JPH1198697A - Method and device for charge control for secondary battery of electric vehicle - Google Patents

Method and device for charge control for secondary battery of electric vehicle

Info

Publication number
JPH1198697A
JPH1198697A JP9259754A JP25975497A JPH1198697A JP H1198697 A JPH1198697 A JP H1198697A JP 9259754 A JP9259754 A JP 9259754A JP 25975497 A JP25975497 A JP 25975497A JP H1198697 A JPH1198697 A JP H1198697A
Authority
JP
Japan
Prior art keywords
charging
charge
battery
amount
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9259754A
Other languages
Japanese (ja)
Inventor
Norihiko Hirata
典彦 枚田
Tadashi Tsuji
匡 辻
Shinya Ogata
慎也 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9259754A priority Critical patent/JPH1198697A/en
Publication of JPH1198697A publication Critical patent/JPH1198697A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charge control device for the secondary battery of an electric vehicle by which overcharging and undercharging of the secondary battery can be avoided. SOLUTION: An operation device 6a calculates discharging capacity from he total discharge value and the regenerative charge value of a battery 1, until it is charged in accordance with a formula: (discharge capacit) = (total discharge value) - (regenerative charge value) and calculates an optimum charge value according to a formula: (optimum charge value) = (discharge capacity) ×1.05. If an accumulated charge value in the charging state reaches an optimum charge value, a control device 6 controls a charger 7 so as to discontinue the charging. By controlling the charge such as this, the charge corresponding to the state of the battery can be executed, so that the overcharging and the undercharging can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気車用二次電池
の充電制御方法および充電制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control method and a charge control device for a secondary battery for an electric vehicle.

【0002】[0002]

【発明が解決しようとする課題】電気自動車用電池の一
例として鉛酸組電池があるが、この電気自動車用鉛酸組
電池を充電する場合には、一般的に定電流・定電圧充電
制御が用いられる。このとき、定電圧充電時間は、充電
開始時の電池の放電量の多少にかかわらず定電流充電か
ら定電圧充電に移行したときの電池温度に基づいて設定
される。しかし、充電の際の最適充電量は電池の放電量
によって異なるため、設定された充電時間まで充電した
ときの充電量が最適充電量に対して不足したり過剰とな
ったりして、充電不足や過充電を招くおそれがあった。
A lead-acid battery is an example of a battery for an electric vehicle. When charging the lead-acid battery for an electric vehicle, a constant current / constant voltage charge control is generally performed. Used. At this time, the constant voltage charging time is set based on the battery temperature at the time of transition from constant current charging to constant voltage charging regardless of the amount of battery discharge at the start of charging. However, since the optimal charge amount at the time of charging depends on the discharge amount of the battery, the charge amount when charging up to the set charging time becomes insufficient or excessive with respect to the optimal charge amount. There was a risk of overcharging.

【0003】本発明の目的は、二次電池の過充電や充電
不足を避けることができる電気車用二次電池の充電制御
方法および充電制御装置を提供することにある。
An object of the present invention is to provide a charge control method and a charge control device for a secondary battery for an electric vehicle, which can avoid overcharging or insufficient charging of the secondary battery.

【0004】[0004]

【課題を解決するための手段】 請求項1の発明は、電気車用二次電池の充電制御方法
に適用され、電池の充電前までの総放電量および回生充
電量から次式(5)
Means for Solving the Problems The invention of claim 1 is applied to a charge control method for a secondary battery for an electric vehicle, and calculates the following formula (5) from the total discharge amount and the regenerative charge amount before charging the battery.

【数5】 (放電容量)=(総放電量)−(回生充電量) …(5) で算出される放電容量を求めて、算出された電池の放電
容量に基づいて最適充電量を演算し、充電中に得られる
充電積算量が最適充電量となったならば充電を停止する
ものである。 請求項2の発明は、請求項1に記載の充電制御方法に
おいて、二次電池を鉛酸組電池としたものである。 請求項3の発明は、請求項2に記載の充電制御方法に
おいて、最適充電量を次式(6)により算出する。
[Equation 5] (Discharge capacity) = (Total discharge amount)-(Regenerative charge amount) The discharge capacity calculated by (5) is obtained, and the optimum charge amount is calculated based on the calculated battery discharge capacity. The charging is stopped when the integrated charging amount obtained during charging reaches the optimum charging amount. According to a second aspect of the present invention, in the charge control method according to the first aspect, the secondary battery is a lead-acid battery. According to a third aspect of the present invention, in the charge control method according to the second aspect, the optimal charge amount is calculated by the following equation (6).

【数6】 (最適充電量)=(放電容量)×1.05 …(6) 請求項4の発明は、請求項1〜3のいずれかに記載の
充電制御方法において、充電制御パターンを、以下の
(a)〜(c)のいずれか一つとした。 (a)定電流・定電圧充電制御 (b)定電流・定電圧・定電流充電制御 (c)定電力・定電圧充電制御 発明の実施の形態を示す図3に対応付けて説明する
と、請求項5の発明は電気車用鉛酸組電池の充電制御装
置であって、電池1の充電前までの総放電量および回生
充電量から次式(7)
(Optimal charge amount) = (discharge capacity) × 1.05 (6) According to a fourth aspect of the present invention, in the charge control method according to any one of the first to third aspects, the charge control pattern is Any one of the following (a) to (c). (A) Constant-current / constant-voltage charging control (b) Constant-current / constant-voltage / constant-current charging control (c) Constant-power / constant-voltage charging control In connection with FIG. The invention according to Item 5 is a charge control device for a lead-acid battery pack for an electric vehicle, which is based on the following formula (7) based on the total discharge amount and regenerative charge amount before the battery 1 is charged.

【数7】 (放電容量)=(総放電量)−(回生充電量) …(7) で算出される放電容量に基づいて最適充電量を、次式
(8)
(Discharge capacity) = (total discharge amount) − (regenerative charge amount) The optimum charge amount is calculated based on the discharge capacity calculated by the following equation (8).

【数8】 (最適充電量)=(放電容量)×1.05 …(8) により演算する演算装置6aと、充電中の充電積算量が
最適充電量となったならば充電を停止するように電池1
の充電を行う充電器7を制御する制御装置6とを備えて
上述の目的を達成する。
[Equation 8] (Optimal charge amount) = (discharge capacity) × 1.05 (8) and an arithmetic unit 6a for calculating the charge amount and stopping the charge when the integrated charge amount during charging reaches the optimum charge amount. Battery 1
The above-mentioned object is achieved by providing a control device 6 for controlling a charger 7 for charging the battery.

【0005】[0005]

【発明の効果】以上説明したように、請求項1〜5の発
明によれば、電池の総放電量および回生充電量から算出
される放電容量に基づいて最適充電量を演算し、充電中
に得られる充電積算量が最適充電量となったならば充電
を停止するようにしているため、電池状態に対応した充
電を行うことができ、電池の過充電や充電不足を避ける
ことができる。請求項3の発明によれば、鉛酸組電池に
おいて、最適充電量を算出された放電容量の1.05倍
と設定することにより、従来の充電制御方法に比べ電池
寿命の向上を図ることができる。
As described above, according to the first to fifth aspects of the present invention, the optimum charge amount is calculated based on the discharge capacity calculated from the total discharge amount and the regenerative charge amount of the battery. Since the charging is stopped when the obtained integrated charging amount reaches the optimum charging amount, charging corresponding to the battery state can be performed, and overcharging or insufficient charging of the battery can be avoided. According to the invention of claim 3, in the lead-acid battery, by setting the optimum charge amount to 1.05 times the calculated discharge capacity, the battery life can be improved as compared with the conventional charge control method. it can.

【0006】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easier to understand. However, the present invention is not limited to the embodiment.

【0007】[0007]

【発明の実施の形態】以下、図1〜図7を参照して本発
明の実施の形態を説明する。図2は、電気自動車の走行
駆動機構の構成を示すブロック図である。電池1はイン
バータ2に直流電力を供給し、インバータ2は直流電力
を交流電力に変換して走行エネルギーを発生するモータ
3へ電力を供給する。また、回生時には車両の走行エネ
ルギーがモータ3およびインバータ2を介して電気エネ
ルギーに逆変換され、電池1が充電されるとともに車両
に回生ブレーキがかかる。電圧センサ4は電池1の両端
電圧Vを検出し、電流センサ5は電池1に流れる電流I
を検出する。6は電圧センサ4および電流センサ5によ
り検出された電圧Vと電流I等に基づいてインバータ2
の出力制御や回生制御などを行なう制御装置であり、演
算部6a,記憶部6bを備えている。なお、電池1は複
数のモジュール電池C1〜Cnを直列に接続した鉛酸組電
池である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is a block diagram illustrating a configuration of a traveling drive mechanism of the electric vehicle. The battery 1 supplies DC power to the inverter 2, and the inverter 2 converts DC power into AC power and supplies power to the motor 3 that generates running energy. At the time of regeneration, the traveling energy of the vehicle is inversely converted into electric energy via the motor 3 and the inverter 2, and the battery 1 is charged and the vehicle is subjected to regenerative braking. The voltage sensor 4 detects a voltage V across the battery 1, and the current sensor 5 detects a current I flowing through the battery 1.
Is detected. 6 is an inverter 2 based on the voltage V and the current I detected by the voltage sensor 4 and the current sensor 5.
This is a control device that performs output control, regenerative control, and the like, and includes a calculation unit 6a and a storage unit 6b. The battery 1 is a lead-acid battery in which a plurality of module batteries C1 to Cn are connected in series.

【0008】ところで、電池1を充電する場合には、図
3に示すように電気自動車とは別に設けられた充電器7
によって充電される。充電器7による充電は制御装置6
により制御され、その制御は記憶部6bに記憶された電
池1の放電容量や電流I,電圧Vに基づいて行われる。
When charging the battery 1, as shown in FIG. 3, a charger 7 provided separately from the electric vehicle is provided.
Will be charged by. The charging by the charger 7 is performed by the controller 6.
The control is performed based on the discharge capacity, the current I, and the voltage V of the battery 1 stored in the storage unit 6b.

【0009】次いで、本実施の形態における充電制御方
法について説明する。図4は、「定電流−定電圧−定電
流」の充電パターンで制御を行った場合の充電中の電流
Iおよび電圧Vの変化を示す図であり、縦軸は電流値お
よび電圧値を表し、横軸は時間tを表す。図4に示すよ
うに、一定の電流I0で定電流充電を開始し、充電電圧
が所定の値V1に達したならば定電圧充電に移行する。
定電圧充電になると電流Iは減少し、所定の電流値I1
になったならば再び定電流で充電を行う。
Next, a charging control method according to the present embodiment will be described. FIG. 4 is a diagram showing changes in the current I and the voltage V during charging when control is performed in the charge pattern of “constant current-constant voltage-constant current”, and the vertical axis represents the current value and the voltage value. , The horizontal axis represents time t. As shown in FIG. 4, constant-current charging is started with a constant current I0, and when the charging voltage reaches a predetermined value V1, the operation shifts to constant-voltage charging.
When the charging becomes constant voltage, the current I decreases to a predetermined current value I1.
When it becomes, charging is performed again with a constant current.

【0010】図1は制御装置6よる充電制御を示すフロ
ーチャートであり、このフローチャートを用いて制御動
作を説明する。図1のフローチャートは充電器7による
充電動作が開始されるとスタートする。ステップS1で
は、制御装置6の記憶部6bに予め記憶された電池1の
放電容量に基づいて、次式(9)により最適充電量を算
出する。
FIG. 1 is a flowchart showing the charging control by the control device 6, and the control operation will be described with reference to this flowchart. The flowchart of FIG. 1 starts when the charging operation by the charger 7 is started. In step S1, based on the discharge capacity of the battery 1 stored in the storage unit 6b of the control device 6 in advance, the optimum charge amount is calculated by the following equation (9).

【数9】 (最適充電量)=(放電容量)×1.05 …(9) ここで、式(9)の放電容量は演算部6aで次式(1
0)により算出され、記憶部6bに記憶される。なお、
式(10)の総放電量や回生充電量は走行時の電流Iに
基づく電流積算(Ah)により算出される。
(Optimal charge amount) = (discharge capacity) × 1.05 (9) Here, the discharge capacity of the equation (9) is calculated by the following equation (1)
0) and stored in the storage unit 6b. In addition,
The total discharge amount and the regenerative charge amount in Expression (10) are calculated by current integration (Ah) based on the current I during traveling.

【数10】 (放電容量)=(総放電量)−(回生充電量) …(10)(Discharge capacity) = (total discharge amount) − (regenerative charge amount) (10)

【0011】ステップS1において最適充電量が算出さ
れたならば、ステップS2に進んで充電を開始する。次
いで、ステップS3は充電開始後の充電積算値がステッ
プS1で算出された最適充電量以上になったか否かを判
断するステップであり、最適充電量以上となったならば
ステップS4へ進み、充電器7に充電停止信号を送信し
充電を停止する。このようにして電池1の充電が完了す
る。
When the optimum charge amount has been calculated in step S1, the process proceeds to step S2 to start charging. Next, step S3 is a step of judging whether or not the integrated charge value after the start of charging is equal to or more than the optimum charge amount calculated in step S1, and if it is equal to or more than the optimum charge amount, the process proceeds to step S4, where the charge is performed. A charging stop signal is transmitted to the container 7 to stop charging. Thus, charging of the battery 1 is completed.

【0012】以上説明したように、本実施の形態の充電
制御方法では電池1の放電容量を実際に求め、その放電
容量の1.05倍を最適充電量と設定して最適充電量で
充電を停止しているため、以下に述べるような利点があ
る。まず第1に、本実施の形態では、電池1の放電容量
を実際に求め、その放電容量に基づいて最適充電量が設
定されるため、次のような効果が得られる。 電池寿命が向上する 熱逸走現象が防止される モジュール電池の充電ばらつきが抑制される 過充電の防止および充電時間の短縮が図られる
As described above, in the charge control method of the present embodiment, the discharge capacity of the battery 1 is actually obtained, and 1.05 times the discharge capacity is set as the optimum charge amount, and the charge is performed at the optimum charge amount. Since it is stopped, there are the following advantages. First, in the present embodiment, since the discharge capacity of the battery 1 is actually obtained and the optimal charge amount is set based on the discharge capacity, the following effects are obtained. Improves battery life Prevents thermal runaway phenomenon Suppresses charging irregularities in module batteries Prevents overcharging and reduces charging time

【0013】の電池寿命に関して、充電量と電池寿命
との間には密接な関係があり、鉛酸組電池については充
電量を放電容量のほぼ1.05倍とした場合に最も寿命
が長いことが実験により確かめられた。図5は実験によ
り得られた充電量と電池寿命との関係を定性的に示した
ものであり、横軸は(充電量)/(放電容量)を%で表
したものである。
[0013] Regarding the battery life, there is a close relationship between the charge amount and the battery life, and the lead-acid battery has the longest life when the charge amount is approximately 1.05 times the discharge capacity. Was confirmed by experiments. FIG. 5 qualitatively shows the relationship between the charge amount and the battery life obtained by the experiment, and the horizontal axis represents (charge amount) / (discharge capacity) in%.

【0014】図6はの熱逸走現象を説明する図であ
り、(a)は熱逸走のサイクルを概念的に示す図であ
り、(b)は現象が生じたときの電池温度Tb,充電電
流I,充電電圧Vの変化を示す図である。電池が劣化す
ると内部抵抗が増大し、それに伴って発熱が増加して電
池温度が上昇する。電池温度が上昇すると、水素発生電
位(電池の活物質中の硫酸鉛がほぼ充電されて電解液中
の水の電気分解が起こる電位)に至る電流値が上昇し、
充電受入電流が増大する。この循環が繰り返されること
により熱逸走現象が生じる。従来は電池の放電容量にか
かわらず定電圧充電時間を設定しているため、過充電と
なるような場合には上述したような熱逸走現象の発生の
おそれがあり、図6(b)に示すように定電圧充電中に
電池温度および充電電流の急激な上昇が発生して電池の
劣化を早めるという問題があった。しかし、本実施の形
態では、充電量が放電容量の1.05倍となったときに
充電を停止するようにしているため過充電を防止するこ
とができ、このような熱逸走現象の発生を抑制すること
ができる。その結果、電池劣化の抑制を図ることができ
る。
FIGS. 6A and 6B are diagrams for explaining the thermal runaway phenomenon. FIG. 6A is a diagram conceptually showing a cycle of the thermal runaway. FIG. 6B is a diagram showing the battery temperature Tb and the charging current when the phenomenon occurs. I is a diagram showing changes in charging voltage V. FIG. When the battery deteriorates, the internal resistance increases, and accordingly, the heat generation increases and the battery temperature rises. When the battery temperature rises, the current value that reaches the hydrogen generation potential (the potential at which lead sulfate in the active material of the battery is almost charged and electrolysis of water in the electrolyte occurs) increases,
The charge receiving current increases. By repeating this circulation, a thermal escape phenomenon occurs. Conventionally, the constant voltage charging time is set regardless of the discharge capacity of the battery. Therefore, in the case of overcharging, there is a possibility that the above-mentioned thermal runaway phenomenon may occur, and this is shown in FIG. As described above, there has been a problem that the battery temperature and the charging current rapidly increase during the constant voltage charging, and the deterioration of the battery is accelerated. However, in the present embodiment, charging is stopped when the charged amount reaches 1.05 times the discharge capacity, so that overcharging can be prevented, and the occurrence of such a thermal escape phenomenon can be prevented. Can be suppressed. As a result, battery deterioration can be suppressed.

【0015】図7はのモジュール電池の充電ばらつき
を説明する図であり、組電池を定電力・定電圧充電で充
電したときの電流I,組電池電圧V0およびモジュール
電池電圧V1,V2を示した。なお、図7では、V0は組
電池電圧を1/10のスケールで表示したものであり、
モジュール電池電圧V1,V2は各々モジュール電池C
1,C2の電圧値である。図7において、モジュール電池
C1,C2を比較すると、電圧の低いモジュール電池C1
の方が劣化が進んでおり、モジュール電池C2よりC1の
方が密閉反応効率が低いことがわかる。従来の充電制御
方法では、実際に必要な定電圧充電時間よりも長い定電
圧充電時間が設定された場合には、密閉反応効率がばら
ついた状態で充電が行われて充電量のばらつきが生じ
る。しかし、本実施の形態の充電制御方法によれば必要
以上に充電が行われないため、密閉反応効率がばらつい
た状態での充電時間を従来より短くすることができ、モ
ジュール電池C1〜Cnの充電量のばらつきを抑制するこ
とができる。
FIG. 7 is a diagram for explaining the charging variation of the module battery shown in FIG. 1, and shows the current I, the battery battery voltage V0, and the module battery voltages V1 and V2 when the battery pack is charged by constant power and constant voltage charging. . In FIG. 7, V0 represents the assembled battery voltage on a scale of 1/10.
Module battery voltages V1 and V2 correspond to module battery C, respectively.
1, C2. In FIG. 7, when comparing the module batteries C1 and C2, the module battery C1 having a lower voltage is obtained.
It can be seen that C1 has a lower sealed reaction efficiency than module battery C2. In the conventional charging control method, when a constant voltage charging time longer than an actually required constant voltage charging time is set, charging is performed in a state in which the sealed reaction efficiency varies, and a variation in charge amount occurs. However, according to the charging control method of the present embodiment, since charging is not performed more than necessary, the charging time in a state where the sealing reaction efficiency varies can be shorter than before, and the charging of the module batteries C1 to Cn can be performed. Variation in the amount can be suppressed.

【0016】の充電時間の短縮に関しては、従来の充
電制御方法では、放電容量の小さい状態の電池に対して
は定電圧充電時間が実際に必要な時間より長く設定され
て過充電になる傾向があった。しかし、上述した充電制
御方法によれば、このような過充電を防止することがで
きるとともに、充電時間の短縮を図ることができる。
Regarding the shortening of the charging time, in the conventional charging control method, a battery having a small discharge capacity tends to be set to a constant voltage charging time longer than an actually required time and to be overcharged. there were. However, according to the charging control method described above, such overcharging can be prevented, and the charging time can be reduced.

【0017】なお、上述した実施の形態に加えて、熱逸
走現象防止策の一つとして電池温度を検出する温度セン
サを設けて、電池温度が所定上限温度となったならば充
電を停止するようにしても良い。また、充電制御パター
ンとして電池の充電量が放電容量の1.05倍となる前
に定電流充電に切換えるように制御するようにしても良
い。さらに、上述した実施の形態では「定電流・定電圧
・定電流」の充電パターンを例に説明したが、本発明は
「定電流・定電圧」,「定電力・定電圧」の充電パター
ンに関しても適用することができる。
In addition to the above-described embodiment, a temperature sensor for detecting the battery temperature is provided as one of the measures for preventing the thermal runaway phenomenon, and charging is stopped when the battery temperature reaches a predetermined upper limit temperature. You may do it. Further, as the charge control pattern, control may be performed so that the charging is switched to the constant current charging before the charge amount of the battery becomes 1.05 times the discharge capacity. Furthermore, in the above-described embodiment, the charge pattern of “constant current / constant voltage / constant current” has been described as an example, but the present invention relates to the charge pattern of “constant current / constant voltage” and “constant power / constant voltage”. Can also be applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】二次電池1とその充電に用いられる充電装置の
構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a secondary battery 1 and a charging device used for charging the secondary battery.

【図2】電気自動車の走行駆動機構の構成を示すブロッ
ク図。
FIG. 2 is a block diagram showing a configuration of a traveling drive mechanism of the electric vehicle.

【図3】電気自動車に充電器7を接続したときのブロッ
ク図。
FIG. 3 is a block diagram when a charger 7 is connected to the electric vehicle.

【図4】定電流・定電圧・定電流の充電パターンを示す
図。
FIG. 4 is a diagram showing a charging pattern of constant current, constant voltage, and constant current.

【図5】電池寿命の向上を説明する図。FIG. 5 is a diagram illustrating an improvement in battery life.

【図6】熱逸走現象を説明する図であり、(a)は熱逸
走サイクルの概念図、(b)は現象が生じたときの電池
温度,充電電流,充電電圧の変化を示す図。
6A and 6B are diagrams for explaining a thermal runaway phenomenon, in which FIG. 6A is a conceptual diagram of a thermal runaway cycle, and FIG. 6B is a diagram showing changes in battery temperature, charging current, and charging voltage when the phenomenon occurs.

【図7】モジュール電池の充電ばらつきを説明する図。FIG. 7 is a diagram illustrating charging variation of a module battery.

【符号の説明】[Explanation of symbols]

1 電池 2 インバータ 3 モータ 4 電圧センサ 5 電流センサ 6 制御装置 6a 演算部 6b 記憶部 7 充電器 C1〜Cn モジュール電池 DESCRIPTION OF SYMBOLS 1 Battery 2 Inverter 3 Motor 4 Voltage sensor 5 Current sensor 6 Control device 6a Operation part 6b Storage part 7 Charger C1-Cn module battery

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電気車用二次電池の充電制御方法におい
て、 前記電池の充電前までの総放電量および回生充電量から
次式(1) 【数1】 (放電容量)=(総放電量)−(回生充電量) …(1) で算出される放電容量に基づいて最適充電量を演算し、
充電中の充電積算量が前記最適充電量となったならば充
電を停止することを特徴とする電気車用二次電池の充電
制御方法。
1. A method for controlling the charging of a secondary battery for an electric vehicle, comprising the following formula (1): (discharge capacity) = (total discharge amount) ) − (Regenerative charge)… calculates the optimal charge based on the discharge capacity calculated in (1),
A charging control method for an electric vehicle secondary battery, wherein charging is stopped when the integrated charging amount during charging reaches the optimum charging amount.
【請求項2】 請求項1に記載の充電制御方法におい
て、 前記二次電池を鉛酸組電池としたことを特徴とする電気
車用二次電池の充電制御方法。
2. The charge control method for an electric vehicle secondary battery according to claim 1, wherein the secondary battery is a lead-acid battery.
【請求項3】 請求項2に記載の充電制御方法におい
て、 前記最適充電量を次式(2) 【数2】 (最適充電量)=(放電容量)×1.05 …(2) により算出することを特徴とする電気車用二次電池の充
電制御方法。
3. The charge control method according to claim 2, wherein the optimal charge amount is calculated by the following equation (2): (optimal charge amount) = (discharge capacity) × 1.05 (2) Charging control method for a secondary battery for an electric vehicle.
【請求項4】 請求項1〜3のいずれかに記載の充電制
御方法において、 充電制御パターンを、 (a)定電流・定電圧充電制御 (b)定電流・定電圧・定電流充電制御 (c)定電力・定電圧充電制御 のいずれか一つとしたことを特徴とする電気車用二次電
池の充電制御方法。
4. The charge control method according to claim 1, wherein the charge control pattern comprises: (a) constant current / constant voltage charge control; and (b) constant current / constant voltage / constant current charge control. c) Constant power / constant voltage charge control. A charge control method for a secondary battery for an electric vehicle, wherein the charge control method is any one of the following.
【請求項5】 電気車用鉛酸組電池の充電制御装置であ
って、 前記電池の充電前までの総放電量および回生充電量から
次式(3) 【数3】 (放電容量)=(総放電量)−(回生充電量) …(3) で算出される放電容量に基づいて最適充電量を、次式
(4) 【数4】 (最適充電量)=(放電容量)×1.05 …(4) により演算する演算装置と、 充電中の充電積算量が前記最適充電量となったならば充
電を停止するように前記電池の充電を行う充電器を制御
する制御装置と、を備えることを特徴とする電気車用鉛
酸組電池の充電制御装置
5. A charge control device for a lead-acid battery pack for an electric vehicle, comprising: a total discharge amount and a regenerative charge amount before the battery is charged, the following formula (3): (Total discharge amount)-(regenerative charge amount) An optimal charge amount is calculated based on the discharge capacity calculated by the following equation (4). (Equation 4) (optimal charge amount) = (discharge capacity) × 1. 05 ... (4) and a control device for controlling a charger for charging the battery so as to stop charging when the integrated charge amount during charging reaches the optimum charge amount. A charge control device for a lead-acid battery for an electric vehicle, comprising:
JP9259754A 1997-09-25 1997-09-25 Method and device for charge control for secondary battery of electric vehicle Pending JPH1198697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9259754A JPH1198697A (en) 1997-09-25 1997-09-25 Method and device for charge control for secondary battery of electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9259754A JPH1198697A (en) 1997-09-25 1997-09-25 Method and device for charge control for secondary battery of electric vehicle

Publications (1)

Publication Number Publication Date
JPH1198697A true JPH1198697A (en) 1999-04-09

Family

ID=17338495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9259754A Pending JPH1198697A (en) 1997-09-25 1997-09-25 Method and device for charge control for secondary battery of electric vehicle

Country Status (1)

Country Link
JP (1) JPH1198697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081677A (en) * 2008-09-24 2010-04-08 Toyota Motor Corp Electric vehicle and charge control system
JP2011016393A (en) * 2009-07-07 2011-01-27 Meidensha Corp Discharge control method in feeder voltage compensator for electric railways
JP2012110084A (en) * 2010-11-15 2012-06-07 Mitsubishi Motors Corp Charging display device for electric vehicle
JP2012222895A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Charge control device
WO2014119299A1 (en) * 2013-01-29 2014-08-07 Evtd株式会社 Balance correction device and electricity storage system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081677A (en) * 2008-09-24 2010-04-08 Toyota Motor Corp Electric vehicle and charge control system
JP4623181B2 (en) * 2008-09-24 2011-02-02 トヨタ自動車株式会社 Electric vehicle and charging control system
US8686591B2 (en) 2008-09-24 2014-04-01 Toyota Jidosha Kabushiki Kaisha Electrically-driven vehicle and charge control system which enable simultaneous performance of driving of an accessory unit and a charging process of a battery
JP2011016393A (en) * 2009-07-07 2011-01-27 Meidensha Corp Discharge control method in feeder voltage compensator for electric railways
JP2012110084A (en) * 2010-11-15 2012-06-07 Mitsubishi Motors Corp Charging display device for electric vehicle
JP2012222895A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Charge control device
WO2014119299A1 (en) * 2013-01-29 2014-08-07 Evtd株式会社 Balance correction device and electricity storage system
JPWO2014119299A1 (en) * 2013-01-29 2017-01-26 Evtd株式会社 Balance correction device and power storage system

Similar Documents

Publication Publication Date Title
JP3934365B2 (en) Battery charge / discharge control method
JP3706565B2 (en) Power supply for hybrid cars
JP4118035B2 (en) Battery control device
JP3736268B2 (en) Control device for hybrid vehicle
JP3711380B2 (en) Method for calculating maximum charge and maximum discharge current of hybrid electric vehicle battery
JP3415740B2 (en) Battery charger
JP2002369391A (en) Method and device for controlling residual capacity of secondary battery
JP2009044930A (en) Power supply system, and vehicle equipped therewith
JPH08205312A (en) Method and equipment for controlling series hybrid vehicle
CN103563206A (en) Electricity storage system
KR100341754B1 (en) Controlling method for battery charge of electric vehicle
JP2002315218A (en) Method for controlling charging of secondary battery for unmanned conveying vehicle
JP2002142379A (en) Charging method for battery
JP7016628B2 (en) Combined power storage system
JP2018137220A (en) Fuel cell control device, control method thereof, and fuel cell vehicle
JP2001314046A (en) Charging apparatus and method of battery pack and electric vehicle
JP3849541B2 (en) Charge / discharge control method for battery pack
US10770761B2 (en) Fuel cell control device, control method thereof, and fuel cell vehicle
JP2001314040A (en) Method of controlling charging/discharging in hybrid vehicle
JP3611905B2 (en) Charge control method for battery pack
JP2005261034A (en) Controller of electric storage mechanism
JP2001298872A (en) Power storage system
JPH1198697A (en) Method and device for charge control for secondary battery of electric vehicle
US20230173924A1 (en) Storage battery control apparatus
JPH06296302A (en) Controller for engine-driven generator for electirc vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051227