JP5490256B2 - 誘導電動機及び圧縮機及び送風機及び空気調和機 - Google Patents

誘導電動機及び圧縮機及び送風機及び空気調和機 Download PDF

Info

Publication number
JP5490256B2
JP5490256B2 JP2012547608A JP2012547608A JP5490256B2 JP 5490256 B2 JP5490256 B2 JP 5490256B2 JP 2012547608 A JP2012547608 A JP 2012547608A JP 2012547608 A JP2012547608 A JP 2012547608A JP 5490256 B2 JP5490256 B2 JP 5490256B2
Authority
JP
Japan
Prior art keywords
rotor
slot
outer peripheral
induction motor
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012547608A
Other languages
English (en)
Other versions
JPWO2012077171A1 (ja
Inventor
浩二 矢部
勇人 吉野
貴弘 堤
和彦 馬場
智明 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP5490256B2 publication Critical patent/JP5490256B2/ja
Publication of JPWO2012077171A1 publication Critical patent/JPWO2012077171A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/20Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having deep-bar rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Description

この発明は、誘導電動機に関するもので、特に誘導電動機の固定子鉄心と回転子鉄心の形状に関するものである。また、この誘導電動機を搭載した圧縮機及び送風機、並びにこれらの圧縮機及び送風機を搭載した空気調和機に関する。
従来、誘導電動機の回転子は、スロット形状や、外周部にスリットを設けることにより、力率、漂遊負荷損、騒音等を低減する形状が多く提案されている。
例えば、複数のスロットを有する回転子鉄心と、この回転子鉄心のスロットに収納された二次導体とを備え、二次導体がアルミ・ダイカストにより形成されている誘導電動機において、回転子鉄心の全閉スロットの回転子表面側に、このスロットとは連結されていないスリットを設けるとともに、このスリットの周方向寸法を1.0mm〜3.5mm、径方向寸法を1.0mm〜2.5mmの範囲に設定するようにして、常に力率、漂遊負荷損、騒音などの低減が図れる高性能な誘導電動機が提案されている(例えば、特許文献1参照)。
特開平9−224358号公報
しかしながら、上記特許文献1に記載された誘導電動機の回転子形状は、全閉スロット外周部にスリットを設けるため、等価エアギャップの増大、エアギャップ管理、エンドリング形状をスリットにかぶらないようにするなどの課題がある。尚、エアギャップとは、固定子と回転子との間の空隙(通常は、数百μm)をいう。
この発明は、上記のような課題を解決するためになされたもので、回転子の二次導体における二次電流の集中が緩和され、モータ特性を改善することができる誘導電動機及び圧縮機及び送風機及び空気調和機を提供する。
この発明に係る誘導電動機は、固定子と、固定子の内側に空隙を介して設けられる回転子と、を有し、回転子の回転子鉄心の回転子スロット内に非磁性且つ導電性の材料が充填されて形成されるかご形二次導体を有する誘導電動機において、
回転子スロットは、
回転子外周部の近傍に形成される外周スロットと、
外周スロットに連通し、外周スロットの内側に形成される内周スロットと、を備え、
固定子は、固定子鉄心と、固定子鉄心に形成されるスロットに挿入される巻線と、を有し、
固定子鉄心は、
外周側に形成されるコアバックと、
コアバックの内周側から放射状に回転子方向に延びて形成される複数のティースと、
隣接する二つのティースの間に形成されるスロットと、
スロットに形成され、空隙に開口しているスロット開口部と、を備え、
回転子スロットの各部の寸法を、
TB:内周スロットの中心側と回転子外周部との間の最短距離;
TC:外周スロットの最内周の周方向の幅;
TD:内周スロットの最外周の周方向の幅;
TE:内周スロットの端部側と回転子外周部との間の最短距離;
と定義し、さらに、固定子鉄心の各部の寸法を、
TF:ティースの幅;
TG:ティース先端部の幅;
TH:スロット開口部の幅;
と定義するとき、回転子スロットの各部の寸法と固定子鉄心の各部の寸法とは、
TF/(TG+TH)×TD/2≦TB≦TD/2 ・・・ 式(1)
TF/(TG+TH)×TD/2≦TE≦TD/2 ・・・ 式(2)
の関係を満たすものである。
この発明に係る誘導電動機は、上記構成により、回転子の二次導体における二次電流の集中が緩和され、モータ特性が改善される。
比較のために示す図で、一般的な誘導電動機200の横断面図。 比較のために示す図で、一般的な誘導電動機200の固定子220の横断面図。 比較のために示す図で、一般的な誘導電動機200の固定子鉄心221の横断面図。 比較のために示す図で、一般的な誘導電動機200の回転子210の斜視図。 比較のために示す図で、一般的な誘導電動機200の回転子210の横断面図。 比較のために示す図で、一般的な誘導電動機200の回転子鉄心211の横断面図。 比較のために示す図で、一般的な誘導電動機200の回転子210における固定子220からの磁束の鎖交により発生する二次電流の集中する様子を示す図。 比較のために示す図で、一般的な別の回転子310における固定子からの磁束の鎖交により発生する二次電流の集中する様子を示す図。 実施の形態1を示す図で、誘導電動機100の横断面図。 実施の形態1を示す図で、誘導電動機100の固定子20の横断面図。 実施の形態1を示す図で、誘導電動機100の固定子鉄心21の横断面図。 図11の部分拡大図。 実施の形態1を示す図で、誘導電動機100の回転子10の斜視図。 実施の形態1を示す図で、誘導電動機100の回転子10の横断面図。 実施の形態1を示す図で、誘導電動機100の回転子鉄心11の横断面図。 実施の形態1を示す図で、回転子スロット13の拡大図。 実施の形態1を示す図で、TB(=TE)に対する二次銅損/出力[%]の特性を示す図。 実施の形態1を示す図で、TB(=TE)に対するトルクの特性を示す図。 実施の形態1を示す図で、実施例の回転子スロット13の拡大図。 図19の部分拡大図。 実施の形態1を示す図で、2気筒回転式圧縮機400の縦断面図。 実施の形態1を示す図で、空気調和機の冷媒回路図。 実施の形態1を示す図で、空気調和機の室外機600の分解斜視図。
実施の形態1.
図1乃至図3は比較のために示す図で、図1は一般的な誘導電動機200の横断面図、図2は一般的な誘導電動機200の固定子220の横断面図、図3は一般的な誘導電動機200の固定子鉄心221の横断面図である。
図1に示すように、一般的な誘導電動機200(以下、単にモータと呼ぶ場合もある)は、固定子220と、固定子220の内側に空隙230(エアギャップ)を介して配置される回転子210と、を備える。
図2に示すように、固定子220は、略リング状の固定子鉄心221と、固定子鉄心221に形成されるスロット225に挿入される巻線222と、を備える。巻線222は、各ティース224に巻回される集中巻、もしくは分布巻である。また、巻線222は、単相、もしくは三相である。
固定子鉄心221は、板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜いた後、所定枚数軸方向に積層し、抜きカシメや溶接等により固定して製作される。
図3に示すように、固定子鉄心221は、外周側にリング状のコアバック223が形成され、コアバック223の内周側から複数(ここでは、24個)のティース224が放射状に回転子210方向に延びている。各ティース224の周方向の幅は、径方向に略一定である。
隣接する二つのティース224の間に、スロット225(空間)が形成される。スロット225の数は、ティース224の数と同じ24個である。各ティース224の周方向の幅は、径方向に略一定であるので、スロット225の周方向の幅は、内側(回転子210側)から外側(コアバック223側)に向かって徐々に大きくなる。スロット225は空隙230(図1参照)に開口していて、ここをスロット開口部225a(スロットオープニング)と呼ぶ。巻線222は、スロット開口部225aから挿入される。
図4乃至図6は比較のために示す図で、図4は一般的な誘導電動機200の回転子210の斜視図、図5は一般的な誘導電動機200の回転子210の横断面図、図6は一般的な誘導電動機200の回転子鉄心211の横断面図である。
図4に示すように、回転子210は、回転子鉄心211と、アルミバー212(図5参照)と、積層方向の両端部に形成される一対のエンドリング217とで構成されるかご形二次導体と、を備える。アルミバー212とエンドリング217はダイキャストにより同時にアルミを鋳込むことで製作される。尚、かご形二次導体は、アルミ以外に銅で形成される場合もある。
図5に示すように、回転子210は、回転子鉄心211の複数(30個)の回転子スロット213に、アルミが鋳込まれてアルミバー212が形成される。既に述べたように、アルミバー212は、積層方向の両端部に形成される一対のエンドリング217とでかご形二次導体を構成する。
回転子鉄心211も固定子鉄心221と同様、板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜いた後、所定枚数軸方向に積層し、抜きカシメや溶接等により固定して製作される。
図6に示すように、回転子鉄心211は、断面の形状が略円形で、外周縁に沿って、複数(30個)の回転子スロット213が周方向に略等間隔に形成されている。隣接する二つの回転子スロット213の間に回転子ティース214が形成される。回転子ティース214の数は、回転子スロット213の数と同じ30個である。回転子ティース214の周方向の幅は、径方向に略一定である。従って、回転子スロット213の周方向幅は、内側から外周に向かって徐々に大きくなっている。回転子鉄心211の中央部に、駆動軸(図示せず)が嵌合する軸孔216が開けられている。回転子スロット213と軸孔216との間の鉄心部分をコアバック215と呼ぶ。
回転子スロット213には、非磁性体且つ導電性の材料(例えば、アルミ)が充填されているため、回転子スロット213に固定子220の磁束が鎖交し、且つ磁束の変化があるとアルミバー212に二次電流が発生し、その二次電流と固定子220からの磁束によりトルクが発生する。
理想的には固定子220からの磁束が回転子210の回転子スロット213の一部をまたぐことなく、一気に磁束が変化することにより回転子スロット213内に発生する二次電流が一定となる。
図7、図8は比較のために示す図で、図7は一般的な誘導電動機200の回転子210における固定子220からの磁束の鎖交により発生する二次電流の集中する様子を示す図、図8は一般的な別の回転子310における固定子からの磁束の鎖交により発生する二次電流の集中する様子を示す図である。
図7に示すように、一般的な誘導電動機200の回転子210は、回転子スロット213と回転子210の外周との径方向の幅D1が狭いため、固定子220からの磁束が回転子スロット213の一部(回転子スロット213の外周側の頂点付近から右上隅)を鎖交する。図7における矢印は、固定子220からの磁束の流れを示す。
回転子スロット213の一部のみ磁束が鎖交する影響により、回転子スロット213の固定子220からの磁束が鎖交した部分に集中して二次電流が流れる。その影響から、回転子スロット213全体に二次電流が流れる場合と比べて二次抵抗が大きく、二次銅損が増加し効率が悪化する課題があった。この二次銅損は漂遊負荷損、もしくは高調波二次銅損と呼ばれる場合もある。
図8に示す一般的な別の回転子310は、回転子210と回転子スロット313の形状が異なる。回転子スロット213の外周側の形状が円弧であるのに対して、回転子スロット313の外周側が平面になっている。この回転子310においても、回転子210と同様、回転子スロット313と回転子310の外周との径方向の幅D2が狭いため、固定子からの磁束が回転子スロット313の一部(回転子スロット313の外周側の中央付近から右上隅)を鎖交する。図8における矢印は、固定子からの磁束の流れを示す。尚、回転子スロット313には、アルミバー312が鋳込まれる。
回転子スロット313の一部のみ磁束が鎖交する影響により、回転子スロット313の固定子からの磁束が鎖交した部分に集中して二次電流が流れる。そのため、回転子スロット313全体に二次電流が流れる場合と比べて二次抵抗が大きく、二次銅損が増加し効率が悪化する課題があった。
図9乃至図14は実施の形態1を示す図で、図9は誘導電動機100の横断面図、図10は誘導電動機100の固定子20の横断面図、図11は誘導電動機100の固定子鉄心21の横断面図、図12は図11の部分拡大図である。
図9に示すように、本実施の形態の誘導電動機100は、固定子20と、固定子20の内側に空隙30(エアギャップ)を介して配置される回転子10と、を備える。
図10に示すように、固定子20は、略リング状の固定子鉄心21と、固定子鉄心21に形成されるスロット25に挿入される巻線22と、を備える。巻線22は、各ティース24に巻回される集中巻、もしくは分布巻である。また、巻線22は、単相、もしくは三相である。
固定子鉄心21は、板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜いた後、所定枚数軸方向に積層し、抜きカシメや溶接等により固定して製作される。
図11に示すように、固定子鉄心21は、外周側にリング状のコアバック23が形成され、コアバック23の内周側から複数(ここでは、24個)のティース24が放射状に回転子10方向に延びている。各ティース24の周方向の幅は、径方向に略一定である。
隣接する二つのティース24の間に、スロット25(空間)が形成される。スロット25の数は、ティース24の数と同じ24個である。各ティース24の周方向の幅は、径方向に略一定であるので、スロット25の周方向の幅は、内側(回転子10側)から外側(コアバック23側)に向かって徐々に大きくなる。スロット25は空隙30(図9参照)に開口していて、ここをスロット開口部25a(スロットオープニング)と呼ぶ。巻線22は、スロット開口部25aから挿入される。
ここで、固定子鉄心21の各部の寸法を、図12に示すように、定義しておく。
TF:ティース24の幅;
TG:ティース先端部24aの幅;
TH:スロット開口部25aの幅。
図13乃至図16は実施の形態1を示す図で、図13は誘導電動機100の回転子10の斜視図、図14は誘導電動機100の回転子10の横断面図、図15は誘導電動機100の回転子鉄心11の横断面図、図16は回転子スロット13の拡大図である。
図13に示すように、回転子10は、回転子鉄心11と、アルミバー12(図14参照、非磁性且つ導電性の材料)と、積層方向の両端部に形成される一対のエンドリング17とで構成されるかご形二次導体と、を備える。アルミバー12とエンドリング17は、ダイキャストにより同時にアルミを鋳込むことで製作される。尚、かご形二次導体は、アルミ以外に銅で形成される場合もある。
図14に示すように、回転子10は、回転子鉄心11の複数(30個)の回転子スロット13に、アルミが鋳込まれてアルミバー12が形成される。既に述べたように、アルミバー12は、積層方向の両端部に形成される一対のエンドリング17とでかご形二次導体を構成する。
回転子鉄心11は、板厚が0.1〜1.5mmの電磁鋼板を所定の形状に打ち抜いた後、所定枚数軸方向に積層し、抜きカシメや溶接等により固定して製作される。
図15に示すように、回転子鉄心11は、断面の形状が略円形で、外周縁に沿って、複数(30個)の回転子スロット13が周方向に略等間隔に形成されている。隣接する二つの回転子スロット13の間に回転子ティース14が形成される。回転子ティース14の数は、回転子スロット13の数と同じ30個である。回転子ティース14の周方向の幅は、径方向に略一定である。従って、回転子スロット13の周方向幅は、内側から外周に向かって徐々に大きくなっている。回転子鉄心11の中央部に、駆動軸(図示せず)が嵌合する軸孔16が開けられている。回転子スロット13と軸孔16との間の鉄心部分をコアバック15と呼ぶ。
図16に示すように、回転子スロット13は、回転子外周部に近い外周スロット13aと、外周スロット13aに連通し、外周スロット13aの内側に形成される内周スロット13bとから構成される。外周スロット13aの形状は、略三角形であり、内周スロット13bの形状は、一般的な回転子310の回転子スロット313(図8参照)に似ている。
ここで、回転子スロット13の各部の寸法を定義しておく。
TA:外周スロット13aと回転子外周部との間の最短距離;
TB:内周スロット13bの中心側と回転子外周部との間の最短距離;
TC:外周スロット13aの最内周の周方向の幅;
TD:内周スロット13bの最外周の周方向の幅;
TE:内周スロット13bの端部側と回転子外周部との間の最短距離。
この回転子スロット13の各部の寸法と、固定子鉄心21の各部の寸法との関係を、
TF/(TG+TH)×TD/2≦TB≦TD/2 ・・・ 式(1)
TF/(TG+TH)×TD/2≦TE≦TD/2 ・・・ 式(2)
とすることで、回転子スロット13をかすめる磁束を低減することが可能で、二次電流の集中を避けることができ、二次銅損の低減に有効である。この原理に関して以下に説明する。尚、TF、TG、THは、図12を参照。
先ず、固定子20からの磁束がなぜ回転子スロット13をかすめるように流れるかについて説明する。
通常、回転子スロット13には非磁性体(例えば、アルミ)が充填されているため、磁束は透磁率の高い部分である回転子鉄心11部分を通る。しかし、その通過する部分が磁気飽和し、透磁率が低下すると磁束は回転子スロット13をかすめて通る。
固定子20からの磁束により磁気飽和しないようにすれば、回転子スロット13をかすめるような磁束は発生しない。式(1)、式(2)は、固定子20からの磁束により磁気飽和しないようにするための関係式であり、各式について説明する。
式(1)、式(2)は、回転子鉄心11の薄肉部(寸法TB〜TE部分)の磁束密度が、固定子鉄心21のティース24の磁束密度より低くなるような状態を表す式である。
式(1)、式(2)の、TF/(TG+TH)×TD/2は、固定子20のティース24から発生した磁束が最も分散したときの状態に対応している。
固定子20のティース24から発生した磁束が最も広がる場合は、スロット開口部25aの中心から隣り合うスロット開口部25aの中心まで広がる。つまり、一つのティース24について、ティース先端部24aの幅TGとスロット開口部25aの幅の半分TH/2が二カ所存在するため、ティース24から発生した磁束は、(TG+TH)の幅に広がる。
ティース24の磁束密度をB、誘導電動機100の積厚をLとしたとき、一つのティース24の磁束量は、B×TF×Lになる。この磁束量B×TF×Lが(TG+TH)の幅に広がり、回転子鉄心11の片側の薄肉部(寸法TA〜TB〜TE部分)の幅はTD/2であるため、片側の薄肉部(寸法TA〜TB〜TE部分)に入り込む磁束量を求めると、
B×TF×L/(TG+TH)×TD/2
となる。
このときの回転子鉄心11の片側の薄肉部(寸法TB〜TE部分)の磁束密度を求めると、内周スロット13bの中心側では、
B×TF×L/(TG+TH)×TD/2/L/TB
また、内周スロット13bの端部側では、
B×TF×L/(TG+TH)×TD/2/L/TE
となる。
つまり、回転子鉄心11の片側の薄肉部(寸法TB〜TE部分)の磁束密度を、ティース24の磁束密度Bよりも大きくしないようにするためには、TBとTEを、
TF/(TG+TH)×TD/2
以上にすれば良いことがわかる。
次に、式(1)、式(2)の、TD/2について説明する。
TD/2は、最も固定子20のティース24から発生した磁束が集中したときを示している。
最も磁束が集中する状態は、ティース24からの磁束がティース先端部24aで広がらない場合である。ティース24の磁束密度をB、誘導電動機100の積厚をLとしたとき、一つのティース24の磁束量は、B×TF×Lになる。
さらに、ティース24からの磁束がティース先端部24aで広がらず、回転子鉄心11の片側の薄肉部(寸法TA〜TB〜TE部分)の周方向の幅はTD/2であるため、回転子鉄心11の片側の薄肉部(寸法TA〜TB〜TE部分)に入り込む磁束量を求めると、
B×TF×L/TF×TD/2
即ち、
B×L×TD/2
となる。
また、このときの回転子鉄心11の片側の薄肉部(寸法TB〜TE部分)の磁束密度を求めると、内周スロット13bの中心側では、
B×L×TD/2/L/TB
また、内周スロット13bの端部側では、
B×L×TD/2/L/TE
となる。
回転子鉄心11の片側の薄肉部(寸法TB〜TE部分)の磁束密度をBとするためにはTB、TEの値を、
TD/2
とすればよい。
また、この状態は磁束がティース先端部24aで広がらず、回転子鉄心11の片側の薄肉部(寸法TA〜TB〜TE部分)に入り込んだ状態を示しており、これ以上回転子鉄心11の片側の薄肉部(寸法TA〜TB〜TE部分)に磁束が入り込むことはない。そのため、TB、TEの寸法を、
TD/2
より大きくすると、回転子鉄心11の片側の薄肉部(寸法TB〜TE部分)の磁束密度を低くすることは可能であるが、回転子スロット13の面積も小さくなるため、二次抵抗が増加し、二次銅損の増加につながる。そのため、TB、TEは最大で、
TD/2
とする。また、TB、TEは、
TD/2
よりも小さくしてもよい。
つまり、
TF/(TG+TH)×TD/2≦TB≦TD/2 ・・・ 式(1)
TF/(TG+TH)×TD/2≦TE≦TD/2 ・・・ 式(2)
とすることで、回転子鉄心11の片側の薄肉部(寸法TB〜TE部分)の磁束密度を、固定子鉄心21のティース24の磁束密度以下に設定することが可能となる。また、TB、TEを、最大でも、
TD/2
とすることで、過度に回転子鉄心11の片側の薄肉部(寸法TB〜TE部分)の磁束密度を低くして、二次銅損悪化につながることを抑えることができる。
図17、図18は実施の形態1を示す図で、図17はTB(=TE)に対する二次銅損/出力[%]の特性を示す図、図18はTB(=TE)に対するトルクの特性を示す図である。
電圧、周波数、回転数を一定としたとき、エアギャップを0.5mm、0.7mm、1.0mmとし、図17にTB(=TE)と二次銅損/出力[%]の特性、図18にTB(=TE)とトルクの特性を示す。図17のTB(=TE)と二次銅損/出力[%]の特性から、TBを変化したときの出力に対する二次銅損の割合が以下のように変化することが確認できた。
図17からTBを0.5mmから大きくしていくと、急激に二次銅損/出力[%]が低くなることが確認できる。これはTBを大きくすることで、固定子20からの磁束が回転子スロット13をかすめて二次電流が集中するのを低減していることを示している。また、TBが1.0mmあたりから低減が緩やかになり、1.5〜2.0mmでボトムを迎え、その後緩やかに増加する。さらに、この傾向は、エアギャップ(空隙30)を、0.5mm〜1.0mmの範囲で変更しても、大きく変化しないことが図17より確認できる。
さらに図18から、TBを大きくするとトルクが低下している。これはTBを大きくすることで回転子スロット13の面積が小さくなり二次抵抗が増加するためである。
誘導電動機では、二次抵抗が増加すると最大トルク(停動トルク)時の滑りが大きくなる(回転数が下がる)傾向がある。従って、回転数を一定の解析においては、二次抵抗が増加するとトルクは小さくなる。
以上のことから、TBとTEは、二次銅損/出力が急激に大きくなる0.5mm近傍で使用しないほうが望ましく、さらにTBとTEを大きくしすぎてもトルクが低下するため、TBとTEは式(1)、(2)の範囲で使用することが好ましい。TBとTEの数値の一例を以下に示す。
本実施の形態で算出した各寸法は、
ティース24の幅TF=4mm
ティース先端部24aの幅TG=6mm
スロット開口部25aの幅TH=3mm
内周スロット13bの最外周の周方向の幅TD=4mm
である。
上記の各数値を式(1)、式(2)に代入すると、
0.89≦TB≦2
0.89≦TE≦2
となる。
TB、TEの下限値は、0.89mmとなり、0.5mm近傍から外れており、二次銅損/出力が緩やかになっている部分である。また、上限値は2mmであり、二次銅損/出力のボトム近傍である。以上のことから、TB、TEは、式(1)、式(2)の範囲に設定することで二次銅損/出力を小さくでき、さらにトルク低下も抑えることができる。
また、固定子20からの磁束の流れから、TBがTEよりも大きいと有効に使用されない電磁鋼板部分が存在するため、内周スロット13bの中心側と回転子外周部との間の最短距離TBと、内周スロット13bの端部側と回転子外周部との間の最短距離TEとの関係は、TB≦TEが好ましい。
さらに、外周スロット13aと回転子外周部との間の最短距離TAを、回転子鉄心11を構成する電磁鋼板の板厚Tよりも小さくすることにより、回転子スロット13と回転子外周部との間から漏れる磁束を減らすことが可能であり、磁束を有効に使用することができ高出力、高効率化に有効である。これについて以下に説明する。
外周スロット13aと回転子外周部との間の最短距離TAは、一般的に可能な限り小さくする場合が多い。これは回転子スロット13と回転子外周部との間を通り回転子スロット13に鎖交しない磁束をできるだけ少なくし、固定子20からの磁束を有効に使用するためである。
しかし、図7、図8のような通常の回転子スロット213、313の場合、回転子スロット213、313と回転子外周部の径方向の幅を小さくすると、周方向の幅も長いため、固定子からの磁束が回転子スロットをかすめるため、磁束を有効に使用することはできるが、二次銅損が悪化する課題があった。
しかし、本実施の形態の回転子スロット13(図16に示す形状)であれば、外周スロット13aと回転子外周部との間の最短距離TAを小さくしても、固定子20からの磁束が回転子スロット13をかすめることもなく、また固定子20からの磁束を有効に使用することができる。
更に、外周スロット13aと回転子外周部との間の最短距離TAを、回転子鉄心11を構成する電磁鋼板の板厚Tよりも小さくすることにより、外周スロット13aと回転子外周部の径方向の薄肉部が打ち抜き歪みにより磁気特性が劣化する。
外周スロット13aと回転子外周部の径方向の薄肉部の磁気特性が劣化することで、飽和磁束密度が小さくなるため、外周スロット13aと回転子外周部との間を通り回転子スロット113に鎖交しない磁束を低減することができる。
しかも通常の回転子スロット213、313(図7、図8)であれば、周方向の幅も長いため、固定子からの磁束が回転子スロット213、313をかすめるため二次銅損も悪化するが、本実施の形態の回転子スロット13(図16参照)であれば、固定子20からの磁束が回転子スロット13をかすめるのを防止することができ、二次銅損の悪化も低減することができる。
図16に示すように、本実施の形態の回転子スロット13は、回転子外周部に近い外周スロット13aと、外周スロット13aに連通し、外周スロット13aの内側に形成される内周スロット13bとで構成される。さらに、外周スロット13aの最内周の周方向の幅TCは、内周スロット13bの最外周の周方向の幅TDよりも小さく、且つ外周スロット13aの周方向の幅は、回転子外周部に向かうに従い小さくなることにより、回転子外周部近傍のスロットが小さくなる。
スロット内に流れる二次電流は回転子外周部近傍に集中するため、回転子外周部近傍のスロットが小さいことにより二次電流の集中部分を小さくすることができ、二次銅損が低減しモータの高効率化が可能である。
また、金型の打ち抜き製を考慮して、外周スロット13aの最内周の周方向の幅TCは、電磁鋼板の厚さT(0.1〜1.5mm)に対して1.5倍以上の幅を持たせる。また、最内周の周方向の幅TCを電磁鋼板の厚さT(0.1〜1.5mm)に対して1.5倍以上にすることで、外周スロット13aの周方向の幅は回転子外周部に向かうに従い徐々に小さくすることができる。
また、外周スロット13aにより、固定子20の磁束が回転子スロット13をかすめるように流れるのを防止できるので、内周スロット13bの最外周の周方向の幅TDを外周スロット13aの最内周の周方向の幅TCよりも大きくして、内周スロット13bの面積が大きくなるようにしている。内周スロット13bの面積が大きくなると、二次抵抗が小さくなり、モータ効率が向上する。
また、本実施の形態の回転子スロット13は、通常の回転子スロットに比べて、外周スロット13aが小さいため、回転子スロット13と回転子外周部との間の薄肉部が少なくなり、金型による打ち抜き性が改善され、金型のメンテナンスや寿命が改善する効果もある。
図19は実施の形態1を示す図で、実施例の回転子スロット13の拡大図、図20は図19の部分拡大図である。図16では各部の寸法の定義を明確にするために、回転子スロット13の丸取りを省略したが、実際には回転子スロット13の各コーナは丸取りされている。回転子スロット13の実施例の一例を図19、図20により説明する。
回転子スロット13は、図19に示すように各コーナが丸取りされている。回転子鉄心11を打ち抜く金型は、各角に通常面取りが施されるためである。
また、各寸法は図20に示す通りである。
次に、本実施の形態の回転子10を用いる誘導電動機100を、圧縮機、送風機等に用いることにより、圧縮機、送風機等を高効率化することが可能である。ここでは、本実施の形態の回転子10を用いる誘導電動機100を搭載する圧縮機(具体的には、2気筒ロータリ圧縮機)について説明する。
図21は実施の形態1を示す図で、2気筒回転式圧縮機400の縦断面図である。図21を参照しながら、2気筒回転式圧縮機400(密閉型圧縮機の一例)の構成を説明する。2気筒回転式圧縮機400は、高圧雰囲気の密閉容器2内に、本実施の形態の固定子20と回転子10とからなる誘導電動機100と、誘導電動機100により駆動される圧縮機構部500とを収納している。誘導電動機100は、単相誘導電動機である。
ここでは、密閉型圧縮機の一例として、2気筒回転式圧縮機400について説明するが、その他のスクロール圧縮機、1シリンダの回転式圧縮機、複数段の回転式圧縮機、スイング回転式圧縮機、ベーン型圧縮機、往復式圧縮機等でもよい。
誘導電動機100の回転力は、回転軸8の主軸8aを介して圧縮機構部500に伝達される。
回転軸8は、誘導電動機100の回転子10に固定される主軸8aと、主軸8aの反対側に設けられる副軸8bと、主軸8aと副軸8bとの間に所定の位相差(例えば、180°)を設けて形成される主軸側偏芯部8c及び副軸側偏芯部8dと、これらの主軸側偏芯部8cと副軸側偏芯部8dとの間に設けられる中間軸8eとを有する。
主軸受6は、回転軸8の主軸8aに摺動のためのクリアランスを持って嵌合され、回転自在に主軸8aを軸支する。
また、副軸受7は、回転軸8の副軸8bに摺動のためのクリアランスを持って嵌合され、回転自在に副軸8bを軸支する。
圧縮機構部500は、主軸8a側の第1のシリンダ5aと、副軸8b側の第2のシリンダ5bとを備える。
第1のシリンダ5aは、円筒状の内部空間を有し、この内部空間に、回転軸8の主軸側偏芯部8cに回転自在に嵌合する第1のピストン9a(ローリングピストン)が設けられる。さらに、主軸側偏芯部8cの回転に従って往復運動する第1のベーン(図示せず)が設けられる。
第1のベーンは第1のシリンダ5aのベーン溝内に収納され、背圧室に設けられるベーンスプリング(図示せず)でベーンが常に第1のピストン9aに押し付けられている。2気筒回転式圧縮機400は、密閉容器2内が高圧であるから、運転を開始するとベーンの背面(背圧室側)に密閉容器2内の高圧とシリンダ室の圧力との差圧による力が作用するので、ベーンスプリングは主に2気筒回転式圧縮機400の起動時(密閉容器2内とシリンダ室の圧力に差がない状態)に、第1のベーンを第1のピストン9aに押し付ける目的で使用される。第1のベーンの形状は、平たい(周方向の厚さが、径方向及び軸方向の長さよりも小さい)略直方体である。尚、後述する第2のベーンも同様の構成である。
第1のシリンダ5aには、冷凍サイクルからの吸入ガスが通る吸入ポート(図示せず)が、第1のシリンダ5aの外周面からシリンダ室に貫通している。第1のシリンダ5aには、略円形の空間であるシリンダ室を形成する円の縁部付近(誘導電動機100側の端面)を切り欠いた吐出ポート(図示せず)が設けられる。
回転軸8の主軸側偏芯部8cに回転自在に嵌合する第1のピストン9a、第1のベーンを収納した第1のシリンダ5aの内部空間の軸方向両端面を、主軸受6と仕切板27とで閉塞して圧縮室を形成する。
第1のシリンダ5aは、密閉容器2の内周部に固定される。
第2のシリンダ5bも、円筒状の内部空間を有し、この内部空間に、回転軸8の副軸側偏芯部8dに回転自在に嵌合する第2のピストン9b(ローリングピストン)が設けられる。さらに、副軸側偏芯部8dの回転に従って往復運動する第2のベーン(図示せず)が設けられる。第1のピストン9a、第2のピストン9bを単に、「ピストン」と定義する。
第2のシリンダ5bにも、冷凍サイクルからの吸入ガスが通る吸入ポート(図示せず)が、第2のシリンダ5bの外周面からシリンダ室に貫通している。第2のシリンダ5bには、略円形の空間であるシリンダ室を形成する円の縁部付近(誘導電動機100とは反対側の端面)を切り欠いた吐出ポート(図示せず)が設けられる。
回転軸8の副軸側偏芯部8dに回転自在に嵌合する第2のピストン9b、第2のベーンを収納した第2のシリンダ5bの内部空間の軸方向両端面を、副軸受7と仕切板27とで閉塞して圧縮室を形成する。
圧縮機構部500は、第1のシリンダ5aと主軸受6とをボルト締結し、また第2のシリンダ5bと副軸受7とをボルト締結した後、仕切板27をそれらの間に挟んで、主軸受6の外側から第2のシリンダ5b、及び副軸受7の外側から第1のシリンダ5aを軸方向にボルト締結し固定する。
主軸受6には、その外側(誘導電動機100側)に吐出マフラ40aが取り付けられる。主軸受6に設けられる吐出弁(図示せず)から吐出される高温・高圧の吐出ガスは、一端吐出マフラ40aに入り、その後吐出マフラ40aの吐出穴(図示せず)から密閉容器2内に放出される。
副軸受7には、その外側(誘導電動機100とは反対側)に吐出マフラ40bが取り付けられる。副軸受7に設けられる吐出弁(図示せず)から吐出される高温・高圧の吐出ガスは、一端吐出マフラ40bに入り、その後吐出マフラ40bの吐出穴(図示せず)から密閉容器2内に放出される。
密閉容器2に隣接してアキュムレータ31が設けられる。吸入管32a、吸入管32bは夫々第1のシリンダ5a、第2のシリンダ5bとアキュムレータ31とを連結する。
第1のシリンダ5a、第2のシリンダ5bで圧縮された冷媒ガスは、密閉容器2に吐出され、吐出管33から冷凍空調装置の冷凍サイクルの高圧側へ送り出される。
また、誘導電動機100へは、ガラス端子28からリード線29を経由して電力が供給される。
密閉容器2内の底部には、圧縮機構部500の各摺動部を潤滑する潤滑油26(冷凍機油)が貯留されている。
圧縮機構部500の各摺動部への潤滑油の供給は、密閉容器2底部に溜められた潤滑油26を回転軸8の回転による遠心力により回転軸8の内径に沿って上昇させ、回転軸8に設けられた給油孔(図示せず)より行なう。給油孔から、主軸8aと主軸受6、主軸側偏芯部8cと第1のピストン9a、副軸側偏芯部8dと第2のピストン9b及び副軸8bと副軸受7の間の摺動部に潤滑油が供給される。
上記のように構成される2気筒回転式圧縮機400は、本実施の形態の回転子10を用いる誘導電動機100(単相誘導電動機)を使用することで、高効率化が可能になる。
また、詳細な説明は省くが、圧縮機だけでなく、例えば、送風機に本実施の形態の回転子10を用いる誘導電動機100(単相誘導電動機)を使用することで、送風機の高効率化が可能になる。
また、これらの圧縮機、送風機等を搭載した空気調和機も高効率化することが可能である。空気調和機の一例を、図22、図23を参照しながら説明する。
図22、図23は実施の形態1を示す図で、図22は空気調和機の冷媒回路図、図23は空気調和機の室外機600の分解斜視図である。
図22に示すように、空気調和機の冷媒回路は、冷媒を圧縮する2気筒回転式圧縮機400、冷房運転と暖房運転とで冷媒の流れる方向を切り替える四方弁52、冷房運転時は凝縮器、暖房運転時は蒸発器として動作する室外側熱交換器53、高圧の液冷媒を減圧して低圧の気液二相冷媒にする減圧装置54(電子制御式膨張弁)、冷房運転時は蒸発器、暖房運転時は凝縮器として動作する室内側熱交換器55を順次接続して冷凍サイクルを構成する。
図22の実線矢印は、冷房運転時の冷媒の流れる方向を示す。また、図22の破線矢印は、暖房運転時の冷媒の流れる方向を示す。
室外側熱交換器53には室外側送風機56が設けられ、そして室内側熱交換器55には室内側送風機57(横流ファン)が設けられている。
冷房運転時は、2気筒回転式圧縮機400から圧縮された高温高圧の冷媒が吐出し、四方弁52を介して室外側熱交換器53へ流入する。この室外側熱交換器53では、その風路に設けられた室外側送風機56により室外の空気が室外側熱交換器53のフィンとチューブ(伝熱管)の間を通過しながら冷媒と熱交換し、冷媒は冷却されて高圧の液状態になり、室外側熱交換器53は凝縮器として作用する。その後、減圧装置54を通過して減圧され低圧の気液二相冷媒となり室内側熱交換器55に流入する。室内側熱交換器55では、その風路に取り付けられた室内側送風機57(横流ファン)の駆動により室内空気が室内側熱交換器55のフィンとチューブ(伝熱管)の間を通過し冷媒と熱交換することにより、室内空間に吹き出される空気は冷やされ、一方冷媒は空気より熱を受け取り蒸発して気体状態となり(室内側熱交換器5は蒸発器として作用する)、冷媒はその後2気筒回転式圧縮機400へ戻る。室内側熱交換器55で冷却された空気により、室内空間を空調(冷房)する。
また、暖房運転時は、四方弁52が反転することより、冷凍サイクルにおいて上記冷房運転時の冷媒の流れと逆向きに冷媒が流れ、室内側熱交換器55が凝縮器として、室外側熱交換器53が蒸発器として作用する。室内側熱交換器55で暖められた空気により、室内空間を空調(暖房)する。
図23により空気調和機の室外機600の構成を説明する。空気調和機の室外機600は、平面視で略L字状の室外側熱交換器53、室外機600の筐体の底部を構成する底板68(ベース)、筐体の天面を構成する平板状のトップパネル59、筐体の前面と一側部を構成する平面視で略L字状のフロントパネル60、筐体の他側部を構成するサイドパネル61、風路(送風機室)と機械室を分けるセパレータ62、電気品が収納される電気品ボックス63、冷媒を圧縮する2気筒回転式圧縮機400、冷媒回路を形成する冷媒配管・冷媒回路部品類64、室外側熱交換器53に送風を行う室外側送風機56等で構成されている。
上記のように構成される空気調和機の室外機600に、本実施の形態の2気筒回転式圧縮機400、本実施の形態の誘導電動機100を電動機として用いる室外側送風機56(送風機)を搭載することにより、空気調和機の高効率化が図れる。
2 密閉容器、5a 第1のシリンダ、5b 第2のシリンダ、6 主軸受、7 副軸受、8 回転軸、8a 主軸、8b 副軸、8c 主軸側偏芯部、8d 副軸側偏芯部、8e 中間軸、9a 第1のピストン、9b 第2のピストン、10 回転子、11 回転子鉄心、12 アルミバー、13 回転子スロット、13a 外周スロット、13b 内周スロット、14 回転子ティース、15 コアバック、16 軸孔、17 エンドリング、20 固定子、21 固定子鉄心、22 巻線、23 コアバック、24 ティース、24a ティース先端部、25 スロット、25a スロット開口部、26 潤滑油、27 仕切板、28 ガラス端子、29 リード線、30 空隙、31 アキュムレータ、33 吐出管、40a 吐出マフラ、40b 吐出マフラ、52 四方弁、53 室外側熱交換器、54 減圧装置、55 室内側熱交換器、56 室外側送風機、57 室内側送風機、59 トップパネル、60 フロントパネル、61 サイドパネル、62 セパレータ、63 電気品ボックス、64 冷媒配管・冷媒回路部品類、68 底板、100 誘導電動機、200 誘導電動機、210 回転子、211 回転子鉄心、212 アルミバー、213 回転子スロット、214 回転子ティース、215 コアバック、216 軸孔、217 エンドリング、220 固定子、221 固定子鉄心、222 巻線、223 コアバック、224 ティース、225 スロット、225a スロット開口部、230 空隙、310 回転子、312 アルミバー、313 回転子スロット、400 2気筒回転式圧縮機、500 圧縮機構部、600 室外機。

Claims (7)

  1. 固定子と、前記固定子の内側に空隙を介して設けられる回転子と、を有し、前記回転子の回転子鉄心の回転子スロット内に非磁性且つ導電性の材料が充填されて形成されるかご形二次導体を有する誘導電動機において、
    前記回転子スロットは
    転子外周部に形成され、周方向幅が回転子中心から回転子外周部に向かうに従い小さくなる外周スロットと、
    前記外周スロット連通し前記外周スロットの内側に形成され、周方向幅が回転子中心から回転子外周部に向かうに従い大きくなり、前記外周スロット側の最外周にある部位における周方向幅が前記外周スロットの最内周にある部位における周方向幅よりも大きく形成され、周方向の両端部が前記外周スロットの周方向の両端部よりも周方向外側に位置する内周スロットと、で構成され
    前記固定子は、固定子鉄心と、前記固定子鉄心に形成されるスロットに挿入される巻線と、を有し、
    前記固定子鉄心は、
    外周側に形成されるコアバックと、
    前記コアバックの内周側から放射状に回転子方向に延びて形成される複数のティースと、
    隣接する二つの前記ティースの間に形成されるスロットと、
    前記スロットに形成され、前記空隙に開口しているスロット開口部と、を備え、
    前記回転子スロットの各部の寸法を、
    TB:前記内周スロットの最外周にある部位における周方向中心側と回転子外周部との間の最短距離;
    TC:前記外周スロットの最内周にある部位における周方向の幅;
    TD:前記内周スロットの最外周にある部位における周方向の幅;
    TE:前記内周スロットの最外周にある部位における周方向端部側と回転子外周部との間の最短距離;
    と定義し、さらに、前記固定子鉄心の各部の寸法を、
    TF:ティースの幅;
    TG:ティース先端部の幅;
    TH:スロット開口部の幅;
    と定義するとき、前記回転子スロットの各部の寸法と前記固定子鉄心の各部の寸法とは、
    TF/(TG+TH)×TD/2≦TB≦TD/2 ・・・ 式(1)
    TF/(TG+TH)×TD/2≦TE≦TD/2 ・・・ 式(2)
    の関係を満たすことを特徴とする誘導電動機。
  2. 記TCは、前記回転子鉄心を構成する電磁鋼板の板厚Tに対して、1.5×T≦TCの関係を満たすことを特徴とする請求項1記載の誘導電動機。
  3. B≦TEの関係を満たすことを特徴とする請求項1または2に記載の誘導電動機。
  4. 前記外周スロットと回転子外周部との間の最短距離をTAとしたとき、前記TAを前記回転子鉄心を構成する電磁鋼板の板厚Tよりも小さくしたことを特徴とする請求項1から3のいずれか1項に記載の誘導電動機。
  5. 請求項に記載の誘導電動機を備えたことを特徴とする圧縮機。
  6. 請求項に記載の誘導電動機を備えたことを特徴とする送風機。
  7. 請求項に記載の圧縮機と、請求項6に記載の送風機と、を備えたことを特徴とする空気調和機。
JP2012547608A 2010-12-06 2010-12-06 誘導電動機及び圧縮機及び送風機及び空気調和機 Active JP5490256B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/071804 WO2012077171A1 (ja) 2010-12-06 2010-12-06 誘導電動機及び圧縮機及び送風機及び空気調和機

Publications (2)

Publication Number Publication Date
JP5490256B2 true JP5490256B2 (ja) 2014-05-14
JPWO2012077171A1 JPWO2012077171A1 (ja) 2014-05-19

Family

ID=46206693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012547608A Active JP5490256B2 (ja) 2010-12-06 2010-12-06 誘導電動機及び圧縮機及び送風機及び空気調和機

Country Status (4)

Country Link
US (1) US9287759B2 (ja)
JP (1) JP5490256B2 (ja)
CN (1) CN103250335B (ja)
WO (1) WO2012077171A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722116B2 (ja) * 2011-05-13 2015-05-20 日立オートモティブシステムズ株式会社 誘導回転電機
JP6013062B2 (ja) * 2012-07-24 2016-10-25 株式会社日立製作所 誘導電動機およびこれを用いた鉄道車両
JP6429992B2 (ja) * 2015-03-18 2018-11-28 三菱電機株式会社 永久磁石埋込型電動機、送風機および冷凍空調機
DE102015106523A1 (de) * 2015-04-28 2016-11-03 Ebm-Papst Mulfingen Gmbh & Co. Kg Stator mit angepasster Zahngeometrie
CN105811700A (zh) * 2016-03-16 2016-07-27 上海电机学院 一种异步电动机之转子槽
JP6618624B2 (ja) * 2016-07-25 2019-12-11 三菱電機株式会社 空気調和機の室外機
US10498280B1 (en) 2016-08-25 2019-12-03 Apple Inc. Electric motor with shielded phase windings
KR101904952B1 (ko) * 2016-08-29 2018-10-15 효성중공업 주식회사 라인기동식 동기형 릴럭턴스 전동기 및 그 회전자
JP6914742B2 (ja) * 2017-06-16 2021-08-04 株式会社東芝 誘導電動機の回転子
US11139718B2 (en) * 2017-07-21 2021-10-05 Siemens Industry, Inc. Electric machine with auxiliary blower mounting arrangement and/or modular exhaust assembly
US11973370B2 (en) * 2021-03-15 2024-04-30 Anhui Meizhi Precision Manufacturing Co., Ltd. Motor, compressor and refrigeration device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116031A (ja) * 1981-12-28 1983-07-11 Toshiba Corp 回転電機の鉄心
JP2006271187A (ja) * 2005-02-22 2006-10-05 Mitsubishi Electric Corp 回転電機
JP2008278642A (ja) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp 誘導電動機およびその二次導体
WO2009093345A1 (ja) * 2008-01-25 2009-07-30 Mitsubishi Electric Corporation 誘導電動機及び密閉型圧縮機
WO2012053064A1 (ja) * 2010-10-19 2012-04-26 三菱電機株式会社 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782260A (en) * 1987-02-27 1988-11-01 General Electric Company Closed slot rotor construction
US4801832A (en) * 1987-11-04 1989-01-31 General Electric Company Stator and rotor lamination construction for a dynamo-electric machine
US4831301A (en) * 1987-11-04 1989-05-16 General Electric Company Dynamo-electric machine lamination construction
JPH07298582A (ja) 1994-04-21 1995-11-10 Hitachi Ltd インダクションモータ
JPH09224358A (ja) 1996-02-16 1997-08-26 Hitachi Ltd 誘導電動機
JP4028089B2 (ja) 1998-06-18 2007-12-26 東芝三菱電機産業システム株式会社 かご形回転子鉄心の製造方法
CN201038956Y (zh) * 2007-01-19 2008-03-19 徐榕锋 三相鼠笼型感应电动机
JP4466671B2 (ja) * 2007-03-28 2010-05-26 株式会社日立製作所 誘導機
EP2200160B1 (en) 2007-12-27 2019-06-26 Mitsubishi Electric Corporation Rotator for induction electric motor, induction electric motor, compressor, blower, and air-conditioning device
US7741750B1 (en) * 2008-12-29 2010-06-22 Tesla Motors, Inc. Induction motor with improved torque density

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116031A (ja) * 1981-12-28 1983-07-11 Toshiba Corp 回転電機の鉄心
JP2006271187A (ja) * 2005-02-22 2006-10-05 Mitsubishi Electric Corp 回転電機
JP2008278642A (ja) * 2007-04-27 2008-11-13 Mitsubishi Electric Corp 誘導電動機およびその二次導体
WO2009093345A1 (ja) * 2008-01-25 2009-07-30 Mitsubishi Electric Corporation 誘導電動機及び密閉型圧縮機
WO2012053064A1 (ja) * 2010-10-19 2012-04-26 三菱電機株式会社 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機

Also Published As

Publication number Publication date
CN103250335B (zh) 2016-04-13
US9287759B2 (en) 2016-03-15
US20130214635A1 (en) 2013-08-22
JPWO2012077171A1 (ja) 2014-05-19
WO2012077171A1 (ja) 2012-06-14
CN103250335A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5490256B2 (ja) 誘導電動機及び圧縮機及び送風機及び空気調和機
JP5490251B2 (ja) 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機
JP6584513B2 (ja) 回転子、回転電機、電動圧縮機および冷凍空調装置
JP6858845B2 (ja) ロータ、電動機、圧縮機および空気調和装置
JP5591099B2 (ja) 圧縮機および冷凍サイクル装置
KR102051823B1 (ko) 전동기, 로터, 압축기 및 냉동 공조 장치
JP2012060799A (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
WO2016143047A1 (ja) モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
JP6305535B2 (ja) 回転子、電動機、圧縮機、及び送風機
JP6689449B2 (ja) 回転子、電動機、圧縮機、送風機、および空気調和装置
JP4762301B2 (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP2006230054A (ja) 電動機及び電動機の製造方法及び密閉型圧縮機及び冷凍空調装置
JP6824333B2 (ja) 電動機、ロータ、圧縮機および冷凍空調装置
CN101821925A (zh) 压缩机用电动机、压缩机以及制冷循环装置
JP6703921B2 (ja) 回転式圧縮機及び冷凍サイクル装置
JP2010119297A (ja) 電動機及び電動機の製造方法及び密閉型圧縮機及び冷凍空調装置
WO2021070353A1 (ja) ロータ、電動機、圧縮機、及び空気調和機
JP5230574B2 (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
JP2015112011A (ja) 誘導電動機、圧縮機および冷凍サイクル装置
JP6556342B2 (ja) 固定子、モータ、圧縮機および冷凍サイクル装置
JP2006144731A (ja) 圧縮機
KR101412585B1 (ko) 밀폐형 압축기
JP2013051881A (ja) 誘導電動機、圧縮機および冷凍サイクル装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5490256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250