JP5520840B2 - コントラスト測定用視覚センサ及びコントラスト測定方法 - Google Patents

コントラスト測定用視覚センサ及びコントラスト測定方法 Download PDF

Info

Publication number
JP5520840B2
JP5520840B2 JP2010547175A JP2010547175A JP5520840B2 JP 5520840 B2 JP5520840 B2 JP 5520840B2 JP 2010547175 A JP2010547175 A JP 2010547175A JP 2010547175 A JP2010547175 A JP 2010547175A JP 5520840 B2 JP5520840 B2 JP 5520840B2
Authority
JP
Japan
Prior art keywords
pixel
time
integration
clock
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010547175A
Other languages
English (en)
Other versions
JP2011512764A (ja
Inventor
ハイム,パスカル
リュディ,ピエール−フランソワ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Publication of JP2011512764A publication Critical patent/JP2011512764A/ja
Application granted granted Critical
Publication of JP5520840B2 publication Critical patent/JP5520840B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/573Control of the dynamic range involving a non-linear response the logarithmic type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

この発明は、単一チップに搭載された視覚センサ(ビジョンセンサ)に関する。より詳細には、この発明は、各ピクセルについてシーンから放たれ受光した光強度の測定値を変換しメモリにデジタル記憶する視覚センサ(観察センサとも称する。)に関する。前記測定値は、シーンにおける、隣接するピクセルに関するコントラスト値等の不変条件を計算するのに引き続き用いられる。この発明はまた前記測定値を得るための方法に関する。
このような装置は「Time−to−Vref」と称されるコンセプトを利用する。この「Time−to−Vref」は、キャパシタンス(静電容量)の光電流を積分して得られる電圧が閾値セットすなわち先験的な(priori)Vrefに到達するのに要する時間を測定する工程からなる。これによって、非常に大きな光照度のダイナミックレンジを演算することができる。たいていの場合には、この閾値は、撮像装置全体に対するものと同じであるが、重要な1つの領域から他の領域に変化するように容易に案出されることができる。さらに、この演算は、ピクセルに接続する内部カウンタ又は外部カウンタを備えることで、ある例から他の例に変化することができる。内部カウンタは閾値に到達したときに停止し、外部カウンタはピクセルの電圧と閾値電圧との比較値をより一般的な方法でメモリに記憶する。他の実施が欧州特許出願EP1301028号に「Grayコードをメモリに記憶のGrayカウンタを用いた技術」として記載されている。検出器はこの比較値を受信したときに信号を発信する。画像センサに適用された「Time−to−Vref」技術の一例が米国特許第4197562号に見られる。この特許は、Klaus Dietrichによるものであり、その名称は「画像記憶センサ」である。また、米国特許2003/0107666号には、画像センサに前述の時間測定原理を利用した技術が記載されている。このようなセンサはダイナミックレンジが小さいという欠点を有している。事実、測定された照度が大きい場合に飽和状態となることを避けることを目的として、光電流の積分器の容量に合わせることが必要となる。照度が小さい間は前記センサの感度は小さいものとなる。


このようなダイナミックレンジの欠点を解決する技術が英国特許(GB)第2432065号に記載されている。この技術は、センサの出力量の対数値を提供するものである。しかし、このセンサの構成にはアナログ型の構成部品が基本的に必要とされ、そのため、このセンサは特にノイズに敏感で実際の条件下での実施には手間がかかる。
コントラストの局所的計算は、それが強度又は配向(オリエンテーション)であるかを問わずに、アナログ乗算器(マルチプレクサとも称する。)によってこれまで行われてきた(P.-F. Ruediら、「128×128ピクセル 120dB ダイナミックレンジ ビジョンセンサ チップ フォー イメージ コントラスト アンド オリエンテーション エクストラクション」、IEEE JSSC,Vol.38,No.12,2003年12月)。この文献における局所的計算は、時間積分モードにおいてアナログ方式でシーンの光照度レベルから独立した精度を有する第一次近似によって行われる。このような技術は最新のものであるから興味があるが、計算はほとんど行われず、記憶容量の観点からはあまりお勧めできない。それでもやはり、センサの解像度は従来の伝統的方法におけるセンサの解像度よりも低い。さらに、実装された構成部品は本質的にアナログ式であるのでこのセンサにも前記欠点がある。
一般的な撮像装置の分野において、ダイナミック感度レンジは最も重要なパフォーマンス性能である。ダイナミック感度レンジは最強強度の輝度と最低強度の輝度との比として定義される。前記輝度は前記撮像装置によって測定と許容可能な方法での復帰とが可能になる。
この発明の第1の目的は、大きなダイナミックレジンで画像を撮影することにある。ここで、任意の光強度で照射された同一物体の反射率(又は他のパラメータ)は光強度に影響しない解像度で定量化される。
反射率は、再発光するシーンが有する成分の能力を示す数量である。
以下の明細書はコントラストを測定することに焦点が当てられているが、他の不変条件にも適用可能である。コントラストは2つのピクセル又はピクセル領域での照度比を意味し、局所コントラストは隣接する又は近接するピクセルの照度比を意味する。
より詳細には、この発明は、光検出器を有し、情景(ビジュアルシーン)を示す光線を受光する複数のピクセルの配列を備えるデジタル視覚センサに関する。このシーンの少なくとも1つの不変条件を測定するのを促進するため、感知したシーンの光照度に依存しない認識においてセンサは一定の範囲内でシーンの照度にのみ依存する値を生成する。不変条件はセンサ又は外部センサでこれらの値を減算することによって計数される。これらの値は減算される前にグループ化される。この発明に係るセンサは以下の要素を含んでいる。
・基準電圧Vref発生器
・ピクセルが受光した照度に比例する電圧Vを積分段階で発生する、各ピクセルに設けられた手段
・前記ピクセルの前記電圧Vがすべてのピクセルに共通する電圧Vrefに到達する瞬時を決定する、各ピクセルに設けられたコンパレータ
・各積分開始からの経過時間を測定する装置
・前記積分開始からの前記経過時間に比例して増大する二つの連続値の時間間隔(この時間間隔は変化して前記照度の対数圧縮を形成する)を有し、前記時間測定装置によって測定された前記時間を定量化する手段
・前記連続する時間値をバイナリコードにエンコードする装置
・1ピクセルにつき、RAMスタチックメモリの1ワード
・前記瞬時に存在する前記コードを前記メモリに書込む、各ピクセルに設けられた手段
・前記積分段階の終了を制御する手段
・メモリに記憶された情報を読取る手段
有利には、この発明に係るセンサは前記バイナリコード値をGrayコードにエンコードする装置をさらに備え、前記読取り手段はこれらのGrayコードを元のバイナリ値にデコードする。
さらに、この発明に係るセンサは、メモリに記憶された前記バイナリ値からコントラストを計算する手段を備えている。
従来のすべてのセンサにおける場合と同様に、各ピクセルの光照度は、このピクセルに入射したシーンの一部の照度であることが理解される。積分時間測定の対数的性質によれば照度の対数は前記積分時間を簡単に変化させることで得られる。
例えば、大きな雲が太陽の前を通過するときなどのように、シーンの一部の光照度が一様に増加又は減少すると、前記シーンの前記部分を示すピクセルで形成された領域は一定の範囲内で光照度に対して不変となる。換言すると、雲の通過によって、この領域を示すあるピクセル値を同領域のピクセルすべてに加算又は減算する。その結果、この領域のあるピクセル値から同領域の他のピクセル値を減算することで得られるコントラストは雲の通過前後において同じ値になる。ピクセル群の減算が同領域において常に考慮されることもまた事実である。ピクセル群におけるピクセル値を同じ大きさを有する他のピクセル群におけるピクセル値の和に加算し、また、このピクセル値を同じ大きさを有する他のピクセル群におけるピクセル値の和から減算することができる。得られる結果はまた光照度に対して不変である。この明細書の残部において、コントラスト値が照度に依存しないという事実に言及されるとき、又は、ピクセル値が一定の範囲内で照度にのみ依存するという事実に言及されるとき、基準は、シーンの一部に設定され、かつ画像領域に拡大されることで設定され、2ショット間で一様に変化する照度すなわちその照度は同領域内で定数因子によって乗算されると、常に理解されるべきである。最新の条件は前記照度がこの領域で一様でないと仮定され、一様となるべき変化のみである。この領域が全体として画像を表すこともまた可能になる。
この発明は、基準電圧Vref 31に到達するために積分コンデンサC 25の光ダイオード22からの光電流Iphd 23を積分することで得られ、ピクセル10の電圧V 28によって得られる時間を測定する方法を使用する。この時間の積分は積分開始からの経過時間に比例して増大する可変期間で定量化され、その結果、さらに前記したように、照度の絶対的な対数圧縮によって、照明されたシーンの反射率のみに依存するコントラストデータの連続計算が可能になるから、コントラスト計算に使用される視覚センサとして機能する。さらに、対数圧縮によって、大きなダイナミックレンジに対して少ないビット数(6デカードに対して10ビット)で満足できる。以下に示す他の利点が順序に関係なく言及されている。他の利点は、よりよいロバスト性、(ビット数の低減による)効果的な小型化、コントラスト計算におけるより意味のある単純さ、ピクセル照度に関する成分の組み合わせにおいての誤り効果の不変性に基づく高パフォーマンス性、及び、認識したシーンの光照度レベルに依存しない精度を持って不変条件の計算を可能にする照度の数量化等が挙げられる。シーンの光照度の不変性によって全センサのピクセル値は同じ値が加算されることに、留意すべきである。
添付の図面及び明細書の下記部分によってこの発明の他の細部がより一層明確になるであろう。
図1は、CMOS技術で実施可能な態様のみが図示されているが、他の技術でも同じ機能を実施可能であることは自明である。プラス入力が接地された積分器20は、光L 21を受光すると電流Iphd 23を発生する光ダイオード22に他方の入力が接続されている。積分器20は、高圧力率(好ましくは100以上の圧力率)の増幅器24を使用している。増幅器24のマイナス入力と出力とに接続された積分コンデンサC 25は、光ダイオードの光電流Iphdを下記関係式(1)に従って電圧V 28に変換するのに使用される。
Figure 0005520840
前記積分コンデンサ25はスイッチ26でゼロにリセットされ、このスイッチ26自身は視覚センサの図示しないコントローラから送信されるゼロリセット信号RST 27で制御されている。電圧V 28はすべてのマトリックスに対して通常同一の参照電圧Vref 31とコンパレータ(比較器)30で比較される。コンパレータの出力V 32は、書込パルスWR 41の発生器40に接続され、この発生器40自身はRAMスタチックメモリ50に接続されている。この実施において、電圧Vはピクセルの電圧Vが参照電圧Vrefに到達する高い状態に切替えられる。
高い状態にあるときに稼動中のパルス発生器40の稼動状態が、パルス発生器40と協働するRAMスタチックメモリ50の稼動状態と共に図2に示されている。例えば各ピクセルに対するRAMスタチックメモリワードはnビット、すなわち、n〜nを有している。マトリックスのすべてのピクセル列に共通のバス51は、ビットラインと称されるn個のアクセスラインから成っている。参照符号52は、WR(ワードライン)信号又はスタチックメモリ50を読取るRD(読取)信号を示している。この信号は新たに撮影する前にすべてのメモリセルをゼロにリセットするのにも使用される。このことが図3に示されている。
図2には、RAM50と書込パルス発生器40との稼動状態が示されている。1つのRAMビットは2つのCMOSインバータ61及び62を有しており、これらはそれぞれ頭部と脚部とが接続するように搭載されており、メモリセル60へのラッチとして使用される予定である。トランジスタ63は読取時及び書込時にセルにアクセスするトランジスタである。書込時のみにノードmをゼロに設定可能になっている。これによって、高い状態にある書込パルスがコントロールラインWL 52に適用されている間中、ビットラインbはゼロになる。次いで、ノードmはトランジスタ63によってビットラインに印加される低電圧まで低下される。画像を取得した後のノードmの読取りは、コントロールラインWL 52を伝送する高い状態のパルスによって、行われる。次いで、トランジスタ63は、インバータ61で印加された、ビットラインbのノードmに電圧をかける。トランジスタ64はピクセル10の内部からメモリ60に書込むトランジスタである(図1参照。)。メモリをゼロにリセットした後に、すべてのノードmは高い状態にあり、すべてのノードmは低い状態にある。したがって、メモリはゼロのままである。ピクセルによって書込パルスWR 41が発生すると、トランジスタ64を動作させることは、条件付きでメモリのビットラインに出現した状態に依存する低い状態にノードmを低下させる。このビットラインが低い状態にあると、トランジスタ65は、ブロックされ(すなわち非動作状態にある)、ノードmは高い状態(メモリのゼロ状態)を維持する。このトランジスタ65は、ビットラインに出現したデータによって制御され、メモリ60に書込むトランジスタである。一方、ビットラインが高い状態にあると、パルスWR 41の発振中にトランジスタ64と65とが同時に動作することによって、メモリに「1」を書込むことに相当する低い状態にノードmが低下する。メモリ60に書込むためのトランジスタ65はビットラインに出現したデータによって実際に制御される。
メモリ50に書込むためのパルスWR 41を発生する発生器40は、メモリ43と、理論ANDゲート42とからなっている。メモリセル43は、画像を感知する前であって、通常メモリワード50と同時にゼロにセットされる。この状態において、信号m1p 45とANDゲート42の出力で表される内部ノードmは、コンパレータ30の出力V 32に接続された前記ゲートの入力として同じ状態に想定される。画像をすべて感知する初期及び間中にわたって、ビットラインb 44は高い状態に保たれて、トランジスタ46が動作するようになっている。コンパレータ30の出力V 32が高い状態すなわちVp 28がVref 31に到達した状態に切替わると、信号WR 41はトランジスタ47が動作する高い状態に切替わり、次いで、信号m1pが低い状態に切替わってANDゲート42をブロックすることでパルスWR 41の発振が終了する。
WR 41パルス発振の継続は、2つのインバータ61及び62の切替え率に依存すると共に、ANDゲート42の転送遅延に依存する。このパルス発振がメモリワード50のすべてのセルを切替えるのに十分なほど継続するように、トランジスタ46の長さはメモリワード50のセルにおけるトランジスタ65よりも長くなっており、その結果、セル43の切換時間は最悪の場合における他のセルよりも短くなっている。前述したように、メモリ50の書込みパルスは高い状態で機能する。メモリセル43は、メモリ50の書込みパルスWR 41を発生するのに使用される。ビットラインb 44はメモリセル43に結合している。メモリ43からの信号m1p 45は前述したように書込みパルスの発生に使用される。ビットラインb 44に存在するデータによって制御されたトランジスタ46はメモリワード50のセルにおけるトランジスタ65よりも長くなっている。
図3は、全体に相当するものであるが画像を取得するための簡単な回路であるタイムダイアグラム70を示している。
参照符号CK 71はシステムのクロックを示している。このシステムのクロックは、図5に説明するように、露光時間75の開始及び積分開始からの経過した時間と共に2つの連続するパルスを分離する時間が変化するので、指数時間を持ったクロックといわれている。
画像を取得する前に、信号WL 52のパルス72はパルス発生器40に結合したセル43と共にメモリワード50のセルを含むRAMのセルすべてをゼロにリセットする。信号WL 52のパルスはすべてのセル及び予め低い状態に保たれているすべてのビットラインにゼロを書込む。参照符号73はすべてのメモリセルをゼロにリセットしたときの効果を示している。図示しないノードmは低い状態に引き下げられ、ノードmは高い状態に引き上げられる。
参照符号74はピクセルをゼロにリセットするスイッチ(RST)の開始を示し、これは積分コンデンサC 25からの光電流23の積分開始を記憶する。
積分期間及び指数時間をもつクロックの発生が同時に開始される。参照符号76において、ビットラインbが高い状態に切替わり、コンパレータ30の切替え中にメモリセル43に書込みを可能にする。
参照符号77は、指数時間をもつクロックによって定義され異なる瞬時(瞬間ともいう。)を意味する。ピクセルの電圧V 28が参照電圧Vrefに瞬時78で到達する。参照符号79において、コンパレータ30の出力V 32は高い状態に切替わってイベント78に続き、ピクセル10の内部にある書込み信号WR 41が高い状態に切替えられる。参照符号80において、高い状態がメモリビットに書込まれ、ビットラインが高い状態になる。他のビットは低い状態のままである。参照符号81において、高い状態のビットpを書込むと、ノードm1pを低い状態に引き下げ、これによって、ANDゲート42のブロックに続いて書込みパルスWR 41が終了する効果が得られる。
参照符号82は図5に示される積分段階の終了に相当する。
参照符号83は、ビットライン51及び44が読取りモードすなわち高インピーダンスHiZ状態に設定される、メモリの読取り段階の開始を示している。増幅器の読取り実行及びメモリセル60の寸法記入によって、ビットライン51及び44は高い状態に予めロードされる。参照符号84において、書込みパルスはマトリックスのワードライン(信号WL 52)の1つに適用される。セル60のトランジスタ63は、セルのノードmにおける電圧に基づいて対応するビットラインを高い状態又は低い状態に引き上げ又は引き下げる。このビットラインの読取りは読取/書込ブロック140(図4参照)によって実行され、このブロックは読取増幅器を含み、回路がピクセルマトリックス101のラインの全体又は(重要な領域の)一部のために再度起動する。参照符号85はマトリックスの読取期間の終了を示している。参照符号86において、ビットライン51及び44は、増幅器20並びにピクセル10のメモリセル60及び43のゼロリセット期間を見込んで、低い状態にある。
参照符号87において、ピクセル10の積分器20はゼロにリセットされる。この作業に続いて、出力V 28及び積分器20の出力v 32は参照符号88において低い状態に切替わる。
参照符号89において、メモリセル60及び43をゼロにリセットする書込パルスはライン選択信号WL 52によって発生する。この信号が、ビットライン51及び41が低インピーダンスで低い状態に保持されると同時に高い状態になると、メモリセル63及び43のノードmはゼロに相当する低い状態に引き下げられる。このようにしてメモリをゼロにリセットすることは、ビットライン51及び44がアクティブなバッファはメモリセルのすべての列を切替え可能とするために合理的な寸法に合わせることができないので、ラインごとに連続して実行されることに、注意すべきである。
図4は、コントラストを測定するための視覚センサ100のブロック図である。ここに記載のシステムは好ましい態様であるが、この発明の範囲を逸脱することなく代替可能である。マトリックス101はN行及びM列に配列されたピクセルを含んでいる。ブロック110は回路の完全な制御を保証する。このブロックは、外部にマイクロコントローラ等のインターフェースサーキット111を有し、メモリ140から読取り、書込むための制御信号112、ピクセル行160を読取るための抵抗器及びコントラストを計算するためのブロック170を制御する。最後に、前記ブロックは指数期間を持つクロックを生成させるための制御信号113を発生する。信号RST_GENは指数期間発生器120をゼロにリセットするための信号である。CKは一定の周波数クロックであり、RST_CNTはピクセルの出力を相似状態でサンプリングするためのタイムカウンタ122をゼロにリセットするための信号である。発生器120のクロック121はタイムカウンタ122を増大させるのに使用される。カウンタ122によって伝送されるnビットバイナリコード123は124内でただ1つのビットを所定の瞬時に変化させるコードであるGrayコード125に変換される。この変換の実行は、無効なトランジションを回避するためにカウンタ122の更新と同期して行われるべきである。この変換の実行はこの可能性だけではない。このようにコードを変換すると、メモリへの書込みを単純化でき、従ってピクセル内に設けるトランジスタ数を減らすことができるので、好ましい。実際には、Grayコードを用いないと、メモリへの書込みは、ピクセル内に追加手段を必要とするコードの変換中には回避されるべきである。アナログ−デジタル変換器等でこのコードを使用すると従来のよく確立された状態になる。nビットGrayコード125は、読取/書込制御ブロック140を介して、マトリックス101に配列されたピクセルのM列のビットライン51に分配される。アナログ/デジタル変換器130は基準電圧Vrefを発生する。制御ブロック110からのデジタルコード131によってこの基準電圧は各ピクセル10において積分時間のグローバル測定を可能にする。ビットライン51のGrayコード125はピクセルのRAMメモリワード50に記憶される時期はピクセルの電圧Vが基準電圧に到達したときである。
読取モードにおいて、Grayコードはデータバス141で示されるマトリックス101のM列のビットライン51に同時に出現する。読取モードにおいて、ラインデコーディングブロック150で選択されたピクセルの第k行のデータは、データバス141に出現し読取られ、ブロック140でバイナリコードに変換され、そして、読取レジスタ160に転送される。バス142はバス141と同サイズで一方向性のバスであり、データを読取/書込ブロック140から読取レジスタ160に転送する。ブロック制御信号140及び回路の制御ブロック110からのステミングによって参照符号143が伝送される。ラインアドレスデコーダ150はライン選択バス152を介してマトリックス101のラインアドレス151を送る。バッファレジスタ160は例えば読取られる3つの最新ラインを有し、コントラスト計算回路170における3×3のピクセル領域の計算が可能になる。参照符号161はコントラスト計算回路170にこれらの領域を転送するためのバスである。この計算結果の出力171は最終的に回路110の制御ブロックに転送される。なお、コントラストを計算する方法は後述する。
図5は、200として、「ピクセル1」及び「ピクセル2」で表された2つのピクセルにおける電圧Vの経時的な変化を示している。L及びLは1つ又はそれ以上の物体を照らす照度を示し、R及びRは、ピクセル1及び2それぞれで測定された、この物体又はこれらの物体の2点における反射率である。
物体の反射率はその物体に反射される光強度に比例する。反射率は波長に依存するが光強度には依存しない。したがって、同じ物体が2つの異なる光強度例えばL>Lで照射された場合に、光電流の積分時間の測定によってこの物体に反射された光強度を測定すると、光強度に反比例する積分時間が得られる。照度Lにあるピクセルnの場合には次の関係式(2)で表される。
Figure 0005520840
はピクセルの構造、特にフォトダイオードの量子収率及び積分コンデンサCp、さらには使用する光学系にも依存する比例係数である。
図5において、
参照符号202は照度Lにあるピクセル1及び2の積分曲線を示し、積分時間はそれぞれt1A及びt2Aである。
参照符号212は照度Lにあるピクセル1及び2の積分曲線を示し、積分時間はそれぞれt1B及びt2Bである。
前記関係式(2)によると、積分時間t1A及びt2Aは積分時間t1A及びt2Aでの比率L/Lである。幾何学的観点からすると相似形である。その反射率すなわちそれに特徴的な光照度に関係のない量に基づいて強度が物体の画像を光照度に関係のない数量化精度で定量化できる場合には、数量化工程Qは相似形の比L/Lに適合されるべきである。
参照符号203は光照度がLである場合に積分時間を測定するのに選択された数量化工程Qに対応する。参照符号213は光照度がLである場合に光照度がLである場合と同じ数量化精度で積分時間を測定するのに選択された数量化工程Qに対応し、このときの数量化精度は次の関係式(3)で表される。
Figure 0005520840
数量化工程を定義するために、サンプリング瞬時tをセットしたクロックが発生する。前記関係式(3)を満たすためには次の関係式(4)を満たす必要がある。
Figure 0005520840
この逐次代入法は次の関係式(5)の指数関数として定義される。
Figure 0005520840
このようなクロックにおいて、経過時間に比例する数量化工程が実際に得られ、その値は次の関係式(6)で表される。
Figure 0005520840
前記瞬時tは、クロックの新たなインデックス期間iが定義される絶対的な(実際の)時間の瞬時であり、その増分値は次の関係式(7)で表される経過時間の指数関数である。
Figure 0005520840
i値は、クロックの連続時間を定義する整数である。
前記の関係式(2)で示された光照度Lでのピクセルnの場合には次の関係式(8)で示される。
Figure 0005520840
時間tnXは任意であるので、関係式(8)の結果は現実的であり、その整数値は時間サンプリングによって実施される数量化を考慮するために採用される。
それぞれのタイムデカード(decade)は、10回以上の時間を必要とし、シーンの最も暗い領域に存在し、閾値Vref0に交差していないピクセルを最大に変換する間に積分時間を限定する手段を実行するのに望ましい。この目的のため、後述する方法で基準電圧Vref 31を低下させることで光照度デカードを即座に変換することも可能である。
図5において、曲線220は、十分な光を受光していない(暗い)ピクセルの積分曲線である。参照符号221は、基準電圧Vrefが、Vref0の十分の一の値になり、かつ積分時間の終了を規定する時間tendに至るまで基準電圧が低下する時間trampで定義される積分時間の終了を示している。この終了は故意にデカードに限定されていた。終了の後には残りすべてのピクセルが絶対的な黒部に対応する最終値と仮定される。参照符号222は後述する関係式による基準電圧Vref 31の減少曲線を示す。参照符号223は、基準電圧Vref 31が減少222しているときに生じるイベントのサンプリング時間のための、減少期間221の間における(終了のための)一定の数量化工程Qに相当する。最後に、参照符号224は、暗いピクセルの積分電圧220と基準電圧Vref 31の減少曲線222とが偶然に一致した瞬時tを示している。
減少曲線222の始点に対応する瞬時trampにおいて、指数時間カウンタはi値=irampを有している。このカウンタは基準電圧Vrefが減少する間に一定の周波数クロックを増大させ、それまでの処理で得られた結果と同一のサンプリングを実行する。
tend−trampに等しい終了期間221の時間が指数クロックの最終期間に比較して無視してよい場合には、基準電圧Vref 31の減少曲線222は単純に次の関係式(9)で表される。
Figure 0005520840
i=irampのとき、Vref=Vref0である。i−iramp=Kα、すなわち、デカードの数量化工程数と等しいとき、Vref=10−1×Vref0=0.1・Vref0である。次に、tendが到来すると、Vrefは突然ゼロになり、その結果、絶対黒に対応する最新のi値に割り当てられた残りのすべてのピクセルを切替える。
コントラストを計算する方法を説明する。中心ピクセルCと、G、D、H及びBで示される、その左、右、上及び下に隣接するピクセルを想像する。左のピクセル及び右のピクセルによるサンプリング値の差分と、上のピクセル及び下のピクセルによるサンプリング値の差分とを求めると、これらの値は、前記関係式(8)から下記関係式(10)及び(11)で表す結果となる。
Figure 0005520840
これらの関係式におけるC及びCは反射率の対数比に相当し、光照度レベルに依存しないコントラストの測定値である。したがって、コントラストのこれらの成分は、2つの数値の減算法で簡単に得られる。これら差分の計算は各列又はマトリックスの下部に設置した減算器を稼働することで並行して実施できる。図4に記載された態様では、読取バッファレジスタ160から連続して読取った3×3のピクセル領域で作動するコントラスト計算回路170を使用している。
コントラスト成分C及びCの数値は、図6に示されるように、記数法が標準化された次の関係式(12)で示されるコントラスト測定におけるより一般的なCMICHELSON定義と比較されている。
Figure 0005520840
図6に示されるように、2つの反射率の対数サンプリングを減算するコントラストの計算は、前記関係式(12)で定義された従来のコントラスト測定の結果から質的に異なるものではなかった。
図6において、図中の「曲線」はC又はCの曲線を示すこと、及び、図中の「マイケルソンコントラスト」と表記した曲線は「ログコントラスト」と表記した曲線と比較するため再標準化されていることに、注意すべきである。
実用的観点からすると、一定の周波数クロックから対数時間クロックを得るための最も簡単な方法は、メモリ内に格納され、セット周波数クロックに関連付けて測定された瞬時すべてを含むテーブルを使用することである。この瞬時は、対数クロックが増大され、次いで、デジタルコンパレータによってパルスが発生される瞬間である。
この発明の範囲内において提案した好ましい態様は、前記関係式(4)によって、対数クロックカウンタが増大する次の瞬時を計算するステートマシーンに基づいている。テーブルはステートマシーンに代替可能である。
このようなカウンタを用いて実施すると、離散時間すなわちαtiで実行され、使用されたクロック信号の期間を倍数する。係数αによる実施を促進するため、係数αは2の累乗すなわち次の関係式(13)を満たすのが好ましい。
Figure 0005520840
クロック数を計数するとき、アルゴリズム(演算方法)は下記の関係式(14)になる。この関係式(14)において「int」は関係式(14)の整数部分である。
Figure 0005520840
第1のクロック計数時においてはα=1に対応する期間を加算することのみが可能になる。第2のクロック計数時においては、期間の比率で示したリゾルーションが2−pよりも小さくなるまで、加算された期間はすでに経過した時間の50%すなわちα=0.5等に対応する。したがって、第1の2P+1クロック計数の間中、セット周波数計数器が存在し、徐々に対数値に近づいていく。
以下に示す定量的な形態は従来技術の現状に関して現実的である。クロック周波数はfck=100MHzであり、α=1.56%における相対的な時間増分に対応するパラメータはp=6である。
図7において、α値は時間との関係で示されている。変数Tlogは、前記計数器が積分の開始時(時間t=0)にゼロにリセットされるときに、前記関係式(8)で与えられる指数iに対応する対数計数器の値として示されている。デカード(10進)ごとのリゾルーションは(1+α)=10等の反復数k、すなわち、下記の関係式(15)によって得られる。
Figure 0005520840
この態様の場合には、これによって、係数器が実際に対数的になった瞬時から、デカードごとの149の数量化工程におけるリゾルーションが得られる。
強度がクロックの対数部分をコードするのみである場合には、この領域の開始時にゼロに計数することが開始され、ピクセルのメモリワード50の全容量を使用することができる。デカードごとの149の数量化工程を定義する一例としてのα値を有しているとき、6.8デカードはたった10ビットのワードを含むことになる。
物理的態様においてみると、回路の表面領域については、ステートマシーンによる対数クロックを生成させることは、メモリ内にプログラムされたテーブルを用いることに比べると、より有利である。前記関係式(14)のアルゴリズムを実施すると共に前述の値を使用するステートマシーンが図8に示されている。
ステートマシーン300は対数時間クロックを発生させるのに使用される。このステートマシーンは、図4に示されるように、ブロック120及び122を実行する。このステートマシーンは以下のようになっている。
・信号RST_CNT301は対数時間計数器をゼロにリセットする信号である。ゼロにリセットするこの信号は、積分が開始された後に、クロックが実際に対数になったとき等の任意の瞬時においてサンプリングを開始するためにステートマシーンをゼロにリセットする信号RST_GEN 303とは異なる。
・参照符号302はステートマシーン300にパルスを送り込むための一定の周波数fckを持つクロックCKを示している。
・参照符号303は、ステートマシーン300をゼロにリセットする信号RST_GENである。この信号はピクセルの信号RST 27と同じ瞬時74(図3参照。)に送信される。この送信は、光電流23の積分開始時と共に前記関係式(14)のアルゴリズムのための始点として、定義される。
・参照符号113は、図4に示される信号301、302及び303を全体的に表している。
・参照符号304は、線形積分時間を計数するためにゼロにリセットする27ビット増分計数器である。この計数器はクロックパルスCK 302それぞれに対して増加する。
・参照符号305は、計数器304の27出力ビットをコンパレータ316及び加算器310の入力T(時間)に送信するデータバスを示している。
・参照符号306は、計数器304の出力のうち重要な重みを有する21(27−6)ビットを加算器310のDT(デルタタイム)入力に送信するデータバスを示している。重要な重みを有するこれらの21ビットはp=6であるときの前記関係式(13)の「(Ti/2)の項」に対応する。
・参照符号307は、データバス306のデータに対応する21の入力を備えたNORゲートを示している。このゲートの出力INC1 308は、計数器304の出力のうち重要な重みを有する21ビットがいまだ低い状態にある限りは、高い状態にある。
・参照符号308は、NORゲート307の出力INC1である。この変数は前記関係式(13)の最大値である「1」に対応する。この信号は加算器310の入力INC及びORゲート318の入力の1つに転送される。
・参照符号310は、対数カウンタの次の瞬時である将来瞬時Ti+1を不変的に計数する、3つの入力を備えた加算器を示している。入力Tは前記関係式(13)の項Tに対応する。2つの入力DT及びINCは、DTがゼロよりも大きくなるとすぐにNORゲート307の出力INC1 308が低い状態すなわちゼロに切替わるので、前記関係式(13)の最大値に対応する。
・参照符号311は、対数カウンタの次の瞬時である将来瞬時Ti+1に対応する加算器310の出力を示している。
・参照符号312は、瞬時Tで出現するパルスINC2 121の瞬時において次の将来瞬時Ti+1をレジスタ314に転送するのに使用される、2つの27ビット入力を備えた乗算器(マルチプレクサ)を示している。
・参照符号313は、マルチプレクサ312の出力を示している。この出力は、次の将来瞬時Ti+1をメモリに記憶するのに使用されるレジスタ314の入力に接続され、デジタルコンパレータ316の入力INBに接続されている。
・参照符号315は、レジスタ314の出力を示している。この出力は、マルチプレクサ312の入力「0」に接続され、かつ、入力INAに適用される現時間と入力INBに適用される、対数計数器の次の瞬時である将来瞬時Ti+1との同等性を検出可能なデジタルコンパレータ316の入力INBに接続されている。
・参照符号317は、入力INA及び入力INBが等しい時に高い状態になる、デジタルコンパレータ316の出力を示している。
・参照符号318は、対数時間クロック信号INC2 121を発生させるために信号INC1 308とデジタルコンパレータ316の出力A=Bとを結合させるORゲートを示している。
・最後に、参照符号121〜123は図4の説明で既に述べている。
図9は、この発明に係るコントラストの測定方法における必須段階が示されたダイアグラム400である。
段階410において、マトリックスにおける各ピクセルの電圧はゼロレベル又は黒レベルを意味するゼロにリセットされる。段階420において、各ピクセルにおいて光検出器への入射光で直線的に変化する電圧を積分する。段階430において、積分電圧が基準電圧に到達すると比較信号が発信される。
並行して、段階411において、計数器はゼロレベル又は黒レベルを意味する値にセットされる。段階421において、クロック信号が生成され、その期間は積分開始からの経過時間に比例する。段階431において、Grayコードが計数器のデジタル出力から提供される。
各ピクセルにおいて、段階440において、Grayコードが比較信号に基づいてメモリワードに記憶される。次いで、段階450において、一定レベルまで基準電圧が低下されることによって、また、適した一定(ベース周波数又はそれよりも小さい)の周波数でサンプリングされることによって、積分プロセスが終了し、この終了段階と同時に最新の照度デカードを変換する変換時間が短くなる。段階460において、マトリックスにおけるメモリの読取はGrayコードをバイナリコードに変換するのと同時に行われ、この操作がラインごとに実施される。段階470において、デジタルコードは光検出器に入射する入射光の対数値に比例する(関係式(7)及び(8)参照。)。最後に、段階480において、コントラストのX成分及びY成分が、左ピクセルと右ピクセルとの簡単な減算及び上ピクセルと下ピクセルとの簡単な減算それぞれによって、計算される。
シーンの2つの物体におけるコントラストを計算するために、その画像は1つ以上のピクセルをおいて配置される。これによって、第1の物体を表す画像領域の和(又は平均値)を求めて、それを第2の物体が配置された画像領域の和から減算することができる。この減算を実行するための同数のピクセルを含む領域を採用することに注意すべきである。この方法によれば、異なる空間スケールでコントラストを簡単に計算できる。
以上のように、この発明を特定の利用すなわちシーンのコントラスト計算の範囲内で説明したが、この発明の目的の範囲内においてその修正又は代替が可能であることは明らかである。
図1は、ピクセルのブロック図である。 図2は、RAM及び書込みパルスの発生器の実施を示す図である。 図3は、画像を取得するためのタイムダイアグラムである。 図4は、ブロック図である。 図5は、相似サンプリングの原理を示す図である。 図6は、この発明の結果とコントラストを測定する所謂「マイケルソン」法との比較結果を示す図である。 図7は、対数時間を持つ典型的なクロックを示す図である。 図8は、対数時間を持つクロックの実施を示す図である。 図9は、この発明の操作プロセスを示す図である。

Claims (7)

  1. 光検出器を有し、ビジュアルシーンを表現する光線を受光するピクセル(10)の配列を備え、
    ・基準電圧Vref発生器、
    ・前記ピクセルの光ダイオード(22)からの光電流I phd (23)をコンデンサC (25)で積分して得られる、前記ピクセルが受光した照度に応じた電圧Vを積分段階で発生する、前記各ピクセルに設けられた手段(20)
    ・前記ピクセルの前記電圧Vがすべての前記ピクセルに共通する前記基準電圧Vrefに到達する瞬時を決定する、前記各ピクセルに設けられたコンパレータ(30)、
    ・クロック(121)を発生するクロック発生器(120)、
    ・前記積分段階の開始から経過した前記クロック(121)の期間を計数し、その結果をバイナリコード(123)として送信する装置(122)、
    ・1つのピクセルに対するRAMスタチックメモリワード(50)、
    ・前記瞬時に存在する前記バイナリコード(123)をメモリに書込む、各ピクセルに設けられた手段(40)、
    ・前記積分段階の終了(221)を制御する手段(110、130)
    前記メモリに記憶された情報を読取る手段(140、150、160)、及び
    ・メモリに記憶されたバイナリ値からコントラストを計算する手段(170)
    を含むデジタル視覚センサであって、
    前記クロック(121)の期間は前記積分の開始から経過した時間に比例して増大し、前記ピクセルをゼロにリセットする前に積分(221)を終了する段階は、前記基準電圧V ref が以下の関係式
    Figure 0005520840
    を満足する間に一定の周波数クロックで実行されることを特徴とする視覚センサ。
  2. 前記バイナリコード(123)をGrayコードにエンコードする装置(124)をさらに含み、前記読取り手段(160)は前記Grayコードを元のバイナリ値にデコードすることを特徴とする請求項1に記載の視覚センサ。
  3. 前記コントラストは、左右及び上下に隣接する前記ピクセルにおける記憶されたバイナリ値それぞれの減算によって計算されたX成分及びY成分を有していることを特徴とする請求項1に記載の視覚センサ。
  4. 前記コントラストの前記両成分は、2つの対角線上にそれぞれ隣接配置された前記ピクセルの記憶されたバイナリ値それぞれの減算によって計算されることを特徴とする請求項3に記載の視覚センサ。
  5. 光検出器を有するピクセル(10)の配列を含む、請求項1〜4のいずれか一項に記載の視覚センサを用いてシーンに特徴的でこのシーンの光照度に依存しない局所コントラストを測定する方法であって、
    ・各ピクセルの前記光検出器からの電流を積分して得られる電圧Vpがすべての前記ピクセルに共通する基準電圧V ref に到達するのに要する時間を決定する工程、
    ・二つの連続する時間値の間の時間間隔が前記積分開始からの経過時間に比例するクロック信号を発生すると共に、前記クロック信号で前記時間を計数し、前記積分開始からの前記経過時間の対数値に比例するこの計数からバイナリコードを得る工程、
    ・前記時間値を示すバイナリデジタルコードからGrayコードを得る工程、
    ・ピクセルの電圧が参照電圧に達したときに、前記Grayコードをピクセルのスタチックメモリワードに記憶し、
    ・前記ピクセルのメモリを読取って、前記スタチックメモリワードに記憶された前記Grayコードをバイナリデジタル量に変換する工程、
    ・前記シーンの前記局所コントラストのX成分及びY成分を計算する工程、及び
    ・前記ピクセルをゼロにリセットする前に前記積分を終了する段階は、前記基準電圧V ref が以下の関係式
    Figure 0005520840
    を満足する間に一定の周波数クロックで実行する工程
    を有することを特徴とする方法
  6. 前記コントラストの前記X成分及びY成分は、左右及び上下に隣接する前記ピクセルにおけるバイナリコードそれぞれの差分によって算出されることを特徴とする請求項5に記載の方法
  7. 前記コントラストの前記両成分は、2つの対角線上にそれぞれ隣接配置された前記ピクセルのバイナリコードそれぞれの差分によって算出されることを特徴とする請求項5に記載の方法。
JP2010547175A 2008-02-22 2009-02-19 コントラスト測定用視覚センサ及びコントラスト測定方法 Active JP5520840B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08151781.5 2008-02-22
EP08151781A EP2093996A1 (fr) 2008-02-22 2008-02-22 Capteur de vision pour la mésure d'invariants tels les contrastes et méthode pour effecture une telle mésure
PCT/EP2009/051950 WO2009103751A1 (fr) 2008-02-22 2009-02-19 Capteur de vision pour la mesure des contrastes et methode pour effectuer une telle mesure

Publications (2)

Publication Number Publication Date
JP2011512764A JP2011512764A (ja) 2011-04-21
JP5520840B2 true JP5520840B2 (ja) 2014-06-11

Family

ID=39627692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010547175A Active JP5520840B2 (ja) 2008-02-22 2009-02-19 コントラスト測定用視覚センサ及びコントラスト測定方法

Country Status (6)

Country Link
US (1) US8363140B2 (ja)
EP (2) EP2093996A1 (ja)
JP (1) JP5520840B2 (ja)
AT (1) ATE539554T1 (ja)
ES (1) ES2379752T3 (ja)
WO (1) WO2009103751A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299729B2 (en) * 2009-09-22 2012-10-30 Infineon Technologies Austria Ag System and method for non-linear dimming of a light source
JP5695967B2 (ja) * 2011-05-11 2015-04-08 ルネサスエレクトロニクス株式会社 固体撮像装置
WO2015111368A1 (ja) * 2014-01-22 2015-07-30 パナソニックIpマネジメント株式会社 固体撮像装置
US10198660B2 (en) 2016-01-27 2019-02-05 Samsung Electronics Co. Ltd. Method and apparatus for event sampling of dynamic vision sensor on image formation
KR101854989B1 (ko) 2016-08-31 2018-05-03 한국광기술원 다각도 명암 검출을 이용한 디스플레이 장치
US10679366B1 (en) * 2017-01-30 2020-06-09 Facebook Technologies, Llc High speed computational tracking sensor
EP3725068B1 (en) * 2017-12-11 2021-07-14 Prophesee Event-based image sensor and operating method thereof
US20190306447A1 (en) * 2018-03-29 2019-10-03 Analog Devices Global Unlimited Company Lookup table
EP3595294A1 (en) * 2018-07-10 2020-01-15 CSEM Centre Suisse D'electronique Et De Microtechnique SA Pixel circuit for an ultra-low power image sensor
EP3627830A1 (en) 2018-09-18 2020-03-25 IniVation AG Image sensor and sensor device for imaging temporal and spatial contrast

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635687A1 (de) 1986-10-21 1988-05-05 Messerschmitt Boelkow Blohm Bildaufnahmesensor
JPH0682875A (ja) * 1992-09-02 1994-03-25 Fuji Film Micro Device Kk 露光量計測装置
JP3022166B2 (ja) * 1993-06-15 2000-03-15 松下電器産業株式会社 固体撮像素子
US5801657A (en) * 1997-02-05 1998-09-01 Stanford University Serial analog-to-digital converter using successive comparisons
US6580454B1 (en) * 1998-11-18 2003-06-17 Agilent Technologies, Inc. CMOS active pixel sensor having in-pixel local exposure control
US6660989B2 (en) * 2001-07-11 2003-12-09 Texas Instruments Incorporated CMOS imager having asynchronous pixel readout in order of pixel illumination
EP1301028A1 (en) * 2001-10-05 2003-04-09 STMicroelectronics Limited Improvements in or relating to CMOS Image sensors
US6667769B2 (en) * 2001-12-10 2003-12-23 Motorola, Inc. Time integrating pixel sensor
JP4014436B2 (ja) * 2002-04-22 2007-11-28 オリンパス株式会社 撮像装置
FR2844129B1 (fr) * 2002-09-03 2004-10-29 Suisse Electronique Microtech Procede et capteur pour determiner le contraste local d'une scene observee, par detection de la luminance emanant de cette scene
JP4423111B2 (ja) * 2004-06-01 2010-03-03 キヤノン株式会社 撮像素子および撮像システム
GB2432065A (en) * 2005-11-01 2007-05-09 Isis Innovation Image sensor with comparator and logarithmic output
EP1858245A1 (en) * 2006-05-17 2007-11-21 STMicroelectronics (Research & Development) Limited High performance photosensor

Also Published As

Publication number Publication date
ATE539554T1 (de) 2012-01-15
EP2243287B1 (fr) 2011-12-28
EP2093996A1 (fr) 2009-08-26
JP2011512764A (ja) 2011-04-21
US8363140B2 (en) 2013-01-29
ES2379752T3 (es) 2012-05-03
WO2009103751A1 (fr) 2009-08-27
US20110007199A1 (en) 2011-01-13
EP2243287A1 (fr) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5520840B2 (ja) コントラスト測定用視覚センサ及びコントラスト測定方法
US8933385B2 (en) Hybrid analog-to-digital converter having multiple ADC modes
US6642503B2 (en) Time domain sensing technique and system architecture for image sensor
US6831689B2 (en) Optical imager using a method for adaptive real-time expanding of the dynamic range
US6667769B2 (en) Time integrating pixel sensor
US20140042304A1 (en) Imaging pixels and related methods
US20130020471A1 (en) Solid-state imaging device
CN102625059B (zh) 用于移动式应用的cmos图像传感器的动态范围扩展
US9967499B2 (en) Readout circuit for image sensors
JP6734478B2 (ja) フラックスレートユニットセル焦点面アレイ
JP2000101927A (ja) 光統合方法からデジタル信号を発生させる画像センサ―
KR100801655B1 (ko) 디지털 화소 센서 리드아웃에서의 화소 재배열 회로 및 방법
WO2023198043A1 (zh) 激光测距方法和装置
EP3962069A1 (en) Event sensor and method for generating a signal stream comprising event data
TW201304534A (zh) 半導體裝置及其驅動方法
JP5681475B2 (ja) アナログ−デジタル変換方法、x線画像検出器及びx線装置
CN113763870B (zh) 像素电路及像素阵列
US9866780B1 (en) Pixel information recovery by oversampling a comparison of pixel data and a noise signal
CN220542261U (zh) 一种红外读出电路
JP3817460B2 (ja) 光検出装置
US10785436B1 (en) Image sensor and transfer circuit and transfer method thereof
JP2023546673A (ja) インテグレーション中のポーリングを利用することによるデジタルピクセルのダイナミックレンジの増加
CN116485624A (zh) 集成在图像传感器中自适应划分量化区间的系统与方法
JP2002365022A (ja) 画像計測カメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131001

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131008

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131105

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5520840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250