JP5509445B2 - 超臨界水ガス化に伴う非金属系触媒回収方法、非金属系触媒再使用方法、排水使用方法 - Google Patents

超臨界水ガス化に伴う非金属系触媒回収方法、非金属系触媒再使用方法、排水使用方法 Download PDF

Info

Publication number
JP5509445B2
JP5509445B2 JP2009020652A JP2009020652A JP5509445B2 JP 5509445 B2 JP5509445 B2 JP 5509445B2 JP 2009020652 A JP2009020652 A JP 2009020652A JP 2009020652 A JP2009020652 A JP 2009020652A JP 5509445 B2 JP5509445 B2 JP 5509445B2
Authority
JP
Japan
Prior art keywords
catalyst
biomass
water
gas
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009020652A
Other languages
English (en)
Other versions
JP2010172859A (ja
Inventor
幸彦 松村
嘉久 清水
幸政 山村
昭史 中村
英嗣 清永
寿樹 山▲崎▼
智朗 美濃輪
洋二 野田
良文 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hiroshima University NUC
Toyo Koatsu Co Ltd
Chuden Plant Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hiroshima University NUC
Toyo Koatsu Co Ltd
Chuden Plant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hiroshima University NUC, Toyo Koatsu Co Ltd, Chuden Plant Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2009020652A priority Critical patent/JP5509445B2/ja
Publication of JP2010172859A publication Critical patent/JP2010172859A/ja
Application granted granted Critical
Publication of JP5509445B2 publication Critical patent/JP5509445B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)

Description

本発明は、非金属系触媒の存在下でリンを含有するバイオマスを高温高圧ガスで処理し、処理後の反応物から非金属系触媒を回収する方法、回収した非金属系触媒の再利用法、および、排水使用方法に関する。
従来、家畜排泄物は、堆肥化することにより農地に還元するといった、循環利用を行うことにより処理されていた。しかしながら、堆肥は供給過剰の状態になってきているため、上記方法とは異なる、家畜排泄物を処理するための新しい方法が望まれていた。
このような現状から、近年、家畜糞尿、生ゴミ、食品廃棄物、下水汚泥等のバイオマスを原料としたエネルギー変換技術の開発がなされている。
バイオマスを原料としたエネルギー変換技術としては、例えば、微生物によりバイオマスを発酵させて燃料ガスを生成する方法、バイオマスに含まれる水を利用して加圧熱水処理を行い、燃料ガスを生成する方法等が知られており、後者の改良方法としては、触媒を用いてウエット・バイオマスを超臨界水でガス化し、燃料ガスを生成する方法が知られている(例えば、特許文献1〜3参照)。
特表平11−502891号公報 特開2002−105466号公報 特開2002−105467号公報
しかしながら、バイオマスを原料としたエネルギー変換技術から得られた反応副産物は、有効利用されることはなかった。そこで、本発明は、非金属系触媒の存在下においてリンを含有するバイオマスを高温高圧ガスで処理し、処理後の反応物から非金属系触媒を回収する方法、回収した非金属系触媒を再利用する方法、および、排水を使用する方法を提供することを目的とする。
本発明者らは、以下の実施例に示すように、非金属系触媒である活性炭の存在下で鶏糞を高温高圧ガスで処理したところ、得られた反応物(超臨界水ガス化副産物)から活性炭を回収できること、そして、その回収された活性炭を超臨界水ガス化に使用できること、また、超臨界水ガス化副産物の排水を肥料として利用できることを明かにし、本発明を完成するに至った。
すなわち、本発明にかかる非金属系触媒回収方法は、非金属系触媒の存在下においてリンを含有するバイオマスを高温高圧ガスで処理し、処理後の反応物から非金属系触媒を回収する方法であって、非金属系触媒の存在下において、リンを含有するバイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理し、熱水処理することにより得られた、非金属系触媒を含むリンを含有するバイオマスのスラリー体を、374℃以上の温度、及び22.1MPa以上の圧力の条件下で水熱処理し、この水熱処理にて生成した灰分を塩酸と反応させ、灰分と反応させた後の塩酸をろ過し、このろ過によって得られた固体を洗浄することによって非金属系触媒を回収することを特徴とする。この非金属系触媒回収方法において、水熱処理にて生成した、生成ガス、灰分、非金属系触媒、及び水を、生成ガスと、灰分、非金属系触媒、及び水を含む混合液とに分離する工程を含み、この混合液を塩酸と反応させることにより灰分を塩酸と反応させてもよい。
さらに、本発明にかかる前記非金属系触媒回収方法によって回収された非金属系触媒の使用方法は、上述の非金属系触媒回収方法で回収された非金属系触媒を、上述の非金属系触媒回収方法において熱水処理される非金属系触媒として、あるいはその一部として、使用することを特徴とする。
また、本発明にかかる、アンモニアを含む液体の使用方法は、非金属系触媒の存在下において、リンを含有するバイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理し、熱水処理することにより得られた、前記非金属系触媒を含む前記リンを含有するバイオマスのスラリー体を、374℃以上の温度、及び22.1MPa以上の圧力の条件下で水熱処理し、前記水熱処理にて生成した、アンモニアを含む液体を、肥料として、あるいは肥料の材料として、使用することを特徴とする。
ここで、本発明にかかる上述「非金属系触媒」は、活性炭であってもよい。
本発明によって、非金属系触媒の存在下において、リンを含有するバイオマスを高温高圧ガス処理して燃料ガスを製造する際に、処理後の反応物非金属系触媒を回収すること、回収した非金属系触媒を高温高圧ガス処理に再利用すること、および、排水を肥料として使用することができるようになった。
本発明の一実施形態として説明するバイオマスガス化発電システムの全体構成を示す図である。 本発明の一実施形態において、連続運転が可能な流動層反応器の概略構成を示す図である。 本発明の一実施形態として説明するスラリー供給装置の概略構成を示す図である。 本発明の一実施形態として説明する触媒回収器の概略構成を示す図である。 本発明の一実施形態において、発電装置の排熱温度が反応器での反応温度より高い場合のバイオマスガス化発電システムの全体構成を示す図である。 本発明の一実施形態において、発電装置190の排熱の温度が反応器160での反応温度より低く、前処理装置140での処理温度より高い場合のバイオマスガス化発電システムの全体構成を示す図である。 本発明の一実施形態における実験フローを示す図である。 本発明の一実施例における物質BとヒドロキシアパタイトとのXRDパターンを比較した図である。 本発明の一実施例における原料である鶏糞とヒドロキシアパタイトとのXRDパターンを比較した図である。 本発明の一実施形態として説明する、バイオマス化発電システムと回収システムとからなるリン酸塩回収システムの概略構成を示す図である。
以下、上記知見に基づき完成した本発明にかかる非金属系触媒回収システムの好適な実施の形態を、実施例及び添付図面を参照しながら詳細に説明する。
なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例等は、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図ならびに範囲内で、本明細書の記載に基づき、様々に修飾ができることは、当業者にとって明らかである。
==システムの構成==
本発明にかかるシステムは、バイオマスをガス化してメタンや水素等の燃料ガスを効率的に生成し、得られた燃料ガスで発電して電力を供給するための「バイオマス化発電システム」と、このバイオマス化発電システムから得られた副産物から非金属系触媒およびリン酸塩を回収するための「回収システム」からなる。これらのシステムは、それぞれ独立して設計することができるため、以下に、各システムの構成について、別個に説明する。なお、以下のシステムでは、リンを含有するバイオマスを使用する。
==バイオマスガス化発電システムの構成==
図1は、本発明の一実施形態として説明するバイオマスガス化発電システムの全体構成を示す図である。図1に示すように、本発明に係るバイオマスガス化発電システム200は、調整タンク100、破砕機110、供給ポンプ120、第一熱交換器130、第二熱交換器131、前処理装置140、スラリー供給装置150、反応器160、加熱器161、予熱器162、加熱器163、予熱器164、クーラー170、減圧器171、気液分離器180、ガスタンク181、触媒回収器182、固液分離器183、発電装置190等を備える。
前処理装置140は、バイオマスのスラリー体を形成させる装置である。バイオマスのスラリー体の形成は、非金属系触媒の存在下において、バイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理することにより行われる。
調整タンク100は、バイオマスの種類、量、含水率等に応じて水や非金属系触媒の混合量を調整しながら、バイオマス、水、非金属系触媒等を混合するタンクである。
破砕機110は、調整タンク100で混合した混合物を破砕して、混合物中のバイオマスをあらかじめ均一な大きさ(好ましくは平均粒径が500μm以下、より好ましくは平均粒径が300μm以下)にするための装置である。
供給ポンプ120は、破砕機110で破砕した混合物を前処理装置140に移送する装置である。
反応器160は、超臨界水によりバイオマスをガス化する装置である。超臨界水によるバイオマスのガス化は、前処理装置140において熱水処理された、非金属系触媒を含むバイオマスのスラリー体を、前記非金属系触媒を利用して、374℃以上の温度、及び22.1MPa以上の圧力の条件下で水熱処理することにより行われる。このようにスラリー体を超臨界水で処理することにより、バイオマスを分解し、水素ガス、メタン、エタン、エチレン等の燃料ガスを生成することができる。
上述の反応器160としては、非金属系触媒の存在下で、上述の条件下でバイオマスのスラリー体を水熱処理することができる装置であれば特に制限されるものではなく、例えば、長い配管で構成された反応器、流動層反応器等を用いることができる。なお、本実施の形態においては、反応器160が連続運転が可能な流動層反応器である場合について説明する。
図2に、本発明の一実施形態において、連続運転が可能な流動層反応器160の概略構成を示す。図2に示すような反応器160は、反応器160内に非金属系触媒を含むバイオマスのスラリー体を下方から導入する導入口210と、反応器160内で前記スラリー体を、374℃以上の温度、及び22.1MPa以上の圧力の条件下で水熱処理することにより生成された燃料ガスを含む生成ガス及び灰分、並びに、非金属系触媒及び水(超臨界水)を上方から反応器160外に排出する排出口220と、スラリー体の導入により反応器160内に流動層を形成する流動媒体230と、導入口210から導入したスラリー体を流動層の下方で分散させる分散部240と、を備えている。
前記流動媒体230は、スラリー体の導入速度では排出されない形状で構成されている。すなわち、導入口210からスラリー体を導入する速度では流動層を形成するが、排出口220から排出できない重さで構成されている。なお、排出口220にメッシュ状のプレートが設置されている場合には、流動媒体230は当該プレートの網目より大きいサイズで構成されていてもよい。前記流動媒体230としては、超臨界状態でも粒径に変化を及ぼさない、すなわち、流動媒体が壊れにくいものであれば特に制限されるものではないが、例えば、アルミナボール、ジルコニアボール、シリカボール等の媒体を挙げることができる。
分散部240は、例えば、流動層反応器等で用いられる既知の分散板(例えば、メッシュ状のプレート等)であってもよいが、スラリー体の目詰まりによって圧力が増加するのを防ぐために、スラリー体を導入する速度では流動しない形状(例えば、スラリー体を導入する速度では流動できない重さ)で構成された球状媒体(例えば、アルミナボール等の球状媒体)を積み重ねて形成した層であることが好ましい。
以上のような反応器160を用いることにより、導入口210から導入したスラリー体に対して非金属系触媒の存在下で超臨界水によるガス化反応を行うことができ、これにより生成された生成ガス(燃料ガスを含む)及び灰分、並びに、非金属系触媒及び水(超臨界水)等の流動媒体230より軽く、径が小さな物質を排出口220から排出することができるようになる。また、このような反応器160は、上述のような構成により、反応器内160に灰分や非金属系触媒等が堆積するのを抑制することができるので、非金属系触媒を含むバイオマスのスラリー体を連続的に導入し、超臨界水によるガス化反応を継続して行うことが可能となる。
スラリー供給装置150は、前処理装置140において熱水処理を行うことにより得られた、非金属系触媒を含むバイオマスのスラリー体を反応器160に供給する装置である。スラリー供給装置150は、非金属系触媒を含むバイオマスのスラリー体を供給できる装置であれば特に制限されるものではなく、例えば、高圧ポンプやモーノポンプ等を用いることができるが、図3に示すような固体成分と液体成分とに分離しやすい上述のスラリー体を一定濃度で反応器160に連続供給することができる装置を用いることが好ましい。
図3は本発明の一実施形態として説明するスラリー供給装置150の概略構成を示す図である。図3に示すようなスラリー供給装置150は、前処理装置140において熱水処理を行うことにより得られた、非金属系触媒を含むバイオマスのスラリー体を前処理装置140から受け入れ、反応器160に供給する装置である。このスラリー供給装置150は、2つのシリンダー310,320、軸330、2つのピストン331,332、2つの攪拌機340,350、水注入装置360、バルブ361,362,363,364,373,374,375,376、三方弁371,372等を備える。
水注入装置360は、水を注入するシリンダー310,320を交互に切り替えて各シリンダー310,320に水を注入する装置である。水注入装置360は、例えば、ポンプ、高圧ポンプ、背圧ポンプ等である。
シリンダー310,320には、水注入装置360から水を注入し、注入した水を排出する注入/排出口が設けられている。また、シリンダー310,320には、前処理装置140からスラリー体を受け入れ、受け入れたスラリー体を反応器160に供給する受入/供給口が設けられている。
シリンダー310,320内には、水注入装置360から注入された水と、前処理装置140から受け入れたスラリー体とを仕切るようにピストン331,332が配置されている。
軸330の両端にはピストン331,332が備えられている。ピストン331,332は、水注入装置360からシリンダー310,320内に水が注入されることによりシリンダー310,320内を移動し、シリンダー310,320内のスラリー体を押圧して反応器160にスラリー体を供給する。また、一方のピストン331,332の移動に伴い、他方のピストン332,331が一方のピストン331,332と同軸方向に移動し、前処理装置140からスラリー体を受け入れるとともに、シリンダー320,310内の水を排出する。
なお、シリンダー310,320内の水とスラリー体が混ざらないようにするために、ピストン331,332にピストンリングを設け、ピストン331,332とシリンダー310,320との気密性を高めてもよい。
本実施の形態においては、軸330の中央部にストッパー333が設けられている。ストッパー333は、ピストン331,332と攪拌機340,350との接触を防止する装置である。このストッパー333がシリンダー310,320に接触すると、ピストン331,332が攪拌機340,350の方へ移動できなくなるような仕組みとなっている。
バルブ361,362,363,364は、水を水注入装置360からシリンダー310,320に流れるように切り替えたり、シリンダー310,320内の水を排出するように切り替えたりする装置である。バルブ361,362,363,364は、例えば、電磁バルブ等である。
本実施の形態においては、バルブ361,362,363,364は、水注入装置360の注水により、水がシリンダー310,320に流れるように切り替える。また、バルブ361,362,363,364は、シリンダー310,320からの排水により、水が排出されるように切り替える。このような切り替えは、例えば、水注入装置360からの注水やシリンダー310,320からの排水に伴い、電気的に行うことができる。具体的には、軸330に設けられたストッパー333が一方のシリンダー310,320に接触したのを検知すると、水注入装置360は水の注入先を当該シリンダー310,320から他方のシリンダー320,310に切り替え、バルブ363,361は水が水注入装置360からシリンダー320,310に流れるように開放し、バルブ364,362は水注入装置360からシリンダー320,310に注入される水が排出されないように閉鎖し、バルブ362,364はシリンダー310,320から水が排出されるように開放し、バルブ361,363はシリンダー310,320から排出される水が水注入装置360に流れないように閉鎖する制御をそれぞれ行えばよい。
なお、本実施の形態においては、スラリー供給装置150にバルブ361,362,363,364を設けているが、これらのバルブ361,362,363,364の代わりに2つの三方弁を設けて、水注入装置360の注水により水がシリンダー310,320に流れるように切り替えたり、シリンダー320,310からの排水により水が排出されるように切り替えたりしてもよい。このような切り替えは、例えば、逆流を防止する弁等によって機械的に行うこともできるが、水注入装置360からの注水やシリンダー310,320からの排水に伴い、電気的に行うこともできる。具体的には、軸330に設けられたストッパー333が一方のシリンダー310,320に接触したのを検知すると、水注入装置360は水の注入先を当該シリンダー310,320から他方のシリンダー320,310に切り替え、一方の三方弁は水が水注入装置360からシリンダー320,310に流れるように切り替え、他方の三方弁はシリンダー310,320から水が排出されるように切り替える制御をそれぞれ行えばよい。
三方弁371,372は、ピストン331,332の往復運動により、スラリー体を前処理装置140からシリンダー310,320に流れるように切り替えたり、シリンダー310,320内に受け入れたスラリー体をシリンダー310,320から反応器160に流れるように切り替えたりする装置である。
本実施の形態においては、三方弁371,372は、前処理装置140からスラリー体を受け入れる際に、スラリー体が前処理装置140からシリンダー310,320に流れるように切り替える。また、三方弁371,372は、シリンダー310,320からのスラリー体供給により、スラリー体がシリンダー310,320から反応器160に流れるように切り替える。このような切り替えは、例えば、逆流を防止する弁等によって機械的に行うこともできるが、シリンダー310,320からのスラリー体供給や前処理装置140からのスラリー体供給に伴い、電気的に行うこともできる。具体的には、軸330に設けられたストッパー333が一方のシリンダー310,320に接触したのを検知すると、三方弁371,372は、スラリー体が前処理装置140から当該シリンダー310,320に流れるように切り替え、他方の三方弁372,371は、スラリー体が他方のシリンダー320,310から反応器160に流れるように切り替える制御をそれぞれ行えばよい。
なお、上述のストッパー333とシリンダー310,320との接触の検知は、例えば、ストッパー333とシリンダー310,320とが接触する領域の一部にスイッチを設け、当該スイッチが押圧されたことにより行ってもよい。
バルブ373,374は、スラリー体を反応器160に供給するシリンダーを、一方のシリンダー310,320から他方のシリンダー320,310に切り替える際、すなわち、水注入装置360が水を注入するシリンダー310,320を、一方のシリンダー310,320から他方のシリンダー320,310に切り替える際に、シリンダー310,320から反応器160にスラリー体が流れる(供給される)のを一時的に遮断する装置である。バルブ375,376は、水注入装置360が水を注入するシリンダー310,320を、一方のシリンダー310,320から他方のシリンダー320,310に切り替える際に、前処理装置140からシリンダー310,320にスラリー体が流れる(うけいれられる)のを一時的に遮断する装置である。バルブ373,374,375,376は、例えば、電磁バルブ等である。
上述のバルブ373,374,375,376による遮断は、例えば、水注入装置360からの注水やシリンダー310,320からの排水に伴い、電気的に行ってもよい。具体的には、軸330に設けられたストッパー333が一方のシリンダー310,320に接触したのを検知すると、バルブ373,374はシリンダー310,320から反応器160へのスラリー体の流れ(供給)を遮断するように閉鎖し、バルブ376,375は前処理装置140からシリンダー320,310へのスラリー体の流れ(受入)を遮断するように閉鎖し、水注入装置360が水の注入先を当該シリンダー310,320から他方のシリンダー320,310に切り替えた後に、バルブ373,374のうち1のバルブ374,373が三方弁372,371を介してスラリー体をシリンダー320,310から反応器160に流れるように開放し、バルブ375,376のうち1のバルブ375,376がスラリー体を前処理装置140からシリンダー310,320に流れるように開放する制御をそれぞれ行えばよい。
攪拌機340,350は、バルブ375,376及び三方弁371,372を介して前処理装置140からシリンダー310,320内に受け入れるスラリー体を攪拌する装置である。このように、シリンダー310,320内に攪拌機340,350を備えてスラリー体を攪拌することにより、スラリー体に含まれる非金属系触媒やバイオマスの粒子等の固形物の沈殿を防止することができ、一定濃度のスラリー体を反応器160に供給することができるようになる。
本実施の形態においては、スラリー供給装置150と反応器160との間に、スラリー供給装置150から供給されるスラリー体を蓄圧する蓄圧器380と、前処理装置140とスラリー供給装置150との間に、スラリー供給装置150に受け入れられるスラリー体を蓄圧する蓄圧器381と、を備える。これらを備えることにより、スラリー供給装置150と反応器160とを接続する配管内の圧力や、前処理装置140とスラリー供給装置150とを接続する配管内の圧力を一定に保つことができ、脈動やウォーターハンマー(水撃)等の発生を防止することが可能となる。
なお、上述の水注入装置360が行う水の注入先の切り替えは、軸330に設けたストッパー333がシリンダー310,320に接触したタイミングで電気的に行ってもよいし、各シリンダー310,320内の圧力が上昇したのを検知して行ってもよい。また、水注入装置360がシリンダー310,320に注入する水は、シリンダー310,320に受け入れられるスラリー体の温度と同じ温度の水であることが好ましい。これにより、シリンダー310,320に注入された水によってシリンダー310,320が冷やされ、シリンダー310,320に受け入れられたスラリー体の温度が低下するのを抑制することができるようになる。なお、水注入装置360によるシリンダー310,320への注水は、反応器160にスラリー体が一定流量で供給されるように、一定流量で行うことが好ましい。
また、上述においては、スラリー供給装置150の軸330にストッパー333を設けてピストン331,332と攪拌機340,350との接触を防止しているが、シリンダー310,320の長手方向の長さと軸330の長さとを調節して、ピストン331,332が攪拌機340,350と接触するのを防止してもよいし、ピストン331,332と攪拌機340,350とが接触しない量の水を、水注入装置360が各シリンダー310,320に交互に注入するようにして、ピストン331,332が攪拌機340,350と接触するのを防止してもよい。また、ピストン331,332と攪拌機340,350とが接触しないように、シリンダー310,320内にピストン331,332の移動を制御するストッパー(例えば、凹凸等)を設けてもよい。
さらに、上述においては、水注入装置360から水を注入し、注入した水を排出する口(注入/排出口)をシリンダー310,320に1つ設けているが、水注入装置360から水を注入する注入口と、注入した水を排出する排出口との2つの口をシリンダー310,320に設けてもよい。
また、上述においては、前処理装置140からスラリー体を受け入れ、受け入れたスラリー体を反応器160に供給する口(受入/供給口)をシリンダー310,320に1つ設けているが、前処理装置140からスラリー体を受け入れる受入口と、受け入れたスラリー体を反応器160に供給する供給口との2つの口をシリンダー310,320に設けてもよい。
予熱器162は、スラリー供給装置150から反応器160に供給される、非金属系触媒を含むバイオマスのスラリー体を予め加熱する装置である。バイオマスガス化発電システム200に予熱器162を備えることにより、反応器160に所定の温度のスラリー体を供給することが可能となる。
クーラー170は、反応器160から排出される排出物を冷却する装置である。反応器160から排出される排出物には、爆発性の高い燃料ガス(例えば、水素、メタン、エタン、エチレン等)や水蒸気(超臨界水)等の生成ガスが含まれているので、危険性を低減させたり、水蒸気を水に変換させたりする目的でクーラー170を本発明のバイオマスガス化発電システム200に設けている。なお、本実施の形態においては、反応器160から排出された排出物を冷却する装置としてクーラー170を例に挙げて説明したが、反応器160から排出された排出物を冷却することができる装置であればどのような装置を用いてもよい。
減圧器171は、反応器160から排出される排出物の圧力を減圧する装置である。これにより、高圧状態の燃料ガスによる危険性を未然に防止することができるようになる。
気液分離器180は、反応器160から排出された排出物を気体成分(例えば、燃料ガス等の生成ガス)と液体成分(水、あるいは、水、灰分、非金属系触媒等を含む混合液)とに分離する装置である。気液分離器180は、例えば、セパレーター等の既存の気液分離器を用いることができる。
ガスタンク181は、気液分離器180によって分離された気体成分(生成ガス)を貯える容器(好ましくは耐圧容器)である。
加熱器161は、ガスタンク181に貯えられた生成ガス(燃料ガス)の一部を酸素を含むガス(例えば、酸素ガス、空気等)中で燃焼して反応器160を加熱し、スラリー体を所定の温度に加熱する装置である。また、加熱器163は、ガスタンク181に貯えられた生成ガス(燃料ガス)の一部を酸素を含むガス(例えば、酸素ガス、空気等)中で燃焼して予熱器162を加熱し、スラリー体を所定の温度に加熱する装置である。加熱器161,163は、例えば、バーナー等の、燃料ガスを燃焼して加熱する既存の装置である。
触媒回収器182は、気液分離器180によって分離された液体成分に、水以外の非金属系触媒や灰分等が含まれている場合に、液体成分から非金属系触媒を回収するため、非金属系触媒を液体成分から分離する装置である。図4に、本発明の一実施形態として説明する、液体成分中の灰分、非金属系触媒、及び水をそれぞれ分離する触媒回収器182の概略構成図を示す。なお、本実施の形態においては、非金属系触媒が、灰より沈降速度(終端速度)が遅い活性炭である場合について説明する。
図4に示すように、触媒回収器182は、混合液注入部410、水槽420、循環ポンプ430、供給管440、灰受入部450、バルブ460,461,470等を備える。
混合液注入部410は、気液分離器180によって分離された液体成分(灰分、活性炭、水等を含む混合液)を注入する管である。水槽420は、混合液注入部410から注入した混合液中の灰分や活性炭をゆっくりと沈降させるための水を入れておく円柱形状の容器である。水槽420は、混合液注入部410から注入した混合液中の灰分を沈降させて水槽420から排出させる排出口421、混合液中の活性炭を受け入れる活性炭受部422,423、水槽420において浮遊した灰や活性炭等の浮遊物を水とともに排出する排水口424等を備える。
灰受入部450は、排出口421から沈降した灰分を受け入れる容器である。循環ポンプ430は、水槽420中の水を循環させるポンプである。供給管440は、循環ポンプ430によって循環される水を排出口421を介して水槽420に導入する配管である。なお、循環ポンプ430によって循環される水は、活性炭の沈降速度より速く、灰の沈降速度より遅い流速で排出口421から水槽420に供給される。これにより、混合液注入部410から注入された混合液中の灰分は、排出口421を通って灰受入部450に沈降するが、混合液注入部410から注入された混合液中の活性炭は、排出口421を通過することなく活性炭受部422,423に移動する。
なお、本実施の形態においては、活性炭受部422,423には、当該受部422,423に溜まった活性炭を回収できるように、活性炭の粒子より細かいメッシュで構成された籠425,426が設けられており、灰受入部450には、当該受入部450に溜まった灰を回収できるように、灰の粒子より細かいメッシュで構成された籠451が設けられている。
バルブ460,461は、水槽420の水を排出する弁である。気液分離器180から注入された混合液中の灰分と活性炭とを分離した後に、当該バルブ460,461によって水槽420の水を排水することにより、籠425,426に溜まった活性炭を回収することができる。また、バルブ470は、灰受入部450の水を排水する弁である。気液分離器180から注入された混合液中の灰分と活性炭とを分離した後に、当該バルブ470によって灰受入部450の水を排水することにより、籠451に溜まった灰を回収することができる。
以上のような触媒回収器182を本発明のバイオマスガス化発電システム200に備えることにより、混合液を非金属系触媒と灰分と水に分離することができ、非金属系触媒を回収することが可能となる。これにより、回収した非金属系触媒を再利用することが可能となる。
なお、前記触媒回収器182は、気液分離器180によって分離された、灰分、非金属系触媒、及び水を含む混合液を固体成分と液体成分とに分離する後述の固液分離器183と、分離した固体成分中の灰分と非金属系触媒とを篩いによって分離する既存の篩器との組み合わせであってもよい。
固液分離器183は、気液分離器180によって分離された液体成分に、固体成分、例えば非金属系触媒や灰分等が含まれている場合に、液体成分と固体成分(すなわち、非金属系触媒が混入した灰分)を分離する装置である。固液分離器183は、遠心分離機、濾過装置、圧縮脱水機など、特に限定されない。
また、気液分離器180によって分離された液体成分(灰分および非金属系触媒を含む)、又は、触媒回収器182によって分離された、非金属系触媒が混入した灰分、又は、固液分離器183によって分離された固体成分(すなわち、非金属系触媒が混入した灰分)を、後述の「回収システム」に利用し、その中に含まれる非金属系触媒およびリン酸塩を回収することも可能となる。
第一熱交換器130は、前処理装置140において熱水処理することにより得られ、反応器160で水熱処理される非金属系触媒を含むバイオマスのスラリー体の熱を利用して、前処理装置140で熱水処理されるバイオマス等を予熱する装置である。
第二熱交換器131は、反応器160において水熱処理することにより生成された生成ガス等を含む、反応器160から排出される排出物の熱を利用して、反応器160で水熱処理される非金属系触媒を含むバイオマスのスラリー体を予熱する装置である。
以上のように、本発明のバイオマスガス化発電システム200に熱交換器130,131を備えることにより、エネルギーを有効に利用することができるので、低エネルギー・低コストでバイオマスから燃料ガスを生成することができるようになる。また、各装置140,160での加熱時間が短縮されるのでバイオマスから燃料ガスの生成を効率的に行うことができるようになる。従って、熱交換器130,131を備えたバイオマスガス化発電システム200は、経済性に優れているといえる。
発電装置190は、ガスタンク181に貯えられた生成ガス(燃料ガス)を燃料として利用し、発電する装置である。発電装置190は、例えば、ガスエンジン(レシプロエンジン、ロータリーエンジン)、ガスタービン、スターリングエンジン、燃料電池等の既存の装置である。
なお、本実施の形態においては、図1に示すように、発電装置190が生成ガスを燃料として発電することにより発電装置190から排出された排ガスの熱(排熱)を利用して、バイオマスを加熱する熱交換器を前処理装置140に備えたり、加熱器161,163で使用する酸素を含むガスを予熱する熱交換器を有する予熱器164をバイオマスガス化発電システム200に備えたりしている。このように、本発明のバイオマスガス化発電システム200に熱交換器を有する前処理装置140及び/又は予熱器164を備えることによりエネルギーを効率よく利用することができるので、低エネルギー・低コストでバイオマスからメタンや水素等の燃料ガスを生成することができるばかりではなく、低エネルギー・低コストで発電して電力を供給することも可能となる。従って、加熱燃料の使用量の削減、排ガス発生量の低減等を図ることができるようになる。
上述のように、発電装置190の排熱の温度に関係なく、前処理装置140と予熱器164で発電装置190の排熱を利用してもよいが、発電装置190の排ガス温度に応じて排熱の利用の仕方を適宜変更してもよい。具体的には、発電装置190の排ガス温度が反応器160での反応温度より高い場合には、図5に示すように予熱器164のみで排熱を利用してもよいし、前処理装置140のみで排熱を利用してもよい。また、発電装置190の排ガス温度が反応器160での反応温度より低く、前処理装置140での処理温度より高い場合には、図6に示すように前処理装置140のみで排熱を利用してもよい。このように、発電装置190の排ガス温度に応じて排熱の利用の仕方を適宜変更することにより、発電装置190の排熱をより有効に利用することが可能となる。
さらに、本実施の形態においては、図1、図5、及び図6に示すように、加熱器163により生成ガスを酸素を含むガス中で燃焼することによって得られた排ガスの熱を利用して、非金属系触媒を含むバイオマスのスラリー体を加熱する熱交換器を反応器160に備えている。また、反応器160で前記スラリー体を加熱するのに利用した排ガスの熱、及び/又は、加熱器161により生成ガスを酸素を含むガス中で燃焼することによって得られた排ガスの熱を利用して、バイオマスを加熱する熱交換器を前処理装置140に備えたり、加熱器161、163で使用する酸素を含むガスを予熱する熱交換器を有する予熱器164をバイオマスガス化発電システム200に備えたりしている。これらのように、反応器160、前処理装置140、予熱器164等に熱交換器を備え、加熱器163により生成ガスを酸素を含むガス中で燃焼することによって得られた排ガスの熱、反応器160で前記スラリー体を加熱するのに利用した排ガスの熱、加熱器161により生成ガスを酸素を含むガス中で燃焼することによって得られた排ガスの熱等を利用することにより、エネルギーをより有効に利用することが可能となる。
なお、上述においては、加熱器163により得られた排ガスの熱は、反応器160で利用してから前処理装置140あるいは予熱器164で利用しているが、前処理装置140あるいは予熱器164で直接利用してもよい。また、本実施の形態においては、図1に示すように、前処理装置140や予熱器164に導入する導入物(具体的には、バイオマスや酸素を含むガス等)を、発電装置190の排熱を利用する熱交換器で加熱した後、反応器160で前記スラリー体を加熱するのに利用した排ガスの熱、及び/又は、加熱器161により生成ガスを酸素を含むガス中で燃焼することによって得られた排ガスの熱を利用する熱交換器で加熱しているが、これらの位置はそれぞれの排ガスの温度に応じて適宜変えてもよい。
さらに、上述では、反応器160から排出される排出物の熱を利用して上記スラリー体を予熱する第二熱交換器131を本発明のバイオマスガス化発電システム200に備えているが、反応器160において水熱処理することにより生成された生成ガス等を含む、反応器160から排出される排出物の熱を利用して、前処理装置140で熱水処理されるバイオマス等を予熱する熱交換器を本発明のバイオマスガス化発電システム200に備えてもよい。
また、本発明に係るバイオマスガス化発電システム200にあらかじめバイオマスを熱水処理する前処理装置140を備えることにより、バイオマスを高分子から低分子に分解することができるので、反応器160において処理されるバイオマスと水や非金属系触媒との接触効率を高め、チャーやタールの発生を防止するとともにバイオマスから燃料ガスを効率よく生成することが可能になる。
さらに、前処理装置140においてバイオマスを熱水処理することにより流動性に優れたバイオマスのスラリー体を形成させることができるので、このスラリー体をスラリー供給装置150によって反応器160にスムーズに供給することができるようになり、反応器160への供給においてバイオマスによる機器や配管等の目詰まりを防止することが可能になる。
また、本発明に係るバイオマスガス化発電システム200により、前処理装置140での熱水処理において用いた非金属系触媒を、反応器160での水熱反応においても利用することができるので、触媒の消費量を削減することが可能になる。
さらに、本発明に係るバイオマスガス化発電システム200に図2に示すような反応器160を備えることにより、超臨界水でバイオマスをガス化することにより得られる灰分(残渣)が反応器160内に溜まることがなくなり、バイオマスの超臨界水によるガス化処理を連続的に行うことができ、バイオマスから燃料ガスをより効率的に生成することが可能となる。
また、本発明に係るバイオマスガス化発電システム200に図3に示すようなスラリー供給装置150を備えることにより、固体成分と液体成分とに分離しやすい上述のスラリー体を一定濃度で反応器160に連続供給することができるので、超臨界水のガス化効率が最も高い濃度条件で非金属系触媒やバイオマス等を含むスラリー体を反応器160に連続供給でき、バイオマスから燃料ガスをより効率的に生成することが可能となる。
さらに、本発明に係るバイオマスガス化発電システム200に、クーラー170、減圧器171、気液分離器180等を備えることにより、反応器160から排出される排出物から燃料ガスを含む生成ガスを安全に回収することができるようになる。
また、本発明に係るバイオマスガス化発電システム200にバイオマスを破砕する破砕機110を備えることによりバイオマスをあらかじめ破砕することができるので、バイオマスのスラリー化やガス化の効率を高めることができるようになる。
なお、本実施の形態においては、調整タンク100で非金属系触媒とバイオマスと水を混合した混合物を破砕機110によって処理し、供給ポンプ120により前処理装置140に供給しているが、非金属系触媒は前処理装置140に直接供給してもよいし、バイオマスと水との混合物を破砕機110で処理した後に非金属系触媒を混合し、前処理装置140に供給してもよい。
==バイオマスガス化発電方法==
次に、本実施の一形態として、超臨界水によるガス化反応によりバイオマスから燃料ガスを生成し、燃料ガスを利用して発電する方法について説明する。
まず、調整タンク100でバイオマスと非金属系触媒と水を混合した混合物を調製する。非金属系触媒とバイオマス(乾燥状態のバイオマス)との質量比としては、1:5〜20:1の範囲内であることが好ましく、バイオマスのガス化効率が高い1:2〜20:1の範囲内であることが特に好ましい。また、混合する水の量は、バイオマスの含水率が70〜95wt%となるように調整することが好ましい。これにより、バイオマスの超臨界水によるガス化効率を高めることができる。
上述のように、バイオマスに混合させる非金属系触媒と水の量を調整して、これらを混合した混合物は、破砕機110で破砕され、供給ポンプ120により第一熱交換器130を介して前処理装置140に移送される。前処理装置140に供給されたバイオマスは、バイオマスとともに供給された非金属系触媒の存在下で、所定の圧力及び所定の温度の条件下で熱水処理される。
なお、熱水処理の条件としては、100〜250℃の範囲内の温度であって、0.1〜4MPaの範囲内の圧力下であれば特に制限されるものではないが、バイオマスを高分子から低分子へと分解する処理の効率の観点から、これらの範囲内の圧力下における水の飽和温度であることが好ましく、さらに省エネルギーの観点から、179.8℃の温度及び1.0MPaの圧力下であることが特に好ましい。ここで、熱水処理を100℃〜250℃の範囲内の温度で行うのは、100℃未満ではバイオマスの分解反応率が低く、250℃を超えるとタールやチャーの発生が懸念されるからである。また、熱水処理を0.1〜4MPaの範囲内の圧力で行うのは、0.1MPa未満ではバイオマスの分解反応率が低く、4MPaより高い圧力をかけても分解反応率に与える影響はそれ程ないのではないかと考えたためである。
このようにバイオマスを非金属系触媒の存在下で熱水処理することにより、バイオマスを高分子から低分子に効率よく分解することができるようになる。
上述のようにして得られた、非金属系触媒を含むバイオマスのスラリー体は、第一熱交換器130で供給ポンプ120から前処理装置140に供給される混合物に熱を提供し、スラリー供給装置150により第二熱交換器131及び予熱器162を介して反応器160に移送される。なお、予熱器162を通過したスラリー体は、所定の温度まで加熱される。
反応器160に供給されたバイオマスのスラリー体は、反応器160に導入され、バイオマスとともに供給された非金属系触媒の存在下で、所定の圧力及び所定の温度の条件下で水熱処理される。水熱処理の条件としては、374℃以上の温度で、かつ、22.1MPa以上の圧力下であれば特に制限されるものではないが、タールやチャーの発生を抑制するとともに反応効率を高めることができる温度(600℃)及び圧力(25〜35MPaの範囲内)下で行うことが好ましく、機器の負担や劣化防止、さらには省エネルギーの観点から、600℃,25MPaで行うことが特に好ましい。なお、バイオマスから変換された燃料ガス中の成分の比を制御したい場合には、これらの温度及び圧力の条件を調節するとともに、流体密度や反応時間(反応器160内でのバイオマスの滞留時間)を制御することにより可能となる。
このようにバイオマスのスラリー体を超臨界水で反応させることにより、バイオマスのスラリー体から燃焼ガスを生成することが可能になる。また、バイオマスを予め高分子から低分子化させることにより、水や非金属系触媒との接触効率を高めることができ、さらには、バイオマスのガス化反応時間を短縮させることができるので、バイオマスのスラリー体から水素ガス、メタン、エタン、エチレン等の燃料ガスをより効率的に生成することができるようになる。
反応器160内でバイオマスのスラリー体を水熱処理することにより生成された生成ガス等は、反応器160から排出される。この排出物は、第二熱交換器131において、スラリー供給装置150から反応器160に供給される、非金属系触媒を含むバイオマスのスラリー体に熱を提供した後、クーラー170及び減圧器171によって冷却・減圧され、気液分離器180へと移送される。気液分離器180に供給された上記排出物は、燃料ガスを含む生成ガス(気体成分)と、水、あるいは、水、灰分、非金属系触媒等を含む混合液(液体成分)とに分離され、生成ガスはガスタンク181に貯えられる。なお、気液分離器180によって分離された混合液に、水以外の灰分や非金属系触媒等が含まれている場合には、混合液を触媒回収器182によって非金属系触媒、灰分、及び水にそれぞれ分離し、非金属系触媒を回収してもよい。これにより、非金属系触媒を再利用することができるようになる。また、気液分離器180によって分離された液体成分(灰分および非金属系触媒を含む)、又は、触媒回収器182によって分離された、非金属系触媒が混入している灰分、又は、固液分離器183によって分離された固体成分(すなわち、非金属系触媒が混入した灰分)を、以下の「回収システム」に利用し、非金属系触媒、及び、ヒドロキシアパタイトを含むリン酸塩を回収することもできる。
ガスタンク181に貯えられた生成ガス(燃料ガス)は、発電装置190、加熱器161,163に供給される。発電装置190は、供給された生成ガスを利用して発電を行い、電力を提供する。また、加熱器161,163は、供給された生成ガスを酸素を含むガス中で燃焼して反応器160や予熱器162を加熱し、スラリー体を所定の温度に加熱する。
発電装置190が生成ガスを燃料として発電することにより発電装置190から排出された排ガスは、前処理装置140や予熱器164に供給され、供給ポンプ120から前処理装置140に供給される混合物に熱を提供したり、予熱器164において加熱器161,163で使用する酸素を含むガスに熱を提供したりする。
また、加熱器163により生成ガスを酸素を含むガス中で燃焼することによって得られた排ガスは、反応器160に供給されてスラリー体に熱を提供する。反応器160で熱を提供した排ガス、及び、加熱器161により生成ガスを酸素を含むガス中で燃焼することによって得られた排ガスは、前処理装置140や予熱器164に供給され、供給ポンプ120から前処理装置140に供給される混合物に熱を提供したり、予熱器164において加熱器161,163で使用する酸素を含むガスに熱を提供したりする。
なお、本実施の形態において用いられる非金属系触媒としては、例えば、活性炭、ゼオライト、これらの混合物等を挙げることができる。このように、アルカリ金属系触媒ではなく、非金属系触媒を用いることにより、アルカリ金属系触媒が引き起こす機器や配管等の腐食による劣化を防止することができ、バイオマスガス化発電システム200の長期使用が実現可能となる。また、アルカリ金属系触媒を中和する処理工程も不要となり、作業性の効率を高めることができるようになる。上記非金属系触媒としては、平均粒径200μm以下の粉末を用いることが好ましく、多孔質であることがより好ましい。このような非金属系触媒を用いることにより、表面積を増やして反応効率を高めるとともに、非金属系触媒によるバイオマスガス化発電システム200内の機器、配管等の目詰まりを防止することができる。
また、本実施の形態において処理されるバイオマスが砂等の異物を含む排水汚泥や糞尿等である場合には、前処理装置140においてバイオマスを熱水処理する前後に、公知の分離技術(例えば、ストレイナーを用いた分離法、沈殿層を用いた分離法)によってバイオマスに含まれる砂等の異物を取り除いてもよい。これにより、砂等の異物によって生じるトラブルを防止することができるようになる。
===回収システムの構成===
図10は本発明の一実施形態として説明する回収システム500の概略的な構成図である。
本実施形態の回収システム500は、塩酸反応装置510、ろ過装置520、水酸化ナトリウム反応装置530、リン酸塩回収装置540、制御バルブ550〜559、触媒洗浄装置560から構成されている。
塩酸反応装置510は、気液分離器180によって分離された非金属系触媒が混入した灰分を含む液体成分、又は、触媒回収器182によって分離された、非金属系触媒が混入した灰分、又は、固液分離器183によって分離された固体成分(すなわち、非金属系触媒が混入した灰分)を、塩酸と反応させる装置である。なお、回収システム500は、気液分離器180、触媒回収器182、及び固液分離器183のうち一つだけを備えていても、すべてを備えていてもよいが、図10では、気液分離器180−触媒回収器182の順、及び、気液分離器180−固液分離器183の順にすべてを備えている場合を示す。ここで使用できる塩酸反応装置510は、気液分離器180によって分離された灰分を含む液体成分、又は、触媒回収器182によって分離された灰分、又は固液分離器183によって分離された固体成分を塩酸と反応させることができ、かつ、その材質が塩酸と反応しなければ(例えば、ハステロイB等)、特に限定されない。また、灰分を気液分離器180や触媒回収器182や固液分離器183から効率よく得るために、塩酸反応装置510は、気液分離器180又は触媒回収器182又は固液分離器183と連通していることが好ましい。なお、塩酸反応装置510は、灰分と塩酸とを均等に混合するために、振盪器を備えていてもよい。
ろ過装置520は、塩酸反応装置510において、灰分と反応した後の塩酸をろ過する装置である。ここで使用できるろ過装置520は、塩酸反応装置510において灰分と反応した後の塩酸をろ過することができる装置を備えていれば何でもよく、例えば、遠心分離器、ベルトプレス、スクリュープレス等が挙げられる。また、灰分と反応した後の塩酸を塩酸反応装置510から効率よく得るために、ろ過装置520は、塩酸反応装置510と連通していることが好ましい。
ろ過装置520におけるろ過によって、灰分に混入していた非金属系触媒を回収することができる。この非金属系触媒は回収時、触媒洗浄装置560において水等を用いて洗浄され、再利用することができる。
水酸化ナトリウム反応装置530は、ろ過装置520において得られたろ液を水酸化ナトリウム水溶液と反応させる装置である。ここで使用できる水酸化ナトリウム反応装置530は、ろ過装置520からろ過されたろ液を水酸化ナトリウム水溶液と反応させることができ、かつ、塩酸や水酸化ナトリウムと反応しない材質(例えば、ハステロイB等)からなれば特に限定されない。また、ろ液をろ過装置520から効率よく得るために、水酸化ナトリウム反応装置530は、ろ過装置520と連通していることが好ましい。なお、水酸化ナトリウム反応装置530は、ろ液と水酸化ナトリウム水溶液とを均等に混合するために、振盪器を備えていてもよい。
リン酸塩回収装置540は、水酸化ナトリウム反応装置530において、ろ液と水酸化ナトリウム水溶液とを反応させて生じた沈殿物を回収する装置である。ここで使用できる回収装置540は、水酸化ナトリウム反応装置530において沈殿している沈殿物を回収することができれば何でもよく、例えば、回収用に0.2μm〜1.0μmのメンブランフィルター等が設けられていてもよい。また、回収装置540は、水酸化ナトリウム反応装置530と連通していることが好ましい。
なお、気液分離器180又は触媒回収器182又は固液分離器183と塩酸反応装置510との間、塩酸反応装置510とろ過装置520との間、ろ過装置と水酸化ナトリウム反応装置530との間、ろ過装置520と触媒洗浄装置560との間、固液分離器183からの排水管、触媒回収器182からの排水管に、液体の流量あるいは排水を制御するための手段の一例として、制御バルブ550〜559等を設けてもよい。
===非金属系触媒およびリン酸塩回収方法===
以下、上記回収システム500を用いて、バイオマス化発電システム200において生成された副産物から、非金属系触媒およびリン酸塩を回収する方法について説明する。なお、初期状態では、制御バルブ550〜559は全て閉じられているものとする。
まず、制御バルブ550及び552、553及び554、又は551を開いて、気液分離器180によって分離された非金属系触媒が混入した灰分を含む液体成分、又は触媒回収器182によって分離された、非金属系触媒が混入した灰分、又は固液分離器183によって分離された固体成分(すなわち、非金属系触媒が混入した灰分)を、塩酸反応装置510に供給する。ここで、塩酸反応装置510に供給する、触媒回収器182から得られた灰分の量は、液体/固体(L/S)比が5ml/g〜10ml/gであることが好ましい。灰分と塩酸とは、振盪器を利用してよく混合することが好ましい。
次に、制御バルブ555を開いて、上記混合物をろ過装置520に供給し、灰分と反応した後の塩酸を、ろ過する。この工程でろ過された固体成分に、非金属系触媒が含まれる。この固体成分を、水で洗浄し、非金属系触媒を回収することができる。
次に、制御バルブ555を開いて、塩酸をろ過したろ液を水酸化ナトリウム反応装置530に供給する。そして、水酸化ナトリウム水溶液を用いて、ろ液のpHを4.0〜9.0に調整し、リン酸塩を析出させる。例えば、ろ液のpHを4.0にするとリン酸一水素カルシウムが、pHを7.5〜9.0にするとヒドロキシアパタイトが析出する。
最後に、回収装置540において、水酸化ナトリウム反応装置530内に存在する沈殿物(リン酸塩)を回収する。
ここで、回収システム500を開始させる条件としては、例えば、気液分離器180に蓄積される液体成分の量が所定レベルに達した場合や、触媒回収器182で回収された灰分の量が所定レベルに達した場合、あるいは固液分離器で分離された固体成分の量が所定レベルに達した場合等にすればよい。
さらに、例えば、制御バルブ550〜559をそれぞれ電磁バルブとするとともに、各電磁バルブを制御するための制御ラインをコンピュータに接続し、コンピュータのハードウエアや当該ハードウエアで動作する制御ソフトウエアにより、上記電磁バルブを遠隔制御するようにしてもよい。
以上に説明したように、本実施形態のリン酸塩回収システムによれば、鶏糞等のリンを含有するバイオマスを原料として、バイオマス化発電システムにおいて生成された副産物から、リン酸塩を効率よく回収することが可能となる。
また、ヒドロキシアパタイトは、人工骨や歯の充填材等の生体機能材料に用いられることが知られている。本実施形態のリン酸塩回収システムによれば、鶏糞等のリンを含有するバイオマスを原料として、バイオマス化発電システムにおいて生成された副産物から、経済効果のあるヒドロキシアパタイトを効率よく回収することも可能となる。
このように、本発明にかかる回収システムを用いれば、上述のバイオマス化発電システムに用いられる非金属系触媒を回収し、再利用することが可能になる。また、バイオマスから、将来枯渇する資源といわれているリンを回収することが可能になる。
上記実施形態の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。
==排水の利用==
気液分離器180によって分離された灰分を含む液体成分、又は、触媒回収器182によって分離された排水、又は、固液分離器183によって分離された排水はアンモニアを含んでいる。これらのアンモニアを含む液体は、肥料として、あるいは肥料の一部として有効利用することができる。この液体は、アンモニア以外の肥料成分と混合されても、単独で肥料として用いられてもよい。また、肥料は、液肥であっても、必要に応じた大きさ、形状に成型された固形肥料であってもよい。
以下に本発明を実施例によって具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。
[実施例1]
水97.6質量部、鶏糞2質量部、及び粒径20μmの活性炭0.4質量部を撹拌混合し、180℃,1.1MPaの条件下で熱水処理したバイオマスのスラリー体を、高圧ポンプにより管型反応器に圧入し、600℃,25MPaの条件下で、超臨界水による反応を行った。また、対照実験として、活性炭を添加しないで同様に超臨界水によるガス化反応を行った。その結果、活性炭を添加しない場合には、炭素ガス化率が73%であるのに対し、活性炭を0.4質量部添加した場合には、炭素ガス化率が88%と上昇することが明らかになった。
[実施例2]
次に、水80質量部、セルロース粉末20質量部、及び平均粒径100μmの活性炭20質量部を撹拌混合してスラリーを調製した。その後、攪拌機を備えた167mlのオートクレーブにスラリー40mlを注入し、圧力25MPaで撹拌しながら400℃まで温度上昇させて1時間保持して超臨界水によるガス化反応を行った。反応後、室温まで冷却し、生成ガスを回収して炭素ガス化率を求めた。また、対照実験として、活性炭を添加せずに同様の処理を行った。その結果、活性炭を添加しない場合には炭素ガス化率が10%であるのに対し、活性炭を添加した場合には炭素ガス化率が30%と上昇することが明らかになった。
以上のことから、活性炭等の非金属触媒の添加によりバイオマスのガス化効率を高めることができることが明らかになった。
[実施例3]
図2に示すように、導入口210及び排出口220を設けた流動層反応器160(φ12.3mm×2400mm)の下方に分散板(網)を備え、平均粒径が1mmのアルミナボールを流動媒体として設置した。この流動層反応器160に、バイオマス(灰)や非金属系触媒の代わりにアルミナ粒子(平均粒径が180〜250μm、あるいは、平均粒径が250〜300μm)を水に混合した混合物を、アルミナ粒子が飛び出し、流動媒体であるアルミナボールが飛び出さない流量(0.19m/s〜0.60m/s)で導入口210から導入し、排出口220から排出されたアルミナ粒子を回収した。
その結果、平均粒径が180〜250μmのアルミナ粒子を流動層反応器160に導入した場合には97.5%のアルミナ粒子を回収することができ、平均粒径が250〜300μmのアルミナ粒子を流動層反応器60に導入した場合には98.9%のアルミナ粒子を回収することができることがわかった。このことから、上述のような流動層反応器160に、非金属系触媒を含むバイオマスのスラリー体(平均粒径が300μm以下)を所定の流量(例えば、流動媒体が排出口から飛び出さない最大流量)で導入口210から導入しながら、所定の温度及び所定の圧力下で水熱反応を行うことにより、生成された生成ガスや灰分、並びに、非金属系触媒や水(超臨界水)を排出口220から排出できることが示された。
[実施例4]
(i)実験試料の調製
水85質量部、鶏糞10質量部、及び粒径10〜100μmの活性炭5質量部を撹拌混合し、180℃,1.1MPaの条件下で熱水処理したバイオマスのスラリー体を、高圧ポンプにより管型反応器に圧入し、600℃,25MPaの条件下で、超臨界水によるガス化反応を行った。また、対照実験として、活性炭を添加しないで同様に超臨界水によるガス化反応を行った。このガス化反応によって得られた固形分(灰分、活性炭混合:以下、「超臨界水ガス化副産物」と称する)を105℃で乾燥したものを、以下の実験に用いた。
まず、超臨界水ガス化副産物100.0gに1N塩酸1000mlを加え(L/S比=10[ml/g])、室温で1時間振盪(200rpm)し、超臨界水ガス化副産物からリンを溶出させた。次に、懸濁液をろ紙(No.5C)でろ別し、活性炭様固形分(以下、物質Aとする)とリン溶出液を得た。リン溶出液に水酸化ナトリウム水溶液を加えて、pHを7.5に調整し、生成した白色沈殿物(以下、物質Bとする)をメンブランフィルター(孔径:1.0μm)でろ過した。最後に、物質A及び物質Bを105℃で乾燥した。
物質A及び物質Bを計量したところ、物質Aは69.3g、物質Bは28.0gであった。また、物質Bの色は白色であった。
(ii)蛍光X線分析
次に、超臨界水ガス化副産物、及び物質Aに含まれる成分を比較するために、主要5成分(C、Ca、P、Si、Mg)に対して、蛍光X線分析を行った。
Figure 0005509445
表1より、超臨界水ガス化副産物の主要3成分は、C(57%)、CaO(21%)及びP(12%)であることが分かった。また、物質Aにおいて、Cの含有率は73%に上昇したが、Pは主要5成分の中に存在せず、また、Caの含有率も低下した。これより、超臨界水ガス化副産物からリン及びカルシウムが除去されていること、並びに、物質Aにおいて活性炭の純度が高くなったことが明らかになった。
(iii)X線解析(XRD)
化学工業日報社「15107の化学商品」(2007)に、リン酸一水素カルシウムは1kgあたり400〜550円、リン酸二水素カルシウムは1kgあたり460〜800円、リン酸三カルシウムは1kgあたり600〜650円、ヒドロキシアパタイトは1kgあたり10,000円と記載されている。そこで、上記リン溶出液に、ヒドロキシアパタイトが含まれているか、X線解析を行った。図8に物質BとヒドロキシアパタイトとのXRDパターンの比較を示す。
物質Bの主成分は、ヒドロキシアパタイトであることが確認できた。これより、鶏糞を用いた超臨界水ガス化副産物からヒドロキシアパタイトを回収できることが示された。なお、原料として用いた鶏糞の中にはヒドロキシアパタイトは含まれていない(図9)。
100 調整タンク 110 破砕機
120 供給ポンプ 130 第一熱交換器
131 第二熱交換器 140 前処理装置
150 スラリー供給装置 160 反応器
161 加熱器 162 予熱器
163 加熱器 164 予熱器
170 クーラー 171 減圧器
180 気液分離器 181 ガスタンク
182 触媒回収器 183 固液分離器
190 発電装置 200 バイオマスガス化発電システム
210 導入口 220 排出口
230 流動媒体 240 分散部
310、320 シリンダー 330 軸
331、332 ピストン 340 攪拌機
350 攪拌機 360 水注入装置
361〜364 バルブ 371、372 三方弁
373〜376 バルブ 380、381 蓄圧器
410 混合液注入部 420 水槽
421 排出口 422、423 活性炭受部
424 排水口 425、426 籠
430 循環ポンプ 440 供給管
450 灰受入部 451 籠
460、461、470 バルブ 500 回収システム
510 塩酸反応装置 520 ろ過装置
530 水酸化ナトリウム反応装置 540 リン酸塩回収装置
550〜559 バルブ 560 触媒洗浄装置

Claims (5)

  1. 非金属系触媒の存在下においてリンを含有するバイオマスを高温高圧ガスで処理し、
    前記高温高圧ガス処理によって得られる反応物から前記非金属系触媒を回収する方法であって、
    非金属系触媒の存在下において、リンを含有するバイオマスを100〜250℃の範囲内の温度、及び0.1〜4MPaの範囲内の圧力の条件下で熱水処理し、
    熱水処理することにより得られた、前記非金属系触媒を含む前記リンを含有するバイオマスのスラリー体を、374℃以上の温度、及び22.1MPa以上の圧力の条件下で水熱処理し、
    前記水熱処理にて生成した、非金属系触媒が混入した灰分を塩酸と反応させ、
    前記非金属系触媒が混入した灰分と反応させた後の前記塩酸をろ過し、
    前記ろ過によって得られた固体を洗浄し、
    前記固体中の前記非金属系触媒を回収すること、
    を特徴とする非金属系触媒回収方法。
  2. 水熱処理にて生成した、生成ガス、灰分、非金属系触媒、及び水を、前記生成ガスと、前記灰分、前記非金属系触媒、及び水を含む混合液とに分離する工程を含み、前記混合液を塩酸と反応させることにより灰分を塩酸と反応させることを特徴とする、請求項1に記載の非金属系触媒回収方法。
  3. 前記非金属系触媒が活性炭であることを特徴とする、請求項1または2に記載の非金属系触媒回収方法。
  4. 請求項1〜3のいずれかに記載の非金属系触媒回収方法によって回収された非金属系触媒の使用方法であって、
    前記回収された非金属系触媒を、前記請求項1〜3のいずれかに記載の非金属系触媒回収方法において熱水処理される非金属系触媒として、あるいはその一部として、使用することを特徴とする、前記回収された非金属系触媒の使用方法。
  5. 前記非金属系触媒が活性炭であることを特徴とする、請求項4に記載の回収された非金属系触媒の使用方法。
JP2009020652A 2009-01-30 2009-01-30 超臨界水ガス化に伴う非金属系触媒回収方法、非金属系触媒再使用方法、排水使用方法 Active JP5509445B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020652A JP5509445B2 (ja) 2009-01-30 2009-01-30 超臨界水ガス化に伴う非金属系触媒回収方法、非金属系触媒再使用方法、排水使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020652A JP5509445B2 (ja) 2009-01-30 2009-01-30 超臨界水ガス化に伴う非金属系触媒回収方法、非金属系触媒再使用方法、排水使用方法

Publications (2)

Publication Number Publication Date
JP2010172859A JP2010172859A (ja) 2010-08-12
JP5509445B2 true JP5509445B2 (ja) 2014-06-04

Family

ID=42704315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020652A Active JP5509445B2 (ja) 2009-01-30 2009-01-30 超臨界水ガス化に伴う非金属系触媒回収方法、非金属系触媒再使用方法、排水使用方法

Country Status (1)

Country Link
JP (1) JP5509445B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520204A (zh) * 2016-11-28 2017-03-22 新奥科技发展有限公司 一种煤催化气化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2764577T3 (es) * 2017-07-27 2020-06-03 Igas Energy Gmbh Separación fraccionada de materiales reciclables de mezclas acuosas multicomponentes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491612B2 (ja) * 2005-08-09 2010-06-30 国立大学法人 宮崎大学 畜糞系焼却灰からのリン含有水溶液の調製と重金属除去、並びにヒドロキシアパタイト及び/又はリン酸水素カルシウムの回収方法
JP2007277056A (ja) * 2006-04-07 2007-10-25 Sumitomo Heavy Ind Ltd リンの回収方法
JP2008207118A (ja) * 2007-02-27 2008-09-11 Hiroshima Univ アンモニア性窒素含有排水の処理方法、処理装置、及び処理システム
JP5030275B2 (ja) * 2007-03-29 2012-09-19 国立大学法人広島大学 バイオマスガス化発電システム
JP5036037B2 (ja) * 2007-03-29 2012-09-26 国立大学法人広島大学 バイオマスガス化発電システム
JP5305426B2 (ja) * 2007-07-31 2013-10-02 国立大学法人広島大学 リン酸塩回収方法
JP5317163B2 (ja) * 2008-03-31 2013-10-16 国立大学法人広島大学 リン酸塩回収方法
JP5382679B2 (ja) * 2008-03-31 2014-01-08 国立大学法人広島大学 リン酸塩回収方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520204A (zh) * 2016-11-28 2017-03-22 新奥科技发展有限公司 一种煤催化气化方法
CN106520204B (zh) * 2016-11-28 2019-02-12 新奥科技发展有限公司 一种煤催化气化方法

Also Published As

Publication number Publication date
JP2010172859A (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5382679B2 (ja) リン酸塩回収方法
JP5036037B2 (ja) バイオマスガス化発電システム
JP5463524B2 (ja) バイオマスガス化方法、及びバイオマスガス化システム
JP5305426B2 (ja) リン酸塩回収方法
JP4719864B2 (ja) 超臨界水によるバイオマスガス化システム
KR101151121B1 (ko) 유기성 폐기물의 처리 설비 및 처리 방법
JP5688724B2 (ja) バイオマス処理方法
JP2006274013A (ja) バイオマスガス化システム
EP1879981A2 (en) Method and apparatus for converting organic material
JP5997755B2 (ja) 汚泥処理方法及び炭化物の利用方法
CN110040901A (zh) 一种可污泥回用的微电解/非均相芬顿流化床工艺及装置
JP5030275B2 (ja) バイオマスガス化発電システム
JP5688723B2 (ja) バイオマス付着防止方法
JP4997546B2 (ja) 超臨界水バイオマスガス化装置及びそれを含むシステム
JP2007271146A (ja) 二重管構造
JP5509445B2 (ja) 超臨界水ガス化に伴う非金属系触媒回収方法、非金属系触媒再使用方法、排水使用方法
JP5504455B2 (ja) 超臨界水ガス化に伴う活性炭回収方法
JP5317163B2 (ja) リン酸塩回収方法
JP5177477B2 (ja) 流体供給装置およびそれを備えるシステム
EP2531453A2 (en) Plant for treatment of biological sludges with recovery of raw materials and energy
WO2007059783A1 (en) Method and apparatus for converting organic material using microwave excitation
JP5540369B2 (ja) 燃料ガス製造方法
JP5859713B1 (ja) バイオマスガス化システムおよびバイオマスガス化方法
JP4004766B2 (ja) 水熱反応を利用する余剰汚泥生物処理方法
CN218465747U (zh) 一种固废蒸汽水热多级热处理的系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5509445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250