JP3902718B2 - Method for producing aragonite crystalline calcium carbonate - Google Patents

Method for producing aragonite crystalline calcium carbonate Download PDF

Info

Publication number
JP3902718B2
JP3902718B2 JP2000087846A JP2000087846A JP3902718B2 JP 3902718 B2 JP3902718 B2 JP 3902718B2 JP 2000087846 A JP2000087846 A JP 2000087846A JP 2000087846 A JP2000087846 A JP 2000087846A JP 3902718 B2 JP3902718 B2 JP 3902718B2
Authority
JP
Japan
Prior art keywords
calcium carbonate
aragonite
carbon dioxide
mol
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000087846A
Other languages
Japanese (ja)
Other versions
JP2001270713A (en
Inventor
晴男 金野
竜二 土井
泰徳 南里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2000087846A priority Critical patent/JP3902718B2/en
Publication of JP2001270713A publication Critical patent/JP2001270713A/en
Application granted granted Critical
Publication of JP3902718B2 publication Critical patent/JP3902718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は各種素材の充填材・顔料として有用なアラゴナイト結晶系炭酸カルシウムの製造方法に関するものであり、さらに詳しくは生石灰又は/及び消石灰を懸濁させる時にアルカリ性水溶液を用い、その後に炭酸ガスを導入することにより各種素材の充填材・顔料として有用なアラゴナイト結晶系炭酸カルシウムを製造する方法に関するものである。
【0002】
【従来の技術】
炭酸カルシウムは製紙、ゴム、プラスチック等の広範囲な工業分野で利用されており、特に製紙分野ではその使用量が急増している。これらの理由は(1)安価、(2)高白色度、(3)様々な形状を有する、などが挙げられる。その結果、炭酸カルシウムの利用価値は高い。炭酸カルシウムにはカルサイト、アラゴナイト、バテライトの3種類の結晶多形があり、天然にはカルサイトがほとんどであり、貝殻などの一部にアラゴナイトが存在しているだけでバテライトは一般には存在していない。これらの結晶多形の内、アラゴナイトは針状、柱状、イガグリ状などの特徴的な晶癖を有しているため、非常に有用である。しかしながら天然にはほとんど産出しないため人工的に製造する方法が採用されている。
【0003】
炭酸カルシウムの製造方法としては(1)炭酸ガスと水酸化カルシウムの水性懸濁液との反応である炭酸ガス法、(2)炭酸ナトリウムと塩化カルシウムとの反応による塩化カルシウムソーダ法、(3)炭酸ナトリウムと石灰乳との反応による石灰ソーダ法等の反応が挙げられる。これらの内、アラゴナイト結晶系炭酸カルシウムの製造方法としては(1)の炭酸ガス法を用いてリン酸化合物などの添加物を用いる方法(特開昭63-256514号)、水酸化カルシウムの水性懸濁液の粘度を規定する方法(特開平4-295010号公報)などの特許が開示されている。
【0004】
上記炭酸ガス法では炭酸ガスの水への溶解度が非常に低いため、全般的に反応時間が非常に長くなってしまう欠点がある。より生産性を向上させる目的で炭酸ガスの流量を高くすると、カルサイトの生成が多くなってしまうため、アラゴナイトを生成させるためにはやはり反応時間を長くさせなければならず、生産性の向上は困難であると言える。一方、石灰ソーダ法では炭酸カルシウムの他に生成する水酸化ナトリウムを分離する装置が必要であるという問題がある。
【0005】
【発明が解決しようとする課題】
以上のような状況に鑑み、炭酸ガス法を用いたアラゴナイト結晶系炭酸カルシウムの製造方法を改良し、炭酸ガスの流量を高めた場合でも高アラゴナイト含量であるアラゴナイト結晶系炭酸カルシウムを製造することを本発明の課題とした。
【0006】
【課題を解決するための手段】
本発明者らは、硫酸塩法又はソーダ法によるパルプ製造工程の苛性化工程を利用して、生石灰の濃度が1〜60重量%になるように、生石灰又は/及び消石灰に生石灰換算で1 molに対して特定濃度範囲の炭酸イオンを含む特定濃度以下のアルカリ水溶液を添加し、攪拌させ石灰乳を調製した後、緑液を連続的に添加し、その添加速度及び反応温度を制御することによってアラゴナイト結晶が得られることを見出した。
【0007】
そこで本発明者らは、さらに鋭意研究を重ねた結果、水酸化ナトリウム水溶液又は水酸化カリウム水溶液を含むアルカリ存在下で炭酸化を行うとアラゴナイト結晶が析出しやすいことを突き止め、そのアルカリ水溶液を用いて石灰乳を調製した後、炭酸ガスの流量と反応温度を制御することによってアラゴナイト結晶が得られることを見出し、この知見に基づいて本発明をなすに至った。本発明の方法により、高アラゴナイト結晶含有でかつ形状コントロールした炭酸カルシウムの製造が可能となり、粒子の短径が0.1〜1.5μmで、長径が0.2〜25μmの、針状、柱状、イガグリ状の炭酸カルシウムが調製されることが分かった。これらは例えば製紙用填料として用いると、白色度、ワイヤー摩耗性、嵩、不透明度、こし等の改善の効果が表れる。しかもこの方法は従来の水を用いた石灰乳と炭酸ガスとの反応による方法に比べて、そのアルカリ水溶液を用いると水酸化カルシウムからのカルシウムイオンの溶出速度も低下するが、炭酸ガス流量が高い場合、炭酸ガスのそのアルカリ水溶液への吸収速度の方が大きく向上し、炭酸カルシウムの生成速度も向上する。これにより炭酸カルシウム生産量の向上につなげることができる。特に高温側で比べるとその差は大きくなる。
【0008】
【発明の実施の形態】
本発明の石灰乳の調製において使用する生石灰は、炭酸カルシウムを主成分とする石灰石を焼成したものであればよい。なお、その際の焼成装置に関しては、ベッケンバッハ炉、メルツ炉、ロータリーキルン、国井式炉、KHD(カーハーディー)炉、コマ式炉、カルマチック炉、流動焼成炉、混合焼き立炉等、炭酸カルシウムを生石灰(酸化カルシウム)に転化する装置であれば特に制限されない。
【0009】
得られる炭酸カルシウム中の不純物の含量については、特に着色成分(Fe、Mn等)が問題となるが、用途に合わせて着色成分含量の少ない原料石灰石から得られる生石灰を適宜選択する。また生石灰中の炭酸カルシウム含量はできるだけ少ない原料が好ましい。また石灰乳の調製において使用する消石灰は前記生石灰を湿式及び乾式で消和されたものでよいが、乾式で消和された消石灰の方が生成するアラゴナイト結晶の含有率及び形状にとってはより好ましい。
【0010】
石灰乳の調製において添加する液としては生石灰1 molに対して0.25 mol以下、好ましくは0.10mol以下、より好ましくは0.01mol以下の炭酸イオンを含む水酸化物イオン濃度で0.01〜2M、好ましくは0.1〜1Mのアルカリ水溶液を利用する。ここで用いるアルカリ水溶液の濃度は0.01M以下ではアルカリの添加効果が認められず、2M以上ではコストがかさんでしまう。また、このアルカリ水溶液はどのようなアルカリでも可能であるが、炭酸ガスとの反応によって炭酸カルシウムより溶解度が高い炭酸塩を生成しなければならず、また反応性を向上させるためには溶解度がかなり高い炭酸塩を生成するアルカリ水溶液、例えば水酸化ナトリウムや水酸化カリウム水溶液などを用いるのが好ましい。また、この時、生石灰1 molに対して炭酸イオンが0.25 molより多くなると生成する炭酸カルシウムは紡錘状もしくは塊状のカルサイト結晶になる。さらに高品質のアラゴナイト結晶の炭酸カルシウムを得ようとするならば炭酸イオンがほとんどない0.1〜1Mの水酸化ナトリウム水溶液を用いた方がより好ましい。
【0011】
石灰乳の調製時の石灰濃度は生石灰換算で5〜30重量%の条件、好ましくは5〜20重量%で行う必要がある。ここで石灰濃度が30重量%を超えると反応途中でも粘度が高すぎて現実的に攪拌が困難となる。一方、石灰濃度が5重量%未満では生産性が悪く、実用的ではない。
【0012】
生石灰の消和および消石灰の溶解での混合には、一般的な攪拌羽根式等を粘度にあわせて適宜選定して使用すれば良い。
本発明で用いる炭酸ガスは炭酸ガスの含有率が10〜100容量%のものを用いることができるが、生産性を考慮するとより高含有率のものが好ましい。炭酸ガスの導入はガスを懸濁液中に吹き込みバブリングさせることによって行い、その流量は炭酸ガスとして水酸化カルシウム1kgあたり0.5〜10L/minの範囲で添加する必要がある。この時10L/minより高い流量で導入するとカルサイト結晶の混入が激しくなる。また、0.5L/minより低い流量であると生産性向上に寄与できない。
【0013】
反応温度については20〜80℃で行う必要があるが20℃より低い温度では冷却などの新たな設備が必要なためコストが高くなってしまう。また80℃より高くなるとカルサイトが多く生成してしまう。これらのカルサイト結晶は例えば製紙填料として用いた場合、不透明度低下等の原因になってしまう。
【0014】
反応時の攪拌には、一般的な攪拌羽根式などを使用し、生石灰の消和および消石灰の溶解により調製された石灰乳と炭酸ガスが均一に混合できるものを適宜選定して使用すれば良い。
【0015】
水酸化カルシウムのほとんどが反応して炭酸カルシウムになった後に残る石灰乳の調製において添加したアルカリ水溶液は炭酸ガスを過剰に導入することにより炭酸水素塩になり反応後のスラリーは中性から弱アルカリ性になり、例えば製紙用填料としてはそのまま利用できるが、中性であることが必要な場合はろ過・洗浄などを行えば良い。ろ過、洗浄には、公知のシックナー(沈降分離型)、真空ろ過器、加圧ろ過器、遠心分離器などを用いることができる。これらの中で特に真空ろ過器、加圧ろ過器、遠心分離器を用いてアルカリ水溶液と分離することが好ましく、その後に必要であれば水で置換洗浄などをすれば良い。以上のような条件下において、粒子の短径が0.1〜1.5μmで、長径が0.3〜25μmの、針状、柱状、イガグリ状の炭酸カルシウムが調製される。
【0016】
このとき、アラゴナイト結晶含有率は、70%以上、好ましくは、80重量%以上が必要となる。アラゴナイト結晶含有率が70%未満であるとアラゴナイト結晶由来のアスペクト比の大きい針状・柱状粒子の他にアスペクト比の小さい粒状などの凝集した形状が多く混入し、各種素材の充填剤としての性能を低下させる。特に、プラスチックの充填剤として用いたときにその強度特性を著しく低下させる。
また、ここで洗浄して得られたアラゴナイト結晶系炭酸カルシウムは例えば、紙の填料として用いる際、粒子径が大きい場合、湿式又は乾式処理した後に利用するのが好ましい。
【0017】
本発明によって得られるアラゴナイト結晶系炭酸カルシウムは製紙用填料・顔料やゴム、プラスチック等の各種素材の充填材・顔料として利用できる。特に製紙用填料として利用した時は紙の嵩、不透明度、白色度、こし等の改善効果があり、粉砕して顔料として使用した場合、印刷後光沢、表面強度の向上効果がある。
【0018】
【作用】
本発明のメカニズムについては充分に解明されていないが、水酸化ナトリウム水溶液又は水酸化カリウム水溶液中に炭酸ガスを導入すると炭酸ナトリウムや炭酸カリウムの溶解度が高い炭酸塩の水溶液となり、これらの炭酸塩と水酸化カルシウムが反応することによって炭酸カルシウムが生成する。この時、反応が起こる環境下でそのアルカリが存在するとアラゴナイト結晶が優先的に析出しやすいものと思われる。しかし、この時に過剰の炭酸イオンが溶液内に存在するとカルサイト結晶が生成しやすい。従って石灰乳の調製の際に易溶性の炭酸塩を多く含んだアルカリ水溶液を用いた場合や過剰に炭酸ガスの流量を高めると、アラゴナイト結晶の含有率が低下する傾向にある。
【0019】
【実施例】
以下に本発明を実施例および比較例をあげてより詳細に説明するが、当然ながら、本発明は実施例のみに限定されるものではない。
[試験法]
▲1▼ 形態観察:生成物を水洗濾過し、乾燥後走査型電子顕微鏡(日本電子株製JSM-5300)で形態を観察した。ここでの観察をもとに30個の粒子の短径、長径を測定した。
▲2▼ 結晶構造:Rigaku製 X線回折RAD-2Cにより測定した。
▲3▼ アラゴナイト結晶含有率の測定:Ca(NO3)2-(NH4)2CO系で調製した純度99.3%のアラゴナイト結晶と99.99%の超高純度試薬のカルサイト結晶を任意の割合で混合し、X線回折で2θ=26.2(アラゴナイト)、2θ=29.4(カルサイト)のピーク強度を測定した。強度比と混合比率の関係の検量線を作成し、これを用いてアラゴナイト結晶含有率を求めた。
[実施例1]
適当な容量の4ツ口フラスコ容器(以下の実施例・比較例についても同じ容器使用)に、消石灰と1mol/L-NaOH水溶液を用い、生石灰濃度として10重量%になる割合で混合して石灰乳をつくり、炭酸ガス含有率100容量%の炭酸ガスを流量2L/min/kg CaOで吹き込み、温度50℃、攪拌速度400rpm(KYOEI POWER STIRRER TYPE PS-2N使用、以下の実施例・比較例についても同じ攪拌機使用)の条件で炭酸化反応を行わせた。反応終了後、得られた炭酸カルシウムのスラリーはNo.5Cのろ紙を用いて、ブフナー漏斗で吸引ろ過し、さらに水で数回洗浄し、分析に供した。生成反応物のX線回折測定及び形態観察を行った結果、生成物は平均長径8.0μm、平均短径0.5μmであるアラゴナイト結晶含有率が99%の針状炭酸カルシウムが認められた。実験条件および結果を表1に示す。
[実施例2]
炭酸ガスの流量を10L/min/kg CaOの条件で炭酸化反応を行った以外は実施例1の条件で行った。生成物は平均長径3.5μm、平均短径0.3μmであるアラゴナイト結晶含有率87%の針状炭酸カルシウムが認められた。実験条件および結果を表1に示す。
[実施例3]
生石灰濃度として20重量%になる割合で石灰乳をつくり、炭酸ガスの流量を2L/min/kg CaOで吹き込み、温度75℃の条件で炭酸化反応を行わせた以外は実施例1と同様に行った。生成物は平均長径9.0μm、平均短径0.5μmのアラゴナイト結晶含有率99%の柱状炭酸カルシウムであることが認められた。実験条件および結果を表1に示す。
[比較例1]
石灰乳の調製に水を用いた以外は実施例2と同様に行った。この時の反応生成物は、アラゴナイト結晶含有率59%でウニ状と粒状の形状の混合した炭酸カルシウムであることが認められた。実験条件および結果を表1に示す。
[比較例2]
石灰乳の調製に水を用い、温度50℃で行った以外は実施例3と同様に行った。この時の反応生成物は、アラゴナイト結晶含有率41%で粒状と柱状の形状が混合した炭酸カルシウムであることが認められた。実験条件および結果を表1に示す。
【0020】
[比較例3]
石灰乳の調製に0.5mol/L-NaOHと0.8mol/L-Na2CO3の混合溶液を用いて生石灰濃度として10重量%になる割合で石灰乳を調製し、炭酸ガス流量を4L/min/kg CaO、温度を75℃とした以外は実施例1と同様に行った。この時の反応生成物は、アラゴナイト結晶含有率36%で塊状と針状の混合した炭酸カルシウムであることが認められた。実験条件および結果を表1に示す。
【0021】
【表1】

Figure 0003902718
【0022】
【発明の効果】
実施例1〜3に示す如く、本発明による炭酸カルシウムはアラゴナイト結晶の針状、柱状、イガグリ状の炭酸カルシウムであった。さらに、本法は炭酸ガスの流量を高めた場合でも高アラゴナイト含有であるアラゴナイト結晶系炭酸カルシウムを製造することができた。
【図面の簡単な説明】
【図1】 実施例1で得られた針状炭酸カルシウムの結晶粒子構造を示す走査型電子顕微鏡写真である。
【図2】 実施例1で得られた生成物についてのX線回折の結果を示す図である。
【図3】 実施例2で得られた針状炭酸カルシウムの結晶粒子構造を示す走査型電子顕微鏡写真である。
【図4】 比較例1で得られた粒状と柱状炭酸カルシウムの結晶粒子構造を示す走査型電子顕微鏡写真である。
【図5】 比較例1で得られた生成物についてのX線回折の結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing aragonite crystalline calcium carbonate useful as a filler / pigment for various materials, and more specifically, an alkaline aqueous solution is used when suspending quicklime or / and slaked lime, and then carbon dioxide is introduced. The present invention relates to a method for producing aragonite crystalline calcium carbonate useful as a filler or pigment for various materials.
[0002]
[Prior art]
Calcium carbonate is used in a wide range of industrial fields such as papermaking, rubber and plastics, and the amount of calcium carbonate used is increasing rapidly especially in the papermaking field. These reasons include (1) low cost, (2) high whiteness, and (3) various shapes. As a result, the utility value of calcium carbonate is high. Calcium carbonate has three types of crystal polymorphs: calcite, aragonite, and vaterite.Naturally, calcite is almost natural, and vaterite is generally present only by the presence of aragonite in shells and other parts. Not. Among these polymorphs, aragonite is very useful because it has characteristic crystal habits such as needle shape, columnar shape, and crab shape. However, since it is hardly produced in nature, an artificially produced method is adopted.
[0003]
The production method of calcium carbonate includes (1) the carbon dioxide method, which is a reaction of carbon dioxide with an aqueous suspension of calcium hydroxide, (2) the calcium chloride soda method by the reaction of sodium carbonate and calcium chloride, (3) A reaction such as a lime soda method by a reaction between sodium carbonate and lime milk is exemplified. Among these, as a method for producing aragonite crystalline calcium carbonate, a method using an additive such as a phosphoric acid compound using the carbon dioxide method of (1) (Japanese Patent Laid-Open No. 63-256514), an aqueous suspension of calcium hydroxide. Patents such as a method for defining the viscosity of a turbid liquid (JP-A-4-95010) are disclosed.
[0004]
The carbon dioxide gas method has a disadvantage that the reaction time is generally very long because the solubility of carbon dioxide gas in water is very low. If the flow rate of carbon dioxide gas is increased for the purpose of improving productivity, the generation of calcite will increase, so the reaction time must also be lengthened to generate aragonite, It can be said that it is difficult. On the other hand, the lime soda method has a problem that an apparatus for separating sodium hydroxide generated in addition to calcium carbonate is required.
[0005]
[Problems to be solved by the invention]
In view of the above situation, the production method of aragonite crystalline calcium carbonate using the carbon dioxide method is improved, and even when the flow rate of carbon dioxide gas is increased, aragonite crystalline calcium carbonate having a high aragonite content is produced. It was set as the subject of this invention.
[0006]
[Means for Solving the Problems]
The present inventors use a causticizing step of a pulp manufacturing process by a sulfate method or a soda method so that quick lime or / and slaked lime is 1 mol in terms of quick lime so that the concentration of quick lime becomes 1 to 60% by weight. By adding an alkaline aqueous solution of a specific concentration or less containing carbonate ions in a specific concentration range to prepare lime milk by stirring, by continuously adding green liquor, and controlling the addition rate and reaction temperature It has been found that aragonite crystals can be obtained.
[0007]
Therefore, as a result of further earnest studies, the present inventors have found that aragonite crystals are likely to precipitate when carbonated in the presence of an alkali containing an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution, and using the aqueous alkaline solution. After preparing lime milk, it was found that aragonite crystals can be obtained by controlling the flow rate of carbon dioxide gas and the reaction temperature, and the present invention has been made based on this finding. The method of the present invention makes it possible to produce calcium carbonate containing high aragonite crystals and having a shape controlled, and having a short diameter of 0.1 to 1.5 μm and a long diameter of 0.2 to 25 μm, needle-like, columnar, and corn-like carbonic acid. It has been found that calcium is prepared. When these are used, for example, as a filler for papermaking, the effect of improving whiteness, wire wear, bulk, opacity, strain, etc. appears. Moreover, this method reduces the elution rate of calcium ions from calcium hydroxide when the aqueous alkaline solution is used, compared with the conventional method of reacting lime milk with carbon dioxide using water, but the carbon dioxide gas flow rate is high. In this case, the absorption rate of carbon dioxide into the alkaline aqueous solution is greatly improved, and the generation rate of calcium carbonate is also improved. Thereby, it can lead to the improvement of calcium carbonate production. In particular, the difference is greater when compared to the high temperature side.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The quicklime used in the preparation of the lime milk of the present invention may be any calcined limestone mainly composed of calcium carbonate. Regarding the firing equipment at that time, Beckenbach furnace, Melz furnace, rotary kiln, Kunii-type furnace, KHD (Kerhardy) furnace, Koma-type furnace, Kalmatic furnace, fluidized firing furnace, mixed baking stand, etc., calcium carbonate If it is an apparatus which converts lime into quicklime (calcium oxide), it will not be restricted in particular.
[0009]
Regarding the content of impurities in the obtained calcium carbonate, coloring components (Fe, Mn, etc.) are particularly problematic, but quick lime obtained from raw limestone having a small coloring component content is appropriately selected according to the use. A raw material with as little calcium carbonate content as possible in the quicklime is preferred. Further, the slaked lime used in the preparation of lime milk may be one obtained by wet-drying and dry-drying the quicklime, but is more preferable for the content and shape of the aragonite crystals produced by the dry-type slaked lime.
[0010]
As a liquid to be added in the preparation of lime milk, 0.25 mol or less, preferably 0.10 mol or less, more preferably 0.01 mol or less of hydroxide ions containing carbonate ions with respect to 1 mol of quicklime, preferably 0.1 to 2M, preferably 0.1. Use ~ 1M aqueous alkaline solution. If the concentration of the aqueous alkali solution used here is 0.01 M or less, the effect of adding an alkali is not recognized, and if it is 2 M or more, the cost is increased. The alkali aqueous solution can be any alkali, but must react with carbon dioxide gas to produce a carbonate having a higher solubility than calcium carbonate. In order to improve the reactivity, the solubility is considerably high. It is preferable to use an aqueous alkali solution that produces a high carbonate, such as an aqueous sodium hydroxide or potassium hydroxide solution. At this time, when the carbonate ion exceeds 0.25 mol with respect to 1 mol of quicklime, the produced calcium carbonate becomes spindle-shaped or massive calcite crystals. Furthermore, if it is intended to obtain high quality aragonite crystal calcium carbonate, it is more preferable to use a 0.1 to 1 M sodium hydroxide aqueous solution having almost no carbonate ions.
[0011]
The lime concentration at the time of preparation of lime milk needs to be 5 to 30% by weight, preferably 5 to 20% by weight in terms of quick lime. Here, if the lime concentration exceeds 30% by weight, the viscosity is too high even during the reaction, and stirring becomes difficult in practice. On the other hand, if the lime concentration is less than 5% by weight, the productivity is poor and not practical.
[0012]
For mixing with quick lime slaked and slaked lime dissolution, a general stirring blade type or the like may be appropriately selected according to the viscosity.
The carbon dioxide gas used in the present invention may be one having a carbon dioxide content of 10 to 100% by volume, but a higher content is preferable in consideration of productivity. Carbon dioxide gas is introduced by bubbling gas into the suspension, and the flow rate must be added as carbon dioxide in the range of 0.5 to 10 L / min per 1 kg of calcium hydroxide. At this time, if introduced at a flow rate higher than 10 L / min, calcite crystals will become intensively mixed. Further, if the flow rate is lower than 0.5 L / min, it cannot contribute to productivity improvement.
[0013]
Regarding the reaction temperature, it is necessary to carry out the reaction at 20 to 80 ° C. However, if the temperature is lower than 20 ° C., a new facility such as cooling is required, which increases the cost. Moreover, when it exceeds 80 degreeC, a lot of calcite will produce | generate. When these calcite crystals are used, for example, as a paper filler, they cause a decrease in opacity.
[0014]
For stirring at the time of reaction, a general stirring blade type or the like may be used, and a lime milk prepared by calcination of quick lime and dissolution of slaked lime and carbon dioxide can be appropriately selected and used. .
[0015]
Alkaline aqueous solution added in the preparation of lime milk that remains after most of calcium hydroxide reacts to become calcium carbonate becomes bicarbonate by introducing carbon dioxide excessively, and the slurry after reaction is neutral to weakly alkaline For example, it can be used as it is as a filler for papermaking, but if it is necessary to be neutral, filtration and washing can be performed. A known thickener (precipitation separation type), vacuum filter, pressure filter, centrifuge, or the like can be used for filtration and washing. Among these, it is preferable to separate from an alkaline aqueous solution using a vacuum filter, a pressure filter, and a centrifuge, and after that, if necessary, replacement washing with water may be performed. Under the conditions as described above, acicular, columnar, or rugged calcium carbonate having a minor axis of 0.1 to 1.5 μm and a major axis of 0.3 to 25 μm is prepared.
[0016]
At this time, the aragonite crystal content needs to be 70% or more, preferably 80% by weight or more. When the content of aragonite crystals is less than 70%, many agglomerated shapes such as grains with a small aspect ratio are mixed in addition to needle-like and columnar particles with a large aspect ratio derived from aragonite crystals, and performance as a filler for various materials Reduce. In particular, when used as a plastic filler, its strength properties are significantly reduced.
The aragonite crystalline calcium carbonate obtained by washing here is preferably used after wet or dry treatment when the particle size is large when used as a paper filler, for example.
[0017]
The aragonite crystalline calcium carbonate obtained by the present invention can be used as a filler or pigment for various materials such as paper fillers, pigments, rubber and plastics. In particular, when used as a filler for papermaking, it has an effect of improving paper bulk, opacity, whiteness, strain and the like, and when pulverized and used as a pigment, it has an effect of improving gloss after printing and surface strength.
[0018]
[Action]
Although the mechanism of the present invention has not been fully elucidated, when carbon dioxide gas is introduced into a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution , a carbonate aqueous solution having high solubility of sodium carbonate or potassium carbonate is obtained. Calcium carbonate is produced by the reaction of calcium hydroxide. At this time, it is considered that aragonite crystals are likely to precipitate preferentially in the presence of the alkali in an environment where the reaction occurs. However, if excessive carbonate ions are present in the solution at this time, calcite crystals are likely to be formed. Accordingly, when an alkaline aqueous solution containing a large amount of a readily soluble carbonate is used in the preparation of lime milk, or when the flow rate of carbon dioxide gas is excessively increased, the content of aragonite crystals tends to decrease.
[0019]
【Example】
The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the examples.
[Test method]
{Circle around (1)} Morphological observation: The product was washed with water, filtered, dried, and then observed with a scanning electron microscope (JSM-5300, manufactured by JEOL Ltd.). Based on this observation, the minor axis and major axis of 30 particles were measured.
(2) Crystal structure: Measured by Rigaku X-ray diffraction RAD-2C.
( 3 ) Measurement of aragonite crystal content: Aragonite crystal of 99.3% purity and 99.99% calcite crystal of 99.99% ultrapure reagent prepared in Ca (NO 3 ) 2- (NH 4 ) 2 CO system at an arbitrary ratio After mixing, the peak intensities of 2θ = 26.2 (aragonite) and 2θ = 29.4 (calcite) were measured by X-ray diffraction. A calibration curve of the relationship between the intensity ratio and the mixing ratio was created, and the aragonite crystal content was determined using this.
[Example 1]
Mix lime with a slaked lime and 1mol / L-NaOH aqueous solution in an appropriate volume of 4 neck flask (use the same container for the following examples and comparative examples) and mix it at a rate of 10% by weight as lime. Milk is made and carbon dioxide with a carbon dioxide content of 100% by volume is blown at a flow rate of 2L / min / kg CaO. The carbonation reaction was carried out under the conditions of the same stirrer. After completion of the reaction, the obtained calcium carbonate slurry was No. Using 5C filter paper, the solution was suction filtered with a Buchner funnel, further washed several times with water, and subjected to analysis. As a result of X-ray diffraction measurement and morphology observation of the product reaction product, acicular calcium carbonate having an average major axis of 8.0 μm and an average minor axis of 0.5 μm and an aragonite crystal content of 99% was observed. Experimental conditions and results are shown in Table 1.
[Example 2]
It was carried out under the same conditions as in Example 1 except that the carbonation reaction was carried out under the condition that the flow rate of carbon dioxide was 10 L / min / kg CaO. The product was acicular calcium carbonate having an average major axis of 3.5 μm and an average minor axis of 0.3 μm and an aragonite crystal content of 87%. Experimental conditions and results are shown in Table 1.
[Example 3]
As in Example 1, except that lime milk was prepared at a rate of 20% by weight as quicklime concentration, the carbon dioxide gas flow rate was blown at 2 L / min / kg CaO, and the carbonation reaction was performed at a temperature of 75 ° C. went. The product was confirmed to be columnar calcium carbonate having an average major axis of 9.0 μm and an average minor axis of 0.5 μm and an aragonite crystal content of 99%. Experimental conditions and results are shown in Table 1.
[Comparative Example 1]
It carried out like Example 2 except having used water for preparation of lime milk. The reaction product at this time was found to be calcium carbonate mixed with sea urchin and granular shapes with an aragonite crystal content of 59%. Experimental conditions and results are shown in Table 1.
[Comparative Example 2]
The same procedure as in Example 3 was performed except that water was used for the preparation of lime milk and the temperature was 50 ° C. The reaction product at this time was found to be calcium carbonate having a aragonite crystal content of 41% and a mixture of granular and columnar shapes. Experimental conditions and results are shown in Table 1.
[0020]
[Comparative Example 3]
Lime milk is prepared at a rate of 10% by weight as a quick lime concentration using a mixed solution of 0.5 mol / L-NaOH and 0.8 mol / L-Na 2 CO 3 for the preparation of lime milk, and the flow rate of carbon dioxide is 4 L / min. The same procedure as in Example 1 was conducted except that / kg CaO and the temperature were set to 75 ° C. The reaction product at this time was found to be calcium carbonate mixed with lump and needle with an aragonite crystal content of 36%. Experimental conditions and results are shown in Table 1.
[0021]
[Table 1]
Figure 0003902718
[0022]
【The invention's effect】
As shown in Examples 1 to 3, the calcium carbonate according to the present invention was an aragonite crystal needle-like, columnar, or crab-like calcium carbonate. Furthermore, this method was able to produce aragonite crystalline calcium carbonate having a high aragonite content even when the flow rate of carbon dioxide gas was increased.
[Brief description of the drawings]
1 is a scanning electron micrograph showing the crystal particle structure of acicular calcium carbonate obtained in Example 1. FIG.
2 is a graph showing the results of X-ray diffraction for the product obtained in Example 1. FIG.
3 is a scanning electron micrograph showing the crystal particle structure of acicular calcium carbonate obtained in Example 2. FIG.
4 is a scanning electron micrograph showing the granular and columnar calcium carbonate crystal particle structures obtained in Comparative Example 1. FIG.
5 is a graph showing the results of X-ray diffraction of the product obtained in Comparative Example 1. FIG.

Claims (1)

水酸化カルシウムの水性懸濁液に炭酸ガスを導入することによって紙、ゴム、プラスチック等の各種素材の充填材・顔料として有用なアラゴナイト結晶系炭酸カルシウムを製造する方法であって、水酸化カルシウム濃度が生石灰換算で5〜30重量%、好ましくは5〜20重量%になるように、水酸化カルシウム1 molに対して0.25 mol以下、好ましくは0.1mol以下、より好ましくは0.01mol以下の炭酸イオンを含む水酸化物イオン濃度で0.01〜2M、好ましくは0.1〜1Mの、水酸化ナトリウム水溶液又は水酸化カリウム水溶液を添加し、攪拌しながら調製した水酸化カルシウムの水性懸濁液に、炭酸ガスを0.5〜10L/min/kg CaOの範囲で添加し、反応温度20〜80℃にて炭酸化を行うことによりなる、前記アラゴナイト結晶系炭酸カルシウムの製造方法。A method for producing aragonite crystalline calcium carbonate useful as a filler / pigment for various materials such as paper, rubber and plastic by introducing carbon dioxide into an aqueous suspension of calcium hydroxide, the concentration of calcium hydroxide Is 5 to 30% by weight in terms of quicklime, preferably 5 to 20% by weight, so that 0.25 mol or less, preferably 0.1 mol or less, more preferably 0.01 mol or less of carbonate ions are added to 1 mol of calcium hydroxide. Carbon dioxide gas is added to an aqueous suspension of calcium hydroxide prepared by adding a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution having a hydroxide ion concentration of 0.01 to 2M, preferably 0.1 to 1M, and stirring. A method for producing the aragonite crystalline calcium carbonate, comprising adding in the range of ˜10 L / min / kg CaO and performing carbonation at a reaction temperature of 20 to 80 ° C.
JP2000087846A 2000-03-28 2000-03-28 Method for producing aragonite crystalline calcium carbonate Expired - Fee Related JP3902718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087846A JP3902718B2 (en) 2000-03-28 2000-03-28 Method for producing aragonite crystalline calcium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087846A JP3902718B2 (en) 2000-03-28 2000-03-28 Method for producing aragonite crystalline calcium carbonate

Publications (2)

Publication Number Publication Date
JP2001270713A JP2001270713A (en) 2001-10-02
JP3902718B2 true JP3902718B2 (en) 2007-04-11

Family

ID=18603798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087846A Expired - Fee Related JP3902718B2 (en) 2000-03-28 2000-03-28 Method for producing aragonite crystalline calcium carbonate

Country Status (1)

Country Link
JP (1) JP3902718B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040617A (en) * 2001-07-31 2003-02-13 Yahashi Kogyo Kk Method for producing high dispersibility spindle-shaped calcium carbonate
AU2012220526B2 (en) * 2005-04-11 2014-02-20 Omya International Ag Precipitated calcium carbonate pigment, especially for use in inkjet printing paper coatings
EP1712597A1 (en) 2005-04-11 2006-10-18 Omya Development AG Process for preparing precipitated calcium carbonate pigment, especially for use in inkjet printing pater coatings and precipitated calcium carbonate
EP1712523A1 (en) * 2005-04-11 2006-10-18 Omya Development AG Precipitated calcium carbonate pigment, especially for use in inkjet printing paper coatings
JP5021344B2 (en) * 2007-03-20 2012-09-05 日本製紙株式会社 Method for concentrating light calcium carbonate
JP2009067605A (en) * 2007-09-10 2009-04-02 Oita Univ Method for producing aragonite type calcium carbonate with hexagonal plate form
KR101162663B1 (en) * 2009-02-12 2012-07-04 포항공과대학교 산학협력단 Methods for removing carbondioxide and controlling crystal structures of calcium carbonate
KR101187267B1 (en) * 2009-02-12 2012-10-02 포항공과대학교 산학협력단 Methods for removing of carbondioxide using bisic polymers
US20110266493A1 (en) * 2010-05-03 2011-11-03 Amjad Ashfaque Shaikh Method of forming encapsulated carbon nanotubes

Also Published As

Publication number Publication date
JP2001270713A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
TWI494275B (en) Process for obtaining precipitated calcium carbonate
US9725330B2 (en) Production of high purity precipitated calcium carbonate
RU2596827C2 (en) Precipitated calcium carbonate from pulp mill waste having improved brightness, method for production and use thereof
US20220106194A1 (en) Process for producing nano precipitated calcium carbonate
JP3902718B2 (en) Method for producing aragonite crystalline calcium carbonate
JP3874978B2 (en) Method for producing calcium carbonate and sodium hydroxide
RU2680067C1 (en) Precipitated calcium carbonate with high content of solid substance, with depolymerized carboxylated cellulose
KR100283527B1 (en) Method of preparing calcium carbonate
JP2001026419A (en) Manufacture of calcium carbonate and whitening of precipitated calcium carbonate from limestone
JP4191943B2 (en) Method for producing calcium carbonate whisker
JP2006028003A (en) Method for producing whisker-like calcium carbonate
JP4346248B2 (en) Method for producing aragonite crystalline calcium carbonate
JP4236818B2 (en) Method for producing calcium carbonate whisker
CN110563015B (en) Preparation method of light calcium carbonate for food
JP2001354416A (en) Method for manufacturing aragonite type calcium carbonate
CN107473252A (en) A kind of preparation method of flaky calcite calcium carbonate crystal
CN115448348B (en) Solid morphology control agent and preparation method and application thereof
JP4813075B2 (en) Method for producing aragonite acicular calcium carbonate
TWI551546B (en) Precipitated calcium carbonate from pulp mill waste having an improved brightness, method for the production and use thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees