JP5492335B1 - Method for producing flocculant and flocculant - Google Patents
Method for producing flocculant and flocculant Download PDFInfo
- Publication number
- JP5492335B1 JP5492335B1 JP2013165616A JP2013165616A JP5492335B1 JP 5492335 B1 JP5492335 B1 JP 5492335B1 JP 2013165616 A JP2013165616 A JP 2013165616A JP 2013165616 A JP2013165616 A JP 2013165616A JP 5492335 B1 JP5492335 B1 JP 5492335B1
- Authority
- JP
- Japan
- Prior art keywords
- flocculant
- water
- aluminum sulfate
- turbidity
- sulfate solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 82
- 239000000843 powder Substances 0.000 claims abstract description 57
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims abstract description 43
- 235000015170 shellfish Nutrition 0.000 claims abstract description 31
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 28
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 26
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 13
- CBXWGGFGZDVPNV-UHFFFAOYSA-N so4-so4 Chemical compound OS(O)(=O)=O.OS(O)(=O)=O CBXWGGFGZDVPNV-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000004090 dissolution Methods 0.000 claims description 23
- 238000007711 solidification Methods 0.000 claims description 17
- 230000008023 solidification Effects 0.000 claims description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 13
- 239000000725 suspension Substances 0.000 claims description 9
- 239000002994 raw material Substances 0.000 abstract description 18
- 239000000701 coagulant Substances 0.000 abstract description 9
- 238000003756 stirring Methods 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 2
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 abstract 1
- 238000001879 gelation Methods 0.000 abstract 1
- 239000010865 sewage Substances 0.000 description 48
- 230000000052 comparative effect Effects 0.000 description 34
- 230000000694 effects Effects 0.000 description 21
- 230000007423 decrease Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 230000002776 aggregation Effects 0.000 description 16
- 238000005345 coagulation Methods 0.000 description 16
- 230000015271 coagulation Effects 0.000 description 16
- 229910052782 aluminium Inorganic materials 0.000 description 15
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 238000005054 agglomeration Methods 0.000 description 10
- -1 aluminum ions Chemical class 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 9
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 8
- 229910001424 calcium ion Inorganic materials 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000008399 tap water Substances 0.000 description 7
- 235000020679 tap water Nutrition 0.000 description 7
- 239000002351 wastewater Substances 0.000 description 7
- 239000005995 Aluminium silicate Substances 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 235000012211 aluminium silicate Nutrition 0.000 description 6
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 6
- 238000011056 performance test Methods 0.000 description 6
- 230000002285 radioactive effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000004931 aggregating effect Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 150000004676 glycans Chemical class 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 4
- 229910052792 caesium Inorganic materials 0.000 description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 235000020637 scallop Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 241000237519 Bivalvia Species 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 235000020639 clam Nutrition 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000237858 Gastropoda Species 0.000 description 2
- 241000237502 Ostreidae Species 0.000 description 2
- 241000237509 Patinopecten sp. Species 0.000 description 2
- 241000237503 Pectinidae Species 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 235000020636 oyster Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000941 radioactive substance Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- TVFDJXOCXUVLDH-OUBTZVSYSA-N cesium-134 Chemical compound [134Cs] TVFDJXOCXUVLDH-OUBTZVSYSA-N 0.000 description 1
- TVFDJXOCXUVLDH-RNFDNDRNSA-N cesium-137 Chemical compound [137Cs] TVFDJXOCXUVLDH-RNFDNDRNSA-N 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000001730 gamma-ray spectroscopy Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- YALHCTUQSQRCSX-UHFFFAOYSA-N sulfane sulfuric acid Chemical compound S.OS(O)(=O)=O YALHCTUQSQRCSX-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
【課題】 硫酸アルミニウム溶液を原料として、硫酸アルミニウム溶液の欠点を克服した凝集剤を製造する方法、及び凝集剤を提供する。
【解決手段】 第1タンクに貯留した純水に貝殻粉及び凝集助剤として炭酸カルシウムを投入し、撹拌機にてそれらを十分に撹拌混合する。第2タンクから第1タンク内へ硫酸アルミニウム溶液(好ましくは硫酸ばんど)を投入して激しく撹拌することによって貝殻粉及び炭酸カルシウムを溶解させた後、第1タンクに設置した撹拌機を停止して、適宜時間静置してゲル化させる(ステップS30)。そして、第3タンクから第1タンクへ稀塩酸を投入してゲルを再溶解させる(ステップS40)。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a method for producing a flocculant overcoming the drawbacks of an aluminum sulfate solution using an aluminum sulfate solution as a raw material, and a flocculant.
[MEANS FOR SOLVING PROBLEMS] Shell water and calcium carbonate as a coagulant aid are put into pure water stored in a first tank, and they are sufficiently stirred and mixed by a stirrer. After the shellfish powder and calcium carbonate are dissolved by adding an aluminum sulfate solution (preferably a sulfuric acid sulfate) from the second tank into the first tank and stirring vigorously, the stirrer installed in the first tank is stopped. Then, the mixture is allowed to stand for a suitable time for gelation (step S30). Then, dilute hydrochloric acid is added from the third tank to the first tank to re-dissolve the gel (step S40).
[Selection] Figure 1
Description
本発明は、産業廃水・用水又は上下水等の水処理用の凝集剤を製造する方法、及び凝集剤に関する。 TECHNICAL FIELD The present invention relates to a method for producing a flocculant for water treatment such as industrial wastewater / water or water and sewage, and a flocculant.
浄水場では主に河川から取り込んだ水を浄化して水道へ供給しているが、浄化を行う際の上流工程において、河川から取り込んだ原水に凝集剤を添加して原水中の汚濁物を凝集除去している。このような浄水場にあっては、凝集剤として無機凝集剤である硫酸アルミニウム溶液又はポリ塩化アルミニウム溶液が用いられている。 Water purification plants mainly purify the water taken from the river and supply it to the waterworks, but in the upstream process when purifying, add flocculant to the raw water taken from the river to agglomerate the pollutants in the raw water It has been removed. In such a water purification plant, an aluminum flocculant solution or a polyaluminum chloride solution, which is an inorganic flocculant, is used as the flocculant.
一方、後述する特許文献1には、有機凝集剤および無機凝集剤にセルロース繊維物質、貝殻及び固形補助剤から選択された少なくとも1種類の物質を含有する固型凝集剤が開示されている。かかる固型凝集剤にあっては、長時間連続して所望する凝集作用が持続するので、少量の凝集剤で大量の汚濁水を清澄化することができる。
On the other hand,
しかしながら、前述した従来の凝集剤にあってはつぎのような問題があった。
すなわち、ポリ塩化アルミニウム溶液は硫酸アルミニウム溶液に比べて適用し得るpHの幅が広いのに加え、凝集作用が強く、また形成されたフロックの強度が高いので添加量を相対的に少なくすることができる等の点で優れているものの、前者の凝集剤は後者の凝集剤に比べて、有機物の腐食によって生じるフミン質に対する凝集力が弱いという欠点があった。
However, the conventional flocculants described above have the following problems.
That is, the polyaluminum chloride solution has a wider range of applicable pH than the aluminum sulfate solution, has a strong agglomeration effect, and the strength of the floc formed is high, so the amount added can be relatively reduced. The former flocculant has the disadvantage that it has a weaker cohesion with respect to humic substances caused by corrosion of organic substances than the latter flocculant, although it is excellent in that it can be produced.
一方、特許文献1に開示された凝集剤は固型であるので、原水に溶解させるのに長い時間と手間を要し、比較的大量の原水を一度に処理する場合、その全体へ均一に行き渡らせることが困難であった。そのため、フロックを十分に形成させることができなかった。
On the other hand, since the flocculant disclosed in
本発明は斯かる事情に鑑みてなされたものであって、硫酸アルミニウム溶液を原料として、前述した優位点を残しつつ、硫酸アルミニウム溶液の欠点を克服した凝集剤を製造する方法、及び該方法によって製造された凝集剤を提供する。 The present invention has been made in view of such circumstances, and a method of producing an aggregating agent that overcomes the drawbacks of an aluminum sulfate solution while using the aluminum sulfate solution as a raw material while leaving the above-described advantages, and the method. A manufactured flocculant is provided.
(1)本発明に係る凝集剤の製造方法は、水処理に用いるべく、無機凝集剤を含有する凝集剤を製造する場合、所定貝殻粉を硫酸アルミニウム溶液に溶解させてゲル化させる溶解固化工程と、得られたゲルに塩酸を添加して再溶解させる再溶解工程とを実施することを特徴とする。 (1) The method for producing a flocculant according to the present invention is a solution-solidifying step in which when a flocculant containing an inorganic flocculant is to be used for water treatment, a predetermined shellfish shell powder is dissolved in an aluminum sulfate solution and gelled. And a redissolving step in which hydrochloric acid is added to the obtained gel and redissolved.
本発明の凝集剤の製造方法にあっては、水処理に用いるべく、無機凝集剤を含有する凝集剤を製造する場合、所定貝殻粉を硫酸アルミニウム溶液に溶解させてゲル化させる溶解固化工程を実施する。貝殻粉に適用する貝としては、二枚貝、一枚貝、巻貝等その種類は特定されないが、牡蠣、サルボウ貝(赤貝)、ホタテ貝等、養殖によって比較的多量に廃棄されるものを用いると、廃棄物利用の観点及び安定供給の観点から好適である。 In the method for producing a flocculant of the present invention, when producing a flocculant containing an inorganic flocculant for use in water treatment, a dissolution and solidification step in which a predetermined shellfish powder is dissolved in an aluminum sulfate solution and gelled is performed. carry out. As shellfish to be applied to shellfish powder, bivalves, clams, snails, etc., are not specified, but oysters, scallop shells (red shellfish), scallops, etc. It is suitable from the viewpoint of waste utilization and stable supply.
本発明者が鋭意検討した結果、かかる貝殻粉を硫酸アルミニウム溶液に溶解させて、それら全てをゲル化させ、得られたゲルに塩酸を添加して再溶解させることによって、凝集力が高く、安定して保存することができる液状の凝集剤を得ることができるという知見を得て本発明を完成するに至った。このとき、貝殻粉を硫酸アルミニウム溶液に溶解することができても、十分にゲル化することができなかった場合、再溶解工程にて再溶解しても、所要の凝集力を得ることができない。 As a result of intensive studies by the present inventors, such shellfish powder is dissolved in an aluminum sulfate solution, all of them are gelled, and hydrochloric acid is added to the resulting gel to re-dissolve it, so that the cohesive force is high and stable. As a result, the inventors have obtained the knowledge that a liquid flocculant that can be stored can be obtained, thereby completing the present invention. At this time, even if the shell powder can be dissolved in the aluminum sulfate solution, if it cannot be sufficiently gelled, the required cohesive force cannot be obtained even if it is re-dissolved in the re-dissolution step. .
すなわち、貝殻粉は、その主成分である炭酸カルシウム以外に蛋白質及び多糖類を含んでおり、これら蛋白質及び多糖類が架橋剤的に作用するとともに、貝殻粉から生成される炭酸イオンと硫酸アルミニウム溶液中のアルミニウムイオンとの相互作用、及び、貝殻粉から生成されるカルシウムイオンと硫酸アルミニウム溶液中の硫酸イオンとの相互作用によってゲルが生成されるものと考えられる。そして、生成されたゲルに塩酸を添加して再溶解させることによって、塩化アルミニウムと硫酸アルミニウムとの混液様の溶液が生成されるものと考えられる。 That is, shellfish powder contains proteins and polysaccharides in addition to calcium carbonate, which is the main component thereof, and these proteins and polysaccharides act as a crosslinking agent, and carbonate ions and aluminum sulfate solution generated from shellfish powder. It is considered that the gel is generated by the interaction with the aluminum ions in the solution and the interaction between the calcium ions generated from the shellfish powder and the sulfate ions in the aluminum sulfate solution. And it is thought that the mixed-like solution of aluminum chloride and aluminum sulfate is produced | generated by adding hydrochloric acid to the produced | generated gel and making it redissolve.
このとき、凝集能を示すアルミニウムイオンを含有しない塩酸を加えるので、アルミニウムイオンの濃度は塩酸を加えた分だけ低下し、これに応じて単位量当たりの凝集力も低下する。しかしながら、貝殻粉から生成されるカルシウムイオンも凝集能を有するため、アルミニウムイオンの濃度の低下による凝集力の低下を、カルシウムイオンの添加によって相殺することができる。 At this time, since hydrochloric acid not containing aluminum ions exhibiting the coagulation ability is added, the concentration of aluminum ions is lowered by the amount of hydrochloric acid added, and the cohesive force per unit amount is also lowered accordingly. However, since calcium ions produced from shellfish powder also have a coagulation ability, the decrease in cohesion due to the decrease in the concentration of aluminum ions can be offset by the addition of calcium ions.
このような方法によって製造された凝集剤にあっては、従来の凝集剤であるポリ塩化アルミニウム溶液と硫酸アルミニウム溶液との両方特性を有している。このように本発明に係る方法にあっては、硫酸アルミニウム溶液を原料として、ポリ塩化アルミニウム溶液の優位点を残しつつ、硫酸アルミニウム溶液の欠点を克服した凝集剤を製造することができる。 The flocculant produced by such a method has the characteristics of both a polyaluminum chloride solution and an aluminum sulfate solution, which are conventional flocculants. Thus, in the method according to the present invention, an aggregating agent that overcomes the drawbacks of an aluminum sulfate solution can be produced using an aluminum sulfate solution as a raw material while retaining the advantages of a polyaluminum chloride solution.
(2)また、本発明に係る凝集剤の製造方法は、前記溶解固化工程では、貝殻粉を水に懸濁させ、得られた懸濁水を撹拌しつつ、これに硫酸アルミニウム溶液を添加して貝殻粉を溶解させることを特徴とする。 (2) Moreover, the manufacturing method of the flocculant which concerns on this invention adds the aluminum sulfate solution to this, suspending shellfish powder in water and stirring the obtained suspension water in the said solution solidification process. It is characterized by dissolving shellfish powder.
本発明の凝集剤の製造方法にあっては、前述した溶解固化工程において、貝殻粉を水に懸濁させ、得られた懸濁水を撹拌することによって貝殻粉を水中に均一に分散させる。この状態で、懸濁水に硫酸アルミニウム溶液を添加することによって、懸濁水の全体で偏りなく略均一に貝殻粉を溶解させることができる。 In the method for producing a flocculant of the present invention, the shell powder is uniformly dispersed in water by suspending the shell powder in water and stirring the obtained suspension water in the above-described dissolution and solidification step. In this state, by adding the aluminum sulfate solution to the suspension water, the shell powder can be dissolved almost uniformly without any bias in the entire suspension water.
前述したゲルはその生成過程において、貝殻粉から生成される蛋白質及び多糖類、貝殻粉から生成される炭酸イオン及び硫酸アルミニウム溶液中のアルミニウムイオン、並びに、貝殻粉から生成されるカルシウムイオン及び硫酸アルミニウム溶液中の硫酸イオンがそれぞれバランスされることが重要であるが、前述した如く懸濁水の全体で偏りなく略均一に貝殻粉を溶解させることができるので、かかるバランスを保った状態で貝殻粉を溶解させることができる。これによって、懸濁水の全量がゲル化する。 In the production process, the aforementioned gel is composed of proteins and polysaccharides produced from shell powder, carbonate ions produced from shell powder and aluminum ions in aluminum sulfate solution, and calcium ions and aluminum sulfate produced from shell powder. It is important that each sulfate ion in the solution is balanced, but as mentioned above, the shell powder can be dissolved almost uniformly in the whole suspension water, so that the shell powder is kept in such a balanced state. Can be dissolved. As a result, the entire amount of the suspended water is gelled.
(3)一方、本発明に係る凝集剤の製造方法は、前記硫酸アルミニウム溶液として硫酸ばんどを用いることを特徴とする。 (3) On the other hand, the method for producing a flocculant according to the present invention is characterized by using a sulfuric sulfate as the aluminum sulfate solution.
本発明の凝集剤の製造方法にあっては、硫酸アルミニウム溶液として硫酸ばんどを用いる。硫酸ばんどは、飲用の上水を生成するために既に市販されており、安全性も確認されている。かかる硫酸ばんどに天然物である貝殻粉を溶解させて製造した凝集剤にあっては、安全性に優れている上に、自然界への負担の増大を可及的に抑制することができる。 In the method for producing a flocculant according to the present invention, sulfate sulfate is used as the aluminum sulfate solution. Sulfur sulfate is already on the market to produce drinking water, and its safety has also been confirmed. The flocculant produced by dissolving the shellfish powder, which is a natural product, in such sulfate sulfate is excellent in safety and can suppress the increase in the burden on the natural world as much as possible.
(4)ところで、本発明に係る凝集剤の製造方法は、前記溶解固化工程で、貝殻粉を水に懸濁させ、得られた懸濁水を撹拌しつつ、これに硫酸アルミニウム溶液として硫酸ばんどを添加して貝殻粉を溶解させるに際して、水:貝殻粉:硫酸ばんどの質量比を25:10〜15:50〜70に調整することを特徴とする。 (4) By the way, in the method for producing a flocculant according to the present invention, the shell powder is suspended in water in the dissolution and solidification step, and the obtained suspension water is stirred, and an aluminum sulfate solution is added thereto as a sulfate sulfate. Is added to dissolve the shell powder, and the mass ratio of water: shell powder: sulfate sulfate is adjusted to 25: 10-15: 50-70.
本発明の凝集剤の製造方法にあっては、溶解固化工程で、貝殻粉を水に懸濁させ、得られた懸濁水を撹拌しつつ、これに硫酸アルミニウム溶液として硫酸ばんどを添加して貝殻粉を溶解させるに際して、水:貝殻粉:硫酸ばんどの質量比を25:10〜15:50〜70に調整する。水:貝殻粉:硫酸ばんどの質量比がこれらの範囲でない場合、前述した如きバランスを保った状態で貝殻粉を溶解させることができず、従って所要の凝集力を得ることができない。これに対して、水:貝殻粉:硫酸ばんどの質量比がこれらの範囲内である場合、バランスを保った状態で貝殻粉を溶解させることができ、所要の凝集力を得ることができるとともに、安定して保存することができる。 In the method for producing the flocculant of the present invention, in the dissolution and solidification step, the shellfish powder is suspended in water, and the resulting suspension water is stirred, while adding sulfuric sulfate as an aluminum sulfate solution thereto. In dissolving the shell powder, the mass ratio of water: shell powder: sulfate is adjusted to 25: 10-15: 50-70. If the mass ratio of water: shell powder: sulfuric acid is not within these ranges, the shell powder cannot be dissolved while maintaining the balance as described above, and therefore the required cohesive force cannot be obtained. In contrast, when the mass ratio of water: shell powder: sulfuric acid is within these ranges, the shell powder can be dissolved in a balanced state, and the required cohesive force can be obtained. It can be stored stably.
更に、前記(1)にあっては、前記再溶解工程において、5質量%以上10質量%以下の稀塩酸を用いることを特徴とする。 Furthermore, (1) is characterized in that 5% by mass or more and 10% by mass or less of dilute hydrochloric acid is used in the re-dissolution step.
本発明の凝集剤の製造方法にあっては、再溶解工程において、5質量%以上10質量%以下の稀塩酸を用いるため、炭酸イオン、カルシウムイオン、アルミニウムイオン及び硫酸イオンと、塩素イオンとのバランスを保ってゲルを再溶解させることができる。これによって、凝集力が低下することを回避することができ、また安定して保存することができる。 In the method for producing the flocculant of the present invention, since 5% by mass or more and 10% by mass or less of dilute hydrochloric acid is used in the re-dissolution step, carbonate ions, calcium ions, aluminum ions, sulfate ions, and chloride ions are used. The gel can be redissolved while maintaining balance. As a result, it is possible to avoid a decrease in cohesive force and to store stably.
前記(1)にあっては、前記貝殻粉は適宜温度以下の環境で乾燥させた貝殻を粉砕して調製することを特徴とする。 In the above (1), the shell powder is prepared by pulverizing shells dried in an environment of a temperature or lower as appropriate.
本発明の凝集剤の製造方法にあっては、貝殻粉は適宜温度以下の環境で乾燥させた貝殻を粉砕して調製する。具体的には、自然乾燥又は80℃程度以下の温度で乾燥させたものを用いる。これによって、振動ミルによる破砕を容易に実施することができ、また、溶解固化工程において円滑に溶解させることができるので好適である。一方、焼成した貝殻は溶解固化工程における原料には適さない。前述した所要の有効成分が熱によって分解されているからである。 In the method for producing a flocculant of the present invention, shellfish powder is prepared by pulverizing a shellfish dried in an environment of a temperature or lower as appropriate. Specifically, those which are naturally dried or dried at a temperature of about 80 ° C. or lower are used. Thereby, crushing by a vibration mill can be easily performed, and it can be dissolved smoothly in the dissolution and solidification step, which is preferable. On the other hand, the fired shell is not suitable as a raw material in the dissolution and solidification process. This is because the necessary active ingredients described above are decomposed by heat.
(5)更に、本発明に係る凝集剤の製造方法は、前記溶解固化工程において、炭酸カルシウムも硫酸アルミニウム溶液に、前記貝殻粉10〜15に対して1〜5の質量比で溶解させることを特徴とする。 (5) In addition, the production method of the flocculant according to the present invention, the Te dissolved solidifying step smell, calcium to aluminum sulfate solution carbonate, dissolving in a weight ratio of 1-5 relative to the shell powder 10-15 It is characterized by.
本発明の凝集剤の製造方法にあっては、溶解固化工程において、適宜量の炭酸カルシウムも硫酸アルミニウム溶液に溶解させる。具体的には、水:貝殻粉:硫酸ばんどの質量比が25:10〜15:50〜70である場合、炭酸カルシウムが1〜5の質量比になるように溶解させる。これによって、凝集剤の凝集力を所要の程度に調整することができる。 In the method for producing a flocculant of the present invention, an appropriate amount of calcium carbonate is also dissolved in the aluminum sulfate solution in the dissolution and solidification step. Specifically, when the mass ratio of water: shell powder: sulfate sulfate is 25: 10-15 : 50-70, the calcium carbonate is dissolved so as to have a mass ratio of 1-5 . Thereby, the cohesive force of the coagulant can be adjusted to a required level.
(6)本発明に係る凝集剤は、水処理に用いるべく、無機凝集剤を含有する凝集剤であって、(1)から(5)のいずれかに記載の製造方法によって製造されたことを特徴とする。 (6) The flocculant according to the present invention is a flocculant containing an inorganic flocculant for use in water treatment, and is produced by the production method according to any one of (1) to (5). Features.
本発明の凝集剤にあっては、(1)から(5)のいずれかに記載の製造方法によって製造されているため、前述した各作用効果を奏する。 Since the flocculant of the present invention is manufactured by the manufacturing method according to any one of (1) to (5) , the above-described effects are exhibited.
以下、本発明を図面に基づいて詳述する。なお、本実施の形態で説明する事柄は、本発明の趣旨を説明する一例であり、本発明はその趣旨を逸脱しない範囲での変形又は改造を含むことはいうまでもない。 Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the matter described in the present embodiment is an example for explaining the gist of the present invention, and it is needless to say that the present invention includes modifications or alterations without departing from the gist of the present invention.
図1は本発明に係る凝集剤の製造手順を示すフローチャートである。 FIG. 1 is a flowchart showing a procedure for producing a flocculant according to the present invention.
図1に示したように破砕工程を実施する(ステップS10)。
すなわち、ホッパー内に原料貝殻を充填しておき、該ホッパーからベルトコンベアにて原料貝殻を振動ミル内へ適宜量になるまで投入する。
As shown in FIG. 1, a crushing process is performed (step S10).
That is, the raw material shell is filled in the hopper, and the raw material shell is charged into the vibration mill from the hopper with a belt conveyor until an appropriate amount is obtained.
ここで、原料貝殻に適用する貝としては、二枚貝、一枚貝、巻貝等その種類は別段特定されないが、牡蠣、サルボウ貝(赤貝)、ホタテ貝等、養殖によって比較的多量に廃棄されるものを用いると、廃棄物利用の観点及び安定供給の観点から好適である。また、原料貝殻は未乾燥のものでもよいが、自然乾燥又は80℃程度以下の温度で低温乾燥させたものを用いると、振動ミルによる破砕を容易に実施することができ、また、後述する溶解固化工程において円滑に溶解させることができるので好適である。ただし、焼成した貝殻は溶解固化工程における原料には適さない。所要の有効成分が熱によって分解されているからである。 Here, as for the shells applied to the raw material shells, the types of clams, clams, snails, etc. are not particularly specified, but oysters, scallop shells (red shellfish), scallops, etc., which are discarded in a relatively large amount by aquaculture Is preferable from the viewpoint of waste utilization and stable supply. The raw material shell may be undried, but when it is naturally dried or dried at a low temperature of about 80 ° C. or less, it can be easily crushed by a vibration mill, and the dissolution described later This is suitable because it can be dissolved smoothly in the solidification step. However, the fired shell is not suitable as a raw material in the dissolution and solidification process. This is because the required active ingredient is decomposed by heat.
適宜量の原料貝殻が振動ミル内に投入されると、振動ミルを動作させて内部の原料貝殻を破砕する。そして、適宜時間経過すると振動ミルの動作を停止し、破砕された原料貝殻を取り出して、振動篩機内へ移送する。 When an appropriate amount of the raw material shell is put into the vibration mill, the vibration mill is operated to crush the internal raw material shell. Then, when an appropriate time has elapsed, the operation of the vibration mill is stopped, and the crushed raw material shell is taken out and transferred into the vibration sieve machine.
次に、篩分け工程を実施する(ステップS20)。
前述した振動篩機には5メッシュ〜30メッシュ程度の適宜メッシュの篩が予め配設されており、振動篩機内に投下された原料貝殻を当該振動篩機によって篩分けして、適宜メッシュを超える大きさの破砕貝殻が除去された貝殻粉を得る。このように、原料貝殻を粉末状に破砕することによって、後述する溶解工程において原料貝殻を略全て溶解させることができる。なお、本工程で除去された破砕貝殻は、再び破砕工程へ戻される。
Next, a sieving process is performed (step S20).
The above-described vibrating screen is preliminarily provided with a mesh having a mesh size of about 5 to 30 mesh, and the raw material shell dropped in the vibrating screen is screened by the vibrating screen to appropriately exceed the mesh. Obtain shellfish powder from which crushed shells of size are removed. In this way, by crushing the raw material shell into powder, almost all of the raw material shell can be dissolved in the dissolution step described later. Note that the crushed shell removed in this step is returned to the crushing step again.
次に、溶解固化工程を例えば次のように実施する(ステップS30)。
適当な容量の第1タンクに250kgの純水を貯留しておき、前述した如く得られた貝殻粉から100kg以上150kg以下の適宜量を計り取って、それを第1タンク内へ投入する。また、凝集助剤として炭酸カルシウム(例えば、日東粉化工業株式会社製)を10kg以上50kg以下の適宜量を計り取って、それを第1タンク内へ投入し、第1タンクに設置した撹拌機にてそれらを十分に撹拌混合する。
Next, for example, the dissolution and solidification step is performed as follows (step S30).
250 kg of pure water is stored in a first tank having an appropriate capacity, and an appropriate amount of 100 kg or more and 150 kg or less is measured from the shellfish powder obtained as described above, and it is put into the first tank. In addition, calcium carbonate (for example, manufactured by Nitto Flour Chemical Co., Ltd.) as an agglomeration aid is weighed in an appropriate amount of 10 kg or more and 50 kg or less, charged into the first tank, and an agitator installed in the first tank. Stir and mix them thoroughly.
一方、500kg以上700kg以下の硫酸アルミニウム溶液(好ましくは硫酸ばんど:例えば黒崎化学工業株式会社製)を第2タンクに貯留させておく。前述した如く貝殻粉及び炭酸カルシウムと純水とを十分に撹拌混合すると、第2タンクから第1タンク内へ硫酸アルミニウム溶液を投入し、20分以上の適宜時間激しく撹拌することによって貝殻粉及び炭酸カルシウムを溶解させる。そして、第1タンクに設置した撹拌機を停止して、20分以上の適宜時間、静置する。これによって、第1タンク内の溶液を、比較的硬いゲルに変化させる。 On the other hand, an aluminum sulfate solution (preferably a sulfate sulfate, for example, manufactured by Kurosaki Chemical Co., Ltd.) of 500 kg or more and 700 kg or less is stored in the second tank. As described above, when the shellfish powder, calcium carbonate and pure water are sufficiently stirred and mixed, the aluminum sulfate solution is charged from the second tank into the first tank and stirred vigorously for an appropriate period of time of 20 minutes or longer, so that the shellfish powder and carbonate Dissolve calcium. Then, the stirrer installed in the first tank is stopped and left to stand for an appropriate time of 20 minutes or longer. This changes the solution in the first tank to a relatively hard gel.
このとき、貝殻粉を硫酸アルミニウム溶液に溶解することができても、その全量を十分にゲル化することができなかった場合、後述する再溶解工程にて再溶解しても、所要の凝集力を得ることができない。 At this time, even if the shell powder can be dissolved in the aluminum sulfate solution, if the total amount thereof cannot be sufficiently gelled, the required cohesive force can be obtained even if it is re-dissolved in the re-dissolution step described later. Can't get.
ここで、貝殻粉は、その主成分である炭酸カルシウム以外に蛋白質及び多糖類を含んでおり、これら蛋白質及び多糖類が架橋剤的に作用するとともに、貝殻粉から生成される炭酸イオンと硫酸アルミニウム溶液中のアルミニウムイオンとの相互作用、及び、貝殻粉から生成されるカルシウムイオンと硫酸アルミニウム溶液中の硫酸イオンとの相互作用によってゲルが生成されるものと考えられる。 Here, shellfish powder contains proteins and polysaccharides in addition to calcium carbonate, which is the main component thereof, and these proteins and polysaccharides act as a crosslinking agent, and carbonate ions and aluminum sulfate produced from shellfish powder. It is considered that the gel is generated by the interaction with the aluminum ions in the solution and the interaction between the calcium ions generated from the shellfish powder and the sulfate ions in the aluminum sulfate solution.
次に、再溶解工程を例えば次のように実施する(ステップS40)。
第3タンクに所要質量の35%塩酸を量り入れ、これに所要質量の純水を量り入れることによって5質量%以上10質量%以下の適宜質量%の稀塩酸を調製しておく。または、5質量%以上10質量%以下の適宜質量%に予め調製された稀塩酸を第3タンクに貯留しておく。そして、500kg以上600kg以下の稀塩酸を第3タンクから第1タンク内へ投入し、30分以上よく撹拌することによって、第1タンク内の前記ゲルを再溶解させる。
Next, a re-dissolution process is performed as follows, for example (step S40).
A suitable mass% of dilute hydrochloric acid of 5 mass% or more and 10 mass% or less is prepared by weighing a required mass of 35% hydrochloric acid into the third tank and weighing a required mass of pure water. Alternatively, dilute hydrochloric acid prepared in advance to an appropriate mass% of 5% by mass or more and 10% by mass or less is stored in the third tank. Then, 500 kg or more and 600 kg or less of dilute hydrochloric acid is introduced from the third tank into the first tank, and the gel in the first tank is re-dissolved by stirring well for 30 minutes or more.
前述した如く溶解固化工程で生成されたゲルに稀塩酸を添加して再溶解させることによって、塩化アルミニウムと硫酸アルミニウムとの混液様の溶液が生成されるものと考えられる。このとき、凝集能を示すアルミニウムイオンを含有しない稀塩酸を加えるので、アルミニウムイオンの濃度は稀塩酸を加えた分だけ低下し、これに応じて単位量当たりの凝集力も低下する。しかしながら、貝殻粉から生成されるカルシウムイオンも凝集能を有するため、アルミニウムイオンの濃度の低下による凝集力の低下を、カルシウムイオンの添加によって相殺することができる。 As described above, it is considered that a mixed liquid-like solution of aluminum chloride and aluminum sulfate is produced by adding dilute hydrochloric acid to the gel produced in the dissolution and solidification step and dissolving it again. At this time, since dilute hydrochloric acid not containing aluminum ions exhibiting the coagulation ability is added, the concentration of aluminum ions decreases by the amount of dilute hydrochloric acid added, and the cohesive force per unit amount also decreases accordingly. However, since calcium ions produced from shellfish powder also have a coagulation ability, the decrease in cohesion due to the decrease in the concentration of aluminum ions can be offset by the addition of calcium ions.
このようにして再溶解して得られた溶液を濾過器で濾過する(ステップS50)ことによって夾雑物を除去して、液状の凝集剤を得る。なお、前記濾過機として例えば、倒立中空円錐状の容器内に、直径が10μm程度の細孔を有する濾布を配設したものを用いることができる。かかる濾過機にあっては外圧を加えることなく残渣を濾別することができ、前記容器の下方にて自然落下した凝集剤を捕集する。 The solution obtained by redissolving in this way is filtered with a filter (step S50) to remove impurities and obtain a liquid flocculant. As the filter, for example, a filter in which a filter cloth having pores with a diameter of about 10 μm is disposed in an inverted hollow conical container can be used. In such a filter, the residue can be filtered out without applying external pressure, and the flocculant that spontaneously falls below the container is collected.
なお、濾過器内に残存する夾雑物について、遠心分離器を用いて固液分離することによって、凝集剤の回収率を向上させるようにしてもよい。 In addition, you may make it improve the collection | recovery rate of a coagulant | flocculant by carrying out solid-liquid separation about the contaminant which remains in a filter using a centrifuge.
なお、溶解固化工程での純水、貝殻粉及び炭酸カルシウムの量、並びに再溶解工程での稀塩酸の量は、前述した如きそれらの相対比であれば、それらの量を増減させてもよいことはいうまでもない。一方、純水、貝殻粉及び炭酸カルシウムの量、並びに再溶解工程での稀塩酸の量が、前述した如き範囲外であった場合は、所要の凝集力を有する液状の凝集剤を得ることができない。 The amount of pure water, shellfish powder and calcium carbonate in the dissolution and solidification step, and the amount of dilute hydrochloric acid in the redissolution step may be increased or decreased as long as they are in a relative ratio as described above. Needless to say. On the other hand, when the amount of pure water, shellfish powder and calcium carbonate, and the amount of dilute hydrochloric acid in the redissolution step are outside the ranges as described above, a liquid flocculant having the required cohesive force can be obtained. Can not.
このようにして製造された凝集剤にあっては、硫酸アルミニウム溶液に比べて適用し得るpHの幅が広いのに加え、凝集作用が強く、また形成されたフロックの強度が高いので添加量を相対的に少なくすることができる上に、硫酸アルミニウム溶液と同様に、有機物の腐食によって生じるフミン質に対する凝集力も強いという特性を有していた。このように、本凝集剤は、硫酸アルミニウム溶液を原料として、ポリ塩化アルミニウム溶液及び硫酸アルミニウム溶液の両方の優位点を兼ね備えるものであった。 The flocculant thus produced has a wider pH range than that of the aluminum sulfate solution, and also has a strong aggregating action and a high floc strength, so the amount of addition is limited. In addition to being able to be relatively reduced, as with the aluminum sulfate solution, it has a characteristic that it has a strong cohesive force against humic substances caused by corrosion of organic substances. Thus, this aggregating agent has the advantages of both the polyaluminum chloride solution and the aluminum sulfate solution using the aluminum sulfate solution as a raw material.
一方、本凝集剤にあっては、前述した如く原料とした硫酸アルミニウム溶液に純水及び稀塩酸を所定量ずつ加えるため、含有するアルミニウムの濃度が原料に比べて1/2以下に低下している。近年、水道水中に残留するアルミニウムの濃度をより低減させることが要求されているが、本凝集剤はかかる要求にも応えることができる。 On the other hand, in the present flocculant, since pure water and dilute hydrochloric acid are added in predetermined amounts to the aluminum sulfate solution used as a raw material as described above, the concentration of contained aluminum is reduced to ½ or less compared to the raw material. Yes. In recent years, there has been a demand for further reducing the concentration of aluminum remaining in tap water, but the present flocculant can meet such demands.
凝集剤中のアルミニウム濃度が低下するに従って凝集力も低下するが、本凝集剤にあっては、前述した如く、貝殻粉を溶解させることによって、含有するアルミニウム濃度が相対的に低くても比較的高い凝集力を奏することができる。また、貝殻粉は天然物であるため、飲用の上水の生成に使用する場合であっても安全性が高い。一方、凝集助剤として炭酸カルシウムを溶解させているため、所要の凝集力を奏することができる。 As the aluminum concentration in the flocculant decreases, the cohesive force also decreases. However, in the present flocculant, as described above, by dissolving the shell powder, it is relatively high even if the contained aluminum concentration is relatively low. Cohesive force can be exerted. Moreover, since shellfish powder is a natural product, it is highly safe even when used for producing drinking drinking water. On the other hand, since calcium carbonate is dissolved as an agglomeration aid, the required agglomeration force can be achieved.
次に比較試験を実施した結果について説明する。 Next, the results of the comparative test will be described.
(実施例1)
人工汚水に対する凝集効果を比較した結果を説明する。
本発明例に用いた凝集剤は次のようにして調製した。すなわち、図1に示した操作と同様に操作したが、ステップS30では純水を250kg、貝殻粉を120kg、及び炭酸カルシウムを30kgそれぞれ使用し、ステップS40では予め7質量%に調製された稀塩酸を500kg使用した。
Example 1
The result which compared the coagulation effect with respect to artificial sewage is demonstrated.
The flocculant used in the examples of the present invention was prepared as follows. That is, the same operation as shown in FIG. 1 was performed. In step S30, 250 kg of pure water, 120 kg of shellfish powder, and 30 kg of calcium carbonate were used. In step S40, dilute hydrochloric acid prepared to 7% by mass in advance. 500 kg was used.
このようにして調製した凝集剤を分析した結果(本発明例)を、水道水用硫酸アルミニウムの規格であるJIS K 1450−1996の規定値とともに次表に示す。 The results of analyzing the thus prepared flocculant (examples of the present invention) are shown in the following table together with the prescribed values of JIS K 1450-1996, which is the standard for aluminum sulfate for tap water.
この表から明らかなように、酸化アルミニウムの濃度は4.0質量%であった。酸化アルミニウムの濃度の規定値は表1に示したように8.0〜8.2質量%であるので、本凝集剤にあってはこの規定の略1/2の濃度であった。 As apparent from this table, the concentration of aluminum oxide was 4.0% by mass. Since the specified value of the concentration of aluminum oxide is 8.0 to 8.2% by mass as shown in Table 1, in the present flocculant, the concentration was approximately ½ of the specified value.
人工汚水に対する凝集効果を比較した結果を図2〜図4に示した。図2は低濁度の人工汚水に対する凝集効果を比較した結果を示すグラフであり、図3は中濁度の人工汚水に対する凝集効果を比較した結果を示すグラフであり、図4は高濁度の人工汚水に対する凝集効果を比較した結果を示すグラフである。各図中、縦軸は人工汚水の濁度を、横軸は凝集剤の添加容量をそれぞれ示している。また、各図中、丸印は本発明例の結果を、四角印は比較例の結果を示している。なお、比較例では凝集剤として硫酸ばんど(黒崎化学工業株式会社製)を使用した。 The result of having compared the coagulation effect with respect to artificial sewage was shown in FIGS. FIG. 2 is a graph showing the result of comparing the coagulation effect with low turbidity artificial sewage, FIG. 3 is a graph showing the result of comparing the coagulation effect with medium turbidity artificial sewage, and FIG. 4 is high turbidity. It is a graph which shows the result of having compared the aggregation effect with respect to artificial sewage. In each figure, the vertical axis represents the turbidity of artificial wastewater, and the horizontal axis represents the addition capacity of the flocculant. In each figure, circles indicate the results of the examples of the present invention, and squares indicate the results of the comparative examples. In the comparative example, a sulfate sulfate (manufactured by Kurosaki Chemical Co., Ltd.) was used as a flocculant.
なお、人工汚水は、水道水を用いて、濁度をカオリン(関東科学株式会社製)の添加量で調整し、アルカリ度を炭酸ナトリウムの添加量で調整した。すなわち、低濁度の人工汚水にあっては濁度を10.8に調整し、中濁度の人工汚水にあっては濁度を128に調整し、高濁度の人工汚水にあっては濁度を500に調整し、いずれの人工汚水にあってもアルカリ度を45mg/L〜47mg/Lに調整した。いずれの人工汚水にあってもpHは7.3であった。そして、JWWA155:2005 7.に規定された方法に準じて凝集性能試験を実施した。 In addition, artificial sewage used tap water, adjusted turbidity with the addition amount of kaolin (made by Kanto Kagaku Co., Ltd.), and adjusted alkalinity with the addition amount of sodium carbonate. That is, for low turbidity artificial sewage, adjust the turbidity to 10.8, for medium turbidity artificial sewage, adjust the turbidity to 128, and for high turbidity artificial sewage, The turbidity was adjusted to 500, and the alkalinity was adjusted to 45 mg / L to 47 mg / L in any artificial sewage. In any artificial sewage, the pH was 7.3. And JWWA155: 2005 7. The agglomeration performance test was carried out according to the method specified in 1.
図2から明らかなように、低濁度の人工汚水の場合、いずれの凝集剤にあってもその添加量が40mg/L〜80mg/Lでは、凝集剤の添加量に比例して低下し、濁度を低下させる程度は本発明例も比較例も略同じであった。しかし、凝集剤の添加量が90mg/Lを超えた場合、比較例では添加量に応じて濁度が増加したが、本発明例では凝集剤の添加量に比例して低下し続けていた。 As is clear from FIG. 2, in the case of artificial sewage with low turbidity, the amount added in any flocculant decreases in proportion to the amount of flocculant added, from 40 mg / L to 80 mg / L, The degree of lowering the turbidity was almost the same in both the inventive examples and the comparative examples. However, when the addition amount of the flocculant exceeded 90 mg / L, the turbidity increased according to the addition amount in the comparative example, but continued to decrease in proportion to the addition amount of the flocculant in the present invention example.
また、図3から明らかなように、中濁度の人工汚水の場合、いずれの凝集剤にあってもその添加量が20mg/L〜50mg/Lでは、凝集剤の添加量に比例して低下し、濁度を低下させる程度は、本発明例より比較例の方が僅かに高かった。しかし、凝集剤の添加量が60mg/Lを超えた場合、比較例では添加量に応じて濁度が増加したが、本発明例では凝集剤の添加量に比例して低下し続けていた。 In addition, as is apparent from FIG. 3, in the case of artificial sewage with medium turbidity, in any flocculant, when the addition amount is 20 mg / L to 50 mg / L, it decreases in proportion to the addition amount of the flocculant. However, the degree of lowering the turbidity was slightly higher in the comparative example than in the inventive example. However, when the addition amount of the flocculant exceeded 60 mg / L, the turbidity increased according to the addition amount in the comparative example, but continued to decrease in proportion to the addition amount of the flocculant in the present invention example.
一方、図4から明らかなように、高濁度の人工汚水の場合、いずれの凝集剤にあってもその添加量が20mg/L〜50mg/Lでは、凝集剤の添加量に比例して低下し、濁度を低下させる程度は、本発明例より比較例の方が僅かに高かった。しかし、凝集剤の添加量が60mg/Lを超えた場合、比較例では添加量に応じて濁度が増加したが、本発明例では凝集剤の添加量に比例して低下し続けていた。 On the other hand, as can be seen from FIG. 4, in the case of artificial sewage with high turbidity, the amount of addition increases from 20 mg / L to 50 mg / L in any flocculant, which decreases in proportion to the amount of flocculant added. However, the degree of lowering the turbidity was slightly higher in the comparative example than in the inventive example. However, when the addition amount of the flocculant exceeded 60 mg / L, the turbidity increased according to the addition amount in the comparative example, but continued to decrease in proportion to the addition amount of the flocculant in the present invention example.
以上の結果より、比較例の凝集剤にあっては、人工汚水に対しては、当該人工汚水の濁度の程度に応じて適切な量を添加しなければならない。そのため、そのような適切な添加量を求めるために事前試験等を行う必要があるので、多くの手間及び時間を要する。これに対して、本発明例の凝集剤にあっては、人工汚水の濁度の程度に拘わらず、適当な量を添加すればよいため、前述した手間及び時間がかからない。 From the above results, in the flocculant of the comparative example, an appropriate amount must be added to the artificial sewage according to the degree of turbidity of the artificial sewage. Therefore, since it is necessary to conduct a preliminary test or the like in order to obtain such an appropriate addition amount, a lot of labor and time are required. On the other hand, in the flocculant of the present invention example, an appropriate amount may be added regardless of the degree of turbidity of the artificial sewage, so that the labor and time described above are not required.
(実施例2)
次に、自然汚水に対する凝集効果を比較した結果を説明する。
図5は自然汚水に対する凝集効果を比較した結果を示すグラフであり、図中、縦軸は汚水の濁度を、横軸は凝集剤の添加容量をそれぞれ示している。また、図中、丸印は本発明例の結果を、四角印は比較例の結果を示している。なお、本発明例では実施例1に示した凝集剤を使用し、比較例では凝集剤として硫酸ばんど(黒崎化学工業株式会社製)を使用した。
(Example 2)
Next, the result of comparing the coagulation effect on natural sewage will be described.
FIG. 5 is a graph showing the results of comparison of the coagulation effect with natural sewage. In the figure, the vertical axis represents the turbidity of the sewage and the horizontal axis represents the addition capacity of the coagulant. In the figure, circles indicate the results of the present invention, and squares indicate the results of the comparative example. In the examples of the present invention, the flocculant shown in Example 1 was used, and in the comparative example, a sulfuric acid bar (manufactured by Kurosaki Chemical Co., Ltd.) was used as the flocculant.
本実施例に使用した自然汚水の濁度は1030であり、pHは7.1であった。また、凝集操作中に水酸化ナトリウム溶液を適宜添加して、pH6.6〜pH6.8の範囲に調整した。そして、JWWA155:2005 7.に規定された方法に準じて凝集性能試験を実施した。 The turbidity of natural wastewater used in this example was 1030, and the pH was 7.1. Further, a sodium hydroxide solution was appropriately added during the coagulation operation to adjust the pH to a range of 6.6 to 6.8. And JWWA155: 2005 7. The agglomeration performance test was carried out according to the method specified in 1.
図5から明らかなように、本発明例の凝集剤にあっては、添加量が略800mg/L程度までは、添加量が増加するに従って自然汚水の濁度が低下した。これに対して、比較例の凝集剤にあっては、添加量が略400mg/L程度までは、添加量が増加するに従って自然汚水の濁度が低下したが、それより添加量が増加しても自然汚水の濁度は低下しなかった。自然汚水にあっては人工汚水に用いたカオリン以外の複数の物質が濁度の生成に関与しており、そのため人工汚水で観察されたように、比較例の凝集剤の過剰添加による濁度の上昇は観察されなかったものの、比較例の凝集剤にあっては添加量が相対的に少ない段階で濁度の低下が制限されていた。 As is clear from FIG. 5, in the flocculant of the present invention example, the turbidity of natural wastewater decreased as the addition amount increased up to about 800 mg / L. On the other hand, in the flocculant of the comparative example, the turbidity of natural wastewater decreased as the amount added increased to about 400 mg / L, but the amount added increased further. Even the turbidity of natural sewage did not decrease. In natural sewage, multiple substances other than kaolin used in artificial sewage are involved in the generation of turbidity, and as observed in artificial sewage, turbidity due to excessive addition of the flocculant in the comparative example was observed. Although no increase was observed, in the flocculant of the comparative example, the decrease in turbidity was limited at a stage where the addition amount was relatively small.
また、自然汚水の濁度の低下の程度は、いずれの添加量においても、比較例の凝集剤より本発明例の凝集剤の方が高いものであった。例えば、本発明例の凝集剤を150mg/L添加した場合の自然汚水の濁度と、比較例の凝集剤を300mg/L添加した場合の自然汚水の濁度とは略同じであるので、本発明例の凝集剤の凝集効果は比較例の凝集剤の凝集効果の略2倍であると言える。 Further, the degree of decrease in the turbidity of natural wastewater was higher in the flocculant of the present invention than in the flocculant of the comparative example at any addition amount. For example, the turbidity of natural sewage when 150 mg / L of the flocculant of the present invention is added is substantially the same as the turbidity of natural sewage when 300 mg / L of the flocculant of the comparative example is added. It can be said that the aggregating effect of the flocculant of the inventive example is approximately twice that of the comparative example.
(実施例3)
次に、被処理水の温度が凝集性に与える影響について比較した結果について説明する。
図6は、被処理水の温度が凝集性に与える影響について比較した結果を示すグラフであり、縦軸は人工汚水の濁度を、また横軸は人工汚水の温度をそれぞれ示している。また、図中、丸印は本発明例の結果を、四角印は比較例の結果を示している。なお、本発明例では実施例1に示した凝集剤を使用し、比較例では凝集剤として硫酸ばんど(黒崎化学工業株式会社製)を使用した。
(Example 3)
Next, a description will be given of the result of comparison of the influence of the temperature of the water to be treated on the cohesiveness.
FIG. 6 is a graph showing the results of a comparison of the effects of the temperature of the water to be treated on the cohesiveness, where the vertical axis indicates the turbidity of the artificial sewage and the horizontal axis indicates the temperature of the artificial sewage. In the figure, circles indicate the results of the present invention, and squares indicate the results of the comparative example. In the examples of the present invention, the flocculant shown in Example 1 was used, and in the comparative example, a sulfuric acid bar (manufactured by Kurosaki Chemical Co., Ltd.) was used as the flocculant.
被処理水としては、水道水にカオリンを添加して濁度を13に調整し、更に炭酸ナトリウムを添加してアルカリ度を47mg/Lに調整した人工汚水を用いた。この人工汚水のpHは7.3であった。人工汚水を5℃、10℃、20℃、30℃及び40℃に保持し、本発明例の凝集剤又は比較例の凝集剤を60mg/Lになるように添加・混合した。そして、JWWA155:2005 7.に規定された方法に準じて凝集性能試験を実施した。 As water to be treated, artificial sewage was used in which kaolin was added to tap water to adjust the turbidity to 13, and sodium carbonate was further added to adjust the alkalinity to 47 mg / L. The pH of this artificial sewage was 7.3. The artificial sewage was kept at 5 ° C., 10 ° C., 20 ° C., 30 ° C. and 40 ° C., and the flocculant of the present invention example or the flocculant of the comparative example was added and mixed so as to be 60 mg / L. And JWWA155: 2005 7. The agglomeration performance test was carried out according to the method specified in 1.
図6から明らかなように、いずれの水温にあっても、本発明例での被処理液の濁度は比較例での被処理液の濁度より低いものであった。特に、5℃の水温の場合、本発明例での被処理液の濁度は比較例での被処理液の濁度の略5/9にまで低下させることができた。これらの結果より、本発明例の凝集剤の凝集力は、被処理水の温度に拘わらず、比較例の凝集剤の凝集力より高いことが分かる。 As apparent from FIG. 6, the turbidity of the liquid to be treated in the present invention example was lower than the turbidity of the liquid to be treated in the comparative example at any water temperature. In particular, when the water temperature was 5 ° C., the turbidity of the liquid to be treated in the inventive example could be reduced to about 5/9 of the turbidity of the liquid to be treated in the comparative example. From these results, it can be seen that the cohesive force of the flocculant of the present invention example is higher than that of the comparative coagulant regardless of the temperature of the water to be treated.
(実施例4)
次に、被処理水のpHが凝集剤の凝集効果に与える影響について検討した結果について説明する。
(Example 4)
Next, the results of examining the influence of the pH of the water to be treated on the coagulation effect of the coagulant will be described.
図7は被処理水のpHが凝集剤の凝集効果に与える影響について検討した結果を示すグラフであり、縦軸は人工汚水の濁度を、また横軸は人工汚水のpHをそれぞれ示している。なお、凝集剤としては実施例1に示した凝集剤を使用した。 FIG. 7 is a graph showing the results of examining the influence of the pH of the water to be treated on the coagulation effect of the coagulant, where the vertical axis indicates the turbidity of the artificial sewage and the horizontal axis indicates the pH of the artificial sewage. . The flocculant shown in Example 1 was used as the flocculant.
被処理水としては、水道水にカオリンを添加して濁度を13に調整し、更に炭酸ナトリウムを添加してアルカリ度を47mg/Lに調整した人工汚水に、塩酸又は水酸化ナトリウム溶液を添加してそのpHを6程度〜9程度まで互いに異なるように調整したものを用いた。各人工汚水を20℃に保持し、本発明の凝集剤を60mg/Lになるようにそれぞれ添加・混合した。そして、JWWA155:2005 7.に規定された方法に準じて凝集性能試験を実施した。 As water to be treated, kaolin is added to tap water to adjust turbidity to 13, and hydrochloric acid or sodium hydroxide solution is added to artificial sewage to which sodium carbonate is added to adjust alkalinity to 47 mg / L. The pH was adjusted so as to be different from about 6 to about 9. Each artificial sewage was kept at 20 ° C., and the flocculant of the present invention was added and mixed so as to be 60 mg / L. And JWWA155: 2005 7. The agglomeration performance test was carried out according to the method specified in 1.
図7から明らかなように、被処理水のpHが略6.4〜略8.5までの領域で被処理水の濁度を十分に低下させることができた。 As can be seen from FIG. 7, the turbidity of the water to be treated was sufficiently reduced in the region where the pH of the water to be treated was about 6.4 to about 8.5.
(実施例5)
次に、被処理水のアルカリ度が凝集剤の凝集効果に与える影響について比較した結果について説明する。
(Example 5)
Next, the results of comparison of the influence of the alkalinity of the water to be treated on the coagulation effect of the coagulant will be described.
図8は被処理水のアルカリ度が凝集剤の凝集効果に与える影響について比較した結果を示すグラフであり、縦軸は人工汚水の濁度を、また横軸は人工汚水のアルカリ度をそれぞれ示している。また、図中、丸印は本発明例の結果を、四角印は比較例の結果を示している。なお、本発明例では実施例1に示した凝集剤を使用し、比較例では凝集剤として硫酸ばんど(黒崎化学工業株式会社製)を使用した。 FIG. 8 is a graph showing the results of comparison of the influence of the alkalinity of the water to be treated on the coagulation effect of the flocculant, where the vertical axis indicates the turbidity of the artificial sewage and the horizontal axis indicates the alkalinity of the artificial sewage. ing. In the figure, circles indicate the results of the present invention, and squares indicate the results of the comparative example. In the examples of the present invention, the flocculant shown in Example 1 was used, and in the comparative example, a sulfuric acid bar (manufactured by Kurosaki Chemical Co., Ltd.) was used as the flocculant.
被処理水としては、水道水にカオリンを添加して濁度を9.9に調整した人工汚水を用いた。人工汚水に炭酸ナトリウムを添加してアルカリ度を10mg/L〜58mg/Lの適宜値にそれぞれ調整し、本発明例の凝集剤又は比較例の凝集剤を60mg/Lになるように添加・混合した。そして、JWWA155:2005 7.に規定された方法に準じて凝集性能試験を実施した。 As treated water, artificial sewage whose turbidity was adjusted to 9.9 by adding kaolin to tap water was used. Sodium carbonate is added to the artificial sewage to adjust the alkalinity to an appropriate value of 10 mg / L to 58 mg / L, and the flocculant of the present invention example or the flocculant of the comparative example is added and mixed to 60 mg / L. did. And JWWA155: 2005 7. The agglomeration performance test was carried out according to the method specified in 1.
図8から明らかなように、比較例では、アルカリ度が増加するに従ってシグモイド状に濁度が低下していた。すなわち、アルカリ度が20までは濁度は8.0を超える値であり、アルカリ度が20を超えると濁度が低下したが、アルカリ度が30の場合でも濁度は2.5程度であった。これに対して、本発明例では、アルカリ度が10を超えると濁度が急激に低下し、アルカリ度が15では濁度が1.5程度まで低下していた。また、アルカリ度が20では濁度が1.0を下回っており、それ以降、アルカリ度が増加しても濁度は1.0を下回っていた。 As is clear from FIG. 8, in the comparative example, the turbidity decreased in a sigmoid manner as the alkalinity increased. That is, the turbidity is a value exceeding 8.0 until the alkalinity is 20, and the turbidity is decreased when the alkalinity exceeds 20, but even when the alkalinity is 30, the turbidity is about 2.5. It was. On the other hand, in the example of the present invention, when the alkalinity exceeded 10, the turbidity decreased rapidly, and when the alkalinity was 15, the turbidity decreased to about 1.5. Further, when the alkalinity was 20, the turbidity was below 1.0, and thereafter, even if the alkalinity increased, the turbidity was below 1.0.
これらの結果より、本発明例の凝集剤は相対的に低いアルカリ度であっても高い凝集力を有していることが分かる。 From these results, it can be seen that the flocculant of the example of the present invention has a high cohesive force even with a relatively low alkalinity.
(実施例6)
次に、凝集剤の使用量が被処理水のpHに与える影響について比較した結果について説明する。
(Example 6)
Next, the result of comparing the influence of the amount of the flocculant used on the pH of the water to be treated will be described.
図9は凝集剤の使用量が被処理水のpHに与える影響について比較した結果を示すグラフであり、縦軸は人工汚水のpHを、横軸は凝集剤の添加量をそれぞれ示している。なお、本発明例では実施例1に示した凝集剤を使用し、比較例では凝集剤として硫酸ばんど(黒崎化学工業株式会社製)を使用した。 FIG. 9 is a graph showing the results of comparison of the effects of the use amount of the flocculant on the pH of the water to be treated. The vertical axis indicates the pH of the artificial sewage and the horizontal axis indicates the amount of the flocculant added. In the examples of the present invention, the flocculant shown in Example 1 was used, and in the comparative example, a sulfuric acid bar (manufactured by Kurosaki Chemical Co., Ltd.) was used as the flocculant.
被処理水としては、水道水にカオリンを添加して濁度を13に調整し、更に炭酸ナトリウムを添加してアルカリ度を47mg/Lに調整した人工汚水を用いた。この人工汚水のpHは7.3であった。人工汚水を20℃に保持し、本発明例の凝集剤又は比較例の凝集剤を20mg/L〜200mg/Lの適宜量になるようにそれぞれ添加・混合した。そして、JWWA155:2005 7.に規定された方法に準じて凝集性能試験を実施した。 As water to be treated, artificial sewage was used in which kaolin was added to tap water to adjust the turbidity to 13, and sodium carbonate was further added to adjust the alkalinity to 47 mg / L. The pH of this artificial sewage was 7.3. The artificial sewage was kept at 20 ° C., and the flocculant of the present invention example or the flocculant of the comparative example was added and mixed so as to have an appropriate amount of 20 mg / L to 200 mg / L. And JWWA155: 2005 7. The agglomeration performance test was carried out according to the method specified in 1.
図9から明らかなように、比較例の凝集剤にあっては、20mg/Lと比較的少ない添加量でも被処理液のpHが相対的に大きく低下していた。また、比較例の凝集剤の添加量が増加するに従って被処理水のpHが略直線的に低下し、比較例の凝集剤の添加量が100mg/Lのとき被処理水のpHが6.5を下回っていた。 As is clear from FIG. 9, in the flocculant of the comparative example, the pH of the liquid to be treated was relatively greatly reduced even with a relatively small addition amount of 20 mg / L. Further, the pH of the water to be treated decreases substantially linearly as the amount of the flocculant added in the comparative example increases. When the amount of the flocculant added in the comparative example is 100 mg / L, the pH of the water to be treated is 6.5. It was below.
これに対して、本発明例の凝集剤にあっては、20mg/Lと比較的少ない添加量では被処理液のpHが殆ど低下しなかった。また、本発明例の凝集剤の添加量が増加するに従って被処理水のpHが略直線的に低下したが、この低下の程度は前述した比較例の凝集剤の場合に比べて緩やかであり、本発明例の凝集剤の添加量が略160mg/Lまで被処理水のpHが6.5より高い値であった。 On the other hand, in the flocculant of the example of the present invention, the pH of the liquid to be treated hardly decreased at a relatively small addition amount of 20 mg / L. In addition, the pH of the water to be treated decreased substantially linearly as the amount of the flocculant added according to the present invention increased, but the degree of this decrease is moderate compared to the case of the flocculant of the comparative example described above. The pH of the water to be treated was higher than 6.5 until the addition amount of the flocculant of the present invention example was approximately 160 mg / L.
廃水基準ではpH6.5を下回る廃水は、そのpHを6.5以上に調整してからでないと排出することができないと規定されているため、比較例の凝集剤にあってはその添加量が100mg/Lを超える場合、被処理水のpHを6.5以上に調整する工程が必要である。しかしながら、本発明例の凝集剤にあっては、その添加量が160mg/Lまでであればそのような工程が不要であり、被処理水の処理コストの上昇を抑制することができる。 The wastewater standard stipulates that wastewater having a pH lower than 6.5 can only be discharged after adjusting its pH to 6.5 or higher. When exceeding 100 mg / L, the process of adjusting the pH of to-be-processed water to 6.5 or more is required. However, in the case of the flocculant of the present invention example, such a step is unnecessary if the addition amount is up to 160 mg / L, and an increase in the treatment cost of the water to be treated can be suppressed.
(実施例7)
次に、本発明に係る凝集剤によって、放射性物質を含む汚染水を処理した結果について説明する。
(Example 7)
Next, the result of having treated the contaminated water containing a radioactive substance with the flocculant which concerns on this invention is demonstrated.
次表は、放射性物質を含む汚染水(原水)中の放射性セシウム、当該汚染水を本発明に係る凝集剤で処理して得られた処理水(本発明例)中の放射性セシウムをそれぞれ測定した結果を示したものである。ここで、放射性セシウムの測定は、平成23年12月に環境省により規定された事故由来放射性物質により汚染された廃棄物の処理等に関するガイドラインのゲルマニウム半導体検出器を用いたガンマ線スペクトロメトリーに準じて実施した。 The following table measured radioactive cesium in contaminated water (raw water) containing radioactive substances, and radioactive cesium in treated water (example of the present invention) obtained by treating the contaminated water with the flocculant according to the present invention. The results are shown. Here, the measurement of radioactive cesium is in accordance with gamma-ray spectrometry using a germanium semiconductor detector in the guidelines on the disposal of waste contaminated with accident-derived radioactive materials specified by the Ministry of the Environment in December 2011. Carried out.
また、表中の汚染水a及び汚染水bは、平成25年6月17日に福島県郡山市内の側溝で除染作業を行って生じたものであり、汚染水cは、平成25年6月20日に福島県伊達市内の道路で除染作業を行って生じたものである。なお、表中の各値は、放射性セシウム134及び放射性セシウム137の合計値で示してある。 In addition, the contaminated water a and the contaminated water b in the table were produced by decontamination work in a gutter in Koriyama City, Fukushima Prefecture on June 17, 2013. It was caused by decontamination work on a road in Date City, Fukushima Prefecture on June 20. In addition, each value in a table | surface is shown with the total value of radioactive cesium 134 and radioactive cesium 137.
本発明に係る凝集剤として実施例1に示した凝集剤を使用した。汚染水2000mlに本発明に係る凝集剤を1ml添加し、1〜2分間撹拌した後、5分間程度静置して凝集物を沈殿させ、孔径が10μmの濾紙にて濾過して濾液を得、これを処理水とした。 The flocculant shown in Example 1 was used as the flocculant according to the present invention. 1 ml of the flocculant according to the present invention was added to 2000 ml of contaminated water, stirred for 1 to 2 minutes, allowed to stand for about 5 minutes to precipitate the aggregate, and filtered through a filter paper having a pore size of 10 μm to obtain a filtrate. This was treated water.
表2から明らかなように、いずれの汚染水に対しても、本発明に係る凝集剤によって処理することによって、放射性セシウムを略1/1000〜検出限界以下まで除去することができた。 As can be seen from Table 2, radioactive cesium could be removed to about 1/1000 or below the detection limit by treating any contaminated water with the flocculant according to the present invention.
S10 破砕工程
S20 篩分け工程
S30 溶解固化工程
S40 再溶解工程
S50 濾過工程
S10 Crushing step S20 Sieving step S30 Dissolving and solidifying step S40 Remelting step S50 Filtration step
Claims (6)
自然乾燥又は80℃以下の温度で乾燥させた貝殻粉を硫酸アルミニウム溶液に溶解させてゲル化させる溶解固化工程と、
得られたゲルに5質量%以上10質量%以下の希塩酸を添加して再溶解させる再溶解工程と
を実施することを特徴とする凝集剤の製造方法。 When producing a flocculant containing an inorganic flocculant to be used for water treatment,
A dissolution and solidification step in which shellfish powder that has been naturally dried or dried at a temperature of 80 ° C. or less is dissolved in an aluminum sulfate solution and gelled;
The resulting re-dissolution step and a method of manufacturing a flocculant and working child and feature of the addition of 5% by weight to 10% by weight of the dilute hydrochloric acid to re-dissolve the gel.
請求項1から5のいずれかに記載の製造方法によって製造されたことを特徴とする凝集剤。 A flocculant containing an inorganic flocculant for water treatment,
A flocculant produced by the production method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013165616A JP5492335B1 (en) | 2013-08-08 | 2013-08-08 | Method for producing flocculant and flocculant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013165616A JP5492335B1 (en) | 2013-08-08 | 2013-08-08 | Method for producing flocculant and flocculant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5492335B1 true JP5492335B1 (en) | 2014-05-14 |
JP2015033674A JP2015033674A (en) | 2015-02-19 |
Family
ID=50792298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013165616A Active JP5492335B1 (en) | 2013-08-08 | 2013-08-08 | Method for producing flocculant and flocculant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5492335B1 (en) |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278122A (en) * | 1986-05-26 | 1987-12-03 | Miyagi Pref Gov | Surface-treatment of shell |
JPH01274807A (en) * | 1988-04-28 | 1989-11-02 | Sanai Fujita | Coagulant containing animal bone, and its production and using the coagulant |
JPH05306120A (en) * | 1992-04-30 | 1993-11-19 | Asahi Kagaku Kogyo Kk | Production of basic al sulfate solution |
JPH0747391A (en) * | 1993-03-23 | 1995-02-21 | Houyuu Syst Kk | Inhibiting agent against deposition of mineral, its production, and antifouling coating material |
JPH1143324A (en) * | 1997-07-23 | 1999-02-16 | Toshiba Corp | Formation of resource from shell |
JPH11319411A (en) * | 1998-05-20 | 1999-11-24 | Masayuki Ouchi | Water cleaning agent containing shell fossil and water cleaning method using the agent |
JP2000264627A (en) * | 1999-03-12 | 2000-09-26 | Kanto Denka Kogyo Co Ltd | Improvement in basicity of basic aluminum chloride |
JP2000317438A (en) * | 1999-05-11 | 2000-11-21 | Tokyo Tone Kaihatsu Kk | Water cleaning agent and method for use thereof |
JP2002128550A (en) * | 2000-10-16 | 2002-05-09 | Natoo Kenkyusho:Kk | Alkali-based curing agent and water resistant and heat resistant solidified body and its use |
JP2002173499A (en) * | 2000-12-04 | 2002-06-21 | Tomio Okada | Complex of amino acid polycondensate contained in seashell and metal compound, method for manufacturing the same and usage of the same |
JP2003154207A (en) * | 2001-11-21 | 2003-05-27 | Sony Corp | Industrial composition |
JP2003340207A (en) * | 2002-05-30 | 2003-12-02 | Katsuyoshi Suzuki | Inorganic flocculant |
JP2005177720A (en) * | 2003-12-24 | 2005-07-07 | Katsuyoshi Suzuki | Inorganic flocculant |
JP2006297301A (en) * | 2005-04-21 | 2006-11-02 | Junsuke Haruna | Powder wastewater treatment agent containing oyster shell as main component |
JP2006297189A (en) * | 2005-04-15 | 2006-11-02 | Car Muscat:Kk | Floccuration/sedimentation composition and waste water purifying method using the same |
JP2007319764A (en) * | 2006-05-31 | 2007-12-13 | Hokkaido Shell Kogyo Kk | Coagulant |
JP2009050752A (en) * | 2007-08-23 | 2009-03-12 | Shoichi Yoshizumi | Flocculant |
JP2009125712A (en) * | 2007-11-27 | 2009-06-11 | Hydroworks:Kk | Flocculation accelerator, flocculant and method for manufacturing flocculation accelerator |
JP2009155198A (en) * | 2008-05-19 | 2009-07-16 | Naoji Kosugi | Method for dissolving shell and method for manufacturing detergent, disinfectant, adhesive and coating using the method |
JP2010184243A (en) * | 2010-05-31 | 2010-08-26 | Katsuyoshi Suzuki | Inorganic coagulant |
JP2011251244A (en) * | 2010-06-02 | 2011-12-15 | Mitsubishi Paper Mills Ltd | Method of producing unburned shell crushed material and painting sheet for printing using the same |
JP2012161777A (en) * | 2011-02-08 | 2012-08-30 | Npo Machinami Ikuseikai | Natural material-derived material for water purification, flocculation, and precipitation |
JP2013064694A (en) * | 2011-09-20 | 2013-04-11 | Hiroki Otani | Method of removing metal component, and substance used for the same |
WO2013094284A1 (en) * | 2011-12-21 | 2013-06-27 | 株式会社バイオセラピー開発研究センター | Method for removing specific element |
-
2013
- 2013-08-08 JP JP2013165616A patent/JP5492335B1/en active Active
Patent Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278122A (en) * | 1986-05-26 | 1987-12-03 | Miyagi Pref Gov | Surface-treatment of shell |
JPH01274807A (en) * | 1988-04-28 | 1989-11-02 | Sanai Fujita | Coagulant containing animal bone, and its production and using the coagulant |
JPH05306120A (en) * | 1992-04-30 | 1993-11-19 | Asahi Kagaku Kogyo Kk | Production of basic al sulfate solution |
JPH0747391A (en) * | 1993-03-23 | 1995-02-21 | Houyuu Syst Kk | Inhibiting agent against deposition of mineral, its production, and antifouling coating material |
JPH1143324A (en) * | 1997-07-23 | 1999-02-16 | Toshiba Corp | Formation of resource from shell |
JPH11319411A (en) * | 1998-05-20 | 1999-11-24 | Masayuki Ouchi | Water cleaning agent containing shell fossil and water cleaning method using the agent |
JP2000264627A (en) * | 1999-03-12 | 2000-09-26 | Kanto Denka Kogyo Co Ltd | Improvement in basicity of basic aluminum chloride |
JP2000317438A (en) * | 1999-05-11 | 2000-11-21 | Tokyo Tone Kaihatsu Kk | Water cleaning agent and method for use thereof |
JP2002128550A (en) * | 2000-10-16 | 2002-05-09 | Natoo Kenkyusho:Kk | Alkali-based curing agent and water resistant and heat resistant solidified body and its use |
JP2002173499A (en) * | 2000-12-04 | 2002-06-21 | Tomio Okada | Complex of amino acid polycondensate contained in seashell and metal compound, method for manufacturing the same and usage of the same |
JP2003154207A (en) * | 2001-11-21 | 2003-05-27 | Sony Corp | Industrial composition |
JP2003340207A (en) * | 2002-05-30 | 2003-12-02 | Katsuyoshi Suzuki | Inorganic flocculant |
JP2005177720A (en) * | 2003-12-24 | 2005-07-07 | Katsuyoshi Suzuki | Inorganic flocculant |
JP2006297189A (en) * | 2005-04-15 | 2006-11-02 | Car Muscat:Kk | Floccuration/sedimentation composition and waste water purifying method using the same |
JP2006297301A (en) * | 2005-04-21 | 2006-11-02 | Junsuke Haruna | Powder wastewater treatment agent containing oyster shell as main component |
JP2007319764A (en) * | 2006-05-31 | 2007-12-13 | Hokkaido Shell Kogyo Kk | Coagulant |
JP2009050752A (en) * | 2007-08-23 | 2009-03-12 | Shoichi Yoshizumi | Flocculant |
JP2009125712A (en) * | 2007-11-27 | 2009-06-11 | Hydroworks:Kk | Flocculation accelerator, flocculant and method for manufacturing flocculation accelerator |
JP2009155198A (en) * | 2008-05-19 | 2009-07-16 | Naoji Kosugi | Method for dissolving shell and method for manufacturing detergent, disinfectant, adhesive and coating using the method |
JP2010184243A (en) * | 2010-05-31 | 2010-08-26 | Katsuyoshi Suzuki | Inorganic coagulant |
JP2011251244A (en) * | 2010-06-02 | 2011-12-15 | Mitsubishi Paper Mills Ltd | Method of producing unburned shell crushed material and painting sheet for printing using the same |
JP2012161777A (en) * | 2011-02-08 | 2012-08-30 | Npo Machinami Ikuseikai | Natural material-derived material for water purification, flocculation, and precipitation |
JP2013064694A (en) * | 2011-09-20 | 2013-04-11 | Hiroki Otani | Method of removing metal component, and substance used for the same |
WO2013094284A1 (en) * | 2011-12-21 | 2013-06-27 | 株式会社バイオセラピー開発研究センター | Method for removing specific element |
Also Published As
Publication number | Publication date |
---|---|
JP2015033674A (en) | 2015-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6138085B2 (en) | Radioactive cesium-containing wastewater treatment agent | |
RU2007141413A (en) | METHOD AND DEVICE FOR PRODUCING CONCENTRATED POLYMER SOLUTIONS | |
JP2013124898A (en) | Volume reduction method of cesium containing soil using power processing agent, volume reduction processing system for cesium containing soil and power processing agent for cesium removal | |
JP7286502B2 (en) | Anionic flocculant, method for producing anionic flocculant, and treatment method | |
JP5589430B2 (en) | Treatment method of inorganic waste water | |
JP5492335B1 (en) | Method for producing flocculant and flocculant | |
CN104437593A (en) | Method for preparing manganese catalyst filter material | |
JPH09276604A (en) | Flocculant | |
CN109809540A (en) | A kind of poly silicate aluminium ferric flocculating agent and preparation method | |
KR100247126B1 (en) | Solid flocculant and high speed flocculation separator | |
US20080028811A1 (en) | Use of Partly Pre-Hydrated Lime for Separating a Mixture of Solid/Liquid Matters, Method for Treating Sludge and Purified Sludge Obtained by Said Method | |
JP2006297189A (en) | Floccuration/sedimentation composition and waste water purifying method using the same | |
TWI694057B (en) | Method for manufacturing gypsum and method for manufacturing cement composition | |
WO2005009586A1 (en) | Coagulant, process for producing the same, and method of coagulation with the coagulant | |
JP5154898B2 (en) | Flocculant | |
JP2007152344A (en) | Powder muddy water treatment agent, muddy water dehydrating method, and muddy water volume-reduction device | |
JP2020163249A (en) | Dehydration accelerator | |
WO2014017500A1 (en) | Method for treating aqueous solution containing phosphoric acid ions | |
JP2013192970A (en) | Method for producing coagulant, and coagulant | |
JP4118495B2 (en) | How to reuse mud | |
JP6519907B2 (en) | Chlorine-containing waste disposal method | |
JPH07108395B2 (en) | Turbid water treatment method and treatment device | |
JP2002192163A (en) | Water cleaning method by rapid filtration | |
JP4584791B2 (en) | Stirring bar for turbid water coagulation sedimentation | |
JP7503286B2 (en) | Composite flocculant and wastewater treatment system using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5492335 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |