near the lower limit.
[0020]
In another battery control device according to the present invention, the charged amount is controlled so as to vary within a predetermined control range that is included in the appropriate charged amount range and centered on the target charged amount level, and is near the limit The control width for the level is set equal to or less than the control width for the normal level.
[0021]
According to the present invention, the predetermined control range centered on the target storage amount level is set within the appropriate storage amount range as the target control range of the storage amount. In most driving conditions, the amount of power storage is controlled so as to vary within this control range. The fact that the control range for the near limit level is less than or equal to the control range for the normal level means that the control range for the near limit level is inevitably smaller than the appropriate charge amount range, which is close to the upper limit or lower limit of the appropriate charge amount range. Means to be located. As a result, the charged amount easily changes at a position close to the upper limit or the lower limit. For example, the charge memory effect and the discharged memory effect are quickly eliminated as compared with the case where the control range is the entire appropriate charged amount range.
[0022]
A preferred aspect of the present invention is the battery control device, wherein the target level setting means sets the target power storage level to the limit vicinity level for a predetermined time when the occurrence of the memory effect is detected. In this aspect, when the occurrence of the memory effect is detected, the target storage amount level is changed to the limit vicinity level for a predetermined time, and then returned to the normal level. The predetermined time during which the near-limit level is maintained is determined based on the time required to eliminate the memory effect. The time required for the memory effect to be eliminated by the near-limit level is, for example, the distance between the near-limit level and the upper limit or lower limit of the appropriate charged amount range, or the size of the charged amount control centered on the near-limit level. It can change depending on the situation.
[0023]
Another preferable aspect of the present invention is the battery control device in which the limit vicinity level is set in the vicinity of the upper limit of the appropriate storage amount range. A storage battery mounted on a hybrid vehicle is usually an assembled battery in which a plurality of batteries (unit cells) are connected in series, and the amount of stored electricity may be different for each unit cell. According to this aspect, by raising the target storage amount level to near the upper limit of the appropriate storage amount range, it is possible to reduce the variation in the storage amount among the unit cells constituting the storage battery and to make the storage amount uniform.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a battery control system for a hybrid vehicle according to an embodiment of the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a schematic overall configuration of a battery control system according to an embodiment. A battery 10 that is a main battery of a hybrid vehicle is a nickel metal hydride (NiMH) battery. The battery 10 is a battery pack composed of a plurality of battery cells connected in series, whereby a high voltage such as 280 V can be obtained.
[0025]
The battery 10 is divided into battery blocks each composed of several battery cells connected in series, and the voltage sensor 12 detects the voltage of each battery block. In the figure, one of the battery blocks is shown as one battery symbol. The measurement result of the voltage sensor 12 is supplied to the battery ECU 14.
[0026]
The current sensor 16 measures the charge / discharge current of the battery 10 and the measurement result is supplied to the battery ECU 14. The battery 10 is provided with a temperature sensor 18 for detecting the temperature, and the measurement result is also supplied to the battery ECU 14.
[0027]
The battery ECU 14 accumulates the charge / discharge current of the battery 10 and estimates the SOC of the battery 10.
[0028]
Further, the battery ECU 14 detects the occurrence of the charging memory effect in the battery 10 from the information on the voltage, current, and temperature during charging / discharging obtained from the voltage sensor 12, the current sensor 16, and the temperature sensor 18. FIG. 2 is a schematic graph of voltage characteristics during charging, and is for explaining the charging memory effect of the battery 10. In the figure, the horizontal axis indicates the amount of electricity stored in the battery 10, and the vertical axis indicates the electromotive force of the battery 10. A solid line indicates the initial voltage characteristic 20 before or after the occurrence of the charging memory effect, and a dotted line indicates the voltage characteristic 22 in a state where the charging memory effect has occurred. When the charge memory effect occurs, the electromotive force increases early as the amount of charge increases, and the full charge capacity decreases. The battery ECU 14 stores information on the initial voltage characteristic 20, for example. Here, since the voltage characteristics can change depending on the temperature, the battery ECU 14 stores a plurality of initial voltage characteristics 20 for different temperatures. Then, the battery ECU 14 detects the current voltage characteristic from the electromotive force of the battery 10 measured by the voltage sensor 12 and the charge amount calculated based on the measurement result of the current sensor 16. The battery ECU 14 compares this with the initial voltage characteristic 20 corresponding to the temperature detected by the temperature sensor 18 to detect a decrease in the full charge capacity and determine that the charge memory effect has occurred. Alternatively, the battery 10 may be provided with another sensor such as a pressure sensor, and the battery ECU 14 may further detect a decrease in the full charge capacity associated with the charge memory effect using other information such as pressure.
[0029]
The battery ECU 14 outputs the obtained SOC to the HVECU 30 and notifies the HVECU 30 when the charging memory effect has occurred. The HVECU 30 controls the operation of the load 32 based on the SOC input from the battery ECU 14. Here, the load 32 includes a drive motor, a generator, an inverter, and the like, and power consumption from the battery 10 is controlled by the control of the load 32. That is, the electric power from the battery 10 is supplied to the drive motor 36 via the inverter 34. The HVECU 30 determines the output torque of the drive motor 36 based on the accelerator depression amount, and controls the drive motor 36 by controlling the inverter 34 so that the determined output torque is obtained. The HVECU 30 also controls the driving force of the generator 42 and the wheel driving force of the engine output by outputting a power request to the engine ECU 40. Thereby, the charge amount to the battery 10 is controlled.
[0030]
Next, the operation for eliminating the charging memory effect of this system will be described. FIG. 3 is a flowchart for explaining the operation of eliminating the charging memory effect.
[0031]
First, in this system, basically, the SOC is maintained within an appropriate SOC range (appropriate storage amount range) defined by the control upper limit value and the control lower limit value, and the battery 10 is protected. Specifically, a target SOC (target power storage level) is set within the appropriate SOC range, and control is performed so that the SOC varies within a predetermined control range centered on the target SOC.
[0032]
The control upper limit value and the control lower limit value are, for example, 80% and 20%, respectively, in SOC. Based on the IV characteristics obtained from the outputs of the voltage sensor 12 and the current sensor 16, the battery ECU 14 has reached the lower limit determination for detecting that the SOC of the battery 10 has reached the control lower limit value, and the control upper limit value. The upper limit is detected to detect this. For example, when the lower limit determination occurs, the HVECU 30 prohibits discharging from the battery 10. That is, the load 32 is controlled to prohibit the drive motor 36 from consuming more power than the amount of power generated by the generator 42. On the other hand, when the upper limit determination occurs, the HVECU 30 prohibits charging of the battery 10.
[0033]
Now, the battery ECU 14 of this system monitors the presence or absence of the occurrence of the charging memory effect based on the output of various sensors attached to the battery 10. When it is not determined that the charging memory effect has occurred (S50), the HVECU 30 sets the target SOC of the battery 10 to 50%, which is a normal value, as the normal storage amount control (S55). That is, the HVECU 30 sets the power generation amount by the engine output to be small when the SOC is larger than 50% so that the discharge from the battery 10 proceeds. If the SOC is smaller than 50%, the amount of power generated by the engine output is increased so that charging of the battery 10 proceeds (S60).
[0034]
FIG. 4 is a graph showing an example of the time variation of the SOC by the storage amount control of the present system. FIG. 4 (a) shows the normal control described above, and FIG. 4 (b) shows the charge memory effect described later. It shows the control at the time of occurrence. As shown in FIG. 4A, at normal times, the HVECU 30 performs control so that the SOC fluctuates within a predetermined control width (for example, ± 10%) around 50%.
[0035]
On the other hand, when the battery ECU 14 detects the occurrence of the charging memory effect (S50), this is notified to the HVECU 30. When the HVECU 30 receives the notification of the occurrence of the charging memory effect, the HVECU 30 starts a timer process and measures the passage of a predetermined time. When the timer process has not expired (S65), the HVECU 30 raises the target SOC of the battery 10 to the vicinity of the control upper limit value as the charged amount control when the charging memory is generated (S70). For example, the target SOC is set such that the upper limit of the control range of fluctuations centered on the target SOC does not exceed the control upper limit value of the appropriate SOC range. Here, the control width is set to ± 10%, which is the same as the normal time, and the target SOC is set to 70% corresponding to the control upper limit value 80%. When the SOC is greater than 70%, the HVECU 30 is set so that the amount of power generated by the engine output is reduced so that the discharge from the battery 10 proceeds. If the SOC is less than 70%, the amount of power generated by the engine output is increased so that charging of the battery 10 proceeds (S75). FIG. 4B shows the SOC variation in this control.
[0036]
Control for charging / discharging by raising the target SOC to the vicinity of the control upper limit value is continued until the timer process expires. If time-up is determined in step S65, the target SOC is restored to the normal value of 50%, and normal charge / discharge control is performed (S55, S60). Here, the predetermined time set for the timer process is determined based on the time required for canceling the charging memory effect, and the time required for canceling the charging memory effect is, for example, when the charging memory effect occurs. It can be changed according to the distance between the target SOC and the control upper limit value set in the control of (1) and the control width of the SOC centering on the target SOC.
[0037]
In the above description, the configuration for eliminating the charge memory effect has been described. However, the discharge memory effect can also be eliminated. In that case, the battery ECU 14 determines the occurrence of the discharge memory effect, and when this occurs, the HVECU 30 lowers the target SOC to the vicinity of the control lower limit value (for example, 30%) for a predetermined time and sets the control width to ± 10%. Charge / discharge control is performed.
[0038]
【The invention's effect】
According to the battery control device of the present invention, the memory effect is eliminated without overcharging / discharging the battery. That is, when the memory effect is eliminated, it is possible to avoid battery deterioration and vehicle performance degradation. In order to eliminate the charge memory effect, the target charged amount level is set to a predetermined high level, and the control range of the fluctuation of the charged amount centering on the target charged amount level is set to be narrower than the appropriate charged amount range. As a result, the amount of stored electricity is likely to change in the range of the high stored amount effective for eliminating the charging memory effect, and the effect of quickly eliminating the charging memory effect is obtained. A similar effect can also be obtained when the discharge memory effect is eliminated.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic overall configuration of a battery control system according to an embodiment of the present invention.
FIG. 2 is a schematic graph of voltage characteristics during charging.
FIG. 3 is a flowchart illustrating an operation for eliminating a charging memory effect.
FIG. 4 is a graph showing an example of time variation of the SOC by the storage amount control of this system.
[Explanation of symbols]
10 battery, 12 voltage sensor, 14 battery ECU, 16 current sensor, 18 temperature sensor, 30 HVECU, 32 load, 34 inverter, 36 driving motor, 40 engine ECU, 42 generator.

Claims (2)

ハイブリッド車に搭載される蓄電池の蓄電量を、過充電及び過放電とならない適正蓄電量範囲内に設定される所定の目標蓄電量レベル付近に維持するように制御を行う電池制御装置において、
前記蓄電量は、前記適正蓄電量範囲に含まれ前記目標蓄電量レベルを中心とする所定の制御幅内で変動するように制御され、
前記蓄電池の充電メモリ効果の発生及び前記蓄電池の放電メモリ効果の発生を検知するメモリ効果検知手段と、
前記充電メモリ効果及び放電メモリ効果のいずれの発生検知されない場合は、前記目標蓄電量レベルを所定の通常レベルに設定し、
充電メモリ効果の発生が検知された場合は、前記目標蓄電量レベルを前記通常レベルから前記適正蓄電量範囲の上限に近い限度近傍レベルに変更し、放電メモリ効果の発生が検知された場合は、前記目標蓄電量レベルを前記通常レベルから前記適正蓄電量範囲の下限に近い限度近傍レベルに変更する目標レベル設定手段と、
を有し、
上限及び下限の限度近傍レベルに対する制御幅は、前記通常レベルに対する制御幅に対して同一又はそれよりも狭く設定されることを特徴とする電池制御装置。
In a battery control device that performs control so that the storage amount of a storage battery mounted on a hybrid vehicle is maintained near a predetermined target storage amount level that is set within an appropriate storage amount range that does not cause overcharge and overdischarge.
The power storage amount is controlled to vary within a predetermined control range that is included in the appropriate power storage amount range and centered on the target power storage amount level,
A memory effect detecting means for detecting the occurrence of the charge memory effect of the storage battery and the occurrence of the discharge memory effect of the storage battery ;
When neither occurrence of the charge memory effect and the discharge memory effect is detected, the target storage amount level is set to a predetermined normal level,
When the occurrence of the charging memory effect is detected, and changes the target state of charge level that is closer to the limit vicinity level to the upper limit of the proper charged amount ranging from the normal level, when the occurrence of the discharge memory effect is detected A target level setting means for changing the target storage amount level from the normal level to a limit vicinity level close to a lower limit of the appropriate storage amount range ;
Have
Upper and lower limits that control the width against the vicinity level, battery control apparatus characterized by being set smaller than equal to or against the normal against that control the width of the level.
請求項1に記載の電池制御装置において、
前記目標レベル設定手段は、充電メモリ効果の発生が検知された場合に、前記目標蓄電量レベルを所定時間だけ上限の限度近傍レベルとし、放電メモリ効果の発生が検知された場合に、前記目標蓄電量レベルを所定時間だけ下限の限度近傍レベルとすること、
を特徴とする電池制御装置。
The battery control device according to claim 1,
The target level setting means sets the target power storage level to a level near the upper limit for a predetermined time when the occurrence of a charge memory effect is detected, and when the occurrence of a discharge memory effect is detected, Set the storage level to a level near the lower limit for a predetermined time ,
A battery control device.
JP2001235841A 2001-08-03 2001-08-03 Battery control device Expired - Lifetime JP4118035B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001235841A JP4118035B2 (en) 2001-08-03 2001-08-03 Battery control device
US10/202,836 US6600293B2 (en) 2001-08-03 2002-07-26 Battery control system
DE10235458A DE10235458B4 (en) 2001-08-03 2002-08-02 Battery control method and battery control device
FR0209948A FR2828348B1 (en) 2001-08-03 2002-08-05 BATTERY CONTROL SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235841A JP4118035B2 (en) 2001-08-03 2001-08-03 Battery control device

Publications (2)

Publication Number Publication Date
JP2003047108A JP2003047108A (en) 2003-02-14
JP4118035B2 true JP4118035B2 (en) 2008-07-16

Family

ID=19067221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235841A Expired - Lifetime JP4118035B2 (en) 2001-08-03 2001-08-03 Battery control device

Country Status (4)

Country Link
US (1) US6600293B2 (en)
JP (1) JP4118035B2 (en)
DE (1) DE10235458B4 (en)
FR (1) FR2828348B1 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126891A1 (en) * 2001-06-01 2002-12-05 Vb Autobatterie Gmbh Predicting electrochemical element load capacity involves correcting equivalent circuit input voltage w.r.t measured voltage using function with logarithmic current dependency as nonlinear term
DE10153916A1 (en) * 2001-11-02 2003-05-15 Nbt Gmbh Method for determining the state of charge of accumulators by integrating the amounts of electricity flowing during charging and discharging
US6727708B1 (en) 2001-12-06 2004-04-27 Johnson Controls Technology Company Battery monitoring system
US7088872B1 (en) * 2002-02-14 2006-08-08 Cogent Systems, Inc. Method and apparatus for two dimensional image processing
DE10210516B4 (en) 2002-03-09 2004-02-26 Vb Autobatterie Gmbh Method and device for determining the functionality of a storage battery
DE10215071A1 (en) * 2002-04-05 2003-10-30 Vb Autobatterie Gmbh Method for determining the wear of an electrochemical energy store and energy store
DE10224662C1 (en) * 2002-06-03 2003-06-18 Vb Autobatterie Gmbh Battery charge state indicator has ball channel with upper bounding wall with opening for viewing rod tip aligned with reflective surface at transition to cylindrical surface of viewing rod
US20030236656A1 (en) * 2002-06-21 2003-12-25 Johnson Controls Technology Company Battery characterization system
DE10231700B4 (en) * 2002-07-13 2006-06-14 Vb Autobatterie Gmbh & Co. Kgaa Method for determining the aging state of a storage battery with regard to the removable amount of charge and monitoring device
DE10236958B4 (en) * 2002-08-13 2006-12-07 Vb Autobatterie Gmbh & Co. Kgaa Method for determining the removable amount of charge of a storage battery and monitoring device for a storage battery
DE10240329B4 (en) * 2002-08-31 2009-09-24 Vb Autobatterie Gmbh & Co. Kgaa Method for determining the charge quantity of a storage battery and monitoring device for a storage battery that can be taken from a fully charged storage battery
DE10252760B4 (en) * 2002-11-13 2009-07-02 Vb Autobatterie Gmbh & Co. Kgaa Method for predicting the internal resistance of a storage battery and monitoring device for storage batteries
DE10253051B4 (en) 2002-11-14 2005-12-22 Vb Autobatterie Gmbh Method for determining the charge acceptance of a storage battery
JP3968298B2 (en) * 2002-12-06 2007-08-29 株式会社日立製作所 Power supply
JP2004320946A (en) * 2003-04-18 2004-11-11 Toyota Motor Corp Electric vehicle and its control method
JP3933096B2 (en) * 2003-06-03 2007-06-20 トヨタ自動車株式会社 Battery control device and control method mounted on vehicle
DE10335930B4 (en) 2003-08-06 2007-08-16 Vb Autobatterie Gmbh & Co. Kgaa Method for determining the state of an electrochemical storage battery
JP4573510B2 (en) * 2003-09-30 2010-11-04 三洋電機株式会社 Alkaline storage battery and battery pack
DE102004005478B4 (en) * 2004-02-04 2010-01-21 Vb Autobatterie Gmbh Method for determining parameters for electrical states of a storage battery and monitoring device for this purpose
DE102004007904B4 (en) * 2004-02-18 2008-07-03 Vb Autobatterie Gmbh & Co. Kgaa Method for determining at least one parameter for the state of an electrochemical storage battery and monitoring device
KR100692404B1 (en) 2004-12-21 2007-03-09 현대자동차주식회사 Memory effect prevention of battery charging state calculation Algorithm
DE102005024403A1 (en) * 2005-05-27 2007-01-18 Güttler, Gerhard, Prof. Dr. Energy saving method for vehicle e.g. passenger plane, involves connecting drive with accumulators, loading drives by energy demand, which causes operation of vehicle, and changing loading state of accumulators based on load of drives
FR2897161B1 (en) * 2006-02-09 2008-07-11 Peugeot Citroen Automobiles Sa SYSTEM FOR REPLACING THE CHARGE STATE INFORMATION OF A MOTOR VEHICLE BATTERY
CN100422895C (en) * 2006-02-16 2008-10-01 北京航空航天大学 BCM controller assembly for light mixed power automobile
DE102006024798B3 (en) * 2006-05-27 2007-03-22 Vb Autobatterie Gmbh & Co. Kgaa Automotive lead-acid battery has electrolyte float gauge depth detector with ball cage
JP2008049877A (en) * 2006-08-25 2008-03-06 Toyota Motor Corp Battery control device
JP4341652B2 (en) 2006-09-04 2009-10-07 トヨタ自動車株式会社 Power storage control device and power storage control method
KR100846710B1 (en) * 2006-09-07 2008-07-16 삼성에스디아이 주식회사 Battery management system and driving method thereof
JP4793237B2 (en) 2006-11-28 2011-10-12 トヨタ自動車株式会社 Secondary battery charge / discharge control device and vehicle equipped with the same
KR100906908B1 (en) * 2006-12-11 2009-07-08 현대자동차주식회사 Method for controlling battery charging of hybrid electric vehicle
JP4274257B2 (en) 2007-02-20 2009-06-03 トヨタ自動車株式会社 Hybrid vehicle
DE102007009009A1 (en) 2007-02-23 2008-08-28 Fev Motorentechnik Gmbh Energy storage system for vehicle e.g. aircraft, hybrid system, has direct current regulator assigned to series and/or parallel circuit of energy part storages, where circuit performs storage and dispensing of electrical energy
JP4680949B2 (en) * 2007-03-07 2011-05-11 富士重工業株式会社 Control device for electric vehicle
US8022674B2 (en) * 2007-07-10 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. State of charge control method and systems for vehicles
JP5241188B2 (en) * 2007-09-28 2013-07-17 三洋電機株式会社 Alkaline storage battery system
JP5078525B2 (en) * 2007-09-28 2012-11-21 三洋電機株式会社 How to install a running battery in a hybrid car
US7825615B2 (en) 2007-10-16 2010-11-02 Glj, Llc Intelligent motorized appliances with multiple power sources
JP4453746B2 (en) 2007-11-21 2010-04-21 トヨタ自動車株式会社 POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP4513882B2 (en) * 2008-03-21 2010-07-28 トヨタ自動車株式会社 Hybrid vehicle and control method thereof
JP2010004712A (en) * 2008-06-23 2010-01-07 Panasonic Corp Charging/discharging control method
KR100992543B1 (en) 2008-06-24 2010-11-08 현대자동차주식회사 Battery management method
CN102460189A (en) * 2009-04-30 2012-05-16 希尔莱特有限责任公司 Awarding standings to a vehicle based upon one or more fuel utilization characteristics
JP5158217B2 (en) * 2009-06-18 2013-03-06 トヨタ自動車株式会社 Battery system and vehicle equipped with battery system
JP5305025B2 (en) * 2009-07-06 2013-10-02 スズキ株式会社 Hybrid vehicle
US20130197710A1 (en) * 2010-04-26 2013-08-01 Dong Energy A/S Dispatch controller for a distributed electrical power system
US8888982B2 (en) * 2010-06-04 2014-11-18 Mks Instruments Inc. Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
JP5418417B2 (en) * 2010-06-08 2014-02-19 トヨタ自動車株式会社 Charge control method and charge control device for secondary battery
JP5762699B2 (en) 2010-06-30 2015-08-12 三洋電機株式会社 Hybrid car power supply
WO2013014930A1 (en) * 2011-07-28 2013-01-31 三洋電機株式会社 Battery system, battery control device, electric vehicle, mobile body, and power source device
KR20130104771A (en) * 2012-03-15 2013-09-25 삼성에스디아이 주식회사 Energy storage system and control method thereof
JP6014463B2 (en) * 2012-11-07 2016-10-25 日立建機株式会社 Work vehicle
US10209319B2 (en) * 2013-02-01 2019-02-19 Toyota Jidosha Kabushiki Kaisha State of deterioration or state of charges estimating apparatus for secondary battery
JP5966998B2 (en) * 2013-03-29 2016-08-10 株式会社豊田自動織機 Charging apparatus and charging method
DE102014201054A1 (en) * 2014-01-22 2015-07-23 Robert Bosch Gmbh Method and device for operating a battery, in particular a lithium ion battery, in a consumer
US10003197B2 (en) 2014-03-27 2018-06-19 Nec Corporation Energy management method and system for energy supply system
JP6774655B2 (en) * 2015-03-31 2020-10-28 株式会社Gsユアサ Charging voltage controller for power storage element, power storage device, charging device for power storage element, and charging method for power storage element
JP6314933B2 (en) 2015-07-31 2018-04-25 トヨタ自動車株式会社 Hybrid vehicle
KR101798516B1 (en) * 2015-11-17 2017-11-16 현대자동차주식회사 Motor system control method and apparatus for hybrid vehicle
JP2017178083A (en) 2016-03-30 2017-10-05 トヨタ自動車株式会社 Hybrid motorcar
CN106356580B (en) * 2016-10-13 2019-04-30 惠州Tcl移动通信有限公司 A kind of pair of mobile terminal rechargeable battery carries out the method and system of discharge treatment
US11218006B2 (en) * 2017-04-13 2022-01-04 Enphase Energy, Inc. Method and system for an AC battery
CN111781516B (en) * 2020-07-14 2022-10-11 深圳市道通科技股份有限公司 Detection method of vehicle storage battery and battery detection equipment
WO2024050798A1 (en) * 2022-09-09 2024-03-14 宁德时代新能源科技股份有限公司 Memory effect elimination method and apparatus, and computer device and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533076B2 (en) * 1997-10-13 2004-05-31 トヨタ自動車株式会社 Method and apparatus for detecting state of charge of assembled battery and charge / discharge control apparatus for assembled battery
US6011380A (en) * 1999-03-31 2000-01-04 Honda Giken Kogyo Kabushiki Kaisha Refreshing charge control method and apparatus to extend the life of batteries
JP3560867B2 (en) * 1999-08-31 2004-09-02 本田技研工業株式会社 Hybrid vehicle battery control device
JP4138204B2 (en) * 2000-04-28 2008-08-27 松下電器産業株式会社 Charge / discharge control apparatus and method

Also Published As

Publication number Publication date
FR2828348A1 (en) 2003-02-07
US20030025479A1 (en) 2003-02-06
US6600293B2 (en) 2003-07-29
FR2828348B1 (en) 2017-11-24
JP2003047108A (en) 2003-02-14
DE10235458B4 (en) 2007-02-15
DE10235458A1 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
JP4118035B2 (en) Battery control device
US6759832B2 (en) Device for detecting a battery condition based on variations in batter voltage
JP3964635B2 (en) Memory effect detection method and solution
US5212431A (en) Electric vehicle
US8674659B2 (en) Charge control device and vehicle equipped with the same
US7439710B2 (en) Battery pack capacity control system
EP2566009B1 (en) Device for controlling and method for controlling charging of secondary battery
JP5608747B2 (en) Storage capacity management device
JP4080817B2 (en) Battery leveling device for battery pack
JP5720538B2 (en) Storage device control device
JP4794504B2 (en) Power supply control method
JP3849541B2 (en) Charge / discharge control method for battery pack
JP4215962B2 (en) Hybrid vehicle battery control device
US20210152010A1 (en) Method for charging battery and charging system
JP3781366B2 (en) Secondary battery charge / discharge controller
JP2001314040A (en) Method of controlling charging/discharging in hybrid vehicle
JP2004166350A (en) Battery controller
JP6879136B2 (en) Charge / discharge control device for secondary batteries
JP5092903B2 (en) Vehicle battery charge / discharge control device
JP2007185074A (en) Battery controller, electric vehicle, and method for determining charge/discharge power
JP2001186682A (en) Method of controlling discharge of battery
JP3959243B2 (en) Method for preventing internal pressure rise of battery pack
JPH1198697A (en) Method and device for charge control for secondary battery of electric vehicle
JP7120938B2 (en) BATTERY SYSTEM AND SECONDARY BATTERY CONTROL METHOD
JP6708957B2 (en) Battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080422

R151 Written notification of patent or utility model registration

Ref document number: 4118035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

EXPY Cancellation because of completion of term