JP5486332B2 - Biodegradable non-woven fabric - Google Patents

Biodegradable non-woven fabric Download PDF

Info

Publication number
JP5486332B2
JP5486332B2 JP2010021151A JP2010021151A JP5486332B2 JP 5486332 B2 JP5486332 B2 JP 5486332B2 JP 2010021151 A JP2010021151 A JP 2010021151A JP 2010021151 A JP2010021151 A JP 2010021151A JP 5486332 B2 JP5486332 B2 JP 5486332B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
biodegradable
fiber nonwoven
lactic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021151A
Other languages
Japanese (ja)
Other versions
JP2011157661A (en
Inventor
隆文 横山
達也 小川
郁雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2010021151A priority Critical patent/JP5486332B2/en
Publication of JP2011157661A publication Critical patent/JP2011157661A/en
Application granted granted Critical
Publication of JP5486332B2 publication Critical patent/JP5486332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Making Beverages (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、使用後にはほぼ完全に分解されて廃棄処理が容易であるポリ乳酸系重合体を主成分として含む生分解性長繊維から構成され、高い機械的強度を有し、ヒートシール性、寸法安定性、粉漏れ性、透明性に優れた生分解性長繊維不織布に関する。   The present invention is composed of biodegradable long fibers containing as a main component a polylactic acid polymer that is almost completely decomposed after use and easy to dispose of, and has high mechanical strength, heat sealability, The present invention relates to a biodegradable long fiber nonwoven fabric excellent in dimensional stability, powder leakage and transparency.

現在、包装材料として、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の樹脂からなる不織布が使用されているが、これらの樹脂からなる不織布は自己分解性がなく、自然環境下で極めて安定である。そのため、使用済みの包装材料等は、焼却炉での焼却や埋立処理がなされているが、近年、環境保護の観点から、資源リサイクル及び温室効果ガス抑制等を目的として、使用済包装材料に関して環境に優しい有効利用の方法や廃棄方法の早期開発が望まれている。
また、ティーバッグ用途等に使用されている包装材料として紙が用いられていることが多いが、紙は透明性が悪く、包装材料の中身が見えないこと、ヒートシール加工ができないこと等の問題もある。
Currently, non-woven fabrics made of resins such as polyethylene, polypropylene, polyester, and polyamide are used as packaging materials, but non-woven fabrics made of these resins are not self-degradable and are extremely stable in the natural environment. For this reason, used packaging materials have been incinerated or landfilled in incinerators. However, from the viewpoint of environmental protection, the environment for used packaging materials has been increasing for the purpose of resource recycling and greenhouse gas suppression. It is desired to develop early methods for effective use and disposal that are friendly to the environment.
In addition, paper is often used as a packaging material used for tea bags, etc., but paper has poor transparency, the contents of the packaging material cannot be seen, and heat sealing cannot be performed. There is also.

従来から既知の高分子材料を高性能・多様化するために熱可塑性樹脂のポリマーブレンドについて数々の研究が行われているが、一般的に非相溶系のポリマー同士をブレンドしただけでは均一に分散させることが困難であり、安定して生産することは難しいとされてきた。   Many studies have been conducted on polymer blends of thermoplastic resins in order to improve the performance and diversification of known polymer materials, but in general, simply blending incompatible polymers together will result in uniform dispersion It has been difficult to achieve stable production.

以下の特許文献1には、短繊維が熱溶着された生分解性不織布を用いた飲料用フィルターバッグが開示されているが、紙フィルターバッグはヒートシール性、抽出性等に優れている反面、微細な粒子、粉末等の粉漏れが発生すること、繊維が脱落しやすいこと等の問題がある。   The following Patent Document 1 discloses a filter bag for beverages using a biodegradable nonwoven fabric in which short fibers are thermally welded, but a paper filter bag is excellent in heat sealability, extractability, etc., There are problems such as occurrence of fine particles, powder leakage of powder, etc., and easy removal of fibers.

以下の特許文献2には、光学純度が異なる2種類のポリ乳酸系重合体の複合短繊維からなる不織布が提案されているが、実際の加工温度での収縮率が大きいため、地合が悪く、粗硬な不織布しか得られない。   The following Patent Document 2 proposes a nonwoven fabric composed of composite short fibers of two types of polylactic acid polymers having different optical purities, but the shrinkage at the actual processing temperature is large, so the formation is poor. Only a coarse and hard nonwoven fabric can be obtained.

以下の特許文献3には、複合繊維の鞘成分を熱風加工により熱圧着を行って得られた不織布が開示されているが、嵩高で熱収縮性が大きいために粗硬となり、フィルター用途には適していない。   Patent Document 3 below discloses a nonwoven fabric obtained by thermocompression bonding a sheath component of a composite fiber by hot air processing. However, it is bulky due to its bulkiness and large heat shrinkability, and is used for filter applications. Not suitable.

以下の特許文献4では、ポリ乳酸の低い熱圧着性を改善するために2基の押出機を用いて2成分のポリマーを別々に融解後、鞘芯型等の繊維を作製する方法が開示されている。この方法では、芯部に高融点ポリマー、鞘部に低融点ポリマーが用いられるため、ロールでの熱圧着時に鞘部の収縮が生じるため、ロールに取られ易く、また、耐熱性が低いという問題がある。さらに、設備的に大きくなること等、コスト面や製造面からも複雑な方法となるという問題がある。   In the following Patent Document 4, a method for producing a fiber such as a sheath core type after melting two component polymers separately using two extruders in order to improve the low thermocompression bonding property of polylactic acid is disclosed. ing. In this method, since a high melting point polymer is used for the core and a low melting point polymer is used for the sheath, the sheath is shrunk during thermocompression bonding with the roll, so that it is easy to be taken by the roll and the heat resistance is low. There is. Furthermore, there is a problem that the method becomes complicated in terms of cost and manufacturing, such as an increase in equipment.

特開2002−177148号公報JP 2002-177148 A 特開2001−49533号公報JP 2001-49533 A 特開2007−126780号公報JP 2007-126780 A 特開2007−119928号公報JP 2007-119928 A

本発明が解決しようとする課題は、非相溶系のポリマーブレンドにおいて相溶化剤を用いず、大きな設備を必要とせずに紡糸可能で、ポリ乳酸特有の低い熱圧着性を改善して高い機械的強度やヒートシール性を有し、且つ、食品用フィルターとして細かい粒子状物等においても粉漏れがし難く、寸法安定性や透明性に優れた生分解性長繊維不織布、及びこれを含む食品用フィルターを提供することである。   The problem to be solved by the present invention is that incompatible polymer blends do not use a compatibilizing agent, can be spun without requiring large equipment, and have improved the low thermocompression characteristic unique to polylactic acid and have high mechanical properties. Biodegradable long-fiber nonwoven fabric that has strength and heat-sealability, is difficult to cause powder leakage even in fine particulate matter as a food filter, and has excellent dimensional stability and transparency, and for foods containing the same Is to provide a filter.

本発明者らは、上記の課題を解決すべく鋭意検討し、実験を重ねた結果、ポリ乳酸系重合体のブレンド紡糸において特定の物性を有する脂肪族ポリエステル共重合体を選定することで相溶化剤を用いなくても熱安定性と分散性を向上させることが可能であり、長繊維を構成する繊維の構造と繊径、脂肪族ポリエステル共重合体のブレンド比率と溶融流動比率、不織布の熱圧着面積率及び熱圧着部の形状の観点から詳細な検討を行い、構成繊維である生分解性長繊維の紡糸性が良好であり、これを不織布とした場合に、食品用フィルターとして透明性や寸法安定性に優れて毛羽立ち難く、粉漏れ性、機械的強度、ヒートシール性に優れた生分解性長繊維不織布が得られることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above-mentioned problems and, as a result of repeated experiments, have made compatibility by selecting an aliphatic polyester copolymer having specific physical properties in blend spinning of a polylactic acid polymer. It is possible to improve the thermal stability and dispersibility without using an agent, the structure and diameter of the fibers constituting the long fibers, the blend ratio and melt flow ratio of the aliphatic polyester copolymer, the heat of the nonwoven fabric Detailed examination is performed from the viewpoint of the crimping area ratio and the shape of the thermocompression bonding part, and the spinnability of the biodegradable long fiber which is a constituent fiber is good. The present inventors have found that a biodegradable long-fiber nonwoven fabric excellent in dimensional stability and hardly fluffing and having excellent powder leakage, mechanical strength, and heat sealability can be obtained, and the present invention has been completed.

すなわち、本発明は以下の通りのものである。
[1]融点が150℃以上のポリ乳酸系重合体100wt%に対して、融点が140℃以下の脂肪族ポリエステル共重合体0.5〜10wt%を添加したものを、該ポリ乳酸系重合体と該脂肪族ポリエステル共重合体の溶融流動比が0.2〜1.5の範囲で、溶融紡糸して得られ、該ポリ乳酸系重合体が海部を形成し、該脂肪族ポリエステル共重合体が島部を形成する海島型複合長繊維を、熱圧着面積率5〜40%で、熱圧着で一体化して得られ、複屈折率が0.012を越え、沸水収縮率が5%以下であり、ヒートシール強度が1.5N/25mm以上であり、かつ、透明性が50%以上であることを特徴とする生分解性長繊維不織布。
That is, the present invention is as follows.
[1] A polylactic acid polymer obtained by adding 0.5 to 10 wt% of an aliphatic polyester copolymer having a melting point of 140 ° C. or lower to 100 wt% of a polylactic acid polymer having a melting point of 150 ° C. or higher. And the aliphatic polyester copolymer is obtained by melt spinning in the range of a melt flow ratio of 0.2 to 1.5, and the polylactic acid polymer forms a sea part, and the aliphatic polyester copolymer Is obtained by integrating the sea-island type composite continuous fibers forming the island part by thermocompression bonding with a thermocompression area ratio of 5 to 40%, with a birefringence exceeding 0.012 and a boiling water shrinkage of 5% or less. A biodegradable long-fiber nonwoven fabric characterized by having a heat seal strength of 1.5 N / 25 mm or more and transparency of 50% or more.

[2]前記ポリ乳酸系重合体が、ポリL−乳酸、ポリD−乳酸、L−乳酸とD−乳酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、及びL−乳酸とD−乳酸とヒドロキシカルボン酸との共重合体からなる群から選ばれる重合体、又は該重合体の種類以上のブレンド体である、前記[1]に記載の生分解性長繊維不織布。   [2] The polylactic acid polymer is poly L-lactic acid, poly D-lactic acid, a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, or D-lactic acid. And a polymer selected from the group consisting of a copolymer of L-lactic acid, D-lactic acid and hydroxycarboxylic acid, or a blend of more than the kind of the polymer, The biodegradable long fiber nonwoven fabric according to [1].

[3]前記脂肪族ポリエステル共重合体がポリブチレンサクシネートである、前記[1]又は[2]に記載の生分解性長繊維不織布。   [3] The biodegradable continuous fiber nonwoven fabric according to [1] or [2], wherein the aliphatic polyester copolymer is polybutylene succinate.

[4]前記生分解性長繊維不織布の粉漏れ率が10%以下であり、かつ、毛羽等級が2.5級以上である、前記[1]〜[3]のいずれかに記載の生分解性長繊維不織布。 [4] Ri Der powder leakage ratio of 10% or less of the biodegradable filament nonwoven fabric, One or is fluff grade 2.5 grade or higher, according to any one of [1] to [3] Biodegradable long fiber nonwoven fabric.

]前記生分解性長繊維不織布の目付が10〜50g/m2 であり、かつ、厚みが0.02〜0.50mmである、前記[1]〜[]のいずれかに記載の生分解性長繊維不織布。 [5] basis weight of the biodegradable long-fiber nonwoven fabric is 10 to 50 g / m 2, and thickness of 0.02~0.50Mm, according to any one of [1] to [4] Biodegradable long fiber nonwoven fabric.

]前記生分解性長繊維不織布のMD方向の100g/m目付に換算した時の引張強度が200N/50mm以上である、前記[1]〜[]のいずれかに記載の生分解性長繊維不織布。 [6] The tensile strength when converted to the MD direction of 100 g / m 2 basis weight of said biodegradable filament nonwoven fabric is 200 N / 50 mm or more, biodegradation according to any one of [1] to [5] Long fiber nonwoven fabric.

]前記長繊維は、紡糸速度3000〜8000m/minで牽引されて紡糸され、繊度が1.0〜4.0dtexであり、かつ、結晶化度が30〜60%である、前記[1]〜[]のいずれかに記載の生分解性長繊維不織布。 [ 7 ] The long fiber is pulled and spun at a spinning speed of 3000 to 8000 m / min, has a fineness of 1.0 to 4.0 dtex, and a crystallinity of 30 to 60%. ] The biodegradable long-fiber nonwoven fabric according to any one of [ 6 ] to [ 6 ].

]前記[1]〜[]のいずれかに記載の生分解性長繊維不織布を含む食品用フィルター。 [ 8 ] A food filter comprising the biodegradable continuous fiber nonwoven fabric according to any one of [1] to [ 7 ].

本発明の生分解性長繊維不織布は、ポリ乳酸系重合体に低融点・低結晶性の脂肪族ポリエステル共重合体をブレンドした海島型複合繊維から構成されるため、第一に、低融点・低結晶性成分を含有することにより繊維の熱圧着が良好に行われ、繊維間の接着性がより強固になるため、剛性が高く、機械的強度やヒートシール強度に優れ、かつ、毛羽立ちが少なく、第二に、脂肪族ポリエステル共重合体が繊維表面に不連続に露出していることにより、熱圧着時の「ロール取られ」が起こりにくく、寸法安定性に優れ、第三に、使用後は生分解性を有することで環境への負荷を低減することができる。したがって、本発明の生分解性長繊維不織布は、食品用フィルターとして好適に利用することができる。   The biodegradable long-fiber nonwoven fabric of the present invention is composed of sea-island type composite fibers obtained by blending a polylactic acid-based polymer with a low melting point / low crystalline aliphatic polyester copolymer. By containing a low crystalline component, the fibers can be thermocompression bonded well, and the adhesion between the fibers becomes stronger, resulting in high rigidity, excellent mechanical strength and heat seal strength, and less fuzz. Second, because the aliphatic polyester copolymer is discontinuously exposed on the fiber surface, “rolling” is less likely to occur during thermocompression bonding, and excellent in dimensional stability. Third, after use Can reduce the burden on the environment by having biodegradability. Therefore, the biodegradable long fiber nonwoven fabric of the present invention can be suitably used as a food filter.

以下、本発明を詳細に説明する。
本発明に用いるポリ乳酸系重合体としては、ポリL−乳酸、ポリD−乳酸、L−乳酸とD−乳酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体およびL−乳酸とD−乳酸とヒドロキシカルボン酸との共重合体からなる群から選ばれるいずれかの重合体、又は該重合体の2種類以上のブレンド体が挙げられる。ポリ乳酸系重合体としては、融点が150℃以上である重合体が好適に使用できる。
Hereinafter, the present invention will be described in detail.
Examples of the polylactic acid polymer used in the present invention include poly L-lactic acid, poly D-lactic acid, a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, D- Any polymer selected from the group consisting of a copolymer of lactic acid and hydroxycarboxylic acid, and a copolymer of L-lactic acid, D-lactic acid and hydroxycarboxylic acid, or a blend of two or more of the polymers Is mentioned. As the polylactic acid polymer, a polymer having a melting point of 150 ° C. or higher can be suitably used.

上記ポリ乳酸系重合体の成分として用いられるヒドロキシカルボン酸としては、例えば、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。これらの中では、グリコール酸、ヒドロキシカプロン酸が好ましい。   Examples of the hydroxycarboxylic acid used as a component of the polylactic acid polymer include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxyoctanoic acid. Of these, glycolic acid and hydroxycaproic acid are preferred.

前記ポリ乳酸系重合体のMFRは、20〜120g/10minが好ましく、より好ましくは30〜70g/10minである。MFRが20g/10min以上であれば溶融粘性が適切であり、紡糸工程において繊維の細化が起こり易いために配向結晶化が進み、十分な単糸強度が得られる傾向がある。一方、MFRが120g/10min以下であると溶融粘性が適切なため、紡糸工程において単糸切れが発生することが少なく、単糸強度が高いものが得られる。   The MFR of the polylactic acid polymer is preferably 20 to 120 g / 10 min, more preferably 30 to 70 g / 10 min. If the MFR is 20 g / 10 min or more, the melt viscosity is appropriate, and the fibers tend to be thinned during the spinning process, so that orientation crystallization proceeds and sufficient single yarn strength tends to be obtained. On the other hand, when the MFR is 120 g / 10 min or less, the melt viscosity is appropriate, so that single yarn breakage is less likely to occur in the spinning process, and a single yarn strength is high.

前記脂肪族ポリエステル共重合体としては、例えば、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンテレフタレート・アジペート、ポリブチレンサクシネート・アジペート、ポリブチレンテレフタレート・アジペート、ポリカプロラクトン等を挙げることができる。これらの中でも特にポリブチレンサクシネートが好ましい。   Examples of the aliphatic polyester copolymer include polyethylene succinate, polybutylene succinate, polyethylene terephthalate adipate, polybutylene succinate adipate, polybutylene terephthalate adipate, polycaprolactone, and the like. Among these, polybutylene succinate is particularly preferable.

前記脂肪族ポリエステル共重合体のMFRは、100g/10min以下が好ましく、より好ましくは20〜80g/10minであり、さらに好ましくは30〜70g/10minである。また、ポリ乳酸系重合体と脂肪族ポリエステル共重合体との溶融流量比は、0.2〜1.5であり、好ましくは0.3〜1.4である。すなわち、0.2≦[脂肪族ポリエステル共重合体の溶融流量/ポリ乳酸系重合体の溶融流量]≦1.5である。溶融流量比がこの範囲内であると海島型複合繊維の紡糸性が良好であり、且つ、脂肪族ポリエステル共重合体の繊維中での分散性が良好となるために安定した熱圧着性が得られ、ヒートシール性、機械的強度に優れた不織布が得られる。   The MFR of the aliphatic polyester copolymer is preferably 100 g / 10 min or less, more preferably 20 to 80 g / 10 min, still more preferably 30 to 70 g / 10 min. Moreover, the melt flow rate ratio of the polylactic acid polymer and the aliphatic polyester copolymer is 0.2 to 1.5, preferably 0.3 to 1.4. That is, 0.2 ≦ [melting flow rate of aliphatic polyester copolymer / melting flow rate of polylactic acid polymer] ≦ 1.5. When the melt flow rate ratio is within this range, the spinnability of the sea-island type composite fiber is good and the dispersibility of the aliphatic polyester copolymer in the fiber is good, so that stable thermocompression can be obtained. And a nonwoven fabric excellent in heat sealability and mechanical strength can be obtained.

本発明でいう海島型構造とは、ポリ乳酸系重合体が海部を、脂肪族ポリエステル共重合体が島部を形成し、ポリマーブレンド繊維断面において真円、楕円状等に島部が微分散している構造をいい、通常、繊維軸方向では不連続に小さな島部が微分散していると推定されるものであり、好ましくは繊維断面において内側よりも繊維外周側に多くの島部が微分散しており、一部が繊維表面に露出している構造をいう。これらブレンド樹脂の延伸時に島部の脂肪族ポリエステル共重合体が、海部を形成するポリ乳酸系重合体の延伸、配向結晶化を阻害すると推定される。それゆえ、ポリ乳酸系重合体が、低結晶性のまま延伸を終了し、熱接着性が改善された繊維が得られる。   The sea-island structure referred to in the present invention means that a polylactic acid-based polymer forms a sea part, an aliphatic polyester copolymer forms an island part, and the island part is finely dispersed in a perfect circle, an ellipse, etc. in the cross section of the polymer blend fiber. In general, it is estimated that small islands are dispersively discontinuously dispersed in the fiber axis direction. Preferably, many islands are finer on the fiber outer circumference side than on the inner side in the fiber cross section. A structure that is dispersed and partly exposed on the fiber surface. It is presumed that the aliphatic polyester copolymer in the island portion inhibits the stretching and orientation crystallization of the polylactic acid-based polymer forming the sea portion when these blend resins are stretched. Therefore, the polylactic acid polymer ends drawing with low crystallinity, and a fiber with improved thermal adhesion can be obtained.

本発明においては、ポリ乳酸系重合体に対する脂肪族ポリエステル共重合体の添加率は、紡糸性や熱圧着性改善による不織布の機械的強度向上の点から0.5〜10.0wt%であり、好ましくは1.0〜5.0wt%である。添加率が0.5wt%未満であると熱圧着性改善効果が得られず、目的とする高剛性で高強度化された不織布が得られず、一方、添加率が10.0wt%を超えると紡糸中に糸切れが多発し、安定して連続した繊維が得られず、生産性が低下する。   In the present invention, the addition rate of the aliphatic polyester copolymer with respect to the polylactic acid-based polymer is 0.5 to 10.0 wt% from the viewpoint of improving the mechanical strength of the nonwoven fabric by improving spinnability and thermocompression bonding, Preferably it is 1.0-5.0 wt%. If the addition rate is less than 0.5 wt%, the thermocompression bonding improvement effect cannot be obtained, and the desired high-rigidity and high-strength nonwoven fabric cannot be obtained, while the addition rate exceeds 10.0 wt%. Many yarn breaks occur during spinning, a stable continuous fiber cannot be obtained, and productivity is lowered.

本発明に用いるポリ乳酸系重合体には、本発明の目的を損なわない範囲で他の慣用の各種添加成分、例えば、各種エラストマー類等の衝撃性改良剤、結晶核剤、着色防止剤、酸化防止剤、耐熱剤、可塑剤、滑剤、耐候剤、着色剤、顔料等の添加剤を添加することができる。   The polylactic acid-based polymer used in the present invention includes other commonly used additives such as impact modifiers such as various elastomers, crystal nucleating agents, anti-coloring agents, oxidation, and the like within a range not impairing the object of the present invention. Additives such as inhibitors, heat-resistant agents, plasticizers, lubricants, weathering agents, colorants, and pigments can be added.

本発明に係る長繊維の形成は、常用の紡糸口金を用いて溶融紡糸で行う。ポリ乳酸系重合体と脂肪族ポリエステル共重合体をブレンドさせるには、ポリ乳酸系重合体にマスターバッチ化する方法、ドライブレンドにより混合する方法等が挙げられるが、コスト面からドライブレンド法を採用することが好ましい。また、長繊維の構造は、ポリ乳酸系重合体が海部を形成し、脂肪族ポリエステル共重合体が島部を形成する海島型構造であることが必要である。   The long fibers according to the present invention are formed by melt spinning using a conventional spinneret. To blend a polylactic acid polymer and an aliphatic polyester copolymer, there are a method of making a polylactic acid polymer into a master batch, a method of mixing by dry blending, etc., but the dry blend method is adopted from the viewpoint of cost. It is preferable to do. Further, the structure of the long fiber needs to be a sea-island structure in which a polylactic acid-based polymer forms a sea part and an aliphatic polyester copolymer forms an island part.

本発明に係る長繊維不織布は、スパンボンド法にて効率よく製造することができる。すなわち、前記のポリ乳酸系重合体を加熱溶融して紡糸口金から吐出させ、得られた紡出糸条を公知の冷却装置を用いて冷却し、エアーサッカー等の吸引装置にて牽引細化する。引き続き、吸引装置から排出された糸条群を開繊させた後、コンベア上に堆積させてウェブとする。次いで、このコンベア上に形成されたウェブに加熱されたエンボスロール等の部分熱圧着装置を用いて部分的に熱圧着を施すことにより、長繊維スパンボンド不織布を得る。スパンボンド法で得られる不織布は、布強度が強く、かつ、ボンディング部の破損による短繊維の脱落がない等の物性上の特徴を有しており、また、低コストで生産性が高いため、衛生、土木、建築、農業・園芸、生活資材を中心に広範な用途で使用されている。   The long fiber nonwoven fabric according to the present invention can be efficiently produced by a spunbond method. That is, the polylactic acid-based polymer is heated and melted and discharged from a spinneret, and the obtained spun yarn is cooled using a known cooling device, and is pulled and thinned by a suction device such as an air soccer. . Subsequently, the yarn group discharged from the suction device is opened and then deposited on a conveyor to form a web. Next, the web formed on the conveyor is partially subjected to thermocompression bonding using a partial thermocompression bonding apparatus such as a heated embossing roll to obtain a long fiber spunbond nonwoven fabric. The non-woven fabric obtained by the spunbond method has high fabric strength and has physical properties such as no short fibers falling off due to breakage of the bonding part, and because of low cost and high productivity, It is used in a wide range of applications, mainly in hygiene, civil engineering, architecture, agriculture / horticulture, and living materials.

本発明に係る長繊維の繊度は、好ましくは1.0〜4.0dtexであり、より好ましくは1.0〜3.0dtexである。繊度が1.0dtex未満であると紡糸時においてエジェクターの張力に繊維が十分に耐えることができず、繊維の一部が切れる場合がある。また、繊度が4.0dtex以下であれば、不織布化し、食品用フィルターとして用いる際、粉漏れ量が少なく、フィルター材として適している。   The fineness of the long fibers according to the present invention is preferably 1.0 to 4.0 dtex, more preferably 1.0 to 3.0 dtex. If the fineness is less than 1.0 dtex, the fiber cannot sufficiently withstand the tension of the ejector during spinning, and part of the fiber may be cut off. Further, when the fineness is 4.0 dtex or less, when it is made into a non-woven fabric and used as a food filter, the amount of powder leakage is small and suitable as a filter material.

本発明の生分解性長繊維不織布は、低融点・低結晶性成分を含有した海島型ブレンド長繊維ウェブを熱圧着で一体化した構造を有しているために繊維間の接合が強固であり、剛性が高められて高い機械的強度とヒートシール強度が得られ、また、低融点・低結晶性成分を表層に不連続に有する構造にすることで熱圧着時の「ロール取られ」が起こりにくく、且つ、寸法安定性に優れる等の特徴が得られる。   The biodegradable long-fiber nonwoven fabric of the present invention has a structure in which sea-island blend long-fiber webs containing a low-melting-point and low-crystallinity component are integrated by thermocompression, so that the bonding between fibers is strong. High rigidity and mechanical strength and heat seal strength can be obtained, and a structure with discontinuous low melting point and low crystalline components in the surface layer causes "rolling" during thermocompression. It is difficult to obtain characteristics such as excellent dimensional stability.

本発明の長繊維不織布の熱圧着は、凹凸の表面構造を有するエンボスロールとフラットロールからなる一対の加熱ロールを用いることも可能である。エンボスロールにより熱圧着を行う場合、不織布全面積に対して5〜40%の範囲における熱圧着面積率での熱圧着が行われることが好ましく、より好ましくは5〜30%であり、さらに好ましくは5〜20%である。熱圧着面積率がこの範囲内であると良好な繊維相互間の熱圧着処理を行うことができ、得られる不織布の適度な機械的強度と剛性、通気性、粉漏れ性を図る上で好ましい。   The thermocompression bonding of the long-fiber nonwoven fabric of the present invention can use a pair of heating rolls composed of an embossing roll and a flat roll having an uneven surface structure. When thermocompression bonding is performed using an embossing roll, it is preferable that thermocompression bonding is performed at a thermocompression area ratio in a range of 5 to 40%, more preferably 5 to 30%, and even more preferably. 5 to 20%. When the thermocompression area ratio is within this range, it is possible to perform a good thermocompression treatment between fibers, which is preferable in terms of achieving appropriate mechanical strength and rigidity, air permeability, and powder leakage of the nonwoven fabric obtained.

熱圧着処理温度及び圧力は、供給されるウェブの目付、速度等の条件によって適宜選択されるべきものであり、一概には定められないが、ポリ乳酸系重合体の融点よりも10〜80℃低い温度であることが好ましく、より好ましくは20〜50℃低い温度であり、さらに好ましくは20〜40℃低い温度である。毛羽等級としては2.5級以上が必要であり、好ましくは3級以上である。   The thermocompression treatment temperature and pressure should be appropriately selected according to conditions such as the basis weight and speed of the web to be supplied, and are not generally determined, but are 10 to 80 ° C. higher than the melting point of the polylactic acid polymer. It is preferably a low temperature, more preferably a temperature lower by 20 to 50 ° C., and further preferably a temperature lower by 20 to 40 ° C. The fluff rating needs to be 2.5 or higher, and preferably 3 or higher.

本発明の生分解性長繊維不織布の粉漏れ率は、10wt%以下が好ましく、より好ましくは7.5wt%以下、さらに好ましくは5.0wt%以下である。粉漏れ率が10wt%以下であると微細な粒子・粉末等の遮蔽性、保持性に優れる。粉漏れ率が10wt%を超えると食品用フィルターとして用いた際、粉漏れ量が多くなり、フィルターとして適さない。   The powder leakage rate of the biodegradable long fiber nonwoven fabric of the present invention is preferably 10 wt% or less, more preferably 7.5 wt% or less, and still more preferably 5.0 wt% or less. When the powder leakage rate is 10 wt% or less, the shielding properties and retention of fine particles and powders are excellent. When the powder leakage rate exceeds 10 wt%, the amount of powder leakage increases when used as a food filter, which is not suitable as a filter.

本発明の生分解性長繊維不織布の沸水収縮率は、5%以下であり、好ましくは3%以下である。沸水収縮率が5%以下であると熱成型加工等での収縮がほとんど無く、工程安定性に優れ、また、100℃近い高温環境下にさらされるような使用形態でも形態保持性に優れる。   The boiling water shrinkage ratio of the biodegradable long fiber nonwoven fabric of the present invention is 5% or less, preferably 3% or less. When the boiling water shrinkage is 5% or less, there is almost no shrinkage due to thermoforming and the like, and the process stability is excellent, and the form retainability is excellent even in a usage form exposed to a high temperature environment close to 100 ° C.

本発明の生分解性長繊維不織布のヒートシール強度は、1.5N/25mm以上であり、好ましくは2.0N/25mm以上である。ヒートシール強度が1.5N/25mm未満であるとシール部分が剥離し易くなり、内容物が外部に漏れる等の問題が生じる。   The heat seal strength of the biodegradable long fiber nonwoven fabric of the present invention is 1.5 N / 25 mm or more, preferably 2.0 N / 25 mm or more. When the heat seal strength is less than 1.5 N / 25 mm, the seal portion is easily peeled off, causing problems such as leakage of contents to the outside.

本発明の生分解性長繊維不織布の透明性は、50%以上であり、好ましくは55%以上、より好ましくは60%以上である。透明性が50%未満では、不織布を通じて中身の状態が見えにくく、不鮮明になる。   The transparency of the biodegradable long fiber nonwoven fabric of the present invention is 50% or more, preferably 55% or more, more preferably 60% or more. If the transparency is less than 50%, it is difficult to see the state of the contents through the nonwoven fabric, and the transparency becomes unclear.

本発明の生分解性長繊維不織布の目付は、10〜50g/mが好ましく、より好ましくは12〜30g/mであり、さらに好ましくは12〜20g/mである。目付が10g/m未満では、透明性は良いが、繊維間隙が大きく、粉漏れし易くなり、機械的強度が不十分であり、一方、目付が50g/mを超えると、粉漏れ量は少なくなるが、透明性・成分抽出性が劣る。 The basis weight of the biodegradable long fiber nonwoven fabric of the present invention is preferably 10 to 50 g / m 2 , more preferably 12 to 30 g / m 2 , and still more preferably 12 to 20 g / m 2 . If the basis weight is less than 10 g / m 2 , the transparency is good, but the fiber gap is large and powder leakage is easy, and the mechanical strength is insufficient. On the other hand, if the basis weight exceeds 50 g / m 2 , the amount of powder leakage However, transparency and component extractability are poor.

本発明の生分解性長繊維不織布の厚みは、0.02〜0.50mmが好ましく、より好ましくは0.03〜0.30mmである。目付と厚みがこの範囲内にあると食品用フィルターとして使用する際に優れた透明性、粉漏れ性、成分抽出性が得られる。   The thickness of the biodegradable long fiber nonwoven fabric of the present invention is preferably 0.02 to 0.50 mm, more preferably 0.03 to 0.30 mm. When the basis weight and thickness are within this range, excellent transparency, powder leakage and component extractability can be obtained when used as a food filter.

本発明の生分解性長繊維不織布の平均見掛け密度は、0.05〜0.50g/cmが好ましく、より好ましくは0.10〜0.30g/cmであり、さらに好ましくは0.10〜0.25g/cmである。平均見掛け密度は、不織布の剛性、粉漏れ性及び成分抽出性に関係し、この範囲であれば、食品用フィルターとしての袋形状への加工適性及び粉漏れ性に優れる。平均見掛け密度が0.05g/cm未満では、繊維間隙が大きくなるために粉漏れ量が多く、不織布の剛性が不足し、一方、平均見掛け密度が0.50g/cmを超えると繊維間隙が小さく、粉漏れ性は良くなるが、成分抽出性が悪くなり、食品用フィルターとしての要求性能を達成できない。 The average apparent density of the biodegradable long-fiber nonwoven fabric of the present invention is preferably 0.05~0.50g / cm 3, more preferably from 0.10~0.30g / cm 3, more preferably 0.10 ˜0.25 g / cm 3 . The average apparent density is related to the rigidity, powder leakage and component extractability of the nonwoven fabric, and within this range, it is excellent in processability into a bag shape as a food filter and powder leakage. When the average apparent density is less than 0.05 g / cm 3 , the fiber gap becomes large, so the amount of powder leakage is large and the nonwoven fabric has insufficient rigidity. On the other hand, when the average apparent density exceeds 0.50 g / cm 3 , the fiber gap However, the powder extractability is improved, but the component extractability is deteriorated, and the required performance as a food filter cannot be achieved.

本発明の生分解性長繊維不織布の引張強度は、MD方向で100g/m目付に換算した時、200N/50mm以上であることが好ましく、より好ましくは210N/50mm以上である。引張強度がこの範囲であると製袋加工時の生産安定性や食品用フィルターとしての使用時の破れ防止等に優れる。 The tensile strength of the biodegradable long fiber nonwoven fabric of the present invention is preferably 200 N / 50 mm or more, more preferably 210 N / 50 mm or more when converted to 100 g / m 2 basis weight in the MD direction. When the tensile strength is within this range, it is excellent in production stability at the time of bag making processing, tear prevention at the time of use as a food filter, and the like.

本発明に係る長繊維を製造する際の紡糸速度は、3000〜8000m/minが好ましく、より好ましくは4000〜7000m/minである。紡出糸条を牽引細化する際の牽引速度が上記の範囲内であると、ポリ乳酸系重合体の配向結晶化が十分で機械的特性や寸法安定性に優れた不織布が得られ、且つ、紡糸中に糸切れが発生する可能性が少なく、不織布の生産性の点からも好ましい。   The spinning speed when producing the long fibers according to the present invention is preferably 3000 to 8000 m / min, more preferably 4000 to 7000 m / min. If the pulling speed when pulling the spun yarn is within the above range, a polylactic acid polymer can be sufficiently oriented and crystallized to obtain a nonwoven fabric excellent in mechanical properties and dimensional stability, and There is little possibility of yarn breakage during spinning, which is preferable from the viewpoint of the productivity of the nonwoven fabric.

本発明に係る長繊維の複屈折率Δnは、0.012〜0.025が好ましく、より好ましくは、0.014〜0.022である。複屈折率がこの範囲であると、繊維の配向結晶性が適度で、機械的強度や寸法安定性に優れた不織布が得られる。   The birefringence Δn of the long fiber according to the present invention is preferably 0.012 to 0.025, and more preferably 0.014 to 0.022. When the birefringence is within this range, a nonwoven fabric having an appropriate orientation crystallinity of fibers and excellent mechanical strength and dimensional stability can be obtained.

本発明に係る長繊維の結晶化度は、30〜60%が好ましく、より好ましくは35〜60%である。結晶化度がこの範囲内であると、機械的強度や寸法安定性に優れた繊維が得られる。   The degree of crystallinity of the long fibers according to the present invention is preferably 30 to 60%, more preferably 35 to 60%. When the crystallinity is within this range, a fiber excellent in mechanical strength and dimensional stability can be obtained.

本発明の生分解性長繊維不織布には、本発明の作用効果が発揮される範囲で、常用の後加工、例えば、消臭剤、抗菌剤、防ダニ剤等の付与をしてもよいし、染色、撥水加工、透水加工、透湿防水加工等を施してもよい。   The biodegradable long-fiber non-woven fabric of the present invention may be provided with conventional post-processing, for example, a deodorant, an antibacterial agent, an acaricide, etc., as long as the effects of the present invention are exhibited. Dyeing, water repellent treatment, water permeable treatment, moisture permeable waterproof treatment, etc. may be applied.

本発明の生分解性長繊維不織布は、透明性に優れているために中身が鮮明に見え、かつ、粉漏れ性に優れているために緑茶、紅茶、コーヒー等の食品用フィルターとして非常に適した特性を有している。食品用フィルターとしては、平袋でもよいが、立体形状であると、中身が一層良く見え、抽出が効果的に行われるので好ましい。立体形状としては、四面体形状、三角錐立体形状等が好ましい。   The biodegradable long-fiber nonwoven fabric of the present invention is very suitable as a food filter for green tea, black tea, coffee, etc. due to its excellent transparency and clear contents and excellent powder leakage It has the characteristics. As a food filter, a flat bag may be used, but a three-dimensional shape is preferable because the contents look better and extraction is performed effectively. As the three-dimensional shape, a tetrahedral shape, a triangular pyramid three-dimensional shape and the like are preferable.

立体形状の食品用フィルターは、被抽出物を充填し封入した後、袋詰めされて販売されるが、購入した消費者が袋から取り出して使用する時には、速やかに元の立体形状に戻ることが要求される。本発明の長繊維不織布は、コシがあり、適度な剛性を有しているため、このような形状回復性に優れている。   Three-dimensional food filters are packed and sold after filling with the extractables, but they can be quickly returned to the original three-dimensional shape when the purchased consumer removes them from the bag and uses them. Required. The long fiber nonwoven fabric of the present invention is stiff and has an appropriate rigidity, and thus has excellent shape recoverability.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に限定されることを意図されない。
まず、測定方法、評価方法を説明する。
(1)目付(g/m):JIS L−1906に準拠し、縦20cm×横25cmの試験片を試料の幅1m当たり3箇所採取して質量を測定し、その平均値を単位面積当たりの質量に換算して求めた。
(2)厚み:JIS L−1906に規定の方法で荷重100g/cmの厚みを測定した。
(3)平均見掛け密度(g/cm):JIS L−1906に規定の方法で測定した目付と厚みから、以下の式により単位体積当たりの質量を求め、試料の幅1m当たり3箇所の平均で求めた。
平均見掛け密度(g/cm)=(目付 g/m)/((厚み mm)×1000)
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not intended to be limited to the examples.
First, a measurement method and an evaluation method will be described.
(1) Weight per unit area (g / m 2 ): In accordance with JIS L-1906, three test pieces of 20 cm in length and 25 cm in width were sampled per 1 m width of the sample, the mass was measured, and the average value per unit area It was calculated in terms of mass.
(2) Thickness: The thickness at a load of 100 g / cm 2 was measured by the method specified in JIS L-1906.
(3) Average apparent density (g / cm 3 ): From the basis weight and thickness measured by the method defined in JIS L-1906, the mass per unit volume was determined by the following formula, and the average of three locations per 1 m width of the sample I asked for it.
Average apparent density (g / cm 3 ) = (weight per unit g / m 2 ) / ((thickness mm) × 1000)

(4)繊度(dtex):1m長の重量を測定してn=5の平均値を求め、10000m長に算出して求めた。
(5)MFR(g/10min):メルトインデクサー(東洋精機社製:MELT INDEXER S−101)溶融流量装置を用い、JIS K−7210に準じてオリフィス径2.095mm、オリフィス長0.8mm、荷重2.16kg、測定温度230℃の条件で一定体積分を吐出するのに要する時間から10分間当たりの溶融ポリマーの吐出量(g)を算出し、求めた。
尚、溶融流動比は、以下の式:
溶融流量比=[(脂肪族ポリエステル共重合体のMFR)/(ポリ乳酸系共重合体のMFR)]
で計算される。
(4) Fineness (dtex): The weight of 1 m length was measured, the average value of n = 5 was calculated | required, and it calculated and calculated to 10000 m length.
(5) MFR (g / 10 min): Melt indexer (manufactured by Toyo Seiki Co., Ltd .: MELT INDEXER S-101) using a melt flow device, an orifice diameter of 2.095 mm, an orifice length of 0.8 mm, according to JIS K-7210, The discharge amount (g) of molten polymer per 10 minutes was calculated and determined from the time required to discharge a constant volume under the conditions of a load of 2.16 kg and a measurement temperature of 230 ° C.
The melt flow ratio is expressed by the following formula:
Melt flow rate ratio = [(MFR of aliphatic polyester copolymer) / (MFR of polylactic acid copolymer)]
Calculated by

(6)沸水収縮率(%):JIS L−1906に準拠し、縦25cm×横25cmの試験片を試料の幅1m当たり3箇所採取し、沸騰水中に3分間浸漬し、自然乾燥後にMD方向及びCD方向の収縮率を求める。それぞれの平均値を算出し、MD方向とCD方向のいずれか大きい方の収縮率をその不織布の沸水収縮率とした。 (6) Boiling water shrinkage rate (%): In accordance with JIS L-1906, three 25 cm long x 25 cm wide test specimens were collected per 1 m width of the sample, immersed in boiling water for 3 minutes, and after natural drying, MD direction Then, the shrinkage rate in the CD direction is obtained. Each average value was calculated, and the larger shrinkage rate in the MD direction or the CD direction was taken as the boiling water shrinkage rate of the nonwoven fabric.

(7)透明性(%):マクベス分光光度計(CE-7000A型:サカタインク製)で反射率(L値)を測定し、標準白板のL値(Lw0)と標準黒板のL値(Lb0)の差を求めて基準とし、試料を白板上に置いたL値(Lw)と同様に黒板状に置いたL値(Lb)から下記式に従って透明性を求めた。
透明性(%)={(Lw−Lb)/(Lw0−Lb0)}×100
(7) Transparency (%): The reflectance (L value) is measured with a Macbeth spectrophotometer (CE-7000A type: manufactured by Sakata Ink), and the L value (Lw0) of the standard white board and the L value (Lb0) of the standard blackboard ) Was used as a reference, and transparency was determined according to the following formula from the L value (Lb) placed on a blackboard like the L value (Lw) placed on the white plate.
Transparency (%) = {(Lw−Lb) / (Lw0−Lb0)} × 100

(8)熱圧着面積率(%):1cm角の試験片をサンプリングして電子顕微鏡で写真を撮影し、その各写真より熱圧着部の面積を測定し、その平均値を熱圧着部の面積とした。また、熱圧着部のパターンのピッチをMD方向及びCD方向において測定し、これらの値により、不織布の単位面積当たりに占める熱圧着面積の比率を熱圧着面積率として算出した。 (8) Thermocompression area ratio (%): A 1 cm square test piece was sampled and photographed with an electron microscope, the area of the thermocompression bonding part was measured from each of the photographs, and the average value was calculated as the area of the thermocompression bonding part. It was. Moreover, the pitch of the pattern of the thermocompression bonding part was measured in MD direction and CD direction, and the ratio of the thermocompression bonding area per unit area of the nonwoven fabric was calculated as the thermocompression bonding area ratio based on these values.

(9)粉漏れ率(wt%):JIS Z−8901試験用粉末7種ダストを約2g秤取し、その重量W1(g)を測定して不織布の上に乗せ、振動機で5分間振動させた後、不織布を通過したダスト重量W2(g)を測定し、下記式により求めた。
粉漏れ率(wt%)=(W2/W1)×100
(9) Powder leakage rate (wt%): About 2g of 7 kinds of dust for JIS Z-8901 test was weighed, and its weight W1 (g) was measured and placed on the nonwoven fabric. Then, the dust weight W2 (g) that passed through the nonwoven fabric was measured and determined by the following formula.
Powder leakage rate (wt%) = (W2 / W1) × 100

(10)引張強度(N/50mm):島津製作所社製オートグラフAGS−5G型を用いて、50mm幅の試料を把握長100mm、引張速度300mm/minで伸長し、得られる破断時の荷重を強度とし、不織布のMD方向について5回測定を行い、その平均値を求めた。 (10) Tensile strength (N / 50 mm): Using an autograph AGS-5G type manufactured by Shimadzu Corporation, a 50 mm wide sample is grasped and stretched at a length of 100 mm and a tensile speed of 300 mm / min. The strength was measured and the measurement was performed five times in the MD direction of the nonwoven fabric, and the average value was obtained.

(11)ヒートシール強度(N/25mm):島津製作所社製オートグラフAGS−5G型を用いて25mm幅の試料のヒートシール部分を約50mm上下方向に剥離して取り付け、把握長50mm、引張速度100mm/minで伸長し、得られる破断時の荷重を強度とし、不織布のMD方向について5回測定を行い、その平均値を求めた。ヒートシール条件は、シール温度150℃、シール時間1秒、圧力0.5MPa、シール面積7mm×25mmであった。 (11) Heat seal strength (N / 25 mm): Using a Autograph AGS-5G model manufactured by Shimadzu Corporation, the heat seal portion of a 25 mm width sample is peeled off and attached approximately 50 mm in the vertical direction, grasping length 50 mm, and tensile speed Elongation was performed at 100 mm / min, and the resulting load at break was regarded as strength. The nonwoven fabric was measured five times in the MD direction, and the average value was obtained. The heat seal conditions were a seal temperature of 150 ° C., a seal time of 1 second, a pressure of 0.5 MPa, and a seal area of 7 mm × 25 mm.

(12)複屈折率(Δn):OLYMPUS社製のBH2型偏光顕微鏡コンペンセーターを用いて、通常の干渉縞法によってレターデーションと繊維径より牽引直後の繊維の複屈折率を求めた。 (12) Birefringence (Δn): The birefringence of the fiber immediately after towing was determined from the retardation and fiber diameter by a normal interference fringe method using a BH2 polarizing microscope compensator manufactured by OLYMPUS.

(13)結晶化度(%):TAインスツルメント社製の示差走査熱量計DSC2920を用い、昇温速度を10℃/minで、30℃から200℃まで昇温して結晶化発熱量ΔHc、結晶融解熱量ΔHmを測定した。結晶化度(%)は下記式により求めた。
結晶化度χc(%)=(ΔHm−ΔHc)/93×100
ここで、93J/gはポリ乳酸の完全結晶の融解熱量である。
(13) Crystallinity (%): Using a differential scanning calorimeter DSC2920 manufactured by TA Instruments, the heating rate is 10 ° C./min, the temperature is raised from 30 ° C. to 200 ° C., and the crystallization heat generation ΔHc The amount of heat of crystal melting ΔHm was measured. The degree of crystallinity (%) was determined by the following formula.
Crystallinity χc (%) = (ΔHm−ΔHc) / 93 × 100
Here, 93 J / g is the heat of fusion of a complete crystal of polylactic acid.

(14)生分解性:不織布を土中に埋設し、6ケ月後に取り出して不織布の形態保持性、又は破断強度の保持率によって以下の評価基準に従って、生分解性をに評価した。
○:不織布の形態を保持していない、または、破断強度が初期値に対して50%以下に低下している。
×:破断強度が初期値に対して50%を超える。
(14) Biodegradability: The non-woven fabric was embedded in the soil, taken out after 6 months, and biodegradability was evaluated according to the following evaluation criteria according to the shape retention property or the breaking strength retention rate of the nonwoven fabric.
○: The shape of the nonwoven fabric is not maintained, or the breaking strength is reduced to 50% or less with respect to the initial value.
X: The breaking strength exceeds 50% with respect to the initial value.

(15)毛羽等級:MD、CD方向に25mm×300mmの試験片を採取し、日本学術振興会型堅牢度試験機を用いて、摩擦子の荷重が200g、摩擦子側には同布を使用し、50回動作をさせて、以下の評価基準に従って、耐毛羽性を等級付けた。
1.0級:試験片が破損するほど繊維が剥ぎ取られる。
2.0級;試験片が薄くなるほど甚だしく繊維が剥ぎ取られる。
2.5級:毛玉が大きくはっきりと見られ、複数箇所で繊維が浮き上がり始める。
3.0級:はっきりとした毛玉ができ始め、または小さな毛玉が複数見られる。
3.5級:繊維が3〜5本程度、もしくは数ヶ所に小さな毛玉ができ始める程度に毛羽立っている。
4.0級:繊維が1〜2本程度、もしくは一ヶ所に小さな毛玉ができ始める程度に毛羽立っている。
5.0級:毛羽立ちがない。
(15) Fluff grade: 25 mm x 300 mm test pieces are taken in the MD and CD directions, using a Japan Society for the Promotion of Science type fastness tester, the load of the friction element is 200 g, and the same cloth is used on the friction element side The fluff resistance was graded according to the following evaluation criteria.
1.0 grade: The fiber is peeled off as the test piece breaks.
2.0 grade; the thinner the specimen, the more severe the fiber is peeled off.
Grade 2.5: The pills are large and clearly visible, and the fibers begin to float at multiple locations.
3.0 grade: A clear hairball starts to appear or a plurality of small hairballs are seen.
Grade 3.5: Fluffy so that there are about 3 to 5 fibers, or small fluffs start to form in several places.
4.0 grade: Fluffed to the extent that there are about 1 to 2 fibers, or a small fluff begins to form in one place.
Grade 5.0: No fuzz.

次に、実施例及び比較例によって本発明を具体的に説明する。
[実施例1]
融点167℃、MFR44g/10minであるポリ乳酸系重合体に、溶融流動比が1.1であるポリブチレンサクシネートを添加量が10wt%となるようにドライブレンドにて混合し、常用の溶融紡糸装置に供給した。次に、230℃にて均一に溶融混合し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4600m/minにて溶融紡出して繊度が2.0dtexのポリ乳酸系ブレンド長繊維を得た。この繊維を開繊分散して目付20g/mのウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率7.1%で部分熱圧着することにより、生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
Next, the present invention will be specifically described with reference to examples and comparative examples.
[Example 1]
Polybutylene succinate having a melting flow ratio of 1.1 is mixed with a polylactic acid polymer having a melting point of 167 ° C. and an MFR of 44 g / 10 min by dry blending so that the addition amount is 10 wt%, and ordinary melt spinning is performed. Supplied to the device. Next, the mixture was uniformly melt-mixed at 230 ° C., and melt spun from a spinneret having a spinning hole with a circular cross section at a spinning speed of 4600 m / min to obtain a polylactic acid-based blend long fiber having a fineness of 2.0 dtex. This fiber is spread and dispersed to prepare a web having a basis weight of 20 g / m 2 , and a partially decomposable thermocompression nonwoven fabric is obtained by thermocompression bonding with an area ratio of 7.1% between the embossing roll and the flat roll. It was. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例2]
実施例1においてポリブチレンサクシネートの添加率が6.0wt%となるようにブレンドしたこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 2]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that blending was performed so that the addition rate of polybutylene succinate was 6.0 wt% in Example 1. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例3]
実施例1においてポリブチレンサクシネートの添加率が3.0wt%となるようにブレンドしたこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 3]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that blending was performed so that the addition rate of polybutylene succinate was 3.0 wt% in Example 1. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例4]
実施例1においてポリブチレンサクシネートの添加率が3.0wt%となるようにブレンドし、繊度が2.4dtexのポリ乳酸系ブレンド長繊維を開繊分散して目付40g/mのウェブを作製したこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 4]
In Example 1, blending was performed so that the addition rate of polybutylene succinate was 3.0 wt%, and a polylactic acid-based blend long fiber having a fineness of 2.4 dtex was opened and dispersed to produce a web having a basis weight of 40 g / m 2. A biodegradable long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例5]
融点167℃、MFR44g/10minであるポリ乳酸系重合体に、溶融流動比が1.1であるポリブチレンサクシネートを添加率が1.0wt%となるようにドライブレンドにて混合し、常用の溶融紡糸装置に供給した。次に、230℃にて均一に溶融混合し、円形断面の紡糸孔を有する紡糸口金から紡糸速度6000m/minにて溶融紡出して繊度が1.3dtexのポリ乳酸系ブレンド長繊維を得た。この繊維を開繊分散して目付16g/mのウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率7.1%で部分熱圧着することにより生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 5]
A polybutylene succinate having a melt flow ratio of 1.1 is mixed with a polylactic acid polymer having a melting point of 167 ° C. and an MFR of 44 g / 10 min by dry blending so that the addition rate is 1.0 wt%. It was supplied to a melt spinning apparatus. Next, the mixture was uniformly melt-mixed at 230 ° C., and melt spun from a spinneret having a spinning hole with a circular cross section at a spinning speed of 6000 m / min to obtain a polylactic acid-based blend long fiber having a fineness of 1.3 dtex. This fiber was spread and dispersed to produce a web having a basis weight of 16 g / m 2 , and a biodegradable long fiber nonwoven fabric was obtained by partial thermocompression bonding between an embossing roll and a flat roll at a thermocompression area ratio of 7.1%. . The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例6]
実施例5において熱圧着面積率11.4%で部分熱圧着したこと以外は、実施例5と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 6]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 5 except that partial thermocompression bonding was performed at a thermocompression bonding area ratio of 11.4% in Example 5. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例7]
実施例5において熱圧着面積率14.4%で部分熱圧着したこと以外は、実施例5と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 7]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 5 except that partial thermocompression bonding was performed at a thermocompression bonding area ratio of 14.4% in Example 5. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例8]
実施例5において熱圧着面積率30.0%で部分熱圧着したこと以外は、実施例5と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 8]
A biodegradable long-fiber nonwoven fabric was obtained in the same manner as in Example 5 except that partial thermocompression bonding was performed at a thermocompression bonding area ratio of 30.0% in Example 5. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例9]
実施例5において繊度が2.0dtexのポリ乳酸系ブレンド長繊維を熱圧着面積率11.4%で部分熱圧着したこと以外は、実施例5と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 9]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 5 except that the polylactic acid-based blend long fiber having a fineness of 2.0 dtex in Example 5 was partially thermocompression bonded at a thermocompression area ratio of 11.4%. . The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[比較例1]
実施例1においてポリブチレンサクシネートを添加しないこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。熱圧着性が悪いため、ヒートシール強度と引張強度が不良であった。
[Comparative Example 1]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that polybutylene succinate was not added in Example 1. The physical properties of the obtained nonwoven fabric are shown in Table 1 below. Due to poor thermocompression bonding, heat seal strength and tensile strength were poor.

[比較例2]
実施例1において溶融流動比が2.0であるポリブチレンサクシネートをブレンドしたこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。溶融流動比が高いために配向結晶化抑制効果が少なく、ヒートシール強度と引張強度が不良であった。
[Comparative Example 2]
A biodegradable long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that polybutylene succinate having a melt flow ratio of 2.0 in Example 1 was blended. The physical properties of the obtained nonwoven fabric are shown in Table 1 below. Since the melt flow ratio was high, the effect of suppressing orientation crystallization was small, and the heat seal strength and tensile strength were poor.

[比較例3]
実施例1においてポリブチレンサクシネート樹脂を添加率が15wt%となるようにブレンドしたこと以外は、実施例1と同様にして生分解性長繊維不織布を得ようとしたが、糸切れの多発と紡口付近での糸曲がりが発生し、紡糸不可の状態であり、連続した糸が得ることはできなかった。
[Comparative Example 3]
In Example 1, except that the polybutylene succinate resin was blended so that the addition rate was 15 wt%, an attempt was made to obtain a biodegradable long-fiber nonwoven fabric in the same manner as in Example 1, The yarn was bent in the vicinity of the spinneret and the spinning was impossible, and a continuous yarn could not be obtained.

[比較例4]
実施例5において繊度が5.0dtexのポリ乳酸系ブレンド長繊維を熱圧着面積率11.4%で部分熱圧着したこと以外は、実施例5と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。紡糸速度が低く、繊度が大きいために沸水収縮性が高く、且つ、粉漏れ性が高くなり、フィルター性能に劣るものであった。
[Comparative Example 4]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 5 except that the polylactic acid-based blend long fiber having a fineness of 5.0 dtex in Example 5 was partially thermocompression bonded at a thermocompression area ratio of 11.4%. . The physical properties of the obtained nonwoven fabric are shown in Table 1 below. Since the spinning speed was low and the fineness was large, the boiling water shrinkage was high, the powder leakage was high, and the filter performance was poor.

[比較例5]
実施例1においてポリブチレンサクシネートの添加率が3.0wt%となるようにブレンドし、繊度が2.4dtexのポリ乳酸系ブレンド長繊維を開繊分散して目付60g/mのウェブを作成したこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。高目付であるために透明性が低く、通気度が低いためにフィルターとして抽出性の悪いものとなった。
[Comparative Example 5]
In Example 1, blending was performed so that the addition rate of polybutylene succinate was 3.0 wt%, and a polylactic acid-based blend long fiber having a fineness of 2.4 dtex was opened and dispersed to create a web having a basis weight of 60 g / m 2. A biodegradable long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that. The physical properties of the obtained nonwoven fabric are shown in Table 1 below. Due to the high basis weight, the transparency was low, and because the air permeability was low, the filter was poor in extractability.

[比較例6]
実施例1において溶融流動比が0.1であるポリブチレンサクシネートの添加率が3.0wt%となるようにブレンドしたこと以外は、実施例1と同様にして生分解性長繊維不織布を得ようとしたが、糸切れの多発と紡口付近での糸曲がりが発生し、紡糸不可の状態であり、連続した糸を得ることはできなかった。
[Comparative Example 6]
A biodegradable long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that blending was performed so that the addition rate of polybutylene succinate having a melt flow ratio of 0.1 in Example 1 was 3.0 wt%. However, many yarn breaks occurred and yarn bending occurred near the spinneret, and spinning was not possible, and a continuous yarn could not be obtained.

[比較例7]
実施例1においてポリブチレンサクシネートの添加率が3.0wt%となるようにブレンドし、繊度が0.6dtexのポリ乳酸系ブレンド長繊維を作成したこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。繊度が小さすぎたために透明性が不良であり、フィルター性能に劣るものであった。
[Comparative Example 7]
In the same manner as in Example 1, except that blending was performed so that the addition rate of polybutylene succinate was 3.0 wt% in Example 1 to produce a polylactic acid-based blend continuous fiber having a fineness of 0.6 dtex. A degradable long fiber nonwoven fabric was obtained. The physical properties of the obtained nonwoven fabric are shown in Table 1 below. Since the fineness was too small, the transparency was poor and the filter performance was poor.

[実施例8]
実施例5において熱圧着面積率3.0%で部分熱圧着したこと以外は、実施例5と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。熱圧着面積率が低く、ウェブの熱圧着が不完全なため、ヒートシール強度と引張強度が不良であった。
[Example 8]
A biodegradable long-fiber nonwoven fabric was obtained in the same manner as in Example 5 except that partial thermocompression bonding was performed at a thermocompression bonding area ratio of 3.0% in Example 5. The physical properties of the obtained nonwoven fabric are shown in Table 1 below. The heat seal strength and tensile strength were poor because the area ratio of thermocompression bonding was low and the thermocompression bonding of the web was incomplete.

Figure 0005486332
Figure 0005486332

本発明の生分解性長繊維不織布は、毛羽立ちが少なく、機械的強度と粉漏れ性、透明性等に優れることから土嚢袋、ベタガケシート、防草シート、植生シート、育苗ポット等の土木農業資材、ワイピングクロス、水切り袋、シーツ、ベッドカバー、発熱体包材、乾燥包材、食品用包材等の生活資材、マット,吸音材、天井材、シート内張布等の自動車内装材、空調用フィルター、ダスト捕集用フィルター材等の工業資材、使い捨ておむつ等の衛生材料等に好ましく用いられる。特に、緑茶、紅茶、コーヒー、出し汁等に用いられる食品用フィルターの分野に好適に利用できる。   The biodegradable long-fiber non-woven fabric of the present invention has less fuzz and is excellent in mechanical strength and powder leakage, transparency, etc. Wiping cloth, draining bags, sheets, bedspreads, heating element packaging materials, dry packaging materials, food packaging materials, etc., automobile interior materials such as mats, sound absorbing materials, ceiling materials, seat lining fabrics, air conditioning filters It is preferably used for industrial materials such as dust collecting filter materials, and sanitary materials such as disposable diapers. In particular, it can be suitably used in the field of food filters used for green tea, black tea, coffee, soup stock and the like.

Claims (8)

融点が150℃以上のポリ乳酸系重合体100wt%に対して、融点が140℃以下の脂肪族ポリエステル共重合体0.5〜10wt%を添加したものを、該ポリ乳酸系重合体と該脂肪族ポリエステル共重合体の溶融流動比が0.2〜1.5の範囲で、溶融紡糸して得られ、該ポリ乳酸系重合体が海部を形成し、該脂肪族ポリエステル共重合体が島部を形成する海島型複合長繊維を、熱圧着面積率5〜40%で、熱圧着で一体化して得られ、複屈折率が0.012を越え、沸水収縮率が5%以下であり、ヒートシール強度が1.5N/25mm以上であり、かつ、透明性が50%以上であることを特徴とする生分解性長繊維不織布。 What added 0.5-10 wt% of aliphatic polyester copolymer whose melting | fusing point is 140 degrees C or less with respect to 100 wt% of polylactic acid-type polymer whose melting | fusing point is 150 degreeC or more is what this polylactic acid-type polymer and this fat have. The melt flow ratio of the aliphatic polyester copolymer is obtained by melt spinning in the range of 0.2 to 1.5, the polylactic acid-based polymer forms a sea portion, and the aliphatic polyester copolymer is an island portion. the sea-island composite long fibers forming the at 5-40% thermocompression bonding area ratio, obtained by integrally thermocompression bonding, birefringence exceeds 0.012, boiling water shrinkage percentage is 5% or less, a heat A biodegradable long-fiber nonwoven fabric having a sealing strength of 1.5 N / 25 mm or more and transparency of 50% or more. 前記ポリ乳酸系重合体が、ポリL−乳酸、ポリD−乳酸、L−乳酸とD−乳酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、及びL−乳酸とD−乳酸とヒドロキシカルボン酸との共重合体からなる群から選ばれる重合体、又は該重合体の種類以上のブレンド体である、請求項1に記載の生分解性長繊維不織布。   The polylactic acid polymer is poly L-lactic acid, poly D-lactic acid, a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, D-lactic acid and hydroxycarboxylic acid, The polymer is selected from the group consisting of a copolymer with an acid and a copolymer of L-lactic acid, D-lactic acid and hydroxycarboxylic acid, or a blend of at least the types of the polymer. The biodegradable long fiber nonwoven fabric described. 前記脂肪族ポリエステル共重合体がポリブチレンサクシネートである、請求項1又は2に記載の生分解性長繊維不織布。   The biodegradable long-fiber nonwoven fabric according to claim 1 or 2, wherein the aliphatic polyester copolymer is polybutylene succinate. 前記生分解性長繊維不織布の粉漏れ率が10%以下であり、かつ、毛羽等級が2.5級以上である、請求項1〜3のいずれか1項に記載の生分解性長繊維不織布。 Wherein the biodegradable length Ri der powder leakage rate is less than 10% of the non-woven fabric, One or is fluff grade 2.5 or higher grade, biodegradable length according to any one of claims 1 to 3 Fiber nonwoven fabric. 前記生分解性長繊維不織布の目付が10〜50g/m2 であり、かつ、厚みが0.02〜0.50mmである、請求項1〜4のいずれか1項に記載の生分解性長繊維不織布。 Basis weight of the biodegradable long-fiber nonwoven fabric is 10 to 50 g / m 2, and thickness of 0.02~0.50Mm, biodegradable length according to any one of claims 1 to 4 Fiber nonwoven fabric. 前記生分解性長繊維不織布のMD方向の100g/m目付に換算した時の引張強度が200N/50mm以上である、請求項1〜5のいずれか1項に記載の生分解性長繊維不織布。 Tensile strength when converted to the MD direction of 100 g / m 2 basis weight of said biodegradable filament nonwoven fabric is 200 N / 50 mm or more, a biodegradable filament nonwoven fabric according to any one of claims 1 to 5 . 前記長繊維は、紡糸速度3000〜8000m/minで牽引されて紡糸され、繊度が1.0〜4.0dtexであり、かつ、結晶化度が30〜60%である、請求項1〜6のいずれか1項に記載の生分解性長繊維不織布。   The long fiber is pulled and spun at a spinning speed of 3000 to 8000 m / min, has a fineness of 1.0 to 4.0 dtex, and a crystallinity of 30 to 60%. The biodegradable long fiber nonwoven fabric according to any one of the above. 請求項1〜7のいずれか1項に記載の生分解性長繊維不織布を含む食品用フィルター。   The filter for foodstuffs containing the biodegradable long-fiber nonwoven fabric of any one of Claims 1-7.
JP2010021151A 2010-02-02 2010-02-02 Biodegradable non-woven fabric Active JP5486332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021151A JP5486332B2 (en) 2010-02-02 2010-02-02 Biodegradable non-woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021151A JP5486332B2 (en) 2010-02-02 2010-02-02 Biodegradable non-woven fabric

Publications (2)

Publication Number Publication Date
JP2011157661A JP2011157661A (en) 2011-08-18
JP5486332B2 true JP5486332B2 (en) 2014-05-07

Family

ID=44589848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021151A Active JP5486332B2 (en) 2010-02-02 2010-02-02 Biodegradable non-woven fabric

Country Status (1)

Country Link
JP (1) JP5486332B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1028015B1 (en) * 2020-05-27 2021-08-18 Sioen Ind Yarn and fabric of poly(ɛ-caprolactone), poly(butylene succinate-co-butylene adipate) and polylactic acid
US11697898B2 (en) 2017-03-10 2023-07-11 Biome Bioplastics Limited Fabric

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115833A1 (en) * 2011-10-13 2013-04-18 K-Fee System Gmbh Portion capsule for making a drink with a portion capsule
CN105164229B (en) * 2013-06-03 2017-06-16 株式会社吴羽 Mine pit treatment fluid decomposability fiber, its manufacture method and mine pit processing method
WO2015147119A1 (en) * 2014-03-27 2015-10-01 大紀商事株式会社 Nonwoven fabric sheet, and extraction-use filter and extraction-use bag using same
JP6499429B2 (en) * 2014-12-02 2019-04-10 倉敷繊維加工株式会社 Agricultural coating sheet and manufacturing method thereof
JP2018204168A (en) * 2017-06-05 2018-12-27 旭化成株式会社 Biodegradable long fiber non-woven fabric
JP6651187B1 (en) * 2019-03-04 2020-02-19 株式会社トキワ工業 Method for producing nonwoven material and nonwoven bag
JP7438878B2 (en) 2020-07-21 2024-02-27 大王製紙株式会社 Extraction filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034683A (en) * 2004-07-28 2006-02-09 Asahi Kasei Fibers Corp Soup stock bag
JP4960616B2 (en) * 2005-09-29 2012-06-27 帝人ファイバー株式会社 Short fiber, method for producing the same, and precursor thereof
JP4650206B2 (en) * 2005-10-25 2011-03-16 チッソ株式会社 Biodegradable conjugate fiber, and fiber structure and absorbent article using the same
JP4223060B2 (en) * 2007-02-21 2009-02-12 旭化成せんい株式会社 High elongation nonwoven fabric and surface material using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697898B2 (en) 2017-03-10 2023-07-11 Biome Bioplastics Limited Fabric
BE1028015B1 (en) * 2020-05-27 2021-08-18 Sioen Ind Yarn and fabric of poly(ɛ-caprolactone), poly(butylene succinate-co-butylene adipate) and polylactic acid

Also Published As

Publication number Publication date
JP2011157661A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5486332B2 (en) Biodegradable non-woven fabric
JP5503989B2 (en) Food filter made of biodegradable laminated nonwoven fabric
JP3939326B2 (en) Non-woven fabric and tea bag
JP2011514450A (en) Heteromorphic structural fibers, textile sheets and their use
JP6898482B2 (en) Single-layer or multi-layer polyester long-fiber non-woven fabric and food filters using it
NZ501274A (en) Degradable polymer fibres comprising polylactide and material made from the fibres
MXPA02006534A (en) Biodegradable thermoplastic nonwoven webs for fluid management.
JP6239337B2 (en) Polyester long fiber nonwoven fabric and food filter using the same
JP2015074842A (en) Biodegradable filament nonwoven fabric and filter for food obtained by using the same
JP2006207105A (en) Polylactic acid-based filament nonwoven fabric and method for producing the same
JP3434628B2 (en) Polylactic acid-based long-fiber nonwoven fabric and method for producing the same
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
JP5157099B2 (en) Non-woven fabric for tea bags and tea bags
JP2006333936A (en) Biodegradable nonwoven fabric for pocket warmer-packaging material
JP5484112B2 (en) Molded body
JP5361420B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP4493275B2 (en) Long fiber nonwoven fabric with excellent transparency
JP2000034657A (en) Biodegradable nonwoven fabric for draining filtration
JP3938950B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2007296792A (en) Composite converted-paper
RU2465381C2 (en) Bicomponent fibers, textile sheets and their use
JP2011174193A (en) Polylactic acid-based filament nonwovwn fabric
JP4343561B2 (en) High elongation polyolefin fiber
JP2009102796A (en) Nonwoven fabric formed of polylactic acid based composite staple fiber, and method for producing the same
TW202136606A (en) Compostable multi-component constructions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140221

R150 Certificate of patent or registration of utility model

Ref document number: 5486332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250