JP2014168902A - Fire-resistant modified wood and manufacturing method thereof - Google Patents

Fire-resistant modified wood and manufacturing method thereof Download PDF

Info

Publication number
JP2014168902A
JP2014168902A JP2013042158A JP2013042158A JP2014168902A JP 2014168902 A JP2014168902 A JP 2014168902A JP 2013042158 A JP2013042158 A JP 2013042158A JP 2013042158 A JP2013042158 A JP 2013042158A JP 2014168902 A JP2014168902 A JP 2014168902A
Authority
JP
Japan
Prior art keywords
wood
shell
fireproof
solution
processed wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013042158A
Other languages
Japanese (ja)
Inventor
Tetsuya Suzuki
鐵也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MURAKOSHI SHOGO
Original Assignee
MURAKOSHI SHOGO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MURAKOSHI SHOGO filed Critical MURAKOSHI SHOGO
Priority to JP2013042158A priority Critical patent/JP2014168902A/en
Publication of JP2014168902A publication Critical patent/JP2014168902A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Fireproofing Substances (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fire-resistant modified wood having enhanced noncombustibility or flame resistance, capable of reducing costs and contributing to environmental preservation with use of shells as waste substance; and manufacturing method thereof.SOLUTION: The fire-resistant modified wood is manufactured by performing: a fine pulverizing step S1 of fine pulverizing shells; a solution preparation step S2 of dispersing fine pulverized shells obtained in the fine pulverizing step S1 in a solvent so as to prepare a solution having a predetermined concentration; an immersion step S3 of immersing a wood in the solution obtained in the solution preparation step S2 under reduced pressure, for impregnation of the cells of wood and cell interstices inside the wood with the solution; and a drying step S4 of drying the wood obtained in the immersion step S3.

Description

本発明は、建築物の構造材、下地材、内装材又は外装材等の建築材として用いられる耐火加工木材及びその製造方法に関するものである。   The present invention relates to a fireproof processed wood used as a building material such as a structural material, a base material, an interior material or an exterior material of a building, and a method for producing the same.

近時の建築物においては、火災が発生し難い或いは火災の際の延焼を抑制するため、難燃性を高めた耐火加工木材を用いることが多くなっている。しかるに、従来より、建築材として用いられる木材に対し、例えばホウ酸化合物やハロゲン化合物を含浸させることにより、不燃性又は難燃性をより高めた耐火加工木材が提案されるに至っている。なお、かかる先行技術は、文献公知発明に係るものでないため、記載すべき先行技術文献情報はない。   In recent buildings, fire-resistant wood with increased flame retardance is often used in order to prevent fires from occurring or to suppress the spread of fire. However, hitherto, fireproof processed wood with higher incombustibility or flame retardancy has been proposed by impregnating wood used as a building material with, for example, a boric acid compound or a halogen compound. In addition, since this prior art is not related to the literature known invention, there is no prior art document information to be described.

しかしながら、上記従来技術においては、不燃性又は難燃性をより高めるためにホウ酸化合物やハロゲン化合物が必要とされるため、製造コストが嵩んでしまい、建築物の内装材や外装材として用いた場合、建築コストが著しく嵩んでしまうという問題があった。また、本出願人は、不燃性又は難燃性をより高めるための材料として、通常は廃棄されてしまう貝殻を利用することで、製造コストの抑制を検討するに至った。   However, in the above prior art, a boric acid compound or a halogen compound is required in order to further enhance the incombustibility or flame retardancy, so that the manufacturing cost increases, and it was used as an interior material or exterior material of a building. In this case, there is a problem that the construction cost is remarkably increased. In addition, the present applicant has come to consider the suppression of the manufacturing cost by using a shell that is normally discarded as a material for further increasing the incombustibility or flame retardancy.

本発明は、このような事情に鑑みてなされたもので、廃棄物としての貝殻を利用して製造コストを抑制しつつ環境保全に寄与することができるとともに、不燃性又は難燃性をより高めることができる耐火加工木材及びその製造方法を提供することにある。   This invention is made | formed in view of such a situation, and while being able to contribute to environmental conservation, suppressing the manufacturing cost using the shell as waste, nonflammability or a flame retardance is raised more. An object of the present invention is to provide a fireproof processed wood and a method for producing the same.

請求項1記載の発明は、建築物の構造材、下地材、内装材又は外装材等の建築材として用いられる耐火加工木材において、微粉末化された貝殻が木材構成細胞及び細胞間隙に含有されて成ることを特徴とする。   The invention according to claim 1 is a fire-resistant processed wood used as a building material such as a structural material, a base material, an interior material, or an exterior material of a building, wherein a finely powdered shell is contained in wood constituent cells and cell gaps. It is characterized by comprising.

請求項2記載の発明は、請求項1記載の耐火加工木材において、前記微粉末化された貝殻は、牡蠣又は帆立の貝殻から成ることを特徴とする。   According to a second aspect of the present invention, in the refractory processed wood according to the first aspect, the finely pulverized shell is composed of an oyster shell or a scallop shell.

請求項3記載の発明は、請求項1又は請求項2記載の耐火加工木材において、前記微粉末化された貝殻は、加熱焼成されて成ることを特徴とする。   A third aspect of the present invention is the fireproof processed wood according to the first or second aspect, wherein the pulverized shell is heated and fired.

請求項4記載の発明は、建築物の構造材、下地材、内装材又は外装材等の建築材として用いられる耐火加工木材の製造方法において、貝殻を微粉末化させる微粉末化工程と、該微粉末化工程にて得られた微粉末化された貝殻を溶媒中に拡散させて所定濃度の溶液を調製し得る溶液調製工程と、該溶液調製工程にて得られた溶液に木材を浸漬させつつ減圧することにより、当該木材の内部の木材構成細胞及び細胞間隙に前記溶液を染み込ませ得る浸漬工程と、該浸漬工程で得られた木材を乾燥させる乾燥工程とを経ることにより耐火加工木材を得ることを特徴とする。   The invention according to claim 4 is a pulverization step of pulverizing a shell in a method for producing fireproof wood used as a building material such as a structural material, a base material, an interior material or an exterior material of a building, A solution preparation step in which the finely pulverized shell obtained in the pulverization step is diffused into a solvent to prepare a solution of a predetermined concentration, and wood is immersed in the solution obtained in the solution preparation step The refractory processed wood is obtained by passing through a dipping step that allows the solution to soak into the wood constituent cells and cell gaps inside the wood by reducing the pressure while drying, and a drying step that dries the wood obtained in the dipping step. It is characterized by obtaining.

請求項5記載の発明は、請求項4記載の耐火加工木材の製造方法において、前記微粉末化工程で微粉末化される貝殻は、牡蠣又は帆立の貝殻から成ることを特徴とする。   According to a fifth aspect of the present invention, in the method for manufacturing a fireproof processed wood according to the fourth aspect, the shell made into a fine powder in the fine powdering step is composed of an oyster shell or a scallop shell.

請求項6記載の発明は、請求項4又は請求項5記載の耐火加工木材の製造方法において、前記微粉末化工程は、貝殻を加熱焼成することを特徴とする。   A sixth aspect of the present invention is the method for producing a refractory processed wood according to the fourth or fifth aspect, wherein the pulverization step heats and shells the shell.

請求項1、4の発明によれば、微粉末化された貝殻が木材構成細胞及び細胞間隙に含有されるので、廃棄物としての貝殻を利用して製造コストを抑制しつつ環境保全に寄与することができるとともに、不燃性又は難燃性をより高めることができる。   According to the first and fourth aspects of the invention, since the finely crushed shell is contained in the wood constituent cells and the cell gap, it contributes to environmental conservation while suppressing the manufacturing cost by using the shell as waste. In addition, the nonflammability or flame retardancy can be further increased.

請求項2、5の発明によれば、微粉末化される貝殻は、牡蠣又は帆立の貝殻から成るので、廃棄物としての貝殻の利用をより有効的に促進することができるとともに、不燃性又は難燃性を高めることができる。   According to the inventions of claims 2 and 5, since the shell to be finely powdered is composed of oysters or scallop shells, it is possible to more effectively promote the use of shells as waste and to be nonflammable. Alternatively, flame retardancy can be increased.

請求項3、6の発明によれば、微粉末化された貝殻は、加熱焼成されて成るので、貝殻を耐火加工木材に含有させるにあたって加熱消毒することができ、貝殻に付着した雑菌等を除去して衛生状態を好ましいものにすることができる。   According to the inventions of claims 3 and 6, since the finely crushed shell is heated and fired, it can be disinfected by heating when the shell is contained in the fireproof processed wood, and various bacteria attached to the shell are removed. Thus, the sanitary condition can be made favorable.

本発明の実施形態に係る耐火加工木材を得るための製造工程を示すフローチャートThe flowchart which shows the manufacturing process for obtaining the fireproof processed wood which concerns on embodiment of this invention.

以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係る耐火加工木材は、建築物(不燃性又は難燃性が要求される家屋等)の構造材(2×4工法用の木材含む)、下地材、内装材又は外装材等の建築材として用いられるもので、微粉末化された貝殻が木材構成細胞及び細胞間隙に含有されて成るものである。特に、本実施形態に係る耐火加工木材においては、内在する微粉末化された貝殻として、牡蠣又は帆立の貝殻が用いられているとともに、微粉末化された貝殻は、加熱焼成されて成るものとされている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The fireproof processed wood according to the present embodiment is a structural material (including wood for 2 × 4 construction method), a base material, an interior material, an exterior material, etc. It is used as a building material, and is formed by containing finely pulverized shells in wood constituent cells and cell gaps. In particular, in the fireproof processed wood according to the present embodiment, oysters or scallop shells are used as the inherently finely powdered shell, and the finely powdered shell is heated and fired. It is said that.

本実施形態に係る耐火加工木材は、図1のフローチャートに基づく製造方法にて得ることができる。
先ず、貝殻(本実施形態においては牡蠣の貝殻)を電気炉で加熱焼成した後、加熱焼成された貝殻を細かく砕いて微細粉末化処理することで、微粉末化した牡蠣殻焼成物を得る(微粉末化工程S1)。このとき、電気炉は、1200℃にて3時間、加熱焼成するものとされている。かかる微粉末化工程S1により、貝殻を微粉末化処理することができるとともに、加熱焼成によって加熱消毒することができ、雑菌等を予め除去することができる。
The fireproof processed wood according to the present embodiment can be obtained by the manufacturing method based on the flowchart of FIG.
First, after shellfish shells (oyster shells in the present embodiment) are heated and fired in an electric furnace, the heat-fired shellfish shells are finely pulverized and processed into a fine powder to obtain a finely powdered oyster shell fired product ( Micronization step S1). At this time, the electric furnace is heated and fired at 1200 ° C. for 3 hours. By this pulverization step S1, the shell can be pulverized and heat-sterilized by heating and baking, so that germs and the like can be removed in advance.

そして、微粉末化工程S1で得られた微粉末化した牡蠣殻焼成物を水等の溶媒中に投入し、攪拌することで微粉末化した貝殻を溶液中で略均一に拡散させて、所定濃度(本実施形態においては、略5%程度の濃度)の溶液(微粉末懸濁液)を調製する(溶液調製工程S2)。かかる溶液調製工程S2における微粉末化処理された貝殻(牡蠣殻焼成物)の攪拌は、例えばマイクロバブル発生装置(直径が数μm〜略50μm以下の極めて微小な気泡を生じさせ得る装置)により行われるのが好ましい。   Then, the finely powdered oyster shell fired product obtained in the fine powdering step S1 is put into a solvent such as water, and the finely powdered shell is diffused substantially uniformly in the solution by stirring. A solution (fine powder suspension) having a concentration (in the present embodiment, a concentration of about 5%) is prepared (solution preparation step S2). Agitation of the micronized shell (baked oyster shell) in the solution preparation step S2 is performed by, for example, a microbubble generator (a device capable of generating extremely fine bubbles having a diameter of several μm to about 50 μm or less). Are preferred.

その後、溶液調製工程S2にて得られた溶液(微粉末懸濁液)に、不燃化又は難燃化処理する対象である木材を浸漬させつつ減圧することにより、当該木材の内部の木材構成細胞及び細胞間隙に溶液(溶液調製工程S2にて得られた微粉末懸濁液)を染み込ませる(浸漬工程S3)。なお、不燃化又は難燃化処理する対象である木材は、例えば、杉や檜の間伐材が好ましいが、他の木材であってもよい。   Thereafter, the wood constituting cells inside the wood are decompressed while immersing the wood to be incombustible or flame retardant in the solution (fine powder suspension) obtained in the solution preparation step S2. And the solution (fine powder suspension obtained in the solution preparation step S2) is infiltrated into the cell gap (immersion step S3). In addition, although the timber which is the object to be incombustible or incombustible is preferably, for example, thinned cedar or straw, other wood may be used.

より具体的には、浸漬工程S3においては、密閉可能な容器の収容空間に溶液調製工程S2にて得られた溶液を収容させるとともに、その溶液内に木材を浸漬させた状態として容器を密閉する。そして、真空ポンプにて容器内の空気を吸引して真空減圧した後、一気に常圧に戻す。かかる真空減圧工程と常圧への戻し工程を繰り返し行うことで、木材の内部の木材構成細胞及び細胞間隙に溶液を略均一に染み込ませることができるのである。   More specifically, in the immersing step S3, the solution obtained in the solution preparation step S2 is accommodated in the accommodating space of the sealable container, and the container is sealed in a state where wood is immersed in the solution. . And after sucking the air in a container with a vacuum pump and carrying out vacuum pressure reduction, it returns to a normal pressure at a stretch. By repeatedly performing such vacuum depressurization step and returning to normal pressure, the solution can be substantially uniformly infiltrated into the wood-constituting cells and cell gaps inside the wood.

その後、浸漬工程S3で得られた木材(内部の木材構成細胞及び細胞間隙に溶液を略均一に染み込ませた木材)を乾燥機によって乾燥(例えば、略70℃で8時間程度の乾燥)させる(乾燥工程S4)。以上の如き一連の製造工程を経ることにより、不燃性又は難燃性がより高められた耐火加工木材を得ることができるとともに、廃棄処分される貝殻を用いるようにすれば、廃棄物利用を高めることができ、環境対策に寄与することができる。   After that, the wood obtained in the dipping step S3 (the wood in which the internal wood constituent cells and the cells are soaked with the solution substantially uniformly) is dried by a dryer (for example, dried at about 70 ° C. for about 8 hours) ( Drying step S4). By going through a series of manufacturing processes as described above, it is possible to obtain refractory wood that is more incombustible or flame retardant, and use waste shells to increase waste utilization. Can contribute to environmental measures.

上記実施形態によれば、微粉末化された貝殻が木材構成細胞及び細胞間隙に含有されるので、廃棄物としての貝殻(所謂、水産廃棄物)を利用して製造コストを抑制しつつ環境保全に寄与することができるとともに、不燃性又は難燃性をより高めることができる。すなわち、貝殻(貝殻焼成物)の主成分は、水酸化カルシウムであり、これを木材が内部に含有することで、より有効に不燃性及び難燃性とすることができ、且つ、廃棄物としての貝殻を用いることで、これを廃棄する場合に比べて、環境保全に寄与することができるのである。   According to the above embodiment, since the finely crushed shell is contained in the wood constituent cells and the cell gap, the environmental conservation is achieved while suppressing the manufacturing cost by using the shell (so-called marine waste) as the waste. In addition to being able to contribute to the non-flammability or flame retardancy. That is, the main component of the shell (baked shell) is calcium hydroxide, and it can be made more effectively non-flammable and flame retardant by containing wood inside, and as waste. By using this shell, it can contribute to environmental conservation compared with the case of discarding it.

特に、本実施形態によれば、溶液調製工程S2にて得られた溶液に木材を浸漬させつつ減圧することにより、当該木材の内部の木材構成細胞及び細胞間隙に溶液を染み込ませているので、より確実且つ均一に木材の内部に貝殻の微小粉末を内在させることができ、不燃効果及び難燃効果に優れた耐火加工木材を提供することができる。なお、浸漬工程S3において、分散剤を溶液に投入させることで、より一層容易且つ確実に、木材の内部の木材構成細胞及び細胞間隙に溶液を染み込ませるようにしてもよい。   In particular, according to the present embodiment, the pressure is reduced while immersing wood in the solution obtained in the solution preparation step S2, so that the solution is infiltrated into the wood constituent cells and cell gaps inside the wood, The shell powder can be contained in the wood more reliably and uniformly, and a fireproof processed wood excellent in incombustibility and flame retardancy can be provided. In the dipping step S3, the solution may be soaked into the wood constituent cells and the cell gaps inside the wood more easily and reliably by introducing a dispersant into the solution.

また、微粉末化される貝殻は、牡蠣(帆立であってもよい)の貝殻から成るので、廃棄物としての貝殻の利用をより有効的に促進することができるとともに、不燃性又は難燃性を高めることができる。すなわち、牡蠣や帆立は、毎年数千トン〜数万トンが廃棄物として廃棄処分されており、かかる大量の廃棄物を利用してリサイクル化に寄与することは、環境対策により一層寄与させることができるのである。   In addition, since the shell to be finely powdered is composed of a shell of oysters (which may be scallops), it is possible to more effectively promote the use of the shell as waste, and it is incombustible or incombustible. Can increase the sex. In other words, thousands to tens of thousands of tons of oysters and scallops are disposed of as waste every year. Contributing to recycling using such a large amount of waste should further contribute to environmental measures. Can do it.

さらに、本実施形態によれば、微粉末化された貝殻は、加熱焼成されて成るので、貝殻を耐火加工木材に含有させるにあたって加熱消毒することができ、貝殻に付着した雑菌等を除去して衛生状態を好ましいものにすることができる。すなわち、貝殻には、食中毒細菌等の雑菌が付着していることがあるので、微粉末化処理する過程で加熱焼成することで、加熱殺菌して当該雑菌を除去することができるのである。   Further, according to the present embodiment, since the finely crushed shell is heated and fired, it can be disinfected by heating when the shell is contained in the fire-resistant processed wood, and various bacteria attached to the shell are removed. The sanitary condition can be made favorable. That is, since miscellaneous bacteria such as food poisoning bacteria may adhere to the shell, the bacteria can be removed by heat sterilization by heating and baking in the process of pulverization.

ここで、溶液調製工程S2で得られる溶液中に、動物性タンパク質から得られる接着剤としての膠(ニカワ)又はシリカゲル(何れか一方又は両方)を投入してもよい。この場合、得られる耐火加工木材の強度を向上させることができ、強度が高い建築材として用いることができる。なお、膠やシリカゲルの他、強度を向上させ得る他の添加材を溶液中に投入するようにしてもよい。   Here, glue (Nika) or silica gel (either one or both) as an adhesive obtained from animal protein may be introduced into the solution obtained in the solution preparation step S2. In this case, the strength of the fireproof processed wood obtained can be improved and can be used as a building material with high strength. In addition to glue and silica gel, other additives that can improve strength may be introduced into the solution.

次に、本実施形態に係る耐火加工木材の不燃効果又は難燃効果を示す実験について説明する。
上記の微粉末化工程S1、溶液調製工程S2、浸漬工程S3及び乾燥工程S4を経て得られた10cm角の木片を実施例(檜の木片を実施例1、杉の木片を実施例2)とするとともに、何等の加工を施していない10cm角の木片を比較例1、2(檜の木片を比較例1、杉の木片を比較例2)、上記の微粉末化工程S1及び溶液調製工程S2を経て得られた溶液を表面に塗布した10cm角の木片を比較例3、4(檜の木片を実施例3、杉の木片を実施例4)とした。
Next, the experiment which shows the nonflammable effect or the flame-retardant effect of the fireproof processed wood which concerns on this embodiment is demonstrated.
A 10 cm square piece of wood obtained through the fine powdering step S1, the solution preparation step S2, the dipping step S3, and the drying step S4 is described in Example (Example 1 for oak wood pieces, Example 2 for cedar wood pieces). In addition, a 10 cm square piece of wood that has not been subjected to any processing is subjected to Comparative Examples 1 and 2 (Comparative Example 1 for birch pieces and Comparative Example 2 for cedar pieces), the above-described fine powdering step S1 and solution preparation step S2. 10 cm square pieces of wood obtained by applying the solution obtained on the surface to Comparative Example 3 and 4 (Example 3 for birch pieces and Example 4 for cedar pieces).

そして、無風状態において、一定寸法離間した状態のバーナーから実施例1、2のそれぞれに対して略1200℃の炎を吹き付け、着火して焦げた状態となるのに要する時間を測定したところ、実施例1が平均で41.75(sec)及び実施例2が平均で15.67(sec)であった。一方、同様の条件にて、比較例1〜4のそれぞれに対して略1200℃の炎を吹き付け、着火して焦げた状態となるのに要する時間を測定したところ、比較例1が平均で4.67(sec)、比較例2が平均で3.67(sec)、比較例3が平均で4.67(sec)、比較例4が平均で5.67(sec)であった。   Then, in a windless state, a flame of approximately 1200 ° C. was sprayed on each of Examples 1 and 2 from a burner in a state of being spaced apart by a certain dimension, and the time required to become ignited and burned was measured. Example 1 averaged 41.75 (sec) and Example 2 averaged 15.67 (sec). On the other hand, under the same conditions, flames of approximately 1200 ° C. were sprayed on each of Comparative Examples 1 to 4, and the time required to become ignited and burned was measured. .67 (sec), Comparative Example 2 was 3.67 (sec) on average, Comparative Example 3 was 4.67 (sec) on average, and Comparative Example 4 was 5.67 (sec) on average.

上記実験結果によれば、比較例1〜4の木片は、略1200℃の炎を吹き付けると、すぐに着火してしまうのに対し、実施例1、2の木片は、比較的長時間着火することがなく、不燃性効果又は難燃性効果が極めて高いことが分かる。特に、檜から成る木材を用いることで、不燃性効果又は難燃性効果をより一層高めることが分かる。なお、建築基準法の耐火判定基準によれば、750℃の炎を当てて、5分間燃えなければ「難燃性」、10分間燃えなければ「準不燃性」、20分間燃えなければ「不燃性」とされているが、本実施例は、当該基準より過酷な条件下で不燃性を有しており、耐火性に極めて優れていることが分かる。   According to the above experimental results, the wood pieces of Comparative Examples 1 to 4 ignite immediately when a flame of approximately 1200 ° C. is blown, whereas the wood pieces of Examples 1 and 2 ignite for a relatively long time. No flame retardant effect or flame retardant effect is found. In particular, it can be seen that the use of wood made of firewood further enhances the nonflammability effect or the flame retardancy effect. In addition, according to the fire resistance criteria of the Building Standards Act, it is “flammable” if it does not burn for 5 minutes by applying a flame of 750 ° C., “semi-flammable” if it does not burn for 10 minutes, and “nonflammable” if it does not burn for 20 minutes. However, it can be seen that this example has nonflammability under conditions severer than the standard, and is extremely excellent in fire resistance.

以上、本実施形態について説明したが、本発明はこれに限定されず、例えば用いられる貝殻は、牡蠣又は帆立以外の貝殻であってもよい。また、微粉末化された貝殻が木材構成細胞及び細胞間隙に含有されることにより、不燃性又は難燃性をより高めることができる耐火加工木材であれば、他の製造方法により得られたものであってもよい。さらに、本実施形態においては、微粉末化工程S1において加熱焼成しているが、貝殻を粉砕して微粉末化できれば、加熱焼成しなくてもよい。   As mentioned above, although this embodiment was described, this invention is not limited to this, For example, shells other than an oyster or a scallop may be sufficient as the shell used. In addition, if fireproof processed wood that can further enhance the incombustibility or flame retardance by containing finely pulverized shells in wood constituent cells and cell gaps, those obtained by other production methods It may be. Furthermore, in the present embodiment, heating and firing are performed in the pulverization step S1, but if the shell can be pulverized to be pulverized, it may not be heated and fired.

微粉末化された貝殻が木材構成細胞及び細胞間隙に含有されて成る耐火加工木材及びその製造方法であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。   As long as the pulverized shell is contained in the cells constituting the wood and the cell gap, it can be applied to a fire-resistant processed wood and a method for producing the fire-resistant processed wood. it can.

S1 微粉末化工程
S2 溶液調製工程
S3 浸漬工程
S4 乾燥工程
S1 Micronization process S2 Solution preparation process S3 Immersion process S4 Drying process

Claims (6)

建築物の構造材、下地材、内装材又は外装材等の建築材として用いられる耐火加工木材において、
微粉末化された貝殻が木材構成細胞及び細胞間隙に含有されて成ることを特徴とする耐火加工木材。
In fireproof wood used as building materials such as building structural materials, base materials, interior materials or exterior materials,
A fireproof processed wood characterized in that a finely powdered shell is contained in wood constituent cells and cell gaps.
前記微粉末化された貝殻は、牡蠣又は帆立の貝殻から成ることを特徴とする請求項1記載の耐火加工木材。   The fireproof processed wood according to claim 1, wherein the finely pulverized shell is made of oyster or scallop shell. 前記微粉末化された貝殻は、加熱焼成されて成ることを特徴とする請求項1又は請求項2記載の耐火加工木材。   The fireproof processed wood according to claim 1 or 2, wherein the finely pulverized shell is heated and fired. 建築物の構造材、下地材、内装材又は外装材等の建築材として用いられる耐火加工木材の製造方法において、
貝殻を微粉末化させる微粉末化工程と、
該微粉末化工程にて得られた微粉末化された貝殻を溶媒中に拡散させて所定濃度の溶液を調製し得る溶液調製工程と、
該溶液調製工程にて得られた溶液に木材を浸漬させつつ減圧することにより、当該木材の内部の木材構成細胞及び細胞間隙に前記溶液を染み込ませ得る浸漬工程と、
該浸漬工程で得られた木材を乾燥させる乾燥工程と、
を経ることにより耐火加工木材を得ることを特徴とする耐火加工木材の製造方法。
In the manufacturing method of fireproof processed wood used as a building material such as a structural material of a building, a base material, an interior material or an exterior material,
A pulverization process for pulverizing the shell,
A solution preparation step capable of preparing a solution of a predetermined concentration by diffusing the micronized shell obtained in the fine powder step into a solvent;
A dipping step in which the solution can be soaked into wood constituent cells and cell gaps inside the wood by reducing the pressure while dipping the wood in the solution obtained in the solution preparation step;
A drying step of drying the wood obtained in the soaking step;
A method for producing fireproof processed wood, characterized by obtaining fireproof processed wood by going through.
前記微粉末化工程で微粉末化される貝殻は、牡蠣又は帆立の貝殻から成ることを特徴とする請求項4記載の耐火加工木材の製造方法。   The method for producing fireproof processed wood according to claim 4, wherein the shell made into a fine powder in the fine powdering step comprises an oyster shell or a scallop shell. 前記微粉末化工程は、貝殻を加熱焼成することを特徴とする請求項4又は請求項5記載の耐火加工木材の製造方法。   The method for producing fire-resistant processed wood according to claim 4 or 5, wherein the pulverizing step includes heating and firing the shell.
JP2013042158A 2013-03-04 2013-03-04 Fire-resistant modified wood and manufacturing method thereof Pending JP2014168902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013042158A JP2014168902A (en) 2013-03-04 2013-03-04 Fire-resistant modified wood and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013042158A JP2014168902A (en) 2013-03-04 2013-03-04 Fire-resistant modified wood and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2014168902A true JP2014168902A (en) 2014-09-18

Family

ID=51691694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013042158A Pending JP2014168902A (en) 2013-03-04 2013-03-04 Fire-resistant modified wood and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2014168902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125308A1 (en) * 2015-02-06 2016-08-11 株式会社吉成産業 Process for producing non-combustible wood

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246004A (en) * 1985-04-24 1986-11-01 松下電工株式会社 Manufacture of improved wood
JPS62280289A (en) * 1986-05-29 1987-12-05 Katsuhisa Ikeda Fireproofing agent prepared from shell
JPH05170494A (en) * 1991-12-25 1993-07-09 Hokkaido Kyodo Sekkai Kk Improved vertical type lime calcination furnace and production of shell quick lime using this furnace
JPH0825314A (en) * 1994-07-14 1996-01-30 Miyagi Pref Gov Manufacture of modified wood and modified wood
JP2001354415A (en) * 2000-06-09 2001-12-25 Hokkaido Kyodo Sekkai Kk Method for manufacturing lightweight calcium carbonate
JP2002172603A (en) * 2000-12-07 2002-06-18 Kenjiro Makino New function-added lumber, its manufacturing method and its using method
JP2002327523A (en) * 2001-02-14 2002-11-15 Masao Miura Building indoor surface finishing material and finishing method using the same
JP2003211412A (en) * 2001-11-16 2003-07-29 Asano Mokuzai Kogyo Kk Method for manufacturing incombustible lumber
JP2008132747A (en) * 2006-11-01 2008-06-12 Shoei:Kk Method for improving quality of wooden material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246004A (en) * 1985-04-24 1986-11-01 松下電工株式会社 Manufacture of improved wood
JPS62280289A (en) * 1986-05-29 1987-12-05 Katsuhisa Ikeda Fireproofing agent prepared from shell
JPH05170494A (en) * 1991-12-25 1993-07-09 Hokkaido Kyodo Sekkai Kk Improved vertical type lime calcination furnace and production of shell quick lime using this furnace
JPH0825314A (en) * 1994-07-14 1996-01-30 Miyagi Pref Gov Manufacture of modified wood and modified wood
JP2001354415A (en) * 2000-06-09 2001-12-25 Hokkaido Kyodo Sekkai Kk Method for manufacturing lightweight calcium carbonate
JP2002172603A (en) * 2000-12-07 2002-06-18 Kenjiro Makino New function-added lumber, its manufacturing method and its using method
JP2002327523A (en) * 2001-02-14 2002-11-15 Masao Miura Building indoor surface finishing material and finishing method using the same
JP2003211412A (en) * 2001-11-16 2003-07-29 Asano Mokuzai Kogyo Kk Method for manufacturing incombustible lumber
JP2008132747A (en) * 2006-11-01 2008-06-12 Shoei:Kk Method for improving quality of wooden material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125308A1 (en) * 2015-02-06 2016-08-11 株式会社吉成産業 Process for producing non-combustible wood

Similar Documents

Publication Publication Date Title
JP5079983B2 (en) Stable boron compound liquid composition, production method thereof and use thereof
Yan et al. Construction of multilayer coatings for flame retardancy of ramie fabric using layer‐by‐layer assembly
JP3183525U (en) Fireproof wood
JP2014168902A (en) Fire-resistant modified wood and manufacturing method thereof
JP4840362B2 (en) Liquid composition and heat and flameproof coating composition containing the same
CN107599086A (en) A kind of preparation method based on environment-friendly resin enhancing, flame-retardant modified timber
CN102359239B (en) Environment-friendly and flame-retardant decorative plate and production method thereof
JP2007055271A (en) Manufacturing process of nonflammable wood plate and fire retardant solution
JP4221608B2 (en) Production method of non-combustible wood board
KR102213003B1 (en) Expanded Polystyrene Foam Non-Combustible Composition, Method of Preparing the Same and Non-Combustible Expanded Polystyrene Foam Using the Same
JP2014062003A (en) Agent for improving heat resistance
KR101763387B1 (en) Fire-retardant Low Pressure Melamine finishing board and manufacturing method thereof
JP2004050828A (en) Noncombustible treatment solution and fireproofing material using the same
JP2005186620A (en) Method for manufacturing nonflammable timber plate
JP2009029103A (en) Product subjected to flame retardance treatment or fireproof treatment
CN106894601A (en) The processing method of anion sheet material and the sheet material
WO2023130652A1 (en) Flame-retardant wood, preparation method therefor and use of metal halide
JP2007138365A (en) Heat-resistant/incombustible composition
CN106903765B (en) The fire retarding wood that a kind of method for improving fire-retarding of wood performance and this method obtain
CN103406960B (en) A kind of wooden bamboo wood highly effective flame-retardant processing method
Li et al. Flame retardance and antibacterial performance of wooden wallpaper treated with composite modifying agent
JP3187591U (en) High strength processed wood
Sable et al. Thermal insulation from hardwood residues
JP6038477B2 (en) Incombustible treatment agent and incombustible treatment method
JP5671435B2 (en) Incombustible composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171211