JP5506406B2 - Induction heating cooker - Google Patents
Induction heating cooker Download PDFInfo
- Publication number
- JP5506406B2 JP5506406B2 JP2010000178A JP2010000178A JP5506406B2 JP 5506406 B2 JP5506406 B2 JP 5506406B2 JP 2010000178 A JP2010000178 A JP 2010000178A JP 2010000178 A JP2010000178 A JP 2010000178A JP 5506406 B2 JP5506406 B2 JP 5506406B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- top plate
- heated
- wavelength
- infrared sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 22
- 230000006698 induction Effects 0.000 title claims description 22
- 238000002834 transmittance Methods 0.000 claims description 51
- 230000003595 spectral effect Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 description 9
- 238000009529 body temperature measurement Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000000151 deposition Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2213/00—Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
- H05B2213/07—Heating plates with temperature control means
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Induction Heating Cooking Devices (AREA)
Description
本発明は、誘導加熱調理器に関するものであり、特に、誘導加熱される被加熱物の温度計測方式に関する。 The present invention relates to an induction heating cooker, and more particularly, to a temperature measurement method for an object to be heated that is induction-heated.
誘導加熱調理器における赤外線センサによる温度計測では、天板上に設置された被加熱物が放射する赤外線を天板下に設置した赤外線センサによって検出する。被加熱物からの赤外線は天板を透過したものだけが赤外線センサに到達するため、天板の光透過率が高い波長域の信号のみを検出すると、S/Nが改善し、温度計測精度が向上することになる。 In the temperature measurement by the infrared sensor in the induction heating cooker, the infrared rays radiated from the heated object installed on the top plate are detected by the infrared sensor installed under the top plate. Since only infrared light from the object to be heated passes through the top plate and reaches the infrared sensor, detecting only a signal in a wavelength range where the light transmittance of the top plate is high improves S / N and improves temperature measurement accuracy. Will improve.
しかし、天板透過率が100%になる波長域は存在しないため、天板透過率が高い波長域だけを検出しても、天板を透過してきた被加熱物の赤外線だけではなく、天板自身が放射する赤外線が含まれる。そのため、S/Nが低下し、温度計測精度が低下するという課題がある。 However, since there is no wavelength region where the top plate transmittance is 100%, even if only the wavelength region where the top plate transmittance is high is detected, not only the infrared rays of the heated object that has passed through the top plate, but the top plate Infrared rays emitted by itself are included. Therefore, there exists a subject that S / N falls and temperature measurement accuracy falls.
本発明の目的は、天板から放射される赤外線の影響を排除して、被加熱物の温度を精度良く計測できる誘導加熱調理器を提供することである。 An object of the present invention is to provide an induction heating cooker that can accurately measure the temperature of an object to be heated while eliminating the influence of infrared rays emitted from the top plate.
上記目的を達成するために、本発明に係る誘導加熱調理器は、被加熱物を支持するための天板と、
被加熱物を誘導加熱するためのコイルと、
被加熱物から放射されて天板を透過した赤外線および、天板自体から放射される赤外線を受光するための第1赤外線センサおよび第2赤外線センサと、
天板と第1赤外線センサの間に設置され、第1波長域の赤外線を選択的に透過させる第1波長選択フィルタと、
天板と第2赤外線センサの間に設置され、第1波長域とは異なる第2波長域の赤外線を選択的に透過させる第2波長選択フィルタと、
第1赤外線センサの出力と第2赤外線センサの出力との差分を出力する差分処理回路と、
第2赤外線センサの出力に基づいて、天板自体から放射される赤外線量を算出する天板赤外線量算出手段と、
差分処理回路の出力から、天板赤外線量算出手段で算出された赤外線量を減算して、被加熱物自体から放射される赤外線量を算出する天板赤外線減算手段と、
天板赤外線減算手段で算出された赤外線量に基づいて、被加熱物の温度を算出する温度算出手段とを備えることを特徴とする。
In order to achieve the above object, an induction heating cooker according to the present invention includes a top plate for supporting an object to be heated,
A coil for induction heating of an object to be heated;
A first infrared sensor and a second infrared sensor for receiving infrared rays emitted from an object to be heated and transmitted through the top plate, and infrared rays emitted from the top plate itself;
A first wavelength selection filter that is installed between the top plate and the first infrared sensor and selectively transmits infrared rays in the first wavelength range;
A second wavelength selection filter that is installed between the top plate and the second infrared sensor and selectively transmits infrared rays in a second wavelength range different from the first wavelength range;
A difference processing circuit for outputting a difference between the output of the first infrared sensor and the output of the second infrared sensor;
Based on the output of the second infrared sensor, the top plate infrared amount calculation means for calculating the amount of infrared rays emitted from the top plate itself,
From the output of the difference processing circuit, subtracting the infrared amount calculated by the top plate infrared amount calculating means, and calculating the infrared amount radiated from the heated object itself, a top plate infrared subtracting means,
Temperature calculating means for calculating the temperature of the object to be heated based on the amount of infrared light calculated by the top plate infrared subtracting means.
また、本発明に係る誘導加熱調理器は、被加熱物を支持するための天板と、
被加熱物を誘導加熱するためのコイルと、
被加熱物から放射されて天板を透過した赤外線および、天板自体から放射される赤外線を受光するための第1赤外線センサおよび第2赤外線センサと、
天板と第1赤外線センサの間に設置され、第1波長域の赤外線を選択的に透過させる第1波長選択フィルタと、
天板と第2赤外線センサの間に設置され、第1波長域とは異なる第2波長域の赤外線を選択的に透過させる第2波長選択フィルタと、
第1赤外線センサの出力と第2赤外線センサの出力との差分を出力する差分処理回路と、
差分処理回路の出力に基づいて、天板自体から放射される赤外線量を算出する天板赤外線量算出手段と、
第1赤外線センサの出力から、天板赤外線量算出手段で算出された赤外線量を減算して、被加熱物自体から放射される赤外線量を算出する天板赤外線減算手段と、
天板赤外線減算手段で算出された赤外線量に基づいて、被加熱物の温度を算出する温度算出手段とを備えることを特徴とする。
Moreover, the induction heating cooker according to the present invention includes a top plate for supporting an object to be heated,
A coil for induction heating of an object to be heated;
A first infrared sensor and a second infrared sensor for receiving infrared rays emitted from an object to be heated and transmitted through the top plate, and infrared rays emitted from the top plate itself;
A first wavelength selection filter that is installed between the top plate and the first infrared sensor and selectively transmits infrared rays in the first wavelength range;
A second wavelength selection filter that is installed between the top plate and the second infrared sensor and selectively transmits infrared rays in a second wavelength range different from the first wavelength range;
A difference processing circuit for outputting a difference between the output of the first infrared sensor and the output of the second infrared sensor;
Based on the output of the difference processing circuit, a top plate infrared ray amount calculating means for calculating the infrared ray amount radiated from the top plate itself,
Subtracting the amount of infrared rays calculated by the top plate infrared ray amount calculation means from the output of the first infrared sensor, and calculating the amount of infrared rays emitted from the object to be heated itself;
Temperature calculating means for calculating the temperature of the object to be heated based on the amount of infrared light calculated by the top plate infrared subtracting means.
また、本発明に係る誘導加熱調理器は、被加熱物を支持するための天板と、
被加熱物を誘導加熱するためのコイルと、
被加熱物から放射されて天板を透過した赤外線および、天板自体から放射される赤外線を受光するための第1赤外線センサおよび第2赤外線センサと、
天板と第1赤外線センサの間に設置され、第1波長域の赤外線を選択的に透過させる第1波長選択フィルタと、
天板と第2赤外線センサの間に設置され、第1波長域とは異なり、被加熱物から放射される赤外線の波長域を含まない第2波長域の赤外線を選択的に透過させる第2波長選択フィルタと、
第2赤外線センサの出力に基づいて、天板自体から放射される赤外線量を算出する天板赤外線量算出手段と、
第1赤外線センサの出力から、天板赤外線量算出手段で算出された赤外線量を減算して、被加熱物自体から放射される赤外線量を算出する天板赤外線減算手段と、
天板赤外線減算手段で算出された赤外線量に基づいて、被加熱物の温度を算出する温度算出手段とを備えることを特徴とする。
Moreover, the induction heating cooker according to the present invention includes a top plate for supporting an object to be heated,
A coil for induction heating of an object to be heated;
A first infrared sensor and a second infrared sensor for receiving infrared rays emitted from an object to be heated and transmitted through the top plate, and infrared rays emitted from the top plate itself;
A first wavelength selection filter that is installed between the top plate and the first infrared sensor and selectively transmits infrared rays in the first wavelength range;
Disposed between the top plate and the second infrared sensor, unlike the first wavelength region, the selectively transmits infrared second wavelength band which does not include the wavelength band of infrared rays emitted from the heated object 2 A wavelength selective filter;
Based on the output of the second infrared sensor, the top plate infrared amount calculation means for calculating the amount of infrared rays emitted from the top plate itself,
Subtracting the amount of infrared rays calculated by the top plate infrared ray amount calculation means from the output of the first infrared sensor, and calculating the amount of infrared rays emitted from the object to be heated itself;
Temperature calculating means for calculating the temperature of the object to be heated based on the amount of infrared light calculated by the top plate infrared subtracting means.
本発明によれば、計測波長域の異なる2つの赤外線センサを用いて、天板自体が放射する赤外線量を別途算出することによって、被加熱物の温度を精度良く計測できる。 According to the present invention, the temperature of an object to be heated can be measured with high accuracy by separately calculating the amount of infrared rays emitted from the top plate itself using two infrared sensors having different measurement wavelength ranges.
実施の形態1.
図1は、本発明の実施の形態1を示す構成図である。誘導加熱調理器は、天板2と、コイル3と、赤外線センサ4,5と、波長選択フィルタ41,51と、差分処理回路7と、天板赤外線量算出手段8と、天板赤外線減算手段9と、温度算出手段10などで構成される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention. The induction heating cooker includes a top plate 2, a coil 3, infrared sensors 4 and 5, wavelength selection filters 41 and 51, a difference processing circuit 7, a top plate infrared amount calculation means 8, and a top plate infrared subtraction means. 9 and temperature calculation means 10.
天板2は、鍋などの被加熱物1を支持するための板状部材であり、コイル3からの磁界が透過可能で、被加熱物1から放射される赤外線が透過可能な材料、例えば、結晶化ガラスなど形成される。 The top plate 2 is a plate-like member for supporting the object to be heated 1 such as a pan, and is a material that can transmit the magnetic field from the coil 3 and can transmit infrared rays emitted from the object to be heated 1, for example, Crystallized glass is formed.
コイル3は、インバータ回路(不図示)と接続されており、インバータ回路から高周波電流が供給されると高周波磁界を発生する機能を有し、これにより被加熱物1が誘導加熱される。 The coil 3 is connected to an inverter circuit (not shown), and has a function of generating a high-frequency magnetic field when a high-frequency current is supplied from the inverter circuit, whereby the object to be heated 1 is induction-heated.
赤外線センサ4,5は、焦電素子、サーモパイルなどの熱型赤外線センサや、フォトダイオードなどの量子型赤外線センサなどで構成され、受光した赤外線エネルギーに応じて電気信号を出力する機能を有し、被加熱物1から放射されて天板2を透過した赤外線および天板2自体から放射される赤外線の両方を受光するように配置される。赤外線センサ4,5の出力は、前置増幅器(不図示)が接続されている。 The infrared sensors 4 and 5 are composed of thermal infrared sensors such as pyroelectric elements and thermopiles, quantum infrared sensors such as photodiodes, and the like, and have a function of outputting electrical signals in accordance with received infrared energy. It arrange | positions so that both the infrared rays radiated | emitted from the to-be-heated material 1 and permeate | transmitted the top plate 2 and the infrared rays radiated | emitted from the top plate 2 itself may be received. A preamplifier (not shown) is connected to the outputs of the infrared sensors 4 and 5.
波長選択フィルタ41,51は、特定の波長範囲の光を選択的に透過し、この波長範囲外の光を透過しない機能を有する光学素子であり、ある波長よりも長い波長の光だけを透過するロングパスフィルタ、ある波長より短い波長の光だけを透過するショートパスフィルタ、特定範囲の波長だけを透過するバンドパスフィルタ、あるいはこれらの組合せとして構成できる。 The wavelength selection filters 41 and 51 are optical elements having a function of selectively transmitting light in a specific wavelength range and not transmitting light outside this wavelength range, and transmit only light having a wavelength longer than a certain wavelength. A long-pass filter, a short-pass filter that transmits only light having a wavelength shorter than a certain wavelength, a band-pass filter that transmits only light in a specific range, or a combination thereof can be used.
波長選択フィルタ41は、天板2と赤外線センサ4の間に設置され、第1波長域の赤外線を選択的に透過させる機能を有する。波長選択フィルタ51は、天板2と赤外線センサ5の間に設置され、第1波長域とは異なる第2波長域の赤外線を選択的に透過させる機能を有する。波長選択フィルタ41の第1波長域および波長選択フィルタ51の第2波長域については後述する。 The wavelength selection filter 41 is installed between the top plate 2 and the infrared sensor 4 and has a function of selectively transmitting infrared light in the first wavelength range. The wavelength selection filter 51 is installed between the top plate 2 and the infrared sensor 5 and has a function of selectively transmitting infrared light in a second wavelength range different from the first wavelength range. The first wavelength range of the wavelength selection filter 41 and the second wavelength range of the wavelength selection filter 51 will be described later.
赤外線センサ4,5および波長選択フィルタ41,51は、筒状のハウジング6に収納されている。ハウジング6の内部には、赤外線センサ4に到達する赤外線と赤外線センサ5に到達する赤外線とを分離するための分離壁61が設けられる。ハウジング6および分離壁61は、赤外線を反射または吸収する材料で形成され、外乱光や迷光を遮断する機能を有する。 The infrared sensors 4 and 5 and the wavelength selection filters 41 and 51 are accommodated in a cylindrical housing 6. Inside the housing 6, a separation wall 61 is provided for separating infrared rays that reach the infrared sensor 4 and infrared rays that reach the infrared sensor 5. The housing 6 and the separation wall 61 are formed of a material that reflects or absorbs infrared rays, and has a function of blocking disturbance light and stray light.
ハウジング6は、コイル3の中心付近ないしはコイルを分割し、その隙間に配置することが好ましく、これにより被加熱物1の戴置位置が変動しても、また、φ120mm程度の小型の被加熱物(小鍋)が戴置されても、赤外線センサ4の検出範囲から被加熱物1が外れずに、正確な温度計測を確保できる。ハウジング6の開口端は、天板2の裏面とほぼ接触していることが好ましく、これにより外乱光や迷光の侵入を抑制できる。 The housing 6 is preferably located near the center of the coil 3 or divided between the coils, and disposed in the gap between them, so that even if the placement position of the object to be heated 1 varies, a small object to be heated having a diameter of about 120 mm Even when the (small pan) is placed, accurate temperature measurement can be ensured without the heated object 1 being removed from the detection range of the infrared sensor 4. The opening end of the housing 6 is preferably in contact with the back surface of the top plate 2, thereby suppressing disturbance light and stray light from entering.
差分処理回路7は、差動増幅器などで構成され、赤外線センサ4の出力と赤外線センサ5の出力との差分を出力する。 The difference processing circuit 7 is configured by a differential amplifier or the like, and outputs a difference between the output of the infrared sensor 4 and the output of the infrared sensor 5.
天板赤外線量算出手段8は、増幅器などで構成され、赤外線センサ5の出力に基づいて、天板2自体から放射される赤外線量を算出する。その増幅率は、熱放射理論に従って天板2の放射率εに応じて設定される。 The top plate infrared ray amount calculation means 8 is composed of an amplifier or the like, and calculates the infrared ray amount radiated from the top plate 2 itself based on the output of the infrared sensor 5. The amplification factor is set according to the emissivity ε of the top plate 2 according to the thermal radiation theory.
天板赤外線減算手段9は、差動増幅器などで構成され、差分処理回路7の出力から、天板赤外線量算出手段8で算出された赤外線量を減算して、被加熱物1自体から放射される赤外線量を算出する。 The top board infrared subtracting means 9 is constituted by a differential amplifier or the like, and subtracts the infrared quantity calculated by the top board infrared quantity calculating means 8 from the output of the difference processing circuit 7 and is emitted from the object to be heated 1 itself. The amount of infrared rays to be calculated is calculated.
温度算出手段10は、A/D変換器およびマイクロコンピュータ等で構成され、天板赤外線減算手段9で算出された被加熱物1の赤外線量に基づいて、被加熱物1の温度を算出する。 The temperature calculation means 10 is composed of an A / D converter, a microcomputer, and the like, and calculates the temperature of the heated object 1 based on the amount of infrared rays of the heated object 1 calculated by the top panel infrared subtracting means 9.
図2は、天板2の分光透過率特性の一例を示すグラフである。天板2を結晶化ガラスで形成した場合、約0.5μm〜約2.6μmの波長においてほぼ平坦な約90%の透過率を示し、2.6μm付近から降下して2.9μm付近で約5%の透過率を示し、そこから再び上昇して3.5μm付近で約60%のピークを有する透過率分布を示し、4.5μm付近から長波長側においてほぼゼロの透過率を示す。 FIG. 2 is a graph showing an example of the spectral transmittance characteristics of the top 2. When the top plate 2 is formed of crystallized glass, the transmittance is about 90% which is almost flat at a wavelength of about 0.5 μm to about 2.6 μm, and drops from about 2.6 μm to about 2.9 μm. It shows a transmittance of 5%, rises from there again, shows a transmittance distribution having a peak of about 60% around 3.5 μm, and shows a nearly zero transmittance on the long wavelength side from around 4.5 μm.
こうした天板2の分光透過率特性に対して、波長選択フィルタ41の特性は、天板2の透過率が高い波長域、つまり被加熱物1からの赤外線が多く透過する波長域を含む波長域の光を透過するように設定される。また、波長選択フィルタ51の特性は、天板2の透過率が0、もしくは0とみなせる波長域、つまり被加熱物1からの赤外線が透過しない波長域の光を透過するように設定される。従って、波長選択フィルタ41の透過波長域と波長選択フィルタ51の透過波長域の差分を取ると、天板2の透過率が高い波長域のみが残ることになる。 In contrast to the spectral transmittance characteristics of the top plate 2, the wavelength selection filter 41 has a wavelength range including a wavelength range where the transmittance of the top plate 2 is high, that is, a wavelength range where a large amount of infrared rays from the heated object 1 are transmitted. It is set to transmit the light. Further, the characteristics of the wavelength selection filter 51 are set so that the transmittance of the top plate 2 is 0, or a wavelength range in which the top plate 2 can be regarded as 0, that is, a wavelength range in which infrared rays from the object to be heated 1 do not pass. Therefore, if the difference between the transmission wavelength range of the wavelength selection filter 41 and the transmission wavelength range of the wavelength selection filter 51 is taken, only the wavelength range where the transmittance of the top plate 2 is high remains.
図2のグラフにおいて、例えば、領域A(波長3.0μmから長波長側)を波長選択フィルタ41が透過する波長域に設定し、一方、領域B(波長4.5μmから長波長側)を波長選択フィルタ51が透過する波長域に設定した場合、領域Aと領域Bは上記条件を満たすことになる。そして、領域Aから領域Bの波長域の差分を取ると、天板2の透過率が高い領域C(波長3.0μmから波長4.5μm)になり、領域Bは天板透過率が0とみなせる波長域に相当することになる。 In the graph of FIG. 2, for example, the region A (wavelength from 3.0 μm to the long wavelength side) is set to the wavelength region that the wavelength selection filter 41 transmits, while the region B (wavelength from 4.5 μm to the long wavelength side) is set to the wavelength. When the selection filter 51 is set to a wavelength range that is transmitted, the region A and the region B satisfy the above conditions. When the difference between the wavelength ranges of the region A and the region B is taken, the top plate 2 has a high transmittance C (wavelength 3.0 μm to wavelength 4.5 μm), and the region B has a top plate transmittance of 0. This corresponds to a wavelength range that can be considered.
波長選択フィルタ41,51は、ロングパスフィルタでもよく、あるいは長波長側のカットオフ波長が同じであるバンドパスフィルタでもよい。バンドパスフィルタの場合、領域Aと領域Bの差分をより精度よく抽出できる点でより好ましい。 The wavelength selection filters 41 and 51 may be long pass filters or band pass filters having the same cutoff wavelength on the long wavelength side. In the case of a band pass filter, it is more preferable in that the difference between the region A and the region B can be extracted with higher accuracy.
図1では、波長選択フィルタ41を赤外線センサ4と別個に設置する例を示したが、波長選択フィルタ41を赤外線センサ4に直接蒸着したり接着することによって波長選択効果を付与してもよい。同様に、波長選択フィルタ51についても赤外線センサ5に直接蒸着したり接着することによって波長選択効果を付与してもよい。 Although FIG. 1 shows an example in which the wavelength selection filter 41 is installed separately from the infrared sensor 4, the wavelength selection effect may be imparted by directly depositing or bonding the wavelength selection filter 41 to the infrared sensor 4. Similarly, the wavelength selection filter 51 may be provided with a wavelength selection effect by directly depositing or adhering to the infrared sensor 5.
赤外線センサ4,5の周辺には、コイル3などの高温物質も存在し、それらの赤外線が赤外線センサに直接入射したり、天板に反射して入射すると外乱光となる。そこで、こうした外乱光を遮蔽するために、赤外線センサ4,5と天板2の間の空間にハウジング6を設置することが好ましい。ハウジング6は、周辺からの空冷機構、水冷機構、2重構造による断熱構造などを採用することによって、ハウジング6自体の温度上昇を防止してもよい。 High-temperature substances such as the coil 3 also exist around the infrared sensors 4 and 5, and when these infrared rays are directly incident on the infrared sensor or are reflected by the top plate and become incident light, disturbance light is generated. Therefore, in order to shield such disturbance light, it is preferable to install the housing 6 in the space between the infrared sensors 4 and 5 and the top plate 2. The housing 6 may prevent an increase in temperature of the housing 6 itself by adopting an air cooling mechanism from the periphery, a water cooling mechanism, a heat insulating structure with a double structure, and the like.
図3は、赤外線センサの前方に集光レンズを設置した例を示す。集光レンズ42は、天板2と赤外線センサ4の間に設置され、集光レンズ52は、天板2と赤外線センサ5の間に設置され、これによりより広い視野から効率よく赤外線を集光することが可能になる。 FIG. 3 shows an example in which a condenser lens is installed in front of the infrared sensor. The condenser lens 42 is installed between the top plate 2 and the infrared sensor 4, and the condenser lens 52 is installed between the top plate 2 and the infrared sensor 5, thereby efficiently collecting infrared rays from a wider field of view. It becomes possible to do.
また、波長選択フィルタ41を通過する光が全て赤外線センサ4の受光窓に到達し、波長選択フィルタ51を通過する光が全て赤外線センサ5の受光窓に到達するように、集光レンズ42,52を設計することによって、クロストークが無くなり、分離壁61を省略することができる。この場合、波長選択フィルタ41,51は、集光レンズ42,52の入射側および出射側のいずれに配置してもよい。 Further, the condensing lenses 42 and 52 so that all the light passing through the wavelength selection filter 41 reaches the light receiving window of the infrared sensor 4 and all the light passing through the wavelength selection filter 51 reaches the light receiving window of the infrared sensor 5. The crosstalk is eliminated and the separation wall 61 can be omitted. In this case, the wavelength selection filters 41 and 51 may be arranged on either the incident side or the emission side of the condenser lenses 42 and 52.
図4は、波長選択機能を有する集光レンズを設置した例を示す。波長選択フィルタ41,51と同等な波長選択特性を有する光学素子を、集光レンズ42,52に直接蒸着したり接着することによって、波長選択フィルタ41,51と同じ機能を集光レンズ42,52に付与できる。この場合、集光レンズ42を通過する光が全て赤外線センサ4の受光窓に到達し、集光レンズ52を通過する光が全て赤外線センサ5の受光窓に到達するように、集光レンズ42,52を設計することによって、クロストークが無くなり、分離壁61を省略することができる。 FIG. 4 shows an example in which a condenser lens having a wavelength selection function is installed. By directly depositing or adhering an optical element having a wavelength selection characteristic equivalent to that of the wavelength selection filters 41 and 51 on the condenser lenses 42 and 52, the same function as that of the wavelength selection filters 41 and 51 is obtained. Can be granted. In this case, all the light passing through the condenser lens 42 reaches the light receiving window of the infrared sensor 4 and all the light passing through the condenser lens 52 reaches the light receiving window of the infrared sensor 5. By designing 52, crosstalk is eliminated and the separation wall 61 can be omitted.
次に、温度計測動作について説明する。図5は、赤外線の経路を示す説明図である。被加熱物1および天板2は、コイル3の通電によって誘導加熱されると、個々の部材の温度および放射率に応じた赤外線を放射する。被加熱物1が放射し、天板2を透過した被加熱物赤外線901および、天板2自体が放射する天板赤外線902が、赤外線センサ4,5に到達する。その他に、天板2より下面のコイル側で発生した赤外線が天板2で反射されて赤外線センサに到達する反射外光赤外線912および、コイル3などから発生した外光が直接もしくは天板以外で反射して赤外線センサに到達する外光赤外線913が存在している。 Next, the temperature measurement operation will be described. FIG. 5 is an explanatory diagram showing an infrared path. When the object to be heated 1 and the top plate 2 are induction-heated by energization of the coil 3, they emit infrared rays corresponding to the temperature and emissivity of each member. The heated object infrared ray 901 emitted from the article to be heated 1 and transmitted through the top plate 2 and the top plate infrared ray 902 emitted from the top plate 2 itself reach the infrared sensors 4 and 5. In addition, the infrared light generated from the coil 2 on the lower surface of the top plate 2 is reflected by the top plate 2 and reaches the infrared sensor, and the external light generated from the coil 3 is directly or other than the top plate. There is an external infrared ray 913 that reflects and reaches the infrared sensor.
これらの赤外線のうち、反射外光赤外線912および外光赤外線913は、ハウジング6によって遮断され、赤外線センサ4,5には入射しない。一方、被加熱物赤外線901および天板赤外線902だけが波長選択フィルタ41,51を透過して、赤外線センサに4,5に入射する。 Among these infrared rays, the reflected outside light infrared ray 912 and the outside light infrared ray 913 are blocked by the housing 6 and do not enter the infrared sensors 4 and 5. On the other hand, only the heated object infrared ray 901 and the top plate infrared ray 902 pass through the wavelength selection filters 41 and 51 and enter the infrared sensors 4 and 5.
まず、波長選択フィルタ51を通る経路を考える。波長選択フィルタ51は、天板の透過率が0もしくは0とみなせる波長域の赤外線のみを選択して透過させるため、被加熱物赤外線901は透過せず、赤外線センサ5では天板赤外線902のみが検出される。即ち、図2のグラフにおいて領域Bの波長域に存在する赤外線が赤外線センサ5によって検出される。 First, consider a path through the wavelength selection filter 51. Since the wavelength selection filter 51 selects and transmits only infrared rays having a wavelength range where the transmittance of the top plate can be regarded as 0 or 0, the infrared ray 901 to be heated does not pass through the infrared sensor 5, and only the top plate infrared ray 902 is transmitted through the infrared sensor 5. Detected. In other words, infrared rays existing in the wavelength range of region B in the graph of FIG.
次に、波長選択フィルタ41を通る経路を考える。波長選択フィルタ41の透過波長域は、天板透過率が高い波長域を含むので、被加熱物赤外線901と天板赤外線902の両方が赤外線センサ4で検出される。即ち、図2のグラフにおいて領域Aの波長域に存在する赤外線が赤外線センサ4によって検出される。 Next, consider a path through the wavelength selection filter 41. Since the transmission wavelength range of the wavelength selection filter 41 includes a wavelength range having a high top plate transmittance, both the infrared rays 901 to be heated and the top plate infrared 902 are detected by the infrared sensor 4. In other words, infrared rays existing in the wavelength range of region A in the graph of FIG.
次に、図1に示す差分処理回路7は、赤外線センサ4の出力と赤外線センサ5の出力の差分を出力する。この差分は、波長選択フィルタ41に含まれる天板の透過率が高い領域(図2では、領域Cに相当)からの出力に相当するため、被加熱物赤外線901が多く含まれているが、天板赤外線902も少し残留している。 Next, the difference processing circuit 7 shown in FIG. 1 outputs the difference between the output of the infrared sensor 4 and the output of the infrared sensor 5. Since this difference corresponds to the output from the region where the transmittance of the top plate included in the wavelength selection filter 41 is high (corresponding to region C in FIG. 2), the object to be heated infrared ray 901 is often included. The top plate infrared 902 also remains a little.
赤外線センサ5の出力は、天板赤外線量算出手段8に送られる。天板2の放射率は、材料に応じて既知であるため、赤外線センサ5で検出された天板赤外線902の赤外線量から天板温度を求めることができる。従って、天板温度に対応する黒体輻射スペクトルが求まり、このスペクトルから波長選択フィルタ51と波長選択フィルタ41の差分に相当する天板透過率が高い波長域(図2では、領域Cに相当)に含まれる天板赤外線量を算出する。 The output of the infrared sensor 5 is sent to the top plate infrared amount calculation means 8. Since the emissivity of the top plate 2 is known according to the material, the top plate temperature can be obtained from the amount of infrared rays of the top plate infrared 902 detected by the infrared sensor 5. Therefore, a black body radiation spectrum corresponding to the top plate temperature is obtained, and from this spectrum, a wavelength region having a high top plate transmittance corresponding to the difference between the wavelength selective filter 51 and the wavelength selective filter 41 (corresponding to region C in FIG. 2). The amount of the top infrared ray included in is calculated.
差分処理回路7で求めた領域Cに含まれる被加熱物赤外線量および天板赤外線量と、天板赤外線算出手段8で求めた領域Cに含まれる天板赤外線量は、天板赤外線量減算手段9へ送られる。赤外線差分処理回路7からの赤外線量から天板赤外線算出手段8の赤外線量を減算することにより、被加熱物1からの赤外線量だけが算出できる。 The heated object infrared ray amount and the top plate infrared ray amount included in the region C obtained by the difference processing circuit 7 and the top plate infrared ray amount contained in the region C obtained by the top plate infrared ray calculating means 8 are the top plate infrared ray amount subtracting means. 9 is sent. By subtracting the amount of infrared from the top plate infrared calculation means 8 from the amount of infrared from the infrared difference processing circuit 7, only the amount of infrared from the object to be heated 1 can be calculated.
天板赤外線算減算手段9の出力は、温度算出手段10へ送られて、被加熱物1の温度が算出される。 The output of the top infrared ray subtracting means 9 is sent to the temperature calculating means 10 to calculate the temperature of the article 1 to be heated.
このように本実施形態では、サーミスタなどの接触式温度センサを設置することなく、赤外線センサ4,5のみの使用によって被加熱物1の温度を計測することが可能になる。また、天板2から放射される赤外線に相当する量を計測値から除外することによって、温度計測の精度を向上させることができる。 Thus, in this embodiment, it is possible to measure the temperature of the object to be heated 1 by using only the infrared sensors 4 and 5 without installing a contact temperature sensor such as a thermistor. Moreover, the accuracy of temperature measurement can be improved by excluding the amount corresponding to the infrared rays radiated from the top plate 2 from the measured value.
実施の形態2.
図6は、本発明の実施の形態2を示す構成図である。本実施形態は、実施の形態1とほぼ同様な構成を有するが、天板赤外線量算出手段8の配置が相違している。
Embodiment 2. FIG.
FIG. 6 is a block diagram showing Embodiment 2 of the present invention. The present embodiment has substantially the same configuration as that of the first embodiment, but the arrangement of the top panel infrared ray amount calculation means 8 is different.
本実施形態において、天板赤外線量算出手段8は、増幅器などで構成され、差分処理回路7の出力に基づいて、天板2自体から放射される赤外線量を算出する。その増幅率は、熱放射理論に従って天板2の放射率εに応じて設定される。 In the present embodiment, the top panel infrared ray amount calculation means 8 is constituted by an amplifier or the like, and calculates the infrared ray amount radiated from the top plate 2 itself based on the output of the difference processing circuit 7. The amplification factor is set according to the emissivity ε of the top plate 2 according to the thermal radiation theory.
天板赤外線減算手段9は、差動増幅器などで構成され、赤外線センサ4の出力から、天板赤外線量算出手段8で算出された赤外線量を減算して、被加熱物1自体から放射される赤外線量を算出する。 The top plate infrared subtracting means 9 is constituted by a differential amplifier or the like, and subtracts the infrared amount calculated by the top plate infrared amount calculating means 8 from the output of the infrared sensor 4, and is emitted from the object to be heated 1 itself. Calculate the amount of infrared rays.
図7は、波長選択フィルタ41,51の組合せの他の例を示す説明図である。天板2の分光透過率特性(実線)は図2と同等であるが、本実施形態では、波長選択フィルタ41の特性は、天板2の透過率が高い波長域、つまり被加熱物1からの赤外線が多く透過する波長域を含む波長域の光を透過するように設定される。また、波長選択フィルタ51の特性は、波長選択フィルタ41の波長域に加えて、天板2の透過率が0、もしくは0とみなせる波長域、つまり被加熱物1からの赤外線が透過しない波長域の光を透過するように設定される。従って、波長選択フィルタ41の透過波長域と波長選択フィルタ51の透過波長域の差分を取ると、天板2の透過率が低い波長域のみが残ることになる。 FIG. 7 is an explanatory diagram illustrating another example of the combination of the wavelength selection filters 41 and 51. The spectral transmittance characteristics (solid line) of the top plate 2 are the same as those in FIG. 2, but in this embodiment, the wavelength selection filter 41 has a wavelength range where the transmittance of the top plate 2 is high, that is, from the object to be heated 1. It is set so as to transmit light in a wavelength range including a wavelength range in which a large amount of infrared light is transmitted. In addition to the wavelength range of the wavelength selection filter 41, the wavelength selection filter 51 has a characteristic in which the transmittance of the top plate 2 is 0 or a wavelength range in which it can be regarded as 0, that is, a wavelength range in which infrared rays from the object to be heated 1 do not transmit. It is set to transmit the light. Therefore, if the difference between the transmission wavelength range of the wavelength selection filter 41 and the transmission wavelength range of the wavelength selection filter 51 is taken, only the wavelength range where the transmittance of the top plate 2 is low remains.
図7のグラフにおいて、例えば、領域A(波長2.8μmから短波長側)を波長選択フィルタ41が透過する波長域に設定し、一方、領域B(波長3.0μmから短波長側)を波長選択フィルタ51が透過する波長域に設定した場合、領域Aと領域Bは上記条件を満たすことになる。そして、領域Bから領域Aの波長域の差分を取ると、天板2の透過率が低い領域C(波長2.8μmから波長3.0μm)になり、領域Cは天板透過率が0とみなせる波長域に相当することになる。 In the graph of FIG. 7, for example, the region A (wavelength from 2.8 μm to the short wavelength side) is set to the wavelength region that the wavelength selection filter 41 transmits, while the region B (wavelength from 3.0 μm to the short wavelength side) is set to the wavelength. When the selection filter 51 is set to a wavelength range that is transmitted, the region A and the region B satisfy the above conditions. When the difference between the wavelength ranges of the region B and the region A is taken, the top plate 2 has a low transmittance C (wavelength 2.8 μm to wavelength 3.0 μm), and the top of the region C has a top plate transmittance of 0. This corresponds to a wavelength range that can be considered.
波長選択フィルタ41,51は、ショートパスフィルタでもよく、あるいは短波長側のカットオフ波長が同じであるバンドパスフィルタでもよい。バンドパスフィルタの場合、領域Aと領域Bの差分をより精度よく抽出できる点でより好ましい。 The wavelength selection filters 41 and 51 may be short-pass filters or band-pass filters having the same cut-off wavelength on the short wavelength side. In the case of a band pass filter, it is more preferable in that the difference between the region A and the region B can be extracted with higher accuracy.
こうした構成において、波長選択フィルタ41の透過波長域は、天板透過率が高い波長域を含むので、被加熱物赤外線901と天板赤外線902の両方が赤外線センサ4で検出される。即ち、図7のグラフにおいて領域Aの波長域に存在する赤外線が赤外線センサ4によって検出される。 In such a configuration, the transmission wavelength range of the wavelength selection filter 41 includes a wavelength range having a high top plate transmittance, so that both the heated object infrared ray 901 and the top plate infrared ray 902 are detected by the infrared sensor 4. In other words, infrared rays existing in the wavelength range of the region A in the graph of FIG.
一方、波長選択フィルタ51は、波長選択フィルタ41の透過波長域に加えて、天板の透過率が0もしくは0とみなせる波長域の赤外線も透過させる。即ち、図2のグラフにおいて領域Bの波長域に存在する赤外線が赤外線センサ5によって検出される。 On the other hand, in addition to the transmission wavelength range of the wavelength selection filter 41, the wavelength selection filter 51 transmits infrared rays in a wavelength range where the transmittance of the top plate can be regarded as 0 or 0. In other words, infrared rays existing in the wavelength range of region B in the graph of FIG.
次に、図6に示す差分処理回路7は、赤外線センサ4の出力と赤外線センサ5の出力の差分を出力する。この差分は、波長選択フィルタ51に含まれる天板の透過率が低い領域(図6では、領域Cに相当)からの出力に相当するため、天板赤外線902が多く含まれている。 Next, the difference processing circuit 7 shown in FIG. 6 outputs the difference between the output of the infrared sensor 4 and the output of the infrared sensor 5. Since this difference corresponds to an output from a region where the transmittance of the top plate included in the wavelength selection filter 51 is low (corresponding to region C in FIG. 6), a large amount of top infrared rays 902 are included.
次に、図6に示す天板赤外線量算出手段8は、差分処理回路7の出力に基づいて、天板2自体から放射される赤外線量を算出する。 Next, the top plate infrared ray amount calculation means 8 shown in FIG. 6 calculates the infrared ray amount radiated from the top plate 2 itself based on the output of the difference processing circuit 7.
次に、図6に示す天板赤外線減算手段9は、赤外線センサ4の出力から、天板赤外線量算出手段8で算出された天板赤外線量を減算して、被加熱物1自体から放射される赤外線量を算出する。 Next, the top plate infrared subtracting means 9 shown in FIG. 6 subtracts the top plate infrared ray amount calculated by the top plate infrared ray amount calculating means 8 from the output of the infrared sensor 4, and is radiated from the heated object 1 itself. The amount of infrared rays to be calculated is calculated.
次に、図6に示す温度算出手段10は、天板赤外線減算手段9で算出された被加熱物1の赤外線量に基づいて、被加熱物1の温度を算出する。 Next, the temperature calculation means 10 shown in FIG. 6 calculates the temperature of the heated object 1 based on the amount of infrared rays of the heated object 1 calculated by the top panel infrared subtracting means 9.
このように本実施形態では、サーミスタなどの接触式温度センサを設置することなく、赤外線センサ4,5のみの使用によって被加熱物1の温度を計測することが可能になる。また、天板2から放射される赤外線に相当する量を計測値から除外することによって、温度計測の精度を向上させることができる。 Thus, in this embodiment, it is possible to measure the temperature of the object to be heated 1 by using only the infrared sensors 4 and 5 without installing a contact temperature sensor such as a thermistor. Moreover, the accuracy of temperature measurement can be improved by excluding the amount corresponding to the infrared rays radiated from the top plate 2 from the measured value.
実施の形態3.
図8は、本発明の実施の形態3を示す構成図である。本実施形態は、実施の形態1とほぼ同様な構成を有するが、差分処理回路7を省略している。
Embodiment 3 FIG.
FIG. 8 is a block diagram showing Embodiment 3 of the present invention. The present embodiment has substantially the same configuration as that of the first embodiment, but the difference processing circuit 7 is omitted.
図9は、波長選択フィルタ41,51の組合せのさらに他の例を示す説明図である。天板2の分光透過率特性(実線)は図2と同等であるが、本実施形態では、波長選択フィルタ41の特性は、天板2の透過率が高い波長域、つまり被加熱物1からの赤外線が多く透過する波長域を含む波長域の光を透過するように設定される。また、波長選択フィルタ51の特性は、天板2の透過率が0、もしくは0とみなせる波長域、つまり被加熱物1からの赤外線が透過しない波長域の光を透過するように設定される。 FIG. 9 is an explanatory diagram showing still another example of the combination of the wavelength selection filters 41 and 51. The spectral transmittance characteristics (solid line) of the top plate 2 are the same as those in FIG. 2, but in this embodiment, the wavelength selection filter 41 has a wavelength range where the transmittance of the top plate 2 is high, that is, from the object to be heated 1. It is set so as to transmit light in a wavelength range including a wavelength range in which a large amount of infrared light is transmitted. Further, the characteristics of the wavelength selection filter 51 are set so that the transmittance of the top plate 2 is 0, or a wavelength range in which the top plate 2 can be regarded as 0, that is, a wavelength range in which infrared rays from the object to be heated 1 do not pass.
図9のグラフにおいて、例えば、領域A(波長2.8μmから波長4.5μm)を波長選択フィルタ41が透過する波長域に設定し、一方、領域B(波長5.5μmから波長6.5μm)を波長選択フィルタ51が透過する波長域に設定している。こうした波長選択フィルタ41,51は、バンドパスフィルタとなる。 In the graph of FIG. 9, for example, the region A (wavelength 2.8 μm to wavelength 4.5 μm) is set as the wavelength region that the wavelength selection filter 41 transmits, while the region B (wavelength 5.5 μm to wavelength 6.5 μm). Is set to a wavelength region that the wavelength selection filter 51 transmits. These wavelength selection filters 41 and 51 are bandpass filters.
こうした構成において、波長選択フィルタ41の透過波長域は、天板透過率が高い波長域を含むので、被加熱物赤外線901と天板赤外線902の両方が赤外線センサ4で検出される。即ち、図9のグラフにおいて領域Aの波長域に存在する赤外線が赤外線センサ4によって検出される。 In such a configuration, the transmission wavelength range of the wavelength selection filter 41 includes a wavelength range having a high top plate transmittance, so that both the heated object infrared ray 901 and the top plate infrared ray 902 are detected by the infrared sensor 4. In other words, infrared rays existing in the wavelength range of region A in the graph of FIG.
一方、波長選択フィルタ51は、天板の透過率が0もしくは0とみなせる波長域の赤外線のみを選択して透過させるため、被加熱物赤外線901は透過せず、赤外線センサ5では天板赤外線902のみが検出される。即ち、図9のグラフにおいて領域Bの波長域に存在する赤外線が赤外線センサ5によって検出される。 On the other hand, since the wavelength selection filter 51 selects and transmits only infrared rays having a wavelength range in which the transmittance of the top plate can be regarded as 0 or 0, the infrared ray 901 to be heated does not transmit, and the infrared sensor 5 does not transmit the infrared rays 902 on the top plate. Only detected. In other words, infrared rays existing in the wavelength range of region B in the graph of FIG.
次に、図8に示す天板赤外線量算出手段8は、赤外線センサ5の出力に基づいて、天板2自体から放射される赤外線量を算出する。 Next, the top plate infrared ray amount calculation means 8 shown in FIG. 8 calculates the infrared ray amount radiated from the top plate 2 itself based on the output of the infrared sensor 5.
次に、図8に示す天板赤外線減算手段9は、赤外線センサ4の出力から、天板赤外線量算出手段8で算出された天板赤外線量を減算して、被加熱物1自体から放射される赤外線量を算出する。 Next, the top plate infrared subtracting means 9 shown in FIG. 8 subtracts the top plate infrared ray amount calculated by the top plate infrared ray amount calculating means 8 from the output of the infrared sensor 4 and is emitted from the heated object 1 itself. The amount of infrared rays to be calculated is calculated.
次に、図8に示す温度算出手段10は、天板赤外線減算手段9で算出された被加熱物1の赤外線量に基づいて、被加熱物1の温度を算出する。 Next, the temperature calculation means 10 shown in FIG. 8 calculates the temperature of the heated object 1 based on the amount of infrared rays of the heated object 1 calculated by the top panel infrared subtracting means 9.
本実施形態では、実施の形態1,2と比べて、天板透過率が高い領域、もしくは0の領域を算出するための差分を取る必要が無いために、差分処理回路7を必要しない。さらに、波長選択フィルタ41,51の透過領域の個体ばらつきの影響による影響を受けにくく、実施の形態1、2よりも天板もしくは被加熱物の温度がより精度よく算出できる可能性がある。 In the present embodiment, as compared with the first and second embodiments, it is not necessary to take a difference for calculating a region where the top plate transmittance is high or a region of 0, so the difference processing circuit 7 is not necessary. Furthermore, it is difficult to be affected by the influence of individual variations in the transmission regions of the wavelength selection filters 41 and 51, and there is a possibility that the temperature of the top plate or the object to be heated can be calculated more accurately than in the first and second embodiments.
このように本実施形態では、サーミスタなどの接触式温度センサを設置することなく、赤外線センサ4,5のみの使用によって被加熱物1の温度を計測することが可能になる。また、天板2から放射される赤外線に相当する量を計測値から除外することによって、温度計測の精度を向上させることができる。 Thus, in this embodiment, it is possible to measure the temperature of the object to be heated 1 by using only the infrared sensors 4 and 5 without installing a contact temperature sensor such as a thermistor. Moreover, the accuracy of temperature measurement can be improved by excluding the amount corresponding to the infrared rays radiated from the top plate 2 from the measured value.
1 被加熱物、 2 天板、 3 コイル、 4,5 赤外線センサ、
41,51 波長選択フィルタ、 6 ハウジング、 61 分離壁、
7 差分処理回路、 8 天板赤外線量算出手段、 9、 天板赤外線減算手段、
10 温度算出手段。
1 Heated object, 2 Top plate, 3 Coil, 4, 5 Infrared sensor,
41, 51 wavelength selection filter, 6 housing, 61 separation wall,
7 difference processing circuit, 8 top plate infrared amount calculation means, 9, top plate infrared subtraction means,
10 Temperature calculation means.
Claims (8)
被加熱物を誘導加熱するためのコイルと、
被加熱物から放射されて天板を透過した赤外線および、天板自体から放射される赤外線を受光するための第1赤外線センサおよび第2赤外線センサと、
天板と第1赤外線センサの間に設置され、第1波長域の赤外線を選択的に透過させる第1波長選択フィルタと、
天板と第2赤外線センサの間に設置され、第1波長域とは異なる第2波長域の赤外線を選択的に透過させる第2波長選択フィルタと、
第1赤外線センサの出力と第2赤外線センサの出力との差分を出力する差分処理回路と、
第2赤外線センサの出力に基づいて、天板自体から放射される赤外線量を算出する天板赤外線量算出手段と、
差分処理回路の出力から、天板赤外線量算出手段で算出された赤外線量を減算して、被加熱物自体から放射される赤外線量を算出する天板赤外線減算手段と、
天板赤外線減算手段で算出された赤外線量に基づいて、被加熱物の温度を算出する温度算出手段とを備えることを特徴とする誘導加熱調理器。 A top plate for supporting an object to be heated;
A coil for induction heating of an object to be heated;
A first infrared sensor and a second infrared sensor for receiving infrared rays emitted from an object to be heated and transmitted through the top plate, and infrared rays emitted from the top plate itself;
A first wavelength selection filter that is installed between the top plate and the first infrared sensor and selectively transmits infrared rays in the first wavelength range;
A second wavelength selection filter that is installed between the top plate and the second infrared sensor and selectively transmits infrared rays in a second wavelength range different from the first wavelength range;
A difference processing circuit for outputting a difference between the output of the first infrared sensor and the output of the second infrared sensor;
Based on the output of the second infrared sensor, the top plate infrared amount calculation means for calculating the amount of infrared rays emitted from the top plate itself,
From the output of the difference processing circuit, subtracting the infrared amount calculated by the top plate infrared amount calculating means, and calculating the infrared amount radiated from the heated object itself, a top plate infrared subtracting means,
An induction heating cooker comprising: a temperature calculation means for calculating the temperature of an object to be heated based on the amount of infrared light calculated by the top board infrared subtraction means.
第1波長域は、高透過率波長領域および低透過率波長領域の両方を有し、
第2波長域は、第1波長域と比べて高透過率波長領域の一部を欠いていることを特徴とする請求項1記載の誘導加熱調理器。 The top plate is made of a material having spectral transmittance characteristics including a high transmittance wavelength region and a low transmittance wavelength region,
The first wavelength region has both a high transmittance wavelength region and a low transmittance wavelength region,
The induction heating cooker according to claim 1, wherein the second wavelength region lacks a part of the high transmittance wavelength region as compared with the first wavelength region.
被加熱物を誘導加熱するためのコイルと、
被加熱物から放射されて天板を透過した赤外線および、天板自体から放射される赤外線を受光するための第1赤外線センサおよび第2赤外線センサと、
天板と第1赤外線センサの間に設置され、第1波長域の赤外線を選択的に透過させる第1波長選択フィルタと、
天板と第2赤外線センサの間に設置され、第1波長域とは異なる第2波長域の赤外線を選択的に透過させる第2波長選択フィルタと、
第1赤外線センサの出力と第2赤外線センサの出力との差分を出力する差分処理回路と、
差分処理回路の出力に基づいて、天板自体から放射される赤外線量を算出する天板赤外線量算出手段と、
第1赤外線センサの出力から、天板赤外線量算出手段で算出された赤外線量を減算して、被加熱物自体から放射される赤外線量を算出する天板赤外線減算手段と、
天板赤外線減算手段で算出された赤外線量に基づいて、被加熱物の温度を算出する温度算出手段とを備えることを特徴とする誘導加熱調理器。 A top plate for supporting an object to be heated;
A coil for induction heating of an object to be heated;
A first infrared sensor and a second infrared sensor for receiving infrared rays emitted from an object to be heated and transmitted through the top plate, and infrared rays emitted from the top plate itself;
A first wavelength selection filter that is installed between the top plate and the first infrared sensor and selectively transmits infrared rays in the first wavelength range;
A second wavelength selection filter that is installed between the top plate and the second infrared sensor and selectively transmits infrared rays in a second wavelength range different from the first wavelength range;
A difference processing circuit for outputting a difference between the output of the first infrared sensor and the output of the second infrared sensor;
Based on the output of the difference processing circuit, a top plate infrared ray amount calculating means for calculating the infrared ray amount radiated from the top plate itself,
Subtracting the amount of infrared rays calculated by the top plate infrared ray amount calculation means from the output of the first infrared sensor, and calculating the amount of infrared rays emitted from the object to be heated itself;
An induction heating cooker comprising: a temperature calculation means for calculating the temperature of an object to be heated based on the amount of infrared light calculated by the top board infrared subtraction means.
第2波長域は、高透過率波長領域および低透過率波長領域の両方を有し、
第1波長域は、第2波長域と比べて低透過率波長領域の一部を欠いていることを特徴とする請求項3記載の誘導加熱調理器。 The top plate is made of a material having spectral transmittance characteristics including a high transmittance wavelength region and a low transmittance wavelength region,
The second wavelength region has both a high transmittance wavelength region and a low transmittance wavelength region,
The induction heating cooker according to claim 3 , wherein the first wavelength region lacks a part of the low transmittance wavelength region as compared with the second wavelength region.
被加熱物を誘導加熱するためのコイルと、
被加熱物から放射されて天板を透過した赤外線および、天板自体から放射される赤外線を受光するための第1赤外線センサおよび第2赤外線センサと、
天板と第1赤外線センサの間に設置され、第1波長域の赤外線を選択的に透過させる第1波長選択フィルタと、
天板と第2赤外線センサの間に設置され、第1波長域とは異なり、被加熱物から放射される赤外線の波長域を含まない第2波長域の赤外線を選択的に透過させる第2波長選択フィルタと、
第2赤外線センサの出力に基づいて、天板自体から放射される赤外線量を算出する天板赤外線量算出手段と、
第1赤外線センサの出力から、天板赤外線量算出手段で算出された赤外線量を減算して、被加熱物自体から放射される赤外線量を算出する天板赤外線減算手段と、
天板赤外線減算手段で算出された赤外線量に基づいて、被加熱物の温度を算出する温度算出手段とを備えることを特徴とする誘導加熱調理器。 A top plate for supporting an object to be heated;
A coil for induction heating of an object to be heated;
A first infrared sensor and a second infrared sensor for receiving infrared rays emitted from an object to be heated and transmitted through the top plate, and infrared rays emitted from the top plate itself;
A first wavelength selection filter that is installed between the top plate and the first infrared sensor and selectively transmits infrared rays in the first wavelength range;
Disposed between the top plate and the second infrared sensor, unlike the first wavelength region, the selectively transmits infrared second wavelength band which does not include the wavelength band of infrared rays emitted from the heated object 2 A wavelength selective filter;
Based on the output of the second infrared sensor, the top plate infrared amount calculation means for calculating the amount of infrared rays emitted from the top plate itself,
Subtracting the amount of infrared rays calculated by the top plate infrared ray amount calculation means from the output of the first infrared sensor, and calculating the amount of infrared rays emitted from the object to be heated itself;
An induction heating cooker comprising: a temperature calculation means for calculating the temperature of an object to be heated based on the amount of infrared light calculated by the top board infrared subtraction means.
第1波長域は、高透過率波長領域を有し、
第2波長域は、低透過率波長領域を有することを特徴とする請求項5記載の誘導加熱調理器。 The top plate is made of a material having spectral transmittance characteristics including a high transmittance wavelength region and a low transmittance wavelength region,
The first wavelength region has a high transmittance wavelength region,
The induction heating cooker according to claim 5, wherein the second wavelength region has a low transmittance wavelength region.
遮光部材内に設けられ、第1赤外線センサに到達する赤外線と第2赤外線センサに到達する赤外線とを分離するための分離壁とをさらに備えることを特徴とする請求項1、3または5記載の誘導加熱調理器。 A light blocking member for covering the periphery of the first and second wavelength selection filters and the first and second infrared sensors, and blocking external light;
6. The separation wall according to claim 1, further comprising a separation wall provided in the light shielding member and configured to separate infrared rays reaching the first infrared sensor and infrared rays reaching the second infrared sensor. Induction heating cooker.
天板と第2赤外線センサの間に設置された第2集光レンズとをさらに備えることを特徴とする請求項1、3または5記載の誘導加熱調理器。 A first condenser lens installed between the top plate and the first infrared sensor;
The induction heating cooker according to claim 1, 3 or 5, further comprising a second condenser lens installed between the top plate and the second infrared sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010000178A JP5506406B2 (en) | 2010-01-04 | 2010-01-04 | Induction heating cooker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010000178A JP5506406B2 (en) | 2010-01-04 | 2010-01-04 | Induction heating cooker |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011138734A JP2011138734A (en) | 2011-07-14 |
JP5506406B2 true JP5506406B2 (en) | 2014-05-28 |
Family
ID=44349955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010000178A Active JP5506406B2 (en) | 2010-01-04 | 2010-01-04 | Induction heating cooker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5506406B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150373787A1 (en) * | 2014-06-23 | 2015-12-24 | Cooktek Induction Systems, Llc | Apparatus and method for dual mode temperature sensing |
JP7128755B2 (en) | 2019-01-31 | 2022-08-31 | 日機装株式会社 | Fluid sterilizer |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2704522B1 (en) * | 2012-09-03 | 2018-02-28 | BSH Hausgeräte GmbH | Domestic appliance |
EP2704521B1 (en) * | 2012-09-03 | 2020-10-14 | BSH Hausgeräte GmbH | Domestic appliance |
EP2703727A1 (en) * | 2012-09-03 | 2014-03-05 | BSH Bosch und Siemens Hausgeräte GmbH | Domestic appliance |
DE102013102117A1 (en) * | 2013-03-04 | 2014-09-18 | Miele & Cie. Kg | cooking facility |
DE102013102119A1 (en) * | 2013-03-04 | 2014-09-18 | Miele & Cie. Kg | cooking facility |
US9524996B2 (en) | 2013-03-19 | 2016-12-20 | Mitsubishi Electric Corporation | Image sensor including a casing to seal the optical system |
DE102013108647A1 (en) * | 2013-08-09 | 2015-02-12 | Miele & Cie. Kg | Cooking device and method for operating the cooking device |
DE102013108648A1 (en) * | 2013-08-09 | 2015-02-12 | Miele & Cie. Kg | Cooking device and method for operating the cooking device |
JP6218555B2 (en) * | 2013-10-25 | 2017-10-25 | 三菱電機株式会社 | Cooker |
DE102015217247A1 (en) | 2014-11-21 | 2016-05-25 | BSH Hausgeräte GmbH | Hob device |
CN108174467B (en) * | 2017-06-01 | 2024-05-14 | 欧普照明股份有限公司 | LED heating method, device, assembly, bathroom heater and warmer |
JP7129868B2 (en) * | 2018-09-28 | 2022-09-02 | 三菱電機株式会社 | heating cooker |
JP7304707B2 (en) * | 2019-02-14 | 2023-07-07 | 三菱電機株式会社 | induction cooker |
CN113825267B (en) * | 2020-06-19 | 2024-03-22 | 广东美的白色家电技术创新中心有限公司 | Electromagnetic heating device |
CN113825266A (en) * | 2020-06-19 | 2021-12-21 | 广东美的白色家电技术创新中心有限公司 | Electromagnetic heating device |
US20230413393A1 (en) * | 2022-06-17 | 2023-12-21 | Whirlpool Corporation | Induction cooktop with infrared and far-infrared temperature detection |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3969986B2 (en) * | 2001-09-28 | 2007-09-05 | 大阪瓦斯株式会社 | Cooking heater device |
JP2004063451A (en) * | 2002-06-07 | 2004-02-26 | Ishizuka Electronics Corp | Radiation temperature detecting device for induction heating cooker and operating device for the same |
JP4077501B2 (en) * | 2007-05-25 | 2008-04-16 | 三菱電機株式会社 | Cooker |
-
2010
- 2010-01-04 JP JP2010000178A patent/JP5506406B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150373787A1 (en) * | 2014-06-23 | 2015-12-24 | Cooktek Induction Systems, Llc | Apparatus and method for dual mode temperature sensing |
JP7128755B2 (en) | 2019-01-31 | 2022-08-31 | 日機装株式会社 | Fluid sterilizer |
Also Published As
Publication number | Publication date |
---|---|
JP2011138734A (en) | 2011-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5506406B2 (en) | Induction heating cooker | |
JP5506405B2 (en) | Induction heating cooker | |
US6169486B1 (en) | Monitoring and control system for monitoring the temperature of a glass ceramic cooktop | |
JP3393648B2 (en) | Temperature compensation sensor module | |
US10436647B2 (en) | Non-contact temperature measurement sensor | |
JP4277927B2 (en) | Induction heating cooker | |
CN102204779A (en) | Induction heating cooker | |
JP2006318925A (en) | Heating cooker | |
JP3975865B2 (en) | Induction heating cooker | |
JP3975864B2 (en) | Induction heating cooker | |
JP5469822B2 (en) | Induction heating cooker | |
JP2004111055A (en) | Heating cooker | |
TWI524819B (en) | Induction cooktop | |
JP4077501B2 (en) | Cooker | |
JP6132223B2 (en) | Infrared sensor | |
JP5372839B2 (en) | Induction heating cooker | |
JP5791682B2 (en) | Cooker | |
JP5210967B2 (en) | Induction heating cooker | |
JP5209383B2 (en) | Induction heating cooker | |
JP6682408B2 (en) | Temperature control module | |
JP6506569B2 (en) | Induction cooker | |
JP2012038442A (en) | Induction heating cooker | |
JP2017208183A (en) | Induction heating cooker | |
JP5063784B2 (en) | Cooker | |
JP2016148626A (en) | Thermopile element and gas detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121221 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20130129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5506406 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |