JP2001354415A - Method for manufacturing lightweight calcium carbonate - Google Patents

Method for manufacturing lightweight calcium carbonate

Info

Publication number
JP2001354415A
JP2001354415A JP2000172938A JP2000172938A JP2001354415A JP 2001354415 A JP2001354415 A JP 2001354415A JP 2000172938 A JP2000172938 A JP 2000172938A JP 2000172938 A JP2000172938 A JP 2000172938A JP 2001354415 A JP2001354415 A JP 2001354415A
Authority
JP
Japan
Prior art keywords
calcium carbonate
suspension
limestone
derived
quicklime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000172938A
Other languages
Japanese (ja)
Inventor
Takeshi Hirashima
剛 平島
Keiko Sasaki
圭子 笹木
Hironao Hirai
宏尚 平井
Yutaka Yamashita
豊 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAIDO KYODO SEKKAI KK
Original Assignee
HOKKAIDO KYODO SEKKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAIDO KYODO SEKKAI KK filed Critical HOKKAIDO KYODO SEKKAI KK
Priority to JP2000172938A priority Critical patent/JP2001354415A/en
Publication of JP2001354415A publication Critical patent/JP2001354415A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing lightweight calcium carbonate having almost equal functions, especially high Hunter whiteness, as those of high-quality crystalline limestone by using low-quality limestone which exists abundantly as a source material. SOLUTION: In the method for manufacturing lightweight calcium carbonate, carbonic acid gas is introduced into a suspension liquid consisting of quicklime or slaked lime obtained by calcining limestone, quicklime or slaked lime obtained by calcining shell, Mg2+ ion and water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、白色度が高い軽質
炭酸カルシウムの製造方法に関する。
The present invention relates to a method for producing light calcium carbonate having a high whiteness.

【0002】[0002]

【従来の技術】結晶質石灰石は、地質学的に条件の整っ
た場合に限られて生成しているため分布が非常に限られ
ており、国内では石灰石全体の数%程度しか賦存が見込
まれておらず、一般に小規模の鉱床を形成しているに過
ぎない。これに対し、結晶質石灰石以外の低品位石灰石
の賦存は、国内では石灰石全体の90%以上と極めて豊
富である。
2. Description of the Related Art The distribution of crystalline limestone is very limited because it is produced only when geological conditions are met. In Japan, only about several percent of limestone is expected to exist. And generally only form small deposits. In contrast, low-grade limestone other than crystalline limestone is extremely abundant in Japan, accounting for more than 90% of all limestone.

【0003】石灰石の主成分である炭酸カルシウムに
は、カルサイト、アラゴナイト、バテライトの3種の同
質異像、即ち3種の結晶系がある。
[0003] Calcium carbonate, which is the main component of limestone, has three types of polymorphs, namely, calcite, aragonite, and vaterite, that is, three types of crystal systems.

【0004】常温、1気圧ではカルサイトの方がアラゴ
ナイトより安定であり、準安定相であるアラゴナイトは
徐々にカルサイト化する。バテライトは天然に産出しな
い。アラゴナイトは、他の二種の炭酸カルシウムである
カルサイト、バテライトとは、結晶系、配位数が異な
り、比重、モース硬度が大きい。このような構造上の違
いのため、アラゴナイトは化学成分としては炭酸カルシ
ウムであるが、その性質はむしろ陽イオン半径のより大
きい炭酸ストロンチウムや炭酸バリウムに似通ってい
る。
At room temperature and 1 atm, calcite is more stable than aragonite, and aragonite, which is a metastable phase, gradually becomes calcite. Vaterite does not occur naturally. Aragonite has a different crystal system and coordination number from calcite and vaterite, which are the other two types of calcium carbonate, and has a large specific gravity and Mohs hardness. Because of these structural differences, aragonite is a chemical component of calcium carbonate, but its properties are more similar to strontium carbonate and barium carbonate, which have a larger cation radius.

【0005】炭酸カルシウムは、前記3種の何れの結晶
系においても、白色で、純水に難溶で、適度な比重を持
つなどの特徴から、ゴム、プラスチック、塗料の増量・
充填剤や製紙用塗工剤などの重要な工業原料として使用
されている。
[0005] In any of the three crystal systems, calcium carbonate is white, hardly soluble in pure water, and has an appropriate specific gravity.
It is used as an important industrial raw material such as fillers and papermaking coatings.

【0006】アラゴナイトは、上記のようにカルサイト
及びバテライトとは異なる構造及び性質を持っている。
このため上記の工業原料としての用途において、前記3
種の結晶系を持つ炭酸カルシウムのうちでも特にアラゴ
ナイト型炭酸カルシウムが、結晶質石灰石と同様に高機
能を付与できる。
Aragonite has a different structure and properties from calcite and vaterite, as described above.
For this reason, in the above-mentioned use as an industrial raw material,
Among calcium carbonates having various crystal systems, aragonite-type calcium carbonate can impart high functions similarly to crystalline limestone.

【0007】上記の結晶質石灰石は、X線回折のカルサ
イト由来のピークとアラゴナイト由来のピークとの強度
比で、具体的にはC104/A111で2以下であり、
従って実質的にアラゴナイト型炭酸カルシウムというこ
とができる。
The above crystalline limestone has an intensity ratio of a peak derived from calcite to a peak derived from aragonite in X-ray diffraction, specifically, C104 / A111 of 2 or less,
Therefore, it can be said that it is substantially aragonite-type calcium carbonate.

【0008】また、ハンター白色度が高い高品質結晶質
石灰石は、上記の結晶質石灰石の一部であって、更に小
規模の鉱床を形成しているに過ぎず、資源的に極めて限
られて産出する貴重な資源である。国内の結晶質石灰石
鉱山はいずれも小規模で内陸に立地しているため生産・
運搬コストが高く、遠距離への供給には適していない。
また、全体として鉱量的に枯渇傾向にある。以上述べた
ように、結晶質石灰石を得るには、特にハンター白色度
が高い高品質結晶質石灰石を得るには、種々の問題があ
る。
[0008] High-quality crystalline limestone having a high hunter whiteness is a part of the above-mentioned crystalline limestone and forms only a small-scale ore deposit, and is extremely limited in resources. It is a valuable resource to produce. All of the domestic crystalline limestone mines are small and located inland,
High transportation cost and not suitable for long distance supply.
In addition, there is a tendency for ore depletion as a whole. As described above, there are various problems in obtaining crystalline limestone, particularly in obtaining high-quality crystalline limestone having high Hunter whiteness.

【0009】上記した3種の結晶系において、アラゴナ
イト型炭酸カルシウムは、工業原料として用いる場合、
結晶質石灰石と同様に、更に高機能を付与できる。ま
た、合成系の炭酸カルシウム即ち軽質炭酸カルシウム
は、天然系の炭酸カルシウム即ち重質炭酸カルシウムと
比べて、工業原料に適した機能を付与できる適用範囲が
広い。このため、アラゴナイト型炭酸カルシウムは、軽
質炭酸カルシウムとして従来より工業的に製造すること
が試みられている。
In the above three crystal systems, aragonite-type calcium carbonate is used as an industrial raw material when:
As with crystalline limestone, higher functions can be provided. In addition, synthetic calcium carbonate, that is, light calcium carbonate, has a wider application range in which a function suitable for industrial raw materials can be imparted than natural calcium carbonate, that is, heavy calcium carbonate. For this reason, aragonite-type calcium carbonate has been attempted to be manufactured industrially as light calcium carbonate.

【0010】しかし、既往の研究によれば、80℃以下
では特に常温では高純度のアラゴナイト型炭酸カルシウ
ムを合成できないという問題がある。
However, according to previous studies, there is a problem that high-purity aragonite-type calcium carbonate cannot be synthesized at 80 ° C. or lower, especially at room temperature.

【0011】[0011]

【発明が解決しようとする課題】本発明者らの属する研
究開発グループは常温においてアラゴナイト型炭酸カル
シウムを得るために種々検討した。そして、貝殻を粉砕
して焼成することにより有機物を除去して得られる酸化
カルシウムを主成分とする焼成物を出発物質とし、Mg
2+イオンをカルサイト型炭酸カルシウム成長の抑制剤と
して用いて、水溶液系で軽質炭酸カルシウムを製造する
方法によれば、常温において高純度のアラゴナイト型炭
酸カルシウムが得られることを見出し、先に報告した
(笹木圭子:金属, Vol.68, No.9, P8
07(1998); 笹木圭子,恒川昌美:平成10年
度資源・素材学会秋季大会資料; 笹木圭子,本郷大,
恒川昌美:資源と素材, Vol.114, No.1
0, P715(1998))。
The research and development group to which the present inventors belong has made various studies to obtain aragonite-type calcium carbonate at room temperature. Then, the starting material is a calcined material containing calcium oxide as a main component, which is obtained by pulverizing and calcining the shell to remove organic substances, and
It was discovered that high-purity aragonite-type calcium carbonate can be obtained at room temperature according to the method of producing light calcium carbonate in an aqueous solution using 2+ ions as a calcite-type calcium carbonate growth inhibitor. (Keiko Sasaki: Metal, Vol. 68, No. 9, P8
07 (1998); Keiko Sasaki, Masami Tsunekawa: Materials of the 1998 Autumn Meeting of the Society of Natural Resources and Materials; Keiko Sasaki, Hongo Univ.
Masami Tsunekawa: Resources and Materials, Vol. 114, No. 1
0, P715 (1998)).

【0012】しかし、上記のアラゴナイト型炭酸カルシ
ウムの合成法においては、貝殻のみを出発原料として用
いており、多量に供給され、安価な低品位石灰石を出発
原料としてハンター白色度が高いアラゴナイト型炭酸カ
ルシウムを得るものではなかった。
However, in the above-mentioned method for synthesizing aragonite-type calcium carbonate, only shells are used as a starting material, and aragonite-type calcium carbonate having a high hunter whiteness using a large amount of inexpensive low-grade limestone as a starting material is used. Did not get.

【0013】そこで、本発明者らは、更に検討を重ねた
結果、出発原料として低品位石灰石を用いた場合でも、
所定の条件においてハンター白色度が高いアラゴナイト
型軽質炭酸カルシウムが得られることを知得し、本発明
を完成するに至った。
The present inventors have further studied and found that even when low-grade limestone is used as a starting material,
It has been found that under a predetermined condition, aragonite-type light calcium carbonate having a high Hunter whiteness can be obtained, and the present invention has been completed.

【0014】よって、本発明の目的とするところは、上
記問題を解決し、資源的に豊富にある低品位石灰石を用
いて、高品質の結晶質石灰石と同等の機能性を有する、
特に高いハンター白色度を有する軽質炭酸カルシウムの
製造方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to use low-grade limestone which is abundant in resources and have the same functionality as high-quality crystalline limestone.
It is an object of the present invention to provide a method for producing light calcium carbonate having particularly high Hunter whiteness.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、〔1〕 石灰石を焼成して得られる生石
灰又は消石灰と、貝殻を焼成して得られる生石灰又は消
石灰と、Mg2+イオンと、水とからなる懸濁液中に炭酸
ガスを導通させることを特徴とする軽質炭酸カルシウム
の製造方法、並びに、〔2〕 石灰石を焼成して得られ
る生石灰又は消石灰と、Mg2+イオンと、水とからなる
懸濁液中に炭酸ガスを導通させ、前記懸濁液のpHが
8.5以下になった時点で、貝殻を焼成して得られる生
石灰又は消石灰を添加すると共に炭酸ガスを導通させる
ことを特徴とする軽質炭酸カルシウムの製造方法を提案
するものであり、〔3〕 懸濁液の温度を0〜60℃に
保って、前記懸濁液中に炭酸ガスを導通させることを含
む。
In order to achieve the above object, the present invention relates to [1] quicklime or slaked lime obtained by firing limestone, quicklime or slaked lime obtained by firing shells, and Mg 2 A method for producing light calcium carbonate, characterized by passing carbon dioxide gas through a suspension comprising + ions and water, and [2] quicklime or slaked lime obtained by calcining limestone, and Mg 2+ Carbon dioxide gas is passed through a suspension composed of ions and water, and when the pH of the suspension becomes 8.5 or less, quicklime or slaked lime obtained by calcining the shell is added and carbonated. The present invention proposes a method for producing light calcium carbonate, characterized by passing gas, [3] keeping carbon dioxide gas in the suspension while keeping the temperature of the suspension at 0 to 60 ° C. Including.

【0016】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0017】[0017]

【発明の実施の形態】本発明において製造する軽質炭酸
カルシウムの出発原料としては、石灰石及び貝殻を用い
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As a starting material of light calcium carbonate produced in the present invention, limestone and shells can be used.

【0018】出発原料の石灰石としては、石灰石であれ
ば何れの石灰石でも用いることができるが、資源的に豊
富にある低品位石灰石を用いることが特に好ましい。
As the limestone as a starting material, any limestone can be used as long as it is limestone, but it is particularly preferable to use low-grade limestone which is abundant in resources.

【0019】また、本発明の軽質炭酸カルシウムの製造
方法によれば、石灰石中に有色成分Fe23を、前記石
灰石を焼成して生石灰とした時点(CaO基準)で0.
02質量%以上、特に0.2質量%以上含有するもので
も用いることができる。
Further, according to the method for producing light calcium carbonate of the present invention, the colored component Fe 2 O 3 is added to limestone at a time when the limestone is calcined to obtain quick lime (based on CaO).
Those containing at least 02% by mass, particularly at least 0.2% by mass can also be used.

【0020】出発原料の貝殻としては、石灰石を焼成し
て得られる生石灰又は消石灰と共に用いて得られる軽質
炭酸カルシウムの白色度も高くできるものであれば何れ
の貝殻でも用いることができる。それらの貝殻として
は、ホタテ貝、カキ貝、あこや貝、あさり貝、バカ貝、
赤貝等の貝殻が例示できる。
As the shell of the starting material, any shell can be used as long as the whiteness of the light calcium carbonate obtained by using it together with quicklime or slaked lime obtained by calcining limestone can be increased. The shells include scallops, oysters, oysters, clams, idiots,
Shells such as red shellfish can be exemplified.

【0021】また、これらの貝殻のうちでも、入手の容
易な貝殻が特に好ましい。
Of these shells, shells that are easily available are particularly preferred.

【0022】貝殻の入手の容易さからは、採取又は養殖
が大規模に行われており、更に採取又は養殖後の加工が
工場などで行われている貝の貝殻が廃棄物としての排出
量が多いため、まとまって入手できるので好ましい。な
かでもホタテ貝は、カキ貝と並んで我が国で最も生産高
の高い貝の一つであるが、これら二種の貝殻の排出量は
対照的である。カキ貝殻排出量は最近10年間でほとん
ど変動がないのに対し、ホタテ貝殻排出量は最近10年
間のうちに2.5倍から3倍に増加している。このよう
な観点から、貝殻のうちでも、特にホタテ貝の貝殻が好
ましいものである。
Due to the availability of shells, the collection or cultivation is carried out on a large scale, and the processing of the shells after collection or cultivation is carried out in factories and the like. It is preferable because it can be obtained collectively because there are many. Among them, scallop is one of the highest producing shells in Japan along with oysters, but the emissions of these two shells are in contrast. Oyster shell emissions have changed little over the last decade, while scallop shell emissions have increased 2.5- to 3-fold over the last 10 years. From such a viewpoint, among the shells, scallop shells are particularly preferable.

【0023】上記の貝殻は、焼成することによって貝殻
生石灰が得られる。次いで、この貝殻生石灰を水和する
ことによって貝殻由来の消石灰が得られる。
The above shell is calcined to obtain quick lime. Next, slaked lime derived from the shell is obtained by hydrating the shell quick lime.

【0024】石灰石を焼成して得られる生石灰又は消石
灰も、上記の貝殻を焼成して得られる生石灰又は消石灰
の製造方法と同様にして得ることができる。これらの製
法は当業者に公知のものである。
Quick lime or slaked lime obtained by calcining limestone can also be obtained in the same manner as in the method of producing quick lime or slaked lime obtained by calcining a shell. These processes are known to those skilled in the art.

【0025】上記のようにして得られた石灰石及び貝殻
由来の生石灰を軽質炭酸カルシウムの原料として用いる
こともできるが、これらの生石灰を水和することによっ
て得られる消石灰を軽質炭酸カルシウムの原料として用
いることもできる。
The limestone and shell-derived quicklime obtained as described above can be used as a raw material for light calcium carbonate, but slaked lime obtained by hydrating these quicklimes is used as a raw material for light calcium carbonate. You can also.

【0026】上記のようにして得られた石灰石及び貝殻
由来の生石灰又は消石灰と、Mg2+イオンと、水とから
なる石灰乳の懸濁液中に炭酸ガスを導通させて反応させ
ることにより、石灰石を出発原料として用いた場合で
も、ハンター白色度で91%以上、好ましくは92%以
上、更に好ましくは92.5%以上、特に好ましくは9
4%以上の軽質炭酸カルシウムを製造することができ
る。
The carbon dioxide gas is passed through a suspension of lime milk and lime or slaked lime derived from the limestone and shell obtained as described above, Mg 2+ ions, and water to cause a reaction. Even when limestone is used as a starting material, the Hunter brightness is 91% or more, preferably 92% or more, more preferably 92.5% or more, and particularly preferably 9% or more.
Light calcium carbonate of 4% or more can be produced.

【0027】なお、この得られた軽質炭酸カルシウム
は、X線回折のカルサイト由来のピークとアラゴナイト
由来のピークとの強度比のC104/A111で、2以
下、好ましくは1以下、更に好ましくは0.8以下、特
に好ましくは0.6以下の、高純度のアラゴナイト型炭
酸カルシウムであることを特徴としている。
The obtained light calcium carbonate has an intensity ratio of C104 / A111 of a peak derived from calcite to a peak derived from aragonite in X-ray diffraction of 2 or less, preferably 1 or less, more preferably 0 or less. It is characterized by being a high-purity aragonite-type calcium carbonate having a purity of 0.8 or less, particularly preferably 0.6 or less.

【0028】上記の石灰石及び貝殻由来の生石灰又は消
石灰とMg2+イオンと水とからなる石灰乳は、生石灰又
は消石灰と、塩化マグネシウム等の水溶性マグネシウム
塩とを、水と混合することによって得ることができる。
The above-mentioned lime milk composed of quicklime or slaked lime derived from limestone and shells, Mg 2+ ions and water is obtained by mixing quicklime or slaked lime and a water-soluble magnesium salt such as magnesium chloride with water. be able to.

【0029】ここで、生石灰若しくは消石灰、並びに水
溶性マグネシウム塩を水へ添加する場合、その添加の順
序は、水溶性マグネシウム塩を水に確実に溶解させるた
め、水溶性マグネシウム塩を生石灰若しくは消石灰より
も先に添加する方がより好ましい。即ち、水に生石灰若
しくは消石灰を添加する場合は、あらかじめ水溶性マグ
ネシウム塩を水に添加溶解しておくことが好ましい。
Here, when the quick lime or slaked lime and the water-soluble magnesium salt are added to water, the order of addition is such that the water-soluble magnesium salt is added to the quick lime or slaked lime in order to surely dissolve the water-soluble magnesium salt in the water. Is more preferably added first. That is, when adding quicklime or slaked lime to water, it is preferable to add and dissolve a water-soluble magnesium salt in water in advance.

【0030】本発明の軽質炭酸カルシウムの製造方法に
おいては、懸濁反応液中にMg2+イオンを共存させる。
この懸濁反応液中において、石灰石及び貝殻由来の生石
灰又は消石灰と、Mg2+イオンとを共存させることによ
り、80℃以下で高純度のアラゴナイト型炭酸カルシウ
ムを製造できるようになった。
In the method for producing light calcium carbonate of the present invention, Mg 2+ ions are allowed to coexist in the suspension reaction solution.
In this suspension reaction solution, by allowing quick lime or slaked lime derived from limestone and shells to coexist with Mg 2+ ions, high-purity aragonite-type calcium carbonate at 80 ° C. or lower can be produced.

【0031】懸濁反応液中におけるMg2+イオンの量
は、懸濁反応液中の初期モル比Mg/Caで0.01〜
100が好ましく、更に好ましくは0.1〜10であ
り、特に好ましくは0.5〜5である。懸濁反応液中に
おけるMg2+イオンの量が、懸濁反応液中の初期モル比
Mg/Caで0.01未満の場合は、カルサイト型炭酸
カルシウムの生成量が多くなるので好ましくない。懸濁
反応液中において、反応初期には炭酸カルシウムと共に
水酸化マグネシウムが析出し、反応が進むにつれて水酸
化マグネシウムが懸濁反応液中に再溶解し、水酸化マグ
ネシウムの析出量が減少する。しかし、懸濁反応液中に
おけるMg2+イオンの量が、懸濁反応液中の初期モル比
Mg/Caで100を超える場合は、この水酸化マグネ
シウムの再溶解しなかった残量が多くなるので好ましく
ない。
The amount of Mg 2+ ions in the suspension reaction solution is 0.01 to 0.01 based on the initial molar ratio Mg / Ca in the suspension reaction solution.
100 is preferable, 0.1 to 10 is more preferable, and 0.5 to 5 is particularly preferable. If the amount of Mg 2+ ions in the suspension reaction solution is less than 0.01 in terms of the initial molar ratio Mg / Ca in the suspension reaction solution, the amount of calcite-type calcium carbonate generated is undesirably increased. In the suspension reaction solution, magnesium hydroxide precipitates together with calcium carbonate in the initial stage of the reaction, and as the reaction proceeds, magnesium hydroxide is redissolved in the suspension reaction solution, and the amount of magnesium hydroxide deposited decreases. However, when the amount of Mg 2+ ions in the suspension reaction solution exceeds 100 at the initial molar ratio Mg / Ca in the suspension reaction solution, the remaining amount of the magnesium hydroxide that has not been redissolved increases. It is not preferable.

【0032】本発明の軽質炭酸カルシウムの製造方法に
おいて、得られる軽質炭酸カルシウムの結晶性を均一に
保ち、また歩留りを低下させないようにするためには、
反応槽内で上昇流、下降流その他の方向の流れを有し、
流れ方向が異なる水流が共存する激しい混合状態を作っ
て強力に混合することが好ましい。
In the method for producing light calcium carbonate of the present invention, in order to keep the crystallinity of the obtained light calcium carbonate uniform and not to lower the yield,
In the reaction tank, there is an upward flow, a downward flow and other flows,
It is preferable to create a violent mixing state in which water streams having different flow directions coexist and to mix strongly.

【0033】このように、反応槽内で流れ方向が異なる
水流が共存する混合状態を作って混合する場合は、懸濁
反応液のカルシウム化合物濃度がCa(OH)2基準で5
0g/dm3以上、更に60g/dm3以上でも、特に8
0g/dm3以上でも、得られるアラゴナイト型炭酸カ
ルシウムの結晶性は均一であり、また歩留りも高く好ま
しいものである。
As described above, in the case of mixing by forming a mixed state in which water flows having different flow directions coexist in the reaction tank, the calcium compound concentration of the suspension reaction solution is 5 based on Ca (OH) 2.
0 g / dm 3 or more, and even 60 g / dm 3 or more, especially 8 g / dm 3 or more.
Even at 0 g / dm 3 or more, the obtained aragonite-type calcium carbonate has uniform crystallinity and high yield, which is preferable.

【0034】懸濁液中には、二酸化炭素を吹き込む。二
酸化炭素を吹込速度は、特に懸濁反応液の容量に応じて
適宜調節選択することができる。例えば、0.4dm3
の容量の懸濁反応液の場合は、0.004〜0.4dm
3/minが好ましく、更に好ましくは0.008〜
0.2dm3/minであり、特に好ましくは0.02
〜0.08dm3/minである。また、10dm3の容
量の懸濁反応液の場合は、0.1〜10dm3/min
が好ましく、更に好ましくは0.2〜5dm3/min
であり、特に好ましくは0.5〜2dm3/minであ
る。この傾向は懸濁反応液の広い容量範囲で成立する。
Carbon dioxide is blown into the suspension. The blowing speed of carbon dioxide can be appropriately adjusted and selected particularly according to the volume of the suspension reaction solution. For example, 0.4 dm 3
0.004 to 0.4 dm in the case of a suspension reaction solution having a volume of
3 / min is preferred, more preferably 0.008 to
0.2 dm 3 / min, particularly preferably 0.02
0.00.08 dm 3 / min. In the case of suspension reaction solution volume of 10dm 3, 0.1~10dm 3 / min
And more preferably 0.2 to 5 dm 3 / min.
And particularly preferably 0.5 to 2 dm 3 / min. This tendency holds over a wide volume range of the suspension reaction solution.

【0035】懸濁液中における水酸化カルシウム(消石
灰)と二酸化炭素との反応において、反応開始(二酸化
炭素の吹込開始)直後は水酸化カルシウムが急激に溶解
し、例えばpH9と高いpHを示す。
In the reaction between calcium hydroxide (slaked lime) and carbon dioxide in the suspension, immediately after the start of the reaction (start of blowing of carbon dioxide), the calcium hydroxide rapidly dissolves and exhibits a high pH, for example, pH9.

【0036】反応開始直後以降は、徐々に水酸化カルシ
ウムが溶解し、Ca2+はCO3 2-と反応していき、懸濁
反応液中のCa2+が徐々に減少し、炭酸カルシウム結晶
の成長とともにpHが徐々に降下していく。
The later after the initiation of the reaction, calcium hydroxide was gradually dissolved, Ca 2+ is gradually reacted with CO 3 2-, Ca 2+ in the suspension reaction mixture is reduced gradually, calcium carbonate crystals PH gradually decreases with the growth of.

【0037】次いで、懸濁反応液中のCa2+が極めて少
なくなると、pHの急激な降下が起こり、その結果析出
していた水酸化マグネシウムが溶解していくものと考え
られる。
Next, when the amount of Ca 2+ in the suspension reaction solution becomes extremely small, it is considered that the pH drops sharply, and the magnesium hydroxide precipitated as a result dissolves.

【0038】そして、懸濁反応液中のCa2+が完全に消
費された時点で反応が終了するものと考えられる。
It is considered that the reaction is completed when the Ca 2+ in the suspension reaction solution is completely consumed.

【0039】反応初期の懸濁反応液のpHは7〜11が
好ましく、反応完了時の懸濁反応液のpHは5〜6.5
が好ましい。 なお、反応温度については、0〜80
℃、好ましくは0〜60℃、更に好ましくは0〜40
℃、特に好ましくは0〜30℃である。反応温度が0℃
未満の場合は、カルサイト型炭酸カルシウムの生成量が
多くなるので好ましくなく、反応温度が80℃を超える
場合は、軽質炭酸カルシウムの白色度が低下するので好
ましくない。
The pH of the suspension reaction solution at the beginning of the reaction is preferably from 7 to 11, and the pH of the suspension reaction solution at the completion of the reaction is from 5 to 6.5.
Is preferred. In addition, about reaction temperature, 0-80
° C, preferably from 0 to 60 ° C, more preferably from 0 to 40 ° C.
° C, particularly preferably 0 to 30 ° C. Reaction temperature is 0 ° C
When the reaction temperature is lower than 80 ° C., the whiteness of the light calcium carbonate decreases, which is not preferable because the amount of calcite-type calcium carbonate generated increases.

【0040】また、本発明の軽質炭酸カルシウムの製造
方法の別の形態は、石灰石を焼成して得られる生石灰又
は消石灰と、Mg2+イオンと、水とからなる懸濁液中に
炭酸ガスを導通させ、前記懸濁液のpHが8.5以下に
なった時点で、貝殻を焼成して得られる生石灰又は消石
灰を添加する軽質炭酸カルシウムの製造方法である。
In another embodiment of the method for producing light calcium carbonate of the present invention, carbon dioxide gas is added to a suspension comprising calcined lime or slaked lime obtained by calcining limestone, Mg 2+ ions, and water. This is a method for producing light calcium carbonate in which quick lime or slaked lime obtained by baking shells is added when the suspension is brought into conduction and the pH of the suspension becomes 8.5 or less.

【0041】この場合、貝殻を焼成して得られる生石灰
又は消石灰の添加時期は遅いほど、得られる軽質炭酸カ
ルシウムの白色度が高い傾向にある。
In this case, the quicker the addition of quicklime or slaked lime obtained by firing the shell, the higher the whiteness of the obtained light calcium carbonate tends to be.

【0042】その理由は、以下のように推測される。The reason is presumed as follows.

【0043】炭酸化反応において、貝殻を焼成して得ら
れる生石灰又は消石灰が添加される前は、石灰石を焼成
して得られる生石灰又は消石灰に由来する軽質炭酸カル
シウムが生成している。この石灰石を焼成して得られる
生石灰又は消石灰に由来する軽質炭酸カルシウムは、酸
化鉄Fe23を多く含むので、白色度が低い。一方、貝
殻を焼成して得られる生石灰又は消石灰に由来する軽質
炭酸カルシウムは、白色度が高い。
Before the addition of quicklime or slaked lime obtained by calcining shells in the carbonation reaction, light calcium carbonate derived from quicklime or slaked lime obtained by calcining limestone is produced. Light calcium carbonate derived from calcined lime or slaked lime obtained by calcining this limestone contains a large amount of iron oxide Fe 2 O 3 and thus has low whiteness. On the other hand, light calcium carbonate derived from quicklime or slaked lime obtained by firing shells has high whiteness.

【0044】以上のことから、炭酸化反応において、貝
殻を焼成して得られる生石灰又は消石灰の添加時期が遅
い場合、石灰石由来のFe23を含む白色度が低い軽質
炭酸カルシウム粒子表面を、貝殻由来の白色度が高い軽
質炭酸カルシウムで被覆することにより白色度を高めて
いるものと推測される。
From the above, in the carbonation reaction, when the addition time of quicklime or slaked lime obtained by calcining a shell is late, the surface of the light calcium carbonate particles having low whiteness containing limestone-derived Fe 2 O 3 is removed. It is presumed that the whiteness was enhanced by coating with light calcium carbonate having high whiteness derived from the shell.

【0045】[0045]

【実施例】以下、本発明を実施例により、具体的に説明
するが、本発明は実施例により限定されるものではな
い。なお、得られた生成物、又は中間生成物の主な物性
については、次の方法で求めた。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the examples. The main properties of the obtained product or intermediate product were determined by the following methods.

【0046】炭酸カルシウムの結晶系:X線回折測定装
置 JEOL JDC−3500 を用い、対陰極はCu
Kαとし、走査軸は2θ・θで、生成物を15゜〜65
゜の角度、管電圧30kV、管電流20mAで測定し
た。
Crystal system of calcium carbonate: X-ray diffractometer JEOL JDC-3500 was used, and the cathode was Cu
The scanning axis is 2θ · θ, and the product is 15 ° to 65 °.
The measurement was performed at an angle of ゜, a tube voltage of 30 kV, and a tube current of 20 mA.

【0047】結晶形状及び結晶サイズ:走査電子顕微鏡
(SEM) JEOL JXA−8900M を用いて得
た写真のデータから解析した。
Crystal shape and crystal size: Analyzed from data of photographs obtained using a scanning electron microscope (SEM) JEOL JXA-8900M.

【0048】比表面積:株式会社ユアサアイオニクス製
AUTOSORB1 を用いた。前処理は120℃で行
い、吸着ガスには高純度窒素を使用し、5点BET法で
測定した。
Specific surface area: AUTOSORB1 manufactured by Yuasa Ionics Co., Ltd. was used. The pretreatment was performed at 120 ° C., and high-purity nitrogen was used as the adsorption gas, and measurement was performed by a 5-point BET method.

【0049】ハンター白色度:日本電色工業株式会社製
モデルZ−1001DP を用いて測定した。ハンター
白色度の数値は、ドロマイトの白色度を75.4%、光
を反射しない黒板を0%とした時の相対値で示した。
Hunter whiteness: Measured using Model Z-1001DP manufactured by Nippon Denshoku Industries Co., Ltd. The numerical value of Hunter whiteness was shown as a relative value when the whiteness of dolomite was 75.4% and the blackboard that did not reflect light was 0%.

【0050】pH:東亜電波工業株式会社製 TOA H
M−14P を用い、pHの経時変化を測定した。
PH: TOA H manufactured by Toa Denpa Kogyo KK
Using M-14P, the time-dependent change in pH was measured.

【0051】白色度を高くする消石灰試料としては、ホ
タテ貝殻由来のCa(OH)2を使用した。この消石灰試
料の組成分析結果は、P 52.5mg/100g、F
e 3.67mg/100g、Ca 51.4g/100
g、Mg 87.2mg/100g、Zn 1.2pp
m、Mn 10.1ppm、Ni 0.9ppm、Al
40ppm、S 0.42質量%、Sr 1320ppm
であった。
As a slaked lime sample for increasing the whiteness, Ca (OH) 2 derived from scallop shell was used. The composition analysis result of this slaked lime sample was P 52.5 mg / 100 g, F
e 3.67 mg / 100 g, Ca 51.4 g / 100
g, Mg 87.2 mg / 100 g, Zn 1.2 pp
m, Mn 10.1 ppm, Ni 0.9 ppm, Al
40 ppm, S 0.42 mass%, Sr 1320 ppm
Met.

【0052】低品位生石灰試料のFe23含有量は、
0.18質量%であった。
The Fe 2 O 3 content of the low-grade quicklime sample was as follows:
0.18% by mass.

【0053】低品位生石灰及び/又はホタテ貝殻由来の
Ca(OH)2の炭酸化反応に、高純度二酸化炭素を使用
した。また、カルサイトの抑制剤として塩化マグネシウ
ム六水和物特級試薬を使用した。
High-purity carbon dioxide was used for the carbonation reaction of Ca (OH) 2 derived from low-grade quicklime and / or scallop shells. In addition, magnesium chloride hexahydrate special grade reagent was used as a calcite inhibitor.

【0054】検討例1 発泡スチロール製蓋付ガラス二重筒(0.4dm3反応
槽)に、純水0.4dm3を入れ、次に塩化マグネシウ
ム六水和物130.102gを添加して溶解させた。こ
の塩化マグネシウム水溶液に、低品位生石灰11.24
5gを添加し、スクリュー型の撹拌羽根を用い、470
rpmの速度で撹拌し、懸濁させた。この懸濁液中に、
高純度二酸化炭素を0.1dm3/minの速度で吹き
込んだ。反応槽の温度調整には LAUDA RM20
の恒温槽を使用し、温度を23.8℃に設定した。反応
中の懸濁液のpHは、上記の TOA HM−14P を
用いて測定した。310分間反応させた後、懸濁液をろ
過により固液分離した。分離後の固形物を純水0.4d
3で1回洗浄した。洗浄後の固形物を40℃で真空乾
燥させ、図1、及び図6に示す物性の生成物を得た。
Study Example 1 0.4 dm 3 of pure water was put into a glass double cylinder with a lid made of styrene foam (0.4 dm 3 reaction tank), and then 130.102 g of magnesium chloride hexahydrate was added and dissolved. Was. To this magnesium chloride aqueous solution, low-grade quick lime 11.24 was added.
5 g was added, and 470 was added using a screw-type stirring blade.
The suspension was stirred and stirred at a speed of rpm. In this suspension,
High-purity carbon dioxide was blown at a rate of 0.1 dm 3 / min. LAUDA RM20 for adjusting the temperature of the reactor
And the temperature was set to 23.8 ° C. The pH of the suspension during the reaction was measured using the TOA HM-14P described above. After reacting for 310 minutes, the suspension was solid-liquid separated by filtration. The solid after separation is purified water 0.4d
Washed once with m 3 . The solid after washing was vacuum dried at 40 ° C. to obtain a product having physical properties shown in FIGS. 1 and 6.

【0055】検討例2 検討例1と同様にして塩化マグネシウム水溶液を得、こ
の塩化マグネシウム水溶液に、ホタテ貝殻由来のCa
(OH)214.817gを添加し、スクリュー型の撹拌
羽根を用い、470rpmの速度で撹拌し、懸濁させ
た。この懸濁液中に、高純度二酸化炭素を0.1dm3
/minの速度で吹き込んだ。反応槽の温度調整には
LAUDA RM20 の恒温槽を使用し、温度を22.
4℃に設定した。以下、検討例1と同様の操作を行って
生成物を得、その生成物について、図1、及び図6に示
す物性を得た。
Examination Example 2 An aqueous magnesium chloride solution was obtained in the same manner as in Examination Example 1, and the calcium chloride derived from scallop shell was added to this aqueous magnesium chloride solution.
14.817 g of (OH) 2 was added, and the mixture was stirred and suspended at a speed of 470 rpm using a screw-type stirring blade. 0.1 dm 3 of high-purity carbon dioxide is added to this suspension.
/ Min. To adjust the temperature of the reactor
Use a constant temperature bath of LAUDA RM20 and adjust the temperature to 22.
Set to 4 ° C. Thereafter, the same operation as in Study Example 1 was performed to obtain a product, and the physical properties shown in FIGS. 1 and 6 were obtained for the product.

【0056】検討例3 検討例1と同様にして塩化マグネシウム水溶液を得、こ
の塩化マグネシウム水溶液に、低品位生石灰11.24
5gとホタテ貝殻由来のCa(OH)214.817gと
を同時に添加し、スクリュー型の撹拌羽根を用い、47
0rpmの速度で撹拌し、懸濁させた。この懸濁液中
に、高純度二酸化炭素を0.1dm3/minの速度で
吹き込んだ。反応槽の温度調整には LAUDA RM2
0 の恒温槽を使用し、温度を22.5℃に設定した。
反応中の懸濁液のpHは、上記のTOA HM−14P
を用いて測定し、図2に示すpHの経時変化の結果を得
た。この図2に示す時間反応させた後、懸濁液をろ過に
より固液分離した。分離後の固形物を純水0.4dm3
で1回洗浄した。洗浄後の固形物を40℃で真空乾燥さ
せ、図1、図3、及び図4に示す物性の生成物を得た。
Study Example 3 A magnesium chloride aqueous solution was obtained in the same manner as in Study Example 1, and low-grade quick lime 11.24 was added to this magnesium chloride aqueous solution.
5g and 14.817g of Ca (OH) 2 derived from scallop shell were added at the same time.
The suspension was stirred at a speed of 0 rpm and suspended. High-purity carbon dioxide was blown into this suspension at a rate of 0.1 dm 3 / min. LAUDA RM2 for adjusting the temperature of the reactor
The temperature was set to 22.5 ° C. using a thermostat of 0.
The pH of the suspension during the reaction is determined by the TOA HM-14P described above.
Was used to obtain the results of pH change over time shown in FIG. After reacting for the time shown in FIG. 2, the suspension was subjected to solid-liquid separation by filtration. The solid matter after separation is purified with pure water 0.4 dm 3
Was washed once. The washed solid was dried under vacuum at 40 ° C. to obtain products having the physical properties shown in FIGS. 1, 3, and 4.

【0057】この生成物の収量は37.6515gであ
り、歩留りは94.06質量%であった。
The yield of this product was 37.6515 g, and the yield was 94.06% by mass.

【0058】検討例4 検討例1と同様にして塩化マグネシウム水溶液を得、こ
の塩化マグネシウム水溶液に、低品位生石灰11.24
5gを添加し、スクリュー型の撹拌羽根を用い、470
rpmの速度で撹拌し、懸濁させた。この懸濁液中に、
高純度二酸化炭素を0.1dm3/minの速度で吹き
込んだ。反応槽の温度調整には LAUDA RM20
の恒温槽を使用し、温度を22.5℃に設定した。反応
中の懸濁液のpHは、上記の TOA HM−14P を
用いて測定し、図2に示すpHの経時変化の結果を得
た。二酸化炭素の吹込み開始から190分後、上記懸濁
液中にホタテ貝殻由来のCa(OH)214.817gを
添加し、即ち低品位生石灰の炭酸化反応の途中のpH降
下点ででホタテ貝殻由来のCa(OH)2を添加し、炭酸
化反応を続けた。なお、ホタテ貝殻由来のCa(OH)2
を添加した時点のpHは8.0であった。以下、図2に
示す時間反応させた後、検討例3と同様の操作を行っ
て、図1、図3、及び図4に示す物性の生成物を得た。
Study Example 4 An aqueous magnesium chloride solution was obtained in the same manner as in Study Example 1, and low-grade quick lime 11.24 was added to the aqueous magnesium chloride solution.
5 g was added, and 470 was added using a screw-type stirring blade.
The suspension was stirred and stirred at a speed of rpm. In this suspension,
High-purity carbon dioxide was blown at a rate of 0.1 dm 3 / min. LAUDA RM20 for adjusting the temperature of the reactor
And the temperature was set to 22.5 ° C. The pH of the suspension during the reaction was measured using the above-mentioned TOA HM-14P, and the result of the time-dependent change in pH shown in FIG. 2 was obtained. 190 minutes after the start of carbon dioxide blowing, 14.817 g of scallop shell-derived Ca (OH) 2 was added to the above suspension, that is, scallop was added at the pH drop point during the carbonation reaction of low-grade quicklime. Shell-derived Ca (OH) 2 was added and the carbonation reaction continued. In addition, Ca (OH) 2 derived from scallop shell
PH at the time of addition was 8.0. Hereinafter, after reacting for the time shown in FIG. 2, the same operation as in Study Example 3 was performed to obtain products having the physical properties shown in FIGS. 1, 3, and 4.

【0059】この生成物の収量は37.9575gであ
り、歩留りは94.89質量%であった。
The yield of this product was 37.9575 g, and the yield was 94.89% by mass.

【0060】検討例5 検討例1と同様にして塩化マグネシウム水溶液を得、こ
の塩化マグネシウム水溶液に、低品位生石灰11.24
5gを添加し、スクリュー型の撹拌羽根を用い、470
rpmの速度で撹拌し、懸濁させた。この懸濁液中に、
高純度二酸化炭素を0.1dm3/minの速度で吹き
込んだ。反応槽の温度調整には LAUDA RM20
の恒温槽を使用し、温度を22.5℃に設定した。反応
中の懸濁液のpHは、上記の TOA HM−14P を
用いて測定し、図2に示すpHの経時変化の結果を得
た。二酸化炭素の吹込み開始から310分後、上記懸濁
液中にホタテ貝殻由来のCa(OH)214.817gを
添加し、即ち低品位生石灰の炭酸化反応の終了後にホタ
テ貝殻由来のCa(OH)2を添加し、炭酸化反応を続け
た。なお、ホタテ貝殻由来のCa(OH)2を添加した時
点のpHは6.0であった。以下、図2に示す時間反応
させた後、検討例3と同様の操作を行って、図1、図
3、及び図4に示す物性の生成物を得た。
Study Example 5 A magnesium chloride aqueous solution was obtained in the same manner as in Study Example 1, and low-grade quicklime was added to this magnesium chloride aqueous solution.
5 g was added, and 470 was added using a screw-type stirring blade.
The suspension was stirred and stirred at a speed of rpm. In this suspension,
High-purity carbon dioxide was blown at a rate of 0.1 dm 3 / min. LAUDA RM20 for adjusting the temperature of the reactor
And the temperature was set to 22.5 ° C. The pH of the suspension during the reaction was measured using the above-mentioned TOA HM-14P, and the result of the time-dependent change in pH shown in FIG. 2 was obtained. 310 minutes after the start of carbon dioxide blowing, 14.817 g of Ca (OH) 2 derived from scallop shell was added to the above suspension, that is, Ca (OH) 2 derived from scallop shell was terminated after the carbonation reaction of low-grade quicklime was completed. OH) 2 was added and the carbonation reaction continued. The pH at the time when Ca (OH) 2 derived from the scallop shell was added was 6.0. Hereinafter, after reacting for the time shown in FIG. 2, the same operation as in Study Example 3 was performed to obtain products having the physical properties shown in FIGS. 1, 3, and 4.

【0061】この生成物の収量は37.0337gであ
り、歩留りは92.51質量%であった。
The yield of this product was 37.0337 g, and the yield was 92.51% by mass.

【0062】検討例3乃至5の歩留りの結果に示すよう
に、低品位生石灰の炭酸化反応における、ホタテ貝殻由
来のCa(OH)2の何れの時点での添加で得られた軽質
炭酸カルシウムについても、90質量%以上と高収率で
あった。
As shown in the results of the yields of Study Examples 3 to 5, light calcium carbonate obtained by adding Ca (OH) 2 derived from scallop shell at any time in the carbonation reaction of low-grade quicklime. Also had a high yield of 90% by mass or more.

【0063】図3のX線回折チャートに示すように、低
品位生石灰の炭酸化反応における、ホタテ貝殻由来のC
a(OH)2の何れの時点での添加で得られた軽質炭酸カ
ルシウムについても、X線回折のカルサイト由来のピー
クとアラゴナイト由来のピークとの強度比はC104/
A111で1以下と低く、高純度のアラゴナイト型炭酸
カルシウムではあったが、アラゴナイト単相ではなく、
アラゴナイトとカルサイトとの混相であった。
As shown in the X-ray diffraction chart of FIG. 3, in the carbonation reaction of low-grade quicklime, carbon derived from scallop shells
Regarding the light calcium carbonate obtained by adding a (OH) 2 at any point, the intensity ratio of the peak derived from calcite to the peak derived from aragonite in X-ray diffraction was C104 /
A111 was less than 1 and high purity aragonite-type calcium carbonate, but not a single phase of aragonite.
It was a mixed phase of aragonite and calcite.

【0064】このようにアラゴナイト単相ではなく、ア
ラゴナイトとカルサイトとの混相の結晶系になったの
は、懸濁液0.4dm3に対してCO2流量が0.1dm
3/minと大きいためと推測される。即ち、Ca2+
CO3 2-→CaCO3の反応が速やかに右に進み、炭酸化
反応速度が速くなる。そのため、炭酸化反応速度が速い
場合生成しやすいカルサイトが生成するものと推測され
る。
As described above, instead of a single phase of aragonite, a mixed phase of aragonite and calcite became a crystal system because the flow rate of CO 2 was 0.1 dm 3 with respect to 0.4 dm 3 of the suspension.
It is presumed to be as large as 3 / min. That is, Ca 2+ +
The reaction of CO 3 2- → CaCO 3 quickly proceeds to the right, and the carbonation reaction rate increases. Therefore, it is presumed that calcite that is likely to be generated is generated when the carbonation reaction rate is high.

【0065】検討例3の、低品位生石灰とホタテ貝殻由
来のCa(OH)2とを同時に添加した場合と、検討例
4、及び5の、低品位生石灰の炭酸化反応において、ホ
タテ貝殻由来のCa(OH)2を別の時点で添加した場合
とを比較すると、得られた軽質炭酸カルシウムは、図4
の走査電子顕微鏡写真に示すように、添加時間が遅い
程、結晶の粒径が大きくなる傾向にある。
In the case of adding the low-grade quicklime and Ca (OH) 2 derived from the scallop shell in the examination example 3 simultaneously, and in the carbonation reaction of the low-grade quicklime in the examination examples 4 and 5, the scallop shell-derived lime was used. In comparison with the case where Ca (OH) 2 was added at another time, the obtained light calcium carbonate
As shown in the scanning electron micrograph, the addition time tends to increase the grain size of the crystal.

【0066】図1の白色度測定の結果に示すように、低
品位生石灰の炭酸化反応における、ホタテ貝殻由来のC
a(OH)2の各添加時期で得られた軽質炭酸カルシウム
の白色度について、検討例3の同時添加の場合92.8
2%、検討例4の低品位生石灰の炭酸化反応のpH降下
点での添加の場合94.54%、検討例5の低品位生石
灰の炭酸化反応の終了後での添加の場合95.82%と
なった。
As shown in the results of the whiteness measurement in FIG. 1, in the carbonation reaction of low-grade quicklime, C derived from scallop shells was used.
Regarding the whiteness of the light calcium carbonate obtained at each addition time of a (OH) 2 , 92.8 in the case of simultaneous addition in Study Example 3
2%, 94.54% in the case of addition at the pH lowering point of the carbonation reaction of low-grade quick lime in Study Example 4, and 95.82 in the case of addition after completion of the carbonation reaction of low-grade quick lime in Study Example 5. %.

【0067】図1の白色度測定の結果から、低品位生石
灰の炭酸化反応における、ホタテ貝殻由来のCa(OH)
2の添加時期が遅いほど、得られる軽質炭酸カルシウム
の白色度が高いことが解った。
From the results of the whiteness measurement of FIG. 1, Ca (OH) derived from scallop shells in the carbonation reaction of low-grade quicklime.
It was found that the later the addition time of 2, the higher the whiteness of the obtained light calcium carbonate.

【0068】このことは、以下のように推測される。This is presumed as follows.

【0069】低品位生石灰の炭酸化反応における、ホタ
テ貝殻由来のCa(OH)2の添加時期が遅い場合、低品
位生石灰の炭酸化反応による軽質炭酸カルシウムが予め
生成する。この低品位生石灰からの軽質炭酸カルシウム
は、酸化鉄Fe23を多く含むので、図1の白色度測定
の結果の検討例1に示すように90.52%と白色度が
低い。他方、ホタテ貝殻由来のCa(OH)2からの軽質
炭酸カルシウムは、図1の白色度測定の結果の検討例2
に示すように96.29%と白色度が高い。
When Ca (OH) 2 derived from scallop shells is added late in the carbonation reaction of low-grade quicklime, light calcium carbonate is previously generated by the carbonation reaction of low-grade quicklime. Since light calcium carbonate from this low-grade quicklime contains a large amount of iron oxide Fe 2 O 3 , the whiteness is as low as 90.52% as shown in Study Example 1 of the whiteness measurement result in FIG. On the other hand, light calcium carbonate from Ca (OH) 2 derived from scallop shells is the same as in Example 2 of the whiteness measurement results shown in FIG.
As shown in Table 2, the whiteness is as high as 96.29%.

【0070】以上のことから、低品位生石灰の炭酸化反
応における、ホタテ貝殻由来のCa(OH)2の添加時期
が遅い場合、低品位生石灰由来の白色度が低い軽質炭酸
カルシウム粒子表面を、ホタテ貝殻由来のCa(OH)2
からの白色度が高い軽質炭酸カルシウムが、被覆してい
るものと推測される。他方、低品位生石灰の炭酸化反応
における、ホタテ貝殻由来のCa(OH)2の添加時期が
早い場合、低品位生石灰又は消石灰からの白色度の低い
軽質炭酸カルシウム粒子表面を被覆せずに、ホタテ貝殻
由来のCa(OH)2からの軽質炭酸カルシウムのみで結
晶になる粒子の割合が多くなる。そのため、その周囲を
被覆するホタテ貝殻由来のCa(OH)2からの軽質炭酸
カルシウムの厚みが増さないので、白色度はそれほど高
くならなかったものと推測される。
From the above, when Ca (OH) 2 derived from scallop shells is added late in the carbonation reaction of low-grade quick lime, the surface of light calcium carbonate particles having low whiteness derived from low-grade quick lime is reduced by scallop. Ca (OH) 2 derived from shells
It is presumed that light calcium carbonate having a high degree of whiteness is coated. On the other hand, in the carbonation reaction of low-grade quick lime, when the addition time of Ca (OH) 2 derived from scallop shells is early, the surface of light calcium carbonate particles with low whiteness from low-grade quick lime or slaked lime is not coated, The proportion of particles that are crystallized only by light calcium carbonate from Ca (OH) 2 derived from shells increases. Therefore, it is presumed that the whiteness was not so high because the thickness of the light calcium carbonate from Ca (OH) 2 derived from the scallop shell surrounding the scallop shell did not increase.

【0071】検討例6 炭酸化反応の温度を57.5℃、低品位生石灰の炭酸化
反応の開始時から220分後に懸濁液中にホタテ貝殻由
来のCa(OH)214.817gを添加し、図5に示す
pHの経時変化の結果を得た以外は、検討例5と同様の
操作を行って生成物を得、その生成物について、図6、
図7、及び図8に示す物性を得た。この生成物の収量は
39.9049gであり、歩留りは99.68質量%で
あった。
Study Example 6 The carbonation reaction temperature was 57.5 ° C., and 14.817 g of Ca (OH) 2 derived from scallop shell was added to the suspension 220 minutes after the start of the carbonation reaction of low-grade quicklime. Then, the same operation as in Study Example 5 was performed to obtain a product, except that the results of the time-dependent change in pH shown in FIG. 5 were obtained.
The physical properties shown in FIGS. 7 and 8 were obtained. The yield of this product was 39.9049 g, and the yield was 99.68% by mass.

【0072】検討例7 炭酸化反応の温度を35.5℃、低品位生石灰の炭酸化
反応の開始時から190分後に懸濁液中にホタテ貝殻由
来のCa(OH)214.817gを添加し、図5に示す
pHの経時変化の結果を得た以外は、検討例5と同様の
操作を行って生成物を得、その生成物について、図6、
図7、及び図8に示す物性を得た。この生成物の収量は
37.4614gであり、歩留りは93.58質量%で
あった。
Examination Example 7 The temperature of the carbonation reaction was 35.5 ° C., 190 minutes after the start of the carbonation reaction of low-grade quicklime, 14.817 g of Ca (OH) 2 derived from scallop shell was added to the suspension. Then, the same operation as in Study Example 5 was performed to obtain a product, except that the results of the time-dependent change in pH shown in FIG. 5 were obtained.
The physical properties shown in FIGS. 7 and 8 were obtained. The yield of this product was 37.4614 g, and the yield was 93.58% by mass.

【0073】検討例8 炭酸化反応の温度を22.5℃、低品位生石灰の炭酸化
反応の開始時から310分後に懸濁液中にホタテ貝殻由
来のCa(OH)214.817gを添加し、図5に示す
pHの経時変化の結果を得た以外は、検討例5と同様の
操作を行って生成物を得、その生成物について、図6、
図7、及び図8に示す物性を得た。この生成物の収量は
37.0337gであり、歩留りは92.51質量%で
あった。
Examination Example 8 The carbonation temperature was 22.5 ° C. and 310.817 g of scallop shell-derived Ca (OH) 2 was added to the suspension 310 minutes after the start of the carbonation reaction of low-grade quicklime. Then, the same operation as in Study Example 5 was performed to obtain a product, except that the results of the time-dependent change in pH shown in FIG. 5 were obtained.
The physical properties shown in FIGS. 7 and 8 were obtained. The yield of this product was 37.0337 g, and the yield was 92.51% by mass.

【0074】なお、この検討例8の生成物は、上記の検
討例5と同じである。
The product of the study example 8 is the same as that of the study example 5 described above.

【0075】検討例6乃至8の歩留りの結果に示すよう
に、低品位生石灰を炭酸化させる反応の終了後の時点に
おいて、ホタテ貝殻由来のCa(OH)2を添加する場
合、炭酸化反応温度が、57.5℃、35.5℃、及び
22.5℃の何れについても、得られた軽質炭酸カルシ
ウムは、90質量%以上と高収率であった。
As shown in the yield results of Examples 6 to 8, when Ca (OH) 2 derived from scallop shell is added at the time after the end of the reaction for carbonating low-grade quicklime, the carbonation reaction temperature However, at any of 57.5 ° C., 35.5 ° C., and 22.5 ° C., the obtained light calcium carbonate had a high yield of 90% by mass or more.

【0076】図7のX線回折チャートに示すように、炭
酸化反応温度が、57.5℃、35.5℃、及び22.
5℃の何れについても、得られた軽質炭酸カルシウム
は、X線回折のカルサイト由来のピークとアラゴナイト
由来のピークとの強度比はC104/A111で0.5
以下と低く、高純度のアラゴナイト型炭酸カルシウムで
はあったが、アラゴナイト単相ではなく、アラゴナイト
とカルサイトとの混相であった。但し、特に57.5℃
ではアラゴナイト単相であった。
As shown in the X-ray diffraction chart of FIG. 7, the carbonation reaction temperatures were 57.5.degree. C., 35.5.degree.
At any of 5 ° C., the obtained light calcium carbonate had an intensity ratio between the peak derived from calcite and the peak derived from aragonite in X-ray diffraction of C104 / A111 of 0.5.
The aragonite-type calcium carbonate was as low as below and high purity, but was not a single phase of aragonite but a mixed phase of aragonite and calcite. However, especially 57.5 ° C
Was a single phase of aragonite.

【0077】このようにアラゴナイト単相ではなく、ア
ラゴナイトとカルサイトとの混相の結晶系になったの
は、懸濁液0.4dm3に対してCO2流量が0.1dm
3/minと大きいためと推測される。この推測は、上
記の検討例3乃至5の、低品位生石灰の炭酸化反応にお
ける、ホタテ貝殻由来のCa(OH)2の添加時期の検討
の場合の推測と同様である。
As described above, instead of a single phase of aragonite, a mixed phase of aragonite and calcite became a crystal system because of a suspension of 0.4 dm 3 and a CO 2 flow rate of 0.1 dm 3 .
It is presumed to be as large as 3 / min. This presumption is the same as the presumption in the case of examining the addition time of Ca (OH) 2 derived from scallop shells in the carbonation reaction of low-grade quicklime in the above-mentioned examination examples 3 to 5.

【0078】図8の走査電子顕微鏡写真に示すように、
炭酸化反応温度が高いほど、結晶粒子は大きく成長して
いることが解る。
As shown in the scanning electron micrograph of FIG.
It can be seen that the higher the carbonation reaction temperature, the larger the crystal grains grow.

【0079】図6の白色度測定の結果に示すように、得
られた軽質炭酸カルシウムの白色度は、検討例6の炭酸
化反応温度57.5℃の場合92.3%、検討例7の炭
酸化反応温度35.5℃の場合92.92%、検討例8
の炭酸化反応温度22.5℃の場合95.82%となっ
た。
As shown in the results of the whiteness measurement in FIG. 6, the whiteness of the obtained light calcium carbonate was 92.3% at the carbonation reaction temperature of 57.5.degree. 92.92% at a carbonation reaction temperature of 35.5 ° C., Study Example 8
At a carbonation reaction temperature of 22.5 ° C. was 95.82%.

【0080】図6の白色度測定の結果から、炭酸化反応
温度が低いほど、得られる軽質炭酸カルシウムの白色度
が高いことが解った。
From the results of the whiteness measurement shown in FIG. 6, it was found that the lower the carbonation reaction temperature, the higher the whiteness of the obtained light calcium carbonate.

【0081】以上のことから、軽質炭酸カルシウムの白
色度を高くするには、結晶成長のメカニズムが何らかの
関与をしているものと考えられる。
From the above, it is considered that the mechanism of crystal growth plays a role in increasing the whiteness of light calcium carbonate.

【0082】[0082]

【発明の効果】本発明の方法によれば炭酸カルシウムの
製造において、ホタテ貝殻等の貝殻を用いて生成した生
石灰又は消石灰を併用することで、白色度の高い軽質炭
酸カルシウムを製造できる。このため、資源的に豊富に
ある低品位石灰石を出発原料として用いることができ
る。しかも高品質の結晶質石灰石と同等の機能性を有す
る、特に高いハンター白色度を有する軽質炭酸カルシウ
ムを、低い反応温度において、高い歩留りで製造するこ
とができる。
According to the method of the present invention, light calcium carbonate having high whiteness can be produced by using quicklime or slaked lime produced using a shell such as a scallop shell in the production of calcium carbonate. Therefore, low-grade limestone which is abundant in resources can be used as a starting material. Moreover, light calcium carbonate having the same functionality as high-quality crystalline limestone, particularly having high Hunter whiteness, can be produced at low reaction temperature and high yield.

【0083】また、本発明の方法により得られる軽質炭
酸カルシウムは、結晶性の不均一さが解消され、結晶性
が良く、結晶の破壊が起こらない、高純度のアラゴナイ
ト型炭酸カルシウムであり、白色度が高いうえに、純水
に難溶で、適度な比重を持つなどの特徴から、ゴム、プ
ラスチック、塗料の増量・充填剤や製紙用塗工剤などの
重要な工業原料として使用することができる。
The light calcium carbonate obtained by the method of the present invention is a high-purity aragonite-type calcium carbonate in which the non-uniformity of crystallinity is eliminated, the crystallinity is good, and the crystal is not broken. Due to its high degree of solubility, insolubility in pure water, and moderate specific gravity, it can be used as an important industrial raw material such as rubber, plastics, coatings, fillers and papermaking coatings. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】検討例1〜5における、低品位生石灰の炭酸化
反応における、ホタテ貝殻由来のCa(OH)2の添加時
期別の各生成物の白色度測定の結果を示すグラフであ
る。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the results of whiteness measurement of each product in each of the addition periods of Ca (OH) 2 derived from scallop shells in the carbonation reaction of low-grade quick lime in Study Examples 1 to 5.

【図2】検討例3〜5における、低品位生石灰の炭酸化
反応における、ホタテ貝殻由来のCa(OH)2の添加時
期別の各懸濁液のpHの経時変化を示すグラフである。
FIG. 2 is a graph showing the change over time of the pH of each suspension in the addition of Ca (OH) 2 derived from scallop shells in the carbonation reaction of low-grade quick lime in Study Examples 3 to 5.

【図3】X線回折チャートで、(a)、(b)、及び(c)
は、それぞれ、検討例3、4、及び5における、低品位
生石灰の炭酸化反応における、ホタテ貝殻由来のCa
(OH)2の添加時期別の各生成物の結晶系を示すX線回
折チャートである。
FIG. 3 shows (a), (b), and (c) in an X-ray diffraction chart.
Is the scallop shell-derived Ca in the carbonation reaction of low-grade quicklime in Examination Examples 3, 4, and 5, respectively.
4 is an X-ray diffraction chart showing the crystal system of each product for each addition time of (OH) 2 .

【図4】走査電子顕微鏡写真で、A及びB、C及びD、
並びに、E及びFは、それぞれ、検討例3、4、並び
に、5における、低品位生石灰の炭酸化反応における、
ホタテ貝殻由来のCa(OH)2の添加時期別の各生成物
の結晶形態を示す、倍率×2000及び×5000の走
査電子顕微鏡写真である。
FIG. 4 is a scanning electron micrograph showing A and B, C and D,
And E and F are respectively in the carbonation reaction of low-grade quick lime in Examination Examples 3, 4, and 5,
5 is a scanning electron micrograph at × 2000 and × 5000 magnifications showing the crystal morphology of each product according to the time of addition of Ca (OH) 2 derived from scallop shell.

【図5】検討例6〜8における反応温度別の各懸濁液の
pHの経時変化を示すグラフである。
FIG. 5 is a graph showing the change over time of the pH of each suspension at different reaction temperatures in Examination Examples 6 to 8.

【図6】検討例1、2、又は6〜8における、低品位生
石灰の炭酸化反応、ホタテ貝殻由来のCa(OH)2の炭
酸化反応、又は、低品位生石灰の炭酸化反応の終了後の
時点での、ホタテ貝殻由来のCa(OH)2の添加の場合
における、反応温度別の炭酸化反応の各生成物の白色度
測定の結果を示すグラフである。
FIG. 6 After the carbonation reaction of low-grade quicklime, the carbonation reaction of Ca (OH) 2 derived from scallop shell, or the carbonation reaction of low-grade quicklime in Study Example 1, 2, or 6 to 8 FIG. 9 is a graph showing the results of whiteness measurement of each product of the carbonation reaction at different reaction temperatures when Ca (OH) 2 derived from scallop shells was added at the time point of FIG.

【図7】X線回折チャートで、A、B、及びCは、それ
ぞれ、検討例6、7、及び8における反応温度別の各生
成物の結晶系を示すX線回折チャートである。
7] In the X-ray diffraction charts, A, B, and C are X-ray diffraction charts showing the crystal systems of the respective products at different reaction temperatures in Examination Examples 6, 7, and 8, respectively.

【図8】走査電子顕微鏡写真で、A及びB、C及びD、
並びに、E及びFは、それぞれ、検討例6、7、並び
に、8における反応温度別の各生成物の結晶形態を示
す、倍率×2000及び×5000の走査電子顕微鏡写
真である。
FIG. 8 is a scanning electron micrograph showing A and B, C and D,
In addition, E and F are scanning electron micrographs at × 2,000 and × 5000 magnifications, respectively, showing the crystal morphology of each product according to the reaction temperature in Examined Examples 6, 7, and 8.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 豊 北海道苫小牧市新中野町3丁目1番12号 北海道共同石灰株式会社内 Fターム(参考) 4G076 AA16 AB02 AB06 AB28 AC01 BA34 BB03 BC10 BD01 BD02 CA29 CA33  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yutaka Yamashita 3-1-1-12 Shinnakano-cho, Tomakomai-shi, Hokkaido F-term in Hokkaido Joint Lime Co., Ltd. 4G076 AA16 AB02 AB06 AB28 AC01 BA34 BB03 BC10 BD01 BD02 CA29 CA33

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石灰石を焼成して得られる生石灰又は消
石灰と、貝殻を焼成して得られる生石灰又は消石灰と、
Mg2+イオンと、水とからなる懸濁液中に炭酸ガスを導
通させることを特徴とする軽質炭酸カルシウムの製造方
法。
(1) quicklime or slaked lime obtained by calcining limestone; and quicklime or slaked lime obtained by calcining a shell;
A method for producing light calcium carbonate, comprising passing carbon dioxide gas through a suspension comprising Mg 2+ ions and water.
【請求項2】 石灰石を焼成して得られる生石灰又は消
石灰と、Mg2+イオンと、水とからなる懸濁液中に炭酸
ガスを導通させ、前記懸濁液のpHが8.5以下になっ
た時点で、貝殻を焼成して得られる生石灰又は消石灰を
添加すると共に炭酸ガスを導通させることを特徴とする
軽質炭酸カルシウムの製造方法。
2. A carbon dioxide gas is passed through a suspension composed of quick lime or slaked lime obtained by calcining limestone, Mg 2+ ions, and water, so that the pH of the suspension becomes 8.5 or less. A method for producing light calcium carbonate, comprising adding calcined lime or slaked lime obtained by calcining a shell at the time of the addition, and conducting carbon dioxide gas.
【請求項3】 懸濁液の温度を0〜60℃に保って、前
記懸濁液中に炭酸ガスを導通させる請求項1又は2に記
載の軽質炭酸カルシウムの製造方法。
3. The method for producing light calcium carbonate according to claim 1, wherein the temperature of the suspension is maintained at 0 to 60 ° C., and carbon dioxide gas is passed through the suspension.
JP2000172938A 2000-06-09 2000-06-09 Method for manufacturing lightweight calcium carbonate Pending JP2001354415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172938A JP2001354415A (en) 2000-06-09 2000-06-09 Method for manufacturing lightweight calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172938A JP2001354415A (en) 2000-06-09 2000-06-09 Method for manufacturing lightweight calcium carbonate

Publications (1)

Publication Number Publication Date
JP2001354415A true JP2001354415A (en) 2001-12-25

Family

ID=18675249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172938A Pending JP2001354415A (en) 2000-06-09 2000-06-09 Method for manufacturing lightweight calcium carbonate

Country Status (1)

Country Link
JP (1) JP2001354415A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007681A (en) * 2007-06-26 2009-01-15 Opelontex Co Ltd Polyurethane elastic yarn and method for producing the same
JP2010202481A (en) * 2009-03-05 2010-09-16 Yoshizawa Lime Industry Slaked lime having high reactivity and low adhesiveness, and method for producing the same
WO2011004855A1 (en) * 2009-07-08 2011-01-13 日本製紙株式会社 Method for manufacturing calcium carbonate by causticization using fired shells
JP2011032628A (en) * 2009-07-08 2011-02-17 Nippon Paper Industries Co Ltd Method of production of causticized calcium carbonate using scallop shell baked product
JP2011214186A (en) * 2010-03-31 2011-10-27 Nippon Paper Industries Co Ltd Method for producing calcium carbonate
JP2014168902A (en) * 2013-03-04 2014-09-18 Tetsuya Suzuki Fire-resistant modified wood and manufacturing method thereof
CN113484217A (en) * 2021-07-06 2021-10-08 西南石油大学 Simulation experiment method for dolomization process

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130500A (en) * 1978-03-31 1979-10-09 Shiraishi Kogyo Kaisha Ltd Manufacture of cubic calcium carbonate
JPS6090819A (en) * 1983-10-24 1985-05-22 Komeshiyou Sekkai Kogyo Kk Production of chain calcium carbonate from ultrafine cubic calcium carbonate
JPS62202817A (en) * 1986-02-27 1987-09-07 Toyo Denka Kogyo Kk Production of fine particle of calcium carbonate
JPS62207714A (en) * 1986-03-08 1987-09-12 Maruo Calcium Kk Production of calcium carbonate
JPS6360107A (en) * 1986-08-30 1988-03-16 Matoba Sangyo Kk Production of calcium drug
JPS6418911A (en) * 1987-07-14 1989-01-23 Maruo Calcium Production of calcium carbonate for paper making
JPH04175222A (en) * 1990-11-09 1992-06-23 Daiichi Eng Kk Method for treating shell
JPH05170494A (en) * 1991-12-25 1993-07-09 Hokkaido Kyodo Sekkai Kk Improved vertical type lime calcination furnace and production of shell quick lime using this furnace
JPH05301713A (en) * 1992-04-28 1993-11-16 Nittetsu Mining Co Ltd Production of chain-like calcium carbonate
JPH08133724A (en) * 1994-10-31 1996-05-28 Tetsugen:Kk Method for continuously firing shell
JPH09249416A (en) * 1996-03-14 1997-09-22 Tokyo Seiko Co Ltd Activated calcined shell powder and calcified calcined shell powder and device for calcining the shell
JPH1143324A (en) * 1997-07-23 1999-02-16 Toshiba Corp Formation of resource from shell
JP2000086237A (en) * 1998-09-09 2000-03-28 Nittetsu Mining Co Ltd Production of spindle shaped calcium carbonate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130500A (en) * 1978-03-31 1979-10-09 Shiraishi Kogyo Kaisha Ltd Manufacture of cubic calcium carbonate
JPS6090819A (en) * 1983-10-24 1985-05-22 Komeshiyou Sekkai Kogyo Kk Production of chain calcium carbonate from ultrafine cubic calcium carbonate
JPS62202817A (en) * 1986-02-27 1987-09-07 Toyo Denka Kogyo Kk Production of fine particle of calcium carbonate
JPS62207714A (en) * 1986-03-08 1987-09-12 Maruo Calcium Kk Production of calcium carbonate
JPS6360107A (en) * 1986-08-30 1988-03-16 Matoba Sangyo Kk Production of calcium drug
JPS6418911A (en) * 1987-07-14 1989-01-23 Maruo Calcium Production of calcium carbonate for paper making
JPH04175222A (en) * 1990-11-09 1992-06-23 Daiichi Eng Kk Method for treating shell
JPH05170494A (en) * 1991-12-25 1993-07-09 Hokkaido Kyodo Sekkai Kk Improved vertical type lime calcination furnace and production of shell quick lime using this furnace
JPH05301713A (en) * 1992-04-28 1993-11-16 Nittetsu Mining Co Ltd Production of chain-like calcium carbonate
JPH08133724A (en) * 1994-10-31 1996-05-28 Tetsugen:Kk Method for continuously firing shell
JPH09249416A (en) * 1996-03-14 1997-09-22 Tokyo Seiko Co Ltd Activated calcined shell powder and calcified calcined shell powder and device for calcining the shell
JPH1143324A (en) * 1997-07-23 1999-02-16 Toshiba Corp Formation of resource from shell
JP2000086237A (en) * 1998-09-09 2000-03-28 Nittetsu Mining Co Ltd Production of spindle shaped calcium carbonate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007681A (en) * 2007-06-26 2009-01-15 Opelontex Co Ltd Polyurethane elastic yarn and method for producing the same
JP2010202481A (en) * 2009-03-05 2010-09-16 Yoshizawa Lime Industry Slaked lime having high reactivity and low adhesiveness, and method for producing the same
WO2011004855A1 (en) * 2009-07-08 2011-01-13 日本製紙株式会社 Method for manufacturing calcium carbonate by causticization using fired shells
JP2011032628A (en) * 2009-07-08 2011-02-17 Nippon Paper Industries Co Ltd Method of production of causticized calcium carbonate using scallop shell baked product
JP4663816B2 (en) * 2009-07-08 2011-04-06 日本製紙株式会社 Method for producing causticized calcium carbonate using burned scallop shell
JP2011214186A (en) * 2010-03-31 2011-10-27 Nippon Paper Industries Co Ltd Method for producing calcium carbonate
JP2014168902A (en) * 2013-03-04 2014-09-18 Tetsuya Suzuki Fire-resistant modified wood and manufacturing method thereof
CN113484217A (en) * 2021-07-06 2021-10-08 西南石油大学 Simulation experiment method for dolomization process

Similar Documents

Publication Publication Date Title
AU2011234483B2 (en) Process for obtaining precipitated calcium carbonate
CN107530619A (en) Sulfur-bearing fluid is handled to form the method for gypsum and magnesium carbonate
AU2010228846B2 (en) Process for simultaneous production of potassium sulphate, ammonium sulfate, magnesium hydroxide and/or magnesium oxide from kainite mixed salt and ammonia
CA2203210C (en) Manufacture of precipitated calcium carbonate
CN1641077A (en) Method for preparing aragonite type calcium carbonate whisker
CA2939418C (en) Process for producing high grade hydromagnesite and magnesium oxide
CA2964585A1 (en) Pcc with reduced portlandite content
CN101759207B (en) Process for producing high-purity magnesium hydroxide through brine-lime method
JP2001354415A (en) Method for manufacturing lightweight calcium carbonate
CN105460961B (en) A kind of method that nodeless mesh aqueous carbonate magnesium is prepared using heavy magnesium water
KR100283527B1 (en) Method of preparing calcium carbonate
JP2001026419A (en) Manufacture of calcium carbonate and whitening of precipitated calcium carbonate from limestone
JP3902718B2 (en) Method for producing aragonite crystalline calcium carbonate
WO2009019536A1 (en) Calcium carbonate microtablets and method for the preparation thereof
AU2013200065A1 (en) Method of selectively separating calcium and magnesium from solution containing calcium and magnesium, calcium oxalate and magnesium oxalate obtaind by the method, and calcium oxide and magnesium oxide obtained from the oxalates
JP2001354416A (en) Method for manufacturing aragonite type calcium carbonate
JP4157202B2 (en) Process for producing spindle-shaped calcium carbonate
KR20180099517A (en) Method for manufacturing magnesium hydroxide
CN106517294B (en) Process for producing metal oxide
KR20010083819A (en) Manufacture method of calcium carbonate
JP2000264626A (en) Production of calcium-aluminum-based layered double hydroxide
KR101656035B1 (en) A method for the synthesis of precipitated calcium carbonate from dolomite kiln dust
CN112408448A (en) Preparation method of mulberry fruit-shaped calcite micron calcium carbonate
Bak Effect of Agitation and Additive on the Vaterite Contents of Precipitated Calcium Carbonate from Oyster Shell Waste
Chowdhury et al. Preparation of high pure refractory grade magnesium oxide from east coast sea water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214