JPH1143324A - Formation of resource from shell - Google Patents

Formation of resource from shell

Info

Publication number
JPH1143324A
JPH1143324A JP9197515A JP19751597A JPH1143324A JP H1143324 A JPH1143324 A JP H1143324A JP 9197515 A JP9197515 A JP 9197515A JP 19751597 A JP19751597 A JP 19751597A JP H1143324 A JPH1143324 A JP H1143324A
Authority
JP
Japan
Prior art keywords
shell
shell powder
powder
water
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9197515A
Other languages
Japanese (ja)
Other versions
JP3565538B2 (en
Inventor
Miyuki Takenaka
みゆき 竹中
Michio Ikeda
理夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19751597A priority Critical patent/JP3565538B2/en
Publication of JPH1143324A publication Critical patent/JPH1143324A/en
Application granted granted Critical
Publication of JP3565538B2 publication Critical patent/JP3565538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for converting shell collected from waterintake facilities into a resource recyclable as a cement raw material, etc. SOLUTION: This method for forming a resource from a shell comprises a grinding process 1 for crushing shell into shell powder, a decomposition process 3 for immersing the shell powder in water containing an acid and decomposing an organic substance contained in the shell powder, a separation process for separating the decomposed organic substance from the shell powder and obtaining powder comprising calcium carbonate as a main component and a purification process 5 for immersing the powder comprising calcium carbonate as a main component in hot water, eluting metals and halogens in the hot from the powder to obtain purified calcium carbonate powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、貝殻の資源化方法
に関し、詳細には、発電所の取水設備等に付着した貝殻
や廃棄物として排出される貝殻を用いて有効利用可能な
炭酸カルシウム材を生成する貝殻の資源化方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recycling shells, and more particularly, to a calcium carbonate material that can be effectively used by using shells attached to water intake facilities of a power plant or shells discharged as waste. The present invention relates to a method for recycling shells for producing coconut.

【0002】[0002]

【従来の技術】火力、水力、原子力発電所の取水設備の
ような水に接する部分を有する設備では、水に接する部
分に貝が付着し、付着した貝によって取水能力が低下す
るなどの悪影響が設備に及ぼされる。このため、取水設
備等を有する施設では、付着した貝の除去作業が行わ
れ、年間1万2300トンもの貝が廃棄物として生じて
いる。廃棄物である貝を放置すると貝の腐敗により悪臭
を発生するなどの問題を生じるため、その大半は施設敷
地等内で埋め立て処分されている。
2. Description of the Related Art In a facility having a portion in contact with water, such as a thermal power plant, a hydropower plant, or a water intake facility of a nuclear power plant, shellfish adheres to a portion in contact with water, and adverse effects such as a decrease in water intake capacity due to the attached shellfish. Affects equipment. For this reason, in a facility having a water intake facility and the like, the work of removing the attached shellfish is performed, and 12,300 tons of shellfish are generated as waste annually. Leaving shellfish, which is a waste product, causes problems such as the generation of bad odors due to the decay of shellfish, and most of them are landfilled at facility premises.

【0003】[0003]

【発明が解決しようとする課題】しかし、貝の所分量が
大量であるために、処分地の確保が年々困難となってい
る。埋め立て処理できない貝は、現状においては必然的
に焼却処理することになる。しかし、焼却処理は、焼却
設備の導入に多額の費用を必要とするだけで得られるも
のがないため、経済的に不利である。このため、リサイ
クルを前提とした何等かの貝の処理方法の開発が望まれ
ている。
However, since the amount of shellfish is large, it is difficult to secure disposal sites year by year. Shellfish that cannot be landfilled are necessarily incinerated at present. However, incineration treatment is economically disadvantageous because it requires only a large amount of cost to install an incineration facility and cannot be obtained. For this reason, there is a demand for the development of some shellfish treatment methods on the premise of recycling.

【0004】本発明は、上述のような問題を解決し、廃
棄物である貝を有効にリサイクルできる資源化方法を提
供することを課題とする。
[0004] It is an object of the present invention to solve the above-mentioned problems and to provide a resource recycling method capable of effectively recycling shellfish as waste.

【0005】[0005]

【課題を解決するための手段】本発明の貝殻の資源化方
法は、貝殻を貝殻粉に粉砕する粉砕工程と、酸を含有す
る水に該貝殻粉を浸して貝殻粉中の有機質を分解する分
解工程と、分解された有機質を該貝殻粉から分離して炭
酸カルシウムを主成分とする粉末を得る分離工程とを有
する。
According to the present invention, there is provided a method of recycling a shell according to the present invention, comprising the steps of: crushing a shell into shell powder; and immersing the shell powder in water containing an acid to decompose organic substances in the shell powder. A decomposition step; and a separation step of separating the decomposed organic matter from the shell powder to obtain a powder mainly composed of calcium carbonate.

【0006】本発明の貝殻の資源化方法は、更に、上記
炭酸カルシウムを主成分とする粉末を加熱水に浸して金
属及びハロゲンを該粉末から加熱水に溶出させて精製炭
酸カルシウム粉末を得る精製工程を有する。
The method for recycling a shell according to the present invention further comprises the step of immersing the powder containing calcium carbonate as a main component in heating water to elute metals and halogens from the powder into the heating water to obtain a purified calcium carbonate powder. Having a process.

【0007】上記資源化方法は、更に、前記分解工程の
前に、上記貝殻粉から主にコンキオリンを含有する第1
の貝殻粉を分別除去する分別工程を有し、該第1の貝殻
粉を除去した残りの貝殻粉が上記分解工程に供給され
る。
[0007] The resource recycling method may further comprise, prior to the decomposing step, a first powder containing mainly conchiolin from the shell powder.
And the remaining shell powder from which the first shell powder has been removed is supplied to the decomposition step.

【0008】あるいは、前記分解工程の前に、上記貝殻
粉を主にコンキオリンを含有する第1の貝殻粉と主にカ
ルサイトを含有する第2の貝殻粉と主にアラゴナイトを
含有する第3の貝殻粉とに分離する分別工程を有し、第
2の貝殻粉及び第3の貝殻粉が分解工程に供給される。
上記第2の貝殻粉から分解工程を経て得られるカルシウ
ムを主成分とする粉末のみが上記精製工程に供給され
る。
Alternatively, prior to the decomposing step, the above-mentioned shell powder is first shell powder mainly containing conchiolin, second shell powder mainly containing calcite, and third shell powder mainly containing aragonite. There is a separation step of separating the shell powder from the shell powder, and the second shell powder and the third shell powder are supplied to the decomposition step.
Only calcium-based powder obtained from the second shell powder through a decomposition step is supplied to the purification step.

【0009】上記粉砕工程において貝殻は300メッシ
ュ以下の貝殻粉に粉砕することが望ましい。
In the above-mentioned pulverizing step, the shell is desirably pulverized into shell powder of 300 mesh or less.

【0010】上記酸としては酢酸が好適であり、0.0
1〜0.05wt%の割合で水に含有させることが望まし
い。
Acetic acid is preferred as the acid,
It is desirable that water be contained at a ratio of 1 to 0.05% by weight.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳細説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0012】貝の貝殻は、炭酸カルシウムを主成分とす
るので、取水施設などにおいて採取される貝から貝肉を
除去した貝殻は、脱硫剤や弗素除去剤、セメント原料と
して利用することが考えらる。しかし、例えばセメント
原料の場合、コンクリートの軟化や溶出を防止するため
に、これらの原因となるナトリウム、カリウム等のアル
カリ成分の含有率を0.75%以下に定める規定が19
86年に設けられている。又、塩化物イオンに関して
も、コンクリート中の鉄筋が錆びるのを防止するため
に、含有率は0.02%以下に定められている。脱硫剤
や弗素除去剤等についてはセメント原料ほどの厳格な制
限はないにしても、貝殻を構成する有機物などの不純物
を含有したままでは良好に使用することができない。従
って、貝殻から不純物の少ない炭酸カルシウムを取り出
す必要がある。
Since shells of shellfish contain calcium carbonate as a main component, shells obtained by removing shellfish from shellfish collected at water intake facilities and the like may be used as desulfurizing agents, fluorine removing agents, and cement raw materials. You. However, in the case of a cement raw material, for example, in order to prevent softening and elution of concrete, the provision that the content of alkali components such as sodium, potassium, etc., which cause these factors, is set to 0.75% or less is 19
It was established in 1986. The content of chloride ions is set to 0.02% or less in order to prevent the reinforcing steel in the concrete from rusting. Desulfurizing agents, fluorine removing agents and the like are not strictly limited as much as cement raw materials, but cannot be used favorably while containing impurities such as organic substances constituting shells. Therefore, it is necessary to extract calcium carbonate with less impurities from the shell.

【0013】発電所の取水路などで採取される貝は、ム
ラサキイガイ等のイガイ類が大半で、このような2枚貝
の貝殻は、炭酸カルシウムを主成分とする内側の真珠
(アラゴナイト)層及び外側の角柱(カルサイト)層の
2層を有している。更に、角柱層の外表面をタンパク質
の一種であるコンキオリンからなる殻皮層が被覆してい
る。他の種類の貝の貝殻も概して類似の構造を有してい
る。
Most mussels such as blue mussels are collected from water intake channels of power plants. Such bivalve shells include an inner pearl (aragonite) layer containing calcium carbonate as a main component. It has two outer prism (calcite) layers. Further, the outer surface of the prism layer is covered with a shell layer made of conchiolin, a kind of protein. The shells of other types of shellfish generally have a similar structure.

【0014】コンキオリンは真珠層及び角柱層にも含有
されており、これらにおいては炭酸カルシウムの粒を互
いに接着するつなぎの役割を果たしている。角柱層、真
珠層には、ナトリウムやカリウム等のアルカリ金属、ス
トロンチウム、バリウム、マグネシウム等のアルカリ土
類金属を含有しており、更に、真珠層には塩素等のハロ
ゲンが含有されている。
[0014] Conchiolin is also contained in the nacre and the prismatic layer, in which it acts as a bridge to bond the calcium carbonate grains together. The prismatic layer and the nacre contain alkali metals such as sodium and potassium and alkaline earth metals such as strontium, barium and magnesium, and the nacre contains halogens such as chlorine.

【0015】上記を考慮すると、貝殻から不純物の少な
い炭酸カルシウムを取り出すには、貝殻から有機質(お
もにコンキオリン等のタンパク質)、金属塩又は金属イ
オン及びハロゲンを効率よく除去すれば良いことがわか
る。
In view of the above, it can be seen that in order to remove calcium carbonate with less impurities from the shell, it is sufficient to efficiently remove organic substances (mainly proteins such as conchiolin), metal salts or metal ions, and halogens from the shell.

【0016】まず、有機質を除去するためには、酸を含
有する水を分解液としてこれに貝殻を浸して貝殻中の有
機質を分解する処理が有効である。酸の水溶液に浸すこ
とによってタンパク質がアミノ酸等に分解されて水に溶
出する。従って、分解処理後に貝殻を分解液から分離し
必要に応じて水洗すれば分解物は貝殻から除去され、有
機質量の減少した貝殻が得られる。
First, in order to remove organic substances, it is effective to use water containing an acid as a decomposing solution, soak the shell in the decomposition liquid, and decompose the organic substances in the shell. By soaking in an aqueous solution of an acid, the protein is decomposed into amino acids and the like and eluted in water. Therefore, if the shell is separated from the decomposition solution after the decomposition treatment and washed with water as necessary, the decomposition product is removed from the shell, and a shell with reduced organic mass is obtained.

【0017】有機質の分解に用いる酸としては、硝酸、
塩酸、過塩素酸、硫酸等の鉱酸や、酢酸、クエン酸、乳
酸、酒石酸、アスコルビン酸等の有機酸等が挙げられ、
中でも酢酸の分解能が最も高く、酢酸水溶液を分解液と
して用いるのが好ましい。酸の濃度及び処理温度が高い
と有機質の分解速度が速くなるので、分解処理時間は、
用いる酸の種類、酸の濃度及び処理温度に応じて適宜設
定する。但し、分解液の酸の濃度が高すぎると貝殻のカ
ルシウム自体も溶出するので、カルシウムの溶出を抑制
するために、例えば酢酸水溶液を用いる場合には酢酸の
含有割合を0.001〜0.1wt%、好ましくは0.0
1〜0.05wt%に設定する。有機質の分解処理中に分
解液によって貝殻が汚染されるのを防止するために、使
用する分解液は高濃度の不純物が混入しないように注意
する必要がある。
The acids used for the decomposition of organic substances include nitric acid,
Hydrochloric acid, perchloric acid, mineral acids such as sulfuric acid, and acetic acid, citric acid, lactic acid, tartaric acid, organic acids such as ascorbic acid and the like,
Among them, acetic acid has the highest resolution, and it is preferable to use an aqueous solution of acetic acid as a decomposition solution. If the concentration of the acid and the treatment temperature are high, the decomposition rate of the organic matter is increased, so the decomposition treatment time is as follows:
It is set appropriately according to the type of acid used, the concentration of the acid, and the processing temperature. However, if the concentration of the acid in the decomposition solution is too high, the calcium itself of the shell is also eluted. In order to suppress the elution of calcium, for example, when using an aqueous acetic acid solution, the content of acetic acid is 0.001 to 0.1 wt%. %, Preferably 0.0
Set to 1 to 0.05 wt%. In order to prevent the shells from being contaminated by the decomposition solution during the organic decomposition treatment, care must be taken to ensure that the decomposition solution used does not contain a high concentration of impurities.

【0018】前述したように、貝殻中の有機質は炭酸カ
ルシウム粒間に分散して存在しているので、酸が貝殻に
十分に作用し且つ分解物が溶出し易いように、有機質の
分解処理の前に貝殻を細かく粉砕するのが好ましい。一
方、回収処理等における取扱いを考慮すると、ある程度
の大きさが必要である。このような理由から、貝殻は、
好ましくは50〜300メッシュ、より好ましくは10
0〜200メッシュに粉砕した粉末の状態で分解処理に
供する。上記の様な適切な大きさに粉砕した貝殻粉にお
ける炭酸カルシウム粒子間のコンキオリンを十分に分解
するためには、常温においては約7日以上、好ましくは
約10日以上貝殻粉を分解液に浸漬する。分解液を加熱
すると有機質の分解が促進されるので、50℃前後に加
熱する場合は約5日以上、好ましくは約7日以上浸漬す
るのがよい。
As described above, since the organic matter in the shell is dispersed between the calcium carbonate particles, the organic matter in the shell is subjected to a decomposition treatment of the organic matter so that the acid sufficiently acts on the shell and the decomposed matter is easily eluted. It is preferable to grind the shell beforehand. On the other hand, a certain size is necessary in consideration of handling in the collection process and the like. For this reason, shells are
Preferably 50-300 mesh, more preferably 10
The powder is pulverized to 0 to 200 mesh and subjected to a decomposition treatment. In order to sufficiently decompose the conchiolin between the calcium carbonate particles in the shell powder crushed to an appropriate size as described above, the shell powder is immersed in the decomposition solution at room temperature for about 7 days or more, preferably about 10 days or more. I do. When the decomposition solution is heated, the decomposition of the organic matter is promoted. Therefore, when the decomposition solution is heated to about 50 ° C., the immersion is preferably performed for about 5 days or more, preferably about 7 days or more.

【0019】貝殻の殻皮層は主にコンキオリンから形成
されており炭酸カルシウムを殆ど含まないので、炭酸カ
ルシウムを得るという点では貝殻の殻皮層は不要であ
る。従って、有機質分解用の分解液を効率的に用いるた
めには、予め殻皮層を分別除去して角柱層及び真珠層に
ついてのみ有機質の分解処理を施すことが望ましい。貝
殻の分別は、比重の差を利用する比重分離等によって可
能である。殻皮層の比重が最も小さく、真珠層が最も大
きいので、粉砕した貝殻を重液に投入して軽い殻皮層を
除去し、角柱層及び真珠層を取り出して分解処理に供す
る。この場合に用いる重液としては、炭酸カルシウムの
比重に最も近いブロモホルム/エタノール混合液が適し
ているが、これに限定されるわけではない。比重分離を
行う際に、重液は貝殻に含まれる物質によって汚染され
易いので、重液を繰り返し使用する際には、重液の純度
に注意を払って貝殻を汚染しないようにする必要があ
る。従って、重液は可能な限り高純度であることが好ま
しく、ナトリウムは10ppb 以下、カリウムは5ppb 以
下、塩素は10ppb 以下であることが望ましい。
Since the shell layer of the shell is mainly formed of conchiolin and contains almost no calcium carbonate, the shell layer of the shell is unnecessary in obtaining calcium carbonate. Therefore, in order to efficiently use the decomposition solution for decomposing organic substances, it is desirable to separate and remove the shell layer in advance and to subject only the prism layer and the pearl layer to decomposing organic substances. The shells can be separated by specific gravity separation utilizing a difference in specific gravity. Since the specific gravity of the shell layer is the smallest and the nacre layer is the largest, the ground shell is put into heavy liquid to remove the light shell layer, and the prism layer and the nacre layer are taken out and subjected to a decomposition treatment. As the heavy liquid used in this case, a bromoform / ethanol mixture liquid closest to the specific gravity of calcium carbonate is suitable, but not limited thereto. When performing heavy gravity separation, heavy liquids are easily contaminated by substances contained in shells, so when using heavy liquids repeatedly, it is necessary to pay attention to the purity of the heavy liquids so as not to contaminate the shells. . Therefore, it is preferable that the heavy liquid has the highest possible purity, and it is desirable that sodium is 10 ppb or less, potassium is 5 ppb or less, and chlorine is 10 ppb or less.

【0020】上述のように、炭酸カルシウムの含有量が
少ない殻皮層を分別処理によって除去した貝殻粉を酸の
水溶液に浸漬して加熱することによって有機質が分解・
溶出するので、貝殻の炭酸カルシウムから有機質を除去
することができる。
As described above, the shell powder from which the shell layer having a low content of calcium carbonate has been removed by the separation treatment is immersed in an aqueous acid solution and heated to decompose organic matter.
Because it elutes, organic matter can be removed from the calcium carbonate of the shell.

【0021】貝殻中の金属及びハロゲンについては、貝
殻を水に接触させることによって水中に溶出させること
ができ、水を加熱すると溶出速度が速くなり、加圧する
と更に溶出し易くなる。但し、ナトリウム等の金属成分
は貝殻中のコンキオリンに取り込まれているため、有機
質の除去を行わないで水による溶出処理を行うと貝殻表
面付近の金属は溶出しても、貝殻内部のものは溶出し難
い。換言すれば、貝殻内部の有機質を分解除去すること
によって貝殻内部に含む金属が抽出され易い状態とな
る。つまり、有機質の分解・溶出処理後に金属及びハロ
ゲンの溶出を行うと、金属及びハロゲンの除去が高いレ
ベルまで進行し、得られる炭酸カルシウムの純度が格段
に向上する。
Metals and halogens in shells can be eluted into water by bringing the shells into contact with water. Heating water increases the elution rate, and pressurizing the water further facilitates elution. However, since metal components such as sodium are incorporated into conchiolin in the shell, if elution treatment with water is performed without removing organic matter, metals near the shell surface will elute but those inside the shell will elute. Difficult to do. In other words, by decomposing and removing the organic matter inside the shell, the metal contained in the shell is easily extracted. In other words, when metals and halogens are eluted after the decomposition and elution of organic substances, the removal of metals and halogens proceeds to a high level, and the purity of the obtained calcium carbonate is remarkably improved.

【0022】貝殻の金属及びハロゲンの溶出を水を用い
て行う際の水の使用量は特に制限されないが、より十分
な溶出効果を得るために貝殻量と同量以上であるのが好
ましい。水を40℃以上、好ましくは50℃以上、より
好ましくは100℃付近の温度に加熱することにより処
理時間を短縮できる。加圧下で加熱溶出すると、塩素及
びナトリウムの濃度を50ppm 以下まで減少させること
ができるので、セメント原料の要件を満足するような高
純度の炭酸カルシウムを貝殻から得るには、加圧下で、
好ましくはゲージ圧で2〜5atm 程度の加圧下で、約1
時間以上、好ましくは約3時間以上水を100℃付近に
加熱して金属及びハロゲンの溶出を行うとよい。
The amount of water used to elute the shell metal and halogen with water is not particularly limited, but is preferably equal to or more than the amount of the shell in order to obtain a more sufficient elution effect. Heating the water to a temperature of at least 40 ° C., preferably at least 50 ° C., more preferably around 100 ° C., can shorten the treatment time. When heated and eluted under pressure, the concentration of chlorine and sodium can be reduced to 50 ppm or less, so to obtain high-purity calcium carbonate from the shell that satisfies the requirements of the cement raw material, under pressure,
Preferably, the pressure is about 1 to 5 at a gage pressure of about 2 to 5 atm.
The metal and halogen may be eluted by heating the water to about 100 ° C. for at least about an hour, preferably about 3 hours.

【0023】ハロゲン(Cl)は真珠層及び殻皮層に3
00〜400ppm 程度含有されるが、角柱層には殆ど含
まれないので、角柱層を真珠層から分別して、真珠層の
みを熱水処理すると処理効率がよい。角柱層と真珠層の
分別は、前述した比重分離等を用いた殻皮層の分別の際
に併せて行うのが効率的である。
Halogen (Cl) is added to the nacre and shell layers by 3%.
Although it is contained in the order of 00 to 400 ppm, it is hardly contained in the prism layer, so that the prism layer is separated from the nacre and only the nacre is treated with hot water to improve the processing efficiency. It is efficient to separate the prism layer and the nacre layer together with the shell layer separation using specific gravity separation or the like described above.

【0024】金属及びハロゲンの溶出処理の後、水から
分離した貝殻粉は必要に応じて水洗し、乾燥することに
より高純度の炭酸カルシウム粉末が得られる。上述の操
作に従って、ナトリウム、カリウム及び塩素の含有割合
が概して100ppm 以下、20ppm 以下、50ppm 以下
の炭酸カルシウム粉末が得られる。
After the elution treatment of the metal and the halogen, the shell powder separated from the water is optionally washed with water and dried to obtain a high-purity calcium carbonate powder. According to the above operation, calcium carbonate powder having a content ratio of sodium, potassium and chlorine of generally 100 ppm or less, 20 ppm or less, and 50 ppm or less is obtained.

【0025】前述の有機質の分解処理中に貝殻中の金属
及びハロゲンの一部は酸の水溶液に溶出する。特に金属
は溶出し易い。従って、有機質の分解処理を加圧下で行
うようにすると、有機質の分解と同時に金属及びハロゲ
ンの溶出も促進される。従って、有機質の分解と金属及
びハロゲンの溶出を1つの操作で達成することも可能で
ある。但し、ハロゲンについては酸性水より中性水を用
いる方が貝殻中のハロゲンを低濃度まで減少させること
ができ、又、酸性溶液を加圧下で加熱すると装置の耐久
性等の負担が大きいので、炭酸カルシウム材に求められ
る品質等に応じて適宜プロセス設計を変形すればよい。
During the above-mentioned organic decomposition treatment, some of the metals and halogens in the shell elute into the aqueous acid solution. In particular, metals are easily eluted. Therefore, when the organic decomposition treatment is performed under pressure, the elution of metal and halogen is promoted simultaneously with the decomposition of the organic substance. Therefore, decomposition of organic matter and elution of metal and halogen can be achieved in one operation. However, as for halogen, it is possible to reduce the halogen in the shell to a low concentration by using neutral water rather than acidic water, and when the acidic solution is heated under pressure, the load such as the durability of the apparatus is large. The process design may be appropriately modified according to the quality and the like required for the calcium carbonate material.

【0026】有機質の分解・溶出と金属及びハロゲンの
溶出を可能とするもう1つの手段として、超臨界水を用
いた処理がある。貝殻粉を超臨界水に接触させることに
より、有機質の加水分解・溶出が進行し、それに伴って
金属及びハロゲンも溶出する。
As another means capable of decomposing and eluting organic substances and eluting metals and halogens, there is a treatment using supercritical water. By bringing the shell powder into contact with supercritical water, hydrolysis and elution of organic substances progress, and along with that, metals and halogens elute.

【0027】本発明に従って貝殻を資源化する方法の好
適な実施形態の一例を示すと、例えば図1のようにな
る。
FIG. 1 shows an example of a preferred embodiment of the method for recycling shells according to the present invention.

【0028】図1において、貝肉を除去した貝殻Sは、
100〜200メッシュ程度の大きさに粉砕し(粉砕工
程1)、ブロモホルム・エタノールの重液を用いる比重
分離等に従って殻皮層S1、角柱層S2及び真珠層S3
に分別する(分別工程2)。次に、分別した角柱層S2
及び真珠層S3に分解液として酸水溶液Aを加えて貝殻
中のコンキオリンを含むタンパク質等の有機質を分解す
る(分解工程3)。アミノ酸等を含む有機質の分解物は
酸水溶液Aに溶出し、分解物を含んだ酸水溶液A’を角
柱層S2及び真珠層S3から分離する(分離工程4)こ
とによって有機質の分解物は除去される。この後、真珠
層S3に水Wを加えて加熱して金属及びハロゲンの水へ
の溶出させる(溶出工程5)。金属及びハロゲンを含有
する水W’を真珠層S3から分離し(分離工程6)、角
柱層S2と併せて必要に応じて水洗(水洗工程7)した
後、乾燥する(乾燥工程8)ことにより、高純度の炭酸
カルシウム粉末Cが得られる。
In FIG. 1, the shell S from which the shell meat has been removed is
Pulverize to a size of about 100 to 200 mesh (pulverization step 1), and according to specific gravity separation using a heavy solution of bromoform / ethanol, etc., the shell layer S1, the prism layer S2, and the pearl layer S3
(Separation step 2). Next, the separated prism layer S2
An acid aqueous solution A is added to the nacre S3 as a decomposing solution to decompose organic substances such as proteins containing conchiolin in the shell (decomposition step 3). The organic decomposition products containing amino acids and the like are eluted in the aqueous acid solution A, and the organic decomposition products are removed by separating the aqueous acid solution A ′ containing the decomposition products from the prismatic layer S2 and the nacre layer S3 (separation step 4). You. Thereafter, water W is added to the nacre S3 and heated to elute metals and halogens into water (elution step 5). The water W ′ containing metal and halogen is separated from the mother-of-pearl layer S3 (separation step 6), washed with water as needed together with the prismatic layer S2 (washing step 7), and then dried (drying step 8). Thus, a highly pure calcium carbonate powder C is obtained.

【0029】貝殻を用いた炭酸カルシウム材の製造は、
上述の方法に従って、貝殻を粉砕するための粉砕器と、
貝殻粉を殻皮層部分と角柱層部分と真珠層部分とに分別
するための分別槽と、貝殻粉の有機質を分解するための
分解槽と、貝殻粉から金属及びハロゲンを溶出させるた
めの溶出槽と、貝殻粉を乾燥させる乾燥器とを有する処
理装置を用いて行うことができる。分解槽には分解に用
いる分解液を貯蔵する分解液容器及び分解処理後の貝殻
粉と分解液とを分離する分離装置が備えられ、溶出槽に
は水を貯蔵する容器が付設される。必要に応じて行う貝
殻粉の洗浄処理は、分解槽及び溶出槽を用いて行うこと
ができる。
Production of calcium carbonate material using shells is as follows.
A crusher for crushing the shell according to the method described above,
A separation tank for separating shell powder into shell layers, prism layers, and nacre layers, a decomposition tank for decomposing organic matter in shell powder, and an elution tank for eluting metals and halogens from shell powder. And a drying device for drying the shell powder. The decomposition tank is provided with a decomposition liquid container for storing the decomposition liquid used for decomposition and a separation device for separating the shell powder and the decomposition liquid after the decomposition treatment, and the elution tank is provided with a container for storing water. The washing treatment of the shell powder, which is performed as necessary, can be performed using a decomposition tank and an elution tank.

【0030】上記の処理装置が貝殻の新たな汚染源とな
ることを回避するために、各槽、貯蔵容器、分離装置等
は、例えばテフロンや合成石英等の不純物が溶出しない
材質で製造もしくはコーティングしたものを用いるのが
望ましく、また、処理環境の汚染に注意を払う必要があ
る。
In order to avoid the above-mentioned processing apparatus from becoming a new source of contamination of the shell, each tank, storage vessel, separation apparatus and the like were manufactured or coated with a material from which impurities such as Teflon and synthetic quartz do not elute. It is desirable to use one and care must be taken to contaminate the processing environment.

【0031】本発明において被処理体となる貝は種類を
いとわず、上述の方法を適宜応用・変形して貝の資源化
に適用することができる。
In the present invention, the shellfish to be treated is not limited to any kind, and the above-mentioned method can be applied and modified as appropriate to apply to the recycling of shellfish.

【0032】[0032]

【実施例】以下、実施例を参照して本発明を更に説明す
る。
The present invention will be further described below with reference to examples.

【0033】(試料調製)発電所の取水路で採取したム
ラサキイガイを貝殻と貝肉とに分離し、貝殻を100〜
200メッシュに粉砕した。
(Preparation of Sample) The mussel collected in the intake channel of the power plant was separated into shells and shell meat, and
Crushed to 200 mesh.

【0034】この貝殻粉中のNaの濃度をフレーム原子
吸光装置によって、Clの濃度をイオンクロマトグラフ
装置を用いて測定したところ、Na:3200ppm 、C
l:470ppm であった。又、貝殻粉を白金ルツボに投
入して700℃で灰化処理し、灰化処理前後の重量変化
から貝殻粉中の有機質含有率P0 を算出したところ、2
0wt%であった。
When the concentration of Na in the shell powder was measured by a flame atomic absorption spectrometer and the concentration of Cl using an ion chromatograph, Na: 3200 ppm, C
l: 470 ppm. The shell powder was put into a platinum crucible and incinerated at 700 ° C., and the organic content P 0 in the shell powder was calculated from the weight change before and after the incineration.
It was 0 wt%.

【0035】(実施例1a)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、0.05wt%酢酸水溶
液10kgを投入して50℃に7日間加熱した。その後、
テフロン製フィルターを用いて貝殻粉から酢酸水溶液を
除去し、純水で洗浄して50℃で2日間乾燥し、貝殻粉
3.9kgを得た。得られた貝殻粉中のNa及びClの濃
度をフレーム原子吸光装置及びイオンクロマトグラフ装
置を用いて測定したところ、Na:25ppm 、Cl:1
50ppm と大幅に減少していた。又、処理後の貝殻粉を
白金ルツボに投入して700℃で灰化処理し、灰化処理
前後の重量変化から貝殻粉の残存有機質含有率Pを算出
し、有機質除去率[%]:100×(P0 −P)/P0
を計算した結果を表1に示す。
(Example 1a) 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, and 10 kg of a 0.05 wt% acetic acid aqueous solution was charged and heated to 50 ° C. for 7 days. afterwards,
The acetic acid aqueous solution was removed from the shell powder using a Teflon filter, washed with pure water, and dried at 50 ° C. for 2 days to obtain 3.9 kg of shell powder. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, Na: 25 ppm, Cl: 1.
It was greatly reduced to 50 ppm. Further, the shell powder after the treatment is put into a platinum crucible and incinerated at 700 ° C., the residual organic content P of the shell powder is calculated from the weight change before and after the incineration, and the organic matter removal rate [%]: 100 × (P 0 −P) / P 0
Is shown in Table 1.

【0036】(実施例1b)酢酸水溶液の濃度を0.0
01wt%に変えたこと以外は実施例1aと同様の処理操
作を繰り返し、処理後の貝殻粉4.5kgを得た。貝殻粉
中のNa及びClの濃度並びに有機質除去率を同様に測
定した結果を表1に示す。
(Example 1b) The concentration of acetic acid aqueous solution was adjusted to 0.0
The same processing operation as in Example 1a was repeated except that the amount was changed to 01% by weight, to obtain 4.5 kg of shell powder after the processing. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0037】(実施例1c)酢酸水溶液の加熱時間を1
日間に変えたこと以外は実施例1aと同様の処理操作を
繰り返し、処理後の貝殻粉4.8kgを得た。貝殻粉中の
Na及びClの濃度並びに有機質除去率を同様に測定し
た結果を表1に示す。
(Example 1c) The heating time of the acetic acid aqueous solution was 1
The same procedure as in Example 1a was repeated, except that the period was changed to days, to obtain 4.8 kg of shell powder after the treatment. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0038】(実施例1d)酢酸水溶液の加熱時間を1
日間に変えたこと以外は実施例1aと同様の処理操作を
繰り返し、処理後の貝殻粉4.5kgを得た。貝殻粉中の
Na及びClの濃度並びに有機質除去率を同様に測定し
た結果を表1に示す。
(Example 1d) The heating time of the acetic acid aqueous solution was 1
The same treatment operation as in Example 1a was repeated except that the period was changed to days, to obtain 4.5 kg of shell powder after the treatment. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0039】(実施例1e)酢酸水溶液の温度を7日間
20℃に保持したこと以外は実施例1aと同様の処理操
作を繰り返し、処理後の貝殻粉4.6kgを得た。貝殻粉
中のNa及びClの濃度並びに有機質除去率を同様に測
定した結果を表1に示す。
Example 1e The same treatment as in Example 1a was repeated except that the temperature of the acetic acid aqueous solution was kept at 20 ° C. for 7 days to obtain 4.6 kg of shell powder after the treatment. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0040】(実施例1f)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、0.05wt%酢酸水溶
液10kgを投入して50℃に7日間加熱した。その後、
テフロン製フィルターを用いて貝殻粉から酢酸水溶液を
除去し、貝殻粉に純水1リットルを加えてオートクレー
ブ(ゲージ圧4.7atm )中で100℃に3時間加熱し
た。この後、貝殻粉を水から分離し、更に純水で洗浄し
て50℃で2日間乾燥し、貝殻粉4.2kgを得た。得ら
れた貝殻粉中のNa及びClの濃度をフレーム原子吸光
装置及びイオンクロマトグラフ装置を用いて測定したと
ころ、Na:120ppm 、Cl:45ppm と大幅に減少
していた。又、処理後の貝殻粉を白金ルツボに投入して
700℃で灰化処理し、同様に有機質除去率を計算した
結果を表1に示す。
(Example 1f) 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, and 10 kg of a 0.05 wt% acetic acid aqueous solution was charged and heated to 50 ° C. for 7 days. afterwards,
The acetic acid aqueous solution was removed from the shell powder using a Teflon filter, and 1 liter of pure water was added to the shell powder, followed by heating at 100 ° C. for 3 hours in an autoclave (gauge pressure: 4.7 atm). Thereafter, the shell powder was separated from water, washed with pure water and dried at 50 ° C. for 2 days to obtain 4.2 kg of shell powder. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, it was found to be greatly reduced to 120 ppm Na and 45 ppm Cl. Further, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., and the result of calculating the organic matter removal rate in the same manner is shown in Table 1.

【0041】(実施例1g)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、0.05wt%酢酸水溶
液10kgを投入して50℃に7日間加熱した。その後、
テフロン製フィルターを用いて貝殻粉から酢酸水溶液を
除去し、貝殻粉に純水1リットルを加えて大気圧で10
0℃に3時間加熱還流した。この後、貝殻粉を水から分
離し、更に純水で洗浄して50℃で2日間乾燥し、貝殻
粉4.6kgを得た。得られた貝殻粉中のNa及びClの
濃度をフレーム原子吸光装置及びイオンクロマトグラフ
装置を用いて測定したところ、Na:180ppm 、C
l:100ppm であった。又、処理後の貝殻粉を白金ル
ツボに投入して700℃で灰化処理し、同様に有機質除
去率を計算した結果を表1に示す。
Example 1g 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, and 10 kg of a 0.05 wt% acetic acid aqueous solution was charged and heated to 50 ° C. for 7 days. afterwards,
Remove the acetic acid aqueous solution from the shell powder using a Teflon filter, add 1 liter of pure water to the shell powder, and add
The mixture was heated to reflux at 0 ° C. for 3 hours. Thereafter, the shell powder was separated from water, washed with pure water, and dried at 50 ° C. for 2 days to obtain 4.6 kg of shell powder. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, Na: 180 ppm, C
l: 100 ppm. Further, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., and the result of calculating the organic matter removal rate in the same manner is shown in Table 1.

【0042】(実施例1h)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、0.05wt%酢酸水溶
液10kgを投入して50℃に7日間加熱した。その後、
テフロン製フィルターを用いて貝殻粉から酢酸水溶液を
除去し、貝殻粉に純水1リットルを加えて大気圧で50
℃に3時間加熱した。この後、貝殻粉を水から分離し、
更に純水で洗浄して50℃で2日間乾燥し、貝殻粉4.
7kgを得た。得られた貝殻粉中のNa及びClの濃度を
フレーム原子吸光装置及びイオンクロマトグラフ装置を
用いて測定したところ、Na:200ppm 、Cl:12
0ppm であった。又、処理後の貝殻粉を白金ルツボに投
入して700℃で灰化処理し、同様に有機質除去率を計
算した結果を表1に示す。
Example 1h 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, 10 kg of a 0.05 wt% acetic acid aqueous solution was charged, and heated at 50 ° C. for 7 days. afterwards,
The acetic acid aqueous solution is removed from the shell powder using a Teflon filter, and 1 liter of pure water is added to the shell powder and the pressure is reduced to 50 at atmospheric pressure.
Heated to 3 ° C for 3 hours. After this, the shell powder is separated from the water,
3. Wash with pure water and dry at 50 ° C. for 2 days;
7 kg were obtained. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, Na: 200 ppm, Cl: 12
It was 0 ppm. Further, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., and the result of calculating the organic matter removal rate in the same manner is shown in Table 1.

【0043】(実施例2a)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、0.05wt%硝酸水溶
液10kgを投入して50℃に7日間加熱した。その後、
テフロン製フィルターを用いて貝殻粉から硝酸水溶液を
除去し、純水で洗浄して50℃で2日間乾燥し、貝殻粉
4.6kgを得た。得られた貝殻粉中のNa及びClの濃
度をフレーム原子吸光装置及びイオンクロマトグラフ装
置を用いて測定したところ、Na:300ppm 、Cl:
350ppm であった。又、処理後の貝殻粉を白金ルツボ
に投入して700℃で灰化処理し、灰化処理前後の重量
変化から貝殻粉の残存有機質含有率を算出し、有機質除
去率を計算した結果を表1に示す。
(Example 2a) 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, and 10 kg of a 0.05 wt% nitric acid aqueous solution was charged and heated to 50 ° C. for 7 days. afterwards,
The nitric acid aqueous solution was removed from the shell powder using a Teflon filter, washed with pure water, and dried at 50 ° C. for 2 days to obtain 4.6 kg of shell powder. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, Na: 300 ppm, Cl:
It was 350 ppm. In addition, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., the residual organic matter content of the shell powder was calculated from the weight change before and after the incineration processing, and the result of calculating the organic matter removal rate was shown. It is shown in FIG.

【0044】(実施例2b)硝酸水溶液の濃度を0.0
01wt%に変えたこと以外は実施例1aと同様の処理操
作を繰り返し、処理後の貝殻粉4.8kgを得た。貝殻粉
中のNa及びClの濃度並びに有機質除去率を同様に測
定した結果を表1に示す。
(Example 2b) The concentration of the aqueous nitric acid solution was set to 0.0
The same treatment operation as in Example 1a was repeated except that the amount was changed to 01% by weight, and 4.8 kg of shell powder after the treatment was obtained. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0045】(実施例2c)硝酸水溶液の加熱時間を1
日間に変えたこと以外は実施例1aと同様の処理操作を
繰り返し、処理後の貝殻粉4.8kgを得た。貝殻粉中の
Na及びClの濃度並びに有機質除去率を同様に測定し
た結果を表1に示す。
Example 2c The heating time of the aqueous nitric acid solution was 1
The same procedure as in Example 1a was repeated, except that the period was changed to days, to obtain 4.8 kg of shell powder after the treatment. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0046】(実施例2d)硝酸水溶液の加熱時間を1
日間に変えたこと以外は実施例1aと同様の処理操作を
繰り返し、処理後の貝殻粉4.9kgを得た。貝殻粉中の
Na及びClの濃度並びに有機質除去率を同様に測定し
た結果を表1に示す。
Example 2d The heating time of the aqueous nitric acid solution was 1
The same treatment operation as in Example 1a was repeated, except that the number of days was changed to days, to obtain 4.9 kg of treated shell powder. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0047】(実施例2e)硝酸水溶液の温度を7日間
20℃に保持したこと以外は実施例1aと同様の処理操
作を繰り返し、処理後の貝殻粉4.7kgを得た。貝殻粉
中のNa及びClの濃度並びに有機質除去率を同様に測
定した結果を表1に示す。
(Example 2e) The same treatment as in Example 1a was repeated except that the temperature of the aqueous nitric acid solution was kept at 20 ° C. for 7 days to obtain 4.7 kg of shell powder after the treatment. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0048】(実施例2f)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、0.05wt%硝酸水溶
液10kgを投入して50℃に7日間加熱した。その後、
テフロン製フィルターを用いて貝殻粉から硝酸水溶液を
除去し、貝殻粉に純水1リットルを加えてオートクレー
ブ(ゲージ圧4.7atm )中で100℃に3時間加熱し
た。この後、貝殻粉を水から分離し、更に純水で洗浄し
て50℃で2日間乾燥し、貝殻粉4.4kgを得た。得ら
れた貝殻粉中のNa及びClの濃度をフレーム原子吸光
装置及びイオンクロマトグラフ装置を用いて測定したと
ころ、Na:220ppm 、Cl:120ppm と大幅に減
少していた。又、処理後の貝殻粉を白金ルツボに投入し
て700℃で灰化処理し、同様に有機質除去率を計算し
た結果を表1に示す。
(Example 2f) 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, 10 kg of a 0.05 wt% aqueous nitric acid solution was charged, and heated to 50 ° C. for 7 days. afterwards,
The nitric acid aqueous solution was removed from the shell powder using a Teflon filter, 1 liter of pure water was added to the shell powder, and the shell powder was heated to 100 ° C. for 3 hours in an autoclave (gauge pressure: 4.7 atm). Thereafter, the shell powder was separated from water, further washed with pure water, and dried at 50 ° C. for 2 days to obtain 4.4 kg of shell powder. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, it was found to be greatly reduced to 220 ppm for Na and 120 ppm for Cl. Further, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., and the result of calculating the organic matter removal rate in the same manner is shown in Table 1.

【0049】(実施例3a)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、純水10kgを投入して
大気圧下で100℃に7日間加熱還流した。その後、更
に、オートクレーブ(ゲージ圧4.7atm )中で100
℃に3時間加熱した。この後、貝殻粉を水から分離し、
更に純水で洗浄して50℃で2日間乾燥し、貝殻粉4.
9kgを得た。得られた貝殻粉中のNa及びClの濃度を
フレーム原子吸光装置及びイオンクロマトグラフ装置を
用いて測定したところ、Na:1300ppm 、Cl:1
00ppm であった。又、処理後の貝殻粉を白金ルツボに
投入して700℃で灰化処理し、同様に有機質除去率を
計算した結果を表1に示す。
(Example 3a) 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, 10 kg of pure water was charged, and the mixture was heated and refluxed at 100 ° C. under atmospheric pressure for 7 days. Then, it is further put in an autoclave (gauge pressure 4.7 atm) for 100
Heated to 3 ° C for 3 hours. After this, the shell powder is separated from the water,
3. Wash with pure water and dry at 50 ° C. for 2 days;
9 kg were obtained. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, Na: 1300 ppm, Cl: 1
It was 00 ppm. Further, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., and the result of calculating the organic matter removal rate in the same manner is shown in Table 1.

【0050】(実施例3b)試料調製において得た貝殻
粉5kgをテフロン容器に収容し、純水10kgを投入して
大気圧下で7日間水温を20℃に保持した。その後、貝
殻粉を水から分離し、更に純水で洗浄して50℃で2日
間乾燥し、貝殻粉4.9kgを得た。得られた貝殻粉中の
Na及びClの濃度をフレーム原子吸光装置及びイオン
クロマトグラフ装置を用いて測定したところ、Na:2
400ppm 、Cl:120ppm であった。又、処理後の
貝殻粉を白金ルツボに投入して700℃で灰化処理し、
同様に有機質除去率を計算した結果を表1に示す。
(Example 3b) 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, 10 kg of pure water was charged, and the water temperature was maintained at 20 ° C. under atmospheric pressure for 7 days. Thereafter, the shell powder was separated from water, washed with pure water, and dried at 50 ° C. for 2 days to obtain 4.9 kg of shell powder. When the concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph, Na: 2 was obtained.
400 ppm, Cl: 120 ppm. Also, the shell powder after the treatment is put into a platinum crucible and incinerated at 700 ° C.
Table 1 shows the results of calculating the organic matter removal rate in the same manner.

【0051】(実施例3c)大気圧下で100℃に加熱
還流する期間を3日間に変更したこと以外は実施例3a
と同様の操作を繰り返し、処理後の貝殻粉4.9kgを得
た。貝殻粉中のNa及びClの濃度並びに有機質除去率
を同様に測定した結果を表1に示す。
Example 3c Example 3a except that the period of heating to reflux at 100 ° C. under atmospheric pressure was changed to 3 days.
The same operation as described above was repeated to obtain 4.9 kg of the treated shell powder. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0052】(実施例3d)大気圧下で100℃に加熱
還流する期間を1日間に変更したこと以外は実施例3a
と同様の操作を繰り返し、処理後の貝殻粉4.9kgを得
た。貝殻粉中のNa及びClの濃度並びに有機質除去率
を同様に測定した結果を表1に示す。
Example 3d Example 3a except that the period of heating to reflux at 100 ° C. under atmospheric pressure was changed to one day.
The same operation as described above was repeated to obtain 4.9 kg of the treated shell powder. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0053】(実施例3e)貝殻粉を浸した水の温度を
20に保持する期間を1日間に変更したこと以外は実施
例3bと同様の操作を繰り返し、処理後の貝殻粉4.9
kgを得た。貝殻粉中のNa及びClの濃度並びに有機質
除去率を同様に測定した結果を表1に示す。 (実施例3f)試料調製において得た貝殻粉5kgをテフ
ロン容器に収容し、純水10kgを投入して大気圧下で1
00℃に7日間加熱還流した。その後、貝殻粉を水から
分離し、更に純水で洗浄して50℃で2日間乾燥し、貝
殻粉4.8kgを得た。得られた貝殻粉中のNa及びCl
の濃度をフレーム原子吸光装置及びイオンクロマトグラ
フ装置を用いて測定したところ、Na:1800ppm 、
Cl:100ppm であった。又、処理後の貝殻粉を白金
ルツボに投入して700℃で灰化処理し、同様に有機質
除去率を計算した結果を表1に示す。
(Example 3e) The same operation as in Example 3b was repeated except that the period during which the temperature of the water in which the shell powder was soaked was maintained at 20 was changed to one day, and the shell powder after the treatment was 4.9.
kg gained. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate. (Example 3f) 5 kg of the shell powder obtained in the sample preparation was placed in a Teflon container, and 10 kg of pure water was added thereto.
The mixture was heated to reflux at 00 ° C. for 7 days. Thereafter, the shell powder was separated from water, further washed with pure water, and dried at 50 ° C. for 2 days to obtain 4.8 kg of shell powder. Na and Cl in the obtained shell powder
Was measured using a flame atomic absorption apparatus and an ion chromatograph apparatus.
Cl: 100 ppm. Further, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., and the result of calculating the organic matter removal rate in the same manner is shown in Table 1.

【0054】(実施例4a)分解反応器の純水10kgに
貝殻粉5kgを投入し、反応温度を673K、反応圧力を
30MPa、反応時間を30分に設定して水を超臨界状
態に調整し、この状態で30分間処理を行った。その
後、貝殻粉を水から分離し、更に純水で洗浄して50℃
で2日間乾燥し、貝殻粉3.8kgを得た。得られた貝殻
粉中のNa及びClの濃度をフレーム原子吸光装置及び
イオンクロマトグラフ装置を用いて測定したところ、N
a:230ppm 、Cl:43ppm であった。又、処理後
の貝殻粉を白金ルツボに投入して700℃で灰化処理
し、同様に有機質除去率を計算した結果を表1に示す。
(Example 4a) 5 kg of shell powder was put into 10 kg of pure water in a decomposition reactor, the reaction temperature was set to 673 K, the reaction pressure was set to 30 MPa, and the reaction time was set to 30 minutes to adjust the water to a supercritical state. In this state, the treatment was performed for 30 minutes. Then, the shell powder is separated from the water, washed with pure water, and then heated to 50 ° C.
For 2 days to obtain 3.8 kg of shell powder. The concentrations of Na and Cl in the obtained shell powder were measured using a flame atomic absorption spectrometer and an ion chromatograph.
a: 230 ppm and Cl: 43 ppm. Further, the shell powder after the treatment was put into a platinum crucible, incinerated at 700 ° C., and the result of calculating the organic matter removal rate in the same manner is shown in Table 1.

【0055】(実施例4b)超臨界状態に維持した期間
を3日に変更したこと以外は実施例4aと同様の処理操
作を繰り返し、処理後の貝殻粉3.8kgを得た。貝殻粉
中のNa及びClの濃度並びに有機質除去率を同様に測
定した結果を表1に示す。
Example 4b The same processing operation as in Example 4a was repeated except that the period of maintaining the supercritical state was changed to 3 days, to obtain 3.8 kg of shell powder after the processing. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0056】(実施例4c)超臨界状態に維持した期間
を1日に変更したこと以外は実施例4aと同様の処理操
作を繰り返し、処理後の貝殻粉3.8kgを得た。貝殻粉
中のNa及びClの濃度並びに有機質除去率を同様に測
定した結果を表1に示す。
(Example 4c) The same processing operation as in Example 4a was repeated except that the period of maintaining the supercritical state was changed to one day, to obtain 3.8 kg of shell powder after the processing. Table 1 shows the results of similarly measuring the concentrations of Na and Cl in the shell powder and the organic matter removal rate.

【0057】[0057]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 分解液 分解処理 溶出処理 処理貝殻粉 有機質 酸 濃度 時間 温度 温度 圧力 中濃度(ppm) 除去率 (wt%)(日)(℃) (℃) Na Cl (%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (処理前) 3200 470 - 実施例1a 酢酸 0.05 7 50 - - 250 150 97 実施例1b 酢酸 0.001 7 50 - - 1500 320 31 実施例1c 酢酸 0.05 1 50 - - 2700 400 18 実施例1d 酢酸 0.05 3 50 - - 1300 360 35 実施例1e 酢酸 0.05 7 20 - - 1000 350 60 実施例1f 酢酸 0.05 7 50 100 加圧 120 45 98 実施例1g 酢酸 0.05 7 50 100 常圧 180 100 81 実施例1h 酢酸 0.05 7 50 20 常圧 200 120 75 実施例2a 硝酸 0.05 7 50 - - 300 350 70 実施例2b 硝酸 0.001 7 50 - - 1700 370 32 実施例2c 硝酸 0.05 1 50 - - 3000 450 29 実施例2d 硝酸 0.05 3 50 - - 1200 420 38 実施例2e 硝酸 0.05 7 20 - - 1100 380 58 実施例2f 硝酸 0.05 7 50 100 加圧 220 120 78 実施例3a - - 7 100 100 加圧 1300 100 3 実施例3b - - 7 20 - - 2400 120 3 実施例3c - - 3 100 100 加圧 2200 190 1 実施例3d - - 1 100 100 加圧 2800 360 1 実施例3e - - 1 20 - - 3000 380 1 実施例3f - - 7 100 - - 1800 100 2 実施例4a 超臨界水 7 400 - - 230 43 98 実施例4b 超臨界水 3 400 - - 240 50 97 実施例4c 超臨界水 1 400 - - 300 55 89 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 上記の結果から理解されるように、分解液の酸の種類や
濃度、処理時間、処理温度によって有機質の除去率が変
化する。又、金属及びハロゲンの溶出については、加熱
及び加圧によって溶出効率が向上するが、有機質の除去
が行われていないと、特にナトリウム等の金属の溶出が
抑制される。ハロゲンの溶出については中性水の使用が
適しており、酸水溶液による有機質の分解処理後に貝殻
粉を中性水と接触させることによりハロゲンは貝殻粉か
ら効果的に除去される。
[Table 1]--------------------------------------------------------------- Concentration Time Temperature Temperature Pressure Medium concentration (ppm) Removal rate (wt%) (days) (° C) (° C) NaCl (%)--------------------- −−−−−−−−−−−−−−−− (before treatment) 3200 470-Example 1a Acetic acid 0.05 7 50--250 150 97 Example 1b Acetic acid 0.001 7 50--1500 320 31 Example 1c Acetic acid 0.05 1 50--2700 400 18 Example 1d acetic acid 0.05 3 50--1300 360 35 Example 1e acetic acid 0.05 7 20--1000 350 60 Example 1f acetic acid 0.05 7 50 100 Pressurized 120 45 98 Example 1g acetic acid 0.05 7 50 100 Normal pressure 180 100 81 Example 1h Acetic acid 0.05 7 50 20 Normal pressure 200 120 75 Example 2a Nitric acid 0.05 7 50--300 350 70 Example 2b Nitric acid 0.001 7 50--1700 370 32 Example 2c Nitric acid 0.05 1 50--3000 450 29 Actual Example 2d Nitric acid 0.05 3 50--1200 420 38 Example 2e Nitric acid 0.05 7 20--1100 380 58 Example 2f Nitric acid 0.05 7 50 100 Pressurized 220 120 78 Example 3a--7 100 100 Pressurized 1300 100 3 Example 3b--7 20--2400 120 3 Example 3c--3 100 100 Pressurization 2200 190 1 Example 3d--1 100 100 Pressurization 2800 360 1 Example 3e--1 20--3000 380 1 Example 3f--7 100--1800 100 2 Example 4a Supercritical water 7 400--230 43 98 Example 4b Supercritical water 3 400--240 50 97 Example 4c Supercritical water 1 400--300 55 89 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− The removal rate of organic matter varies depending on the type, concentration, processing time, and processing temperature. For the elution of metals and halogens, the elution efficiency is improved by heating and pressurizing, but if organic matter is not removed, the elution of metals such as sodium is suppressed. For the elution of the halogen, the use of neutral water is suitable. The halogen is effectively removed from the shell powder by bringing the shell powder into contact with neutral water after the organic substance is decomposed by an aqueous acid solution.

【0058】[0058]

【発明の効果】以上のように本発明の貝殻の資源化方法
によれば、取水設備等から採取される貝を用いて、セメ
ント原料や脱硫剤等として使用可能な高純度の炭酸カル
シウム資材を調製することができるので、廃棄物による
埋め立て用地や処理装置の必要度合を格段に低減でき、
廃棄物の有効利用が実現されるので、その工業及び環境
保護における価値は大である。
As described above, according to the method for recycling a shell according to the present invention, a high-purity calcium carbonate material that can be used as a cement raw material, a desulfurizing agent, or the like can be obtained using shellfish collected from a water intake facility or the like. Because it can be prepared, the need for landfill sites and disposal equipment by waste can be significantly reduced,
Its value in industrial and environmental protection is great because the effective use of waste is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の貝殻の資源化方法の一実施形態を示す
フローチャートである。
FIG. 1 is a flowchart showing one embodiment of a method for recycling a shell according to the present invention.

【符号の説明】[Explanation of symbols]

1 粉砕工程 2 分別工程 3 分解工程 4 分離工程 5 溶出工程 6 分離工程 7 水洗工程 8 乾燥工程 DESCRIPTION OF SYMBOLS 1 Crushing process 2 Separation process 3 Decomposition process 4 Separation process 5 Elution process 6 Separation process 7 Rinsing process 8 Drying process

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 貝殻を貝殻粉に粉砕する粉砕工程と、酸
を含有する水に該貝殻粉を浸して貝殻粉中の有機質を分
解する分解工程と、分解された有機質を該貝殻粉から分
離して炭酸カルシウムを主成分とする粉末を得る分離工
程とを有することを特徴とする貝殻の資源化方法。
1. A crushing step of crushing shells into shell powder, a decomposition step of immersing the shell powder in water containing an acid to decompose organic substances in the shell powder, and separating the decomposed organic substances from the shell powder. And obtaining a powder containing calcium carbonate as a main component.
【請求項2】 更に、上記炭酸カルシウムを主成分とす
る粉末を加熱水に浸して金属及びハロゲンを該粉末から
加熱水に溶出させて精製炭酸カルシウム粉末を得る精製
工程を有することを特徴とする請求項1記載の貝殻の資
源化方法。
2. The method further comprises a step of immersing the powder containing calcium carbonate as a main component in heated water to elute metals and halogens from the powder into the heated water to obtain a purified calcium carbonate powder. A method for recycling shells according to claim 1.
JP19751597A 1997-07-23 1997-07-23 How to recycle shells Expired - Fee Related JP3565538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19751597A JP3565538B2 (en) 1997-07-23 1997-07-23 How to recycle shells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19751597A JP3565538B2 (en) 1997-07-23 1997-07-23 How to recycle shells

Publications (2)

Publication Number Publication Date
JPH1143324A true JPH1143324A (en) 1999-02-16
JP3565538B2 JP3565538B2 (en) 2004-09-15

Family

ID=16375755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19751597A Expired - Fee Related JP3565538B2 (en) 1997-07-23 1997-07-23 How to recycle shells

Country Status (1)

Country Link
JP (1) JP3565538B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354415A (en) * 2000-06-09 2001-12-25 Hokkaido Kyodo Sekkai Kk Method for manufacturing lightweight calcium carbonate
JP2002087815A (en) * 2000-09-12 2002-03-27 Hokkaido Kyodo Sekkai Kk Calcium carbonate powder and its manufacturing method
JP2005320190A (en) * 2004-05-07 2005-11-17 Hosooka Bio Hightech Kenkyusho:Kk Cement
JP2007063080A (en) * 2005-08-31 2007-03-15 Nippon Tennen Sozai Kk Highly dispersive calcium carbonate powder using shell as raw material and method for producing the same
JP5492335B1 (en) * 2013-08-08 2014-05-14 株式会社ケイ・アール・ジー Method for producing flocculant and flocculant
JP2017137215A (en) * 2016-02-04 2017-08-10 株式会社ビジネスサポートOjt Production method of calcium carbonate material
CN111019395A (en) * 2019-11-30 2020-04-17 泉州玺阅日化有限公司 Method for preparing superfine calcium carbonate from oyster shell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102383847B1 (en) * 2020-03-04 2022-04-06 한국화학연구원 Preparation method of desulfurizing agent for flue gas desulfurization using disposal oyster shell and desulfurization method of flue gas using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354415A (en) * 2000-06-09 2001-12-25 Hokkaido Kyodo Sekkai Kk Method for manufacturing lightweight calcium carbonate
JP2002087815A (en) * 2000-09-12 2002-03-27 Hokkaido Kyodo Sekkai Kk Calcium carbonate powder and its manufacturing method
JP2005320190A (en) * 2004-05-07 2005-11-17 Hosooka Bio Hightech Kenkyusho:Kk Cement
JP2007063080A (en) * 2005-08-31 2007-03-15 Nippon Tennen Sozai Kk Highly dispersive calcium carbonate powder using shell as raw material and method for producing the same
JP5492335B1 (en) * 2013-08-08 2014-05-14 株式会社ケイ・アール・ジー Method for producing flocculant and flocculant
JP2017137215A (en) * 2016-02-04 2017-08-10 株式会社ビジネスサポートOjt Production method of calcium carbonate material
CN111019395A (en) * 2019-11-30 2020-04-17 泉州玺阅日化有限公司 Method for preparing superfine calcium carbonate from oyster shell

Also Published As

Publication number Publication date
JP3565538B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US8987542B2 (en) Decontamination method and apparatus for solid-state material contaminated by radiocesium
ATE36089T1 (en) METHOD AND DEVICE FOR CLEANING RADIOACTIVE CONTAMINATED PLANT COMPONENTS.
JP3565538B2 (en) How to recycle shells
JP6009847B2 (en) Decontamination apparatus and decontamination method for solid matter contaminated with radioactive material
KR20110013992A (en) Volume reduction method and the method of preparation for clean aggregates from radioactive concrete wastes
JPS62502952A (en) Continuous chemical reduction and removal method of mineral substances contained in carbon structure
US4615794A (en) Method of removing radioactive waste from oil
DE2916203C2 (en)
DE19935560A1 (en) Manufacture of expansion graphite used for gasket, packing sheet, involves contacting sulfur trioxide gas generated from oleum and graphite followed by desorbing sulfur trioxide condensed gas from lamellar compound
US5520571A (en) System and method of removing contaminants from solid surfaces and decontaminating waste
JPH11156338A (en) Remedial method of contaminated soil
JP4495458B2 (en) Method and apparatus for the treatment of radioactive waste
TW548138B (en) A method for removing harmful ions in sand
CN108854944A (en) A kind of adsorbent and its application for handling uranium-containing waste water
WO1998024938A1 (en) Extraction of metals from heavy metal-bearing wastes
WO2002060817A1 (en) Gypsum decontamination process
AU2002249752A1 (en) Gypsum decontamination process
RU2664893C1 (en) Method for obtaining sorbent matrix material based on natural zeolite for immobilizing radionuclides
JPS59126297A (en) Method of processing incombustible solid waste
Zainal et al. Adsorption of Acid Dyes onto Zinc Chloride-Modified Cocoa (Theobroma cacao) Pod Husk-Based Carbon.
CN106929028A (en) The eluent of restoration of soil polluted by heavy metal
JPS5641284A (en) Use of crystalline schist such as sericite schist, chlorite schist, amphibole schist and chlorite-amphibole schist, as reinforcing material for composite material
RU97108770A (en) METHOD OF RE-USING CONTAMINATED CONCRETE
JP2002143825A (en) Method for treating pcb
KR20150090464A (en) Liquid Sericite Solution and Method of Removing Cesium from Contaminated Materials by the Same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20031204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

LAPS Cancellation because of no payment of annual fees