JP2015074842A - Biodegradable filament nonwoven fabric and filter for food obtained by using the same - Google Patents

Biodegradable filament nonwoven fabric and filter for food obtained by using the same Download PDF

Info

Publication number
JP2015074842A
JP2015074842A JP2013211006A JP2013211006A JP2015074842A JP 2015074842 A JP2015074842 A JP 2015074842A JP 2013211006 A JP2013211006 A JP 2013211006A JP 2013211006 A JP2013211006 A JP 2013211006A JP 2015074842 A JP2015074842 A JP 2015074842A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
long fiber
fiber nonwoven
biodegradable
biodegradable long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013211006A
Other languages
Japanese (ja)
Inventor
隆文 横山
Takafumi Yokoyama
隆文 横山
留美名 小尾
Rumina Koo
留美名 小尾
岡嶋 真一
Shinichi Okajima
真一 岡嶋
一史 加藤
Kazufumi Kato
一史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2013211006A priority Critical patent/JP2015074842A/en
Publication of JP2015074842A publication Critical patent/JP2015074842A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biodegradable filament nonwoven fabric consisting of biodegradable filaments comprising a polylactic acid-based polymer that are almost completely degraded after use and are easily disposed, and being excellent in transparency, dimension stability and component extraction properties, and to provide a filter for food obtained by using the same.SOLUTION: The biodegradable filament nonwoven fabric comprises polylactic acid filaments that contain a polylactic acid-based polymer having a melting point of 150°C or more as a main component, have an average fiber diameter of 15-40 μm, a birefringence of 0.005-0.025 and a crystallinity of 30-50%, and has a basis weight of 10-30 g/m. The filter for food comprises the biodegradable filament nonwoven fabric.

Description

本発明は、透明性や寸法安定性、均一性、成分抽出性に優れた生分解性長繊維不織布、及び、該生分解性長繊維不織布からなる、特に、飲料用の抽出用の用いた食品用フィルターに関する。   The present invention comprises a biodegradable long fiber nonwoven fabric excellent in transparency, dimensional stability, uniformity, and component extractability, and the food used for extraction for beverages, in particular, comprising the biodegradable long fiber nonwoven fabric Related to filters.

従来、包装材料として、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の樹脂からなる不織布が使用されているが、これらの樹脂からなる不織布は自己分解性がなく、自然環境下で極めて安定である。そのため、使用済みの包装材料等は、焼却炉での焼却や埋立処理がなされているが、近年、環境保護の観点から、資源リサイクル及び温室効果ガス抑制等を目的として、使用済包装材料に関して環境に優しい有効利用の方法や廃棄方法の早期開発が望まれている。   Conventionally, nonwoven fabrics made of resins such as polyethylene, polypropylene, polyester, and polyamide have been used as packaging materials. However, nonwoven fabrics made of these resins are not self-degradable and are extremely stable in the natural environment. For this reason, used packaging materials have been incinerated or landfilled in incinerators. However, from the viewpoint of environmental protection, the environment for used packaging materials has been increasing for the purpose of resource recycling and greenhouse gas suppression. It is desired to develop early methods for effective use and disposal that are friendly to the environment.

一般的に不織布のフィルター性等の遮蔽機能を高めるために繊維を緻密にすることが要求される結果、内部を確認することができない。紅茶、緑茶、烏龍茶等の成分抽出を行う場合、簡便な方法としてティーバッグ方式が多く利用されている。ティーバッグ用途に使用されている包装材料には一般に紙が多く用いられているが、透明性が悪くて包装材料の中身が見えないこと、ヒートシール加工できないこと等の問題点がある。   In general, it is required to make the fibers dense in order to enhance the shielding function such as filterability of the nonwoven fabric, so that the inside cannot be confirmed. When extracting components such as black tea, green tea, oolong tea, etc., a tea bag method is often used as a simple method. Paper is generally used as a packaging material used for tea bags, but there are problems such as poor transparency and inability to see the contents of the packaging material and heat sealing.

以下の特許文献1には、ポリL乳酸からなる繊度が15〜35dtexのティーバッグ用生分解性モノフィラメントが開示されているが、繊度が大きいために透明性は高いが、モノフィラメントの沸水収縮率が20%以下であり、寸法安定性が低いという問題点がある。
また、以下の特許文献2には、光学純度が異なる2種類のポリ乳酸系重合体の複合短繊維からなる不織布が提案されているが、実際の加工温度での収縮が大きいため、地合が悪く、粗硬な不織布しか得られない。
さらに、以下の特許文献3には、複合繊維の鞘成分を熱風加工により熱圧着を行って得られた不織布が開示されているが、嵩高で熱収縮性が大きいために粗硬となり、フィルター用途には適していない。
Patent Document 1 below discloses a biodegradable monofilament for tea bags having a fineness of 15 to 35 dtex made of poly-L-lactic acid. However, since the fineness is large, the transparency is high, but the boiling rate of the monofilament is low. There is a problem that it is 20% or less and the dimensional stability is low.
In addition, in the following Patent Document 2, a nonwoven fabric composed of composite short fibers of two types of polylactic acid polymers having different optical purities has been proposed, but since the shrinkage at the actual processing temperature is large, Only bad and hard nonwoven fabrics can be obtained.
Furthermore, the following Patent Document 3 discloses a nonwoven fabric obtained by thermocompression bonding of a sheath component of a composite fiber by hot air processing. Not suitable for.

特開2001−131826号公報JP 2001-131826 A 特開2001−49533号公報JP 2001-49533 A 特開2007−126780号公報JP 2007-126780 A

本発明は、前記のような従来技術の問題を解決しようとするものであり、使用後にはほぼ完全に分解されて廃棄処理が容易であるポリ乳酸系重合体からなる生分解性長繊維で構成され、透明性や寸法安定性、地合の均一性、成分抽出性に優れた生分解性長繊維不織布、及びそれを用いた食品用フィルターを提供することである。   The present invention is intended to solve the problems of the prior art as described above, and is composed of biodegradable long fibers made of a polylactic acid polymer that is almost completely decomposed after use and can be easily disposed of. Another object of the present invention is to provide a biodegradable long-fiber non-woven fabric excellent in transparency, dimensional stability, uniformity of formation, and component extractability, and a food filter using the same.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、ポリ乳酸系重合体からなる不織布を構成する繊維の構造と繊維径、不織布の目付、地合、熱圧着面積率等の観点から詳細な検討を行い、紡糸性や不織布の均一性が良好で食品用フィルターとして成分抽出性に優れ、且つ、透明性と寸法安定性の両方が良好である生分解性長繊維不織布が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the structure and fiber diameter of the nonwoven fabric comprising the polylactic acid polymer, the basis weight of the nonwoven fabric, the formation, the thermal compression area ratio, etc. The biodegradable long-fiber non-woven fabric with excellent spinnability and uniformity of the nonwoven fabric, excellent extractability of ingredients as a food filter, and good transparency and dimensional stability is obtained. As a result, the present invention has been completed.

すなわち、本発明は以下の通りのものである。
[1]融点が150℃以上のポリ乳酸系重合体を主成分とし、平均繊維径が15〜40μmであり、複屈折率が0.005〜0.025であり、そして、結晶化度が30〜50%であるポリ乳酸長繊維からなる、目付が10〜30g/mであることを特徴とする生分解性長繊維不織布。
That is, the present invention is as follows.
[1] A polylactic acid polymer having a melting point of 150 ° C. or more as a main component, an average fiber diameter of 15 to 40 μm, a birefringence of 0.005 to 0.025, and a crystallinity of 30 consisting of polylactic acid filament is 50%, biodegradable filament nonwoven fabric, wherein the basis weight is 10 to 30 g / m 2.

[2]前記ポリ乳酸系重合体が、ポリL−乳酸、ポリD−乳酸、L−乳酸とD−乳酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、及びL−乳酸とD−乳酸とヒドロキシカルボン酸との共重合体からなる群から選ばれる重合体、又は該重合体の2種類以上のブレンド体である、前記[1]に記載の生分解性長繊維不織布。   [2] The polylactic acid polymer is poly L-lactic acid, poly D-lactic acid, a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, or D-lactic acid. And a polymer selected from the group consisting of a copolymer of L-lactic acid, D-lactic acid, and hydroxycarboxylic acid, or a blend of two or more of the polymers. The biodegradable long fiber nonwoven fabric according to [1].

[3]前記生分解性長繊維不織布の熱圧着面積率が5〜40%であり、且つ、平均見掛け密度が0.1〜0.5g/cmである、前記[1]又は[2]に記載の生分解性長繊維不織布。 [3] The above-mentioned [1] or [2], wherein the biodegradable long-fiber nonwoven fabric has a thermocompression bonding area ratio of 5 to 40% and an average apparent density of 0.1 to 0.5 g / cm 3 . The biodegradable long fiber nonwoven fabric described in 1.

[4]前記生分解性長繊維不織布の透明性が60%以上である、前記[1]〜[3]のいずれかに記載の生分解性長繊維不織布。   [4] The biodegradable long fiber nonwoven fabric according to any one of [1] to [3], wherein the biodegradable long fiber nonwoven fabric has a transparency of 60% or more.

[5]前記生分解性長繊維不織布の沸水収縮率が4.0%以下である、前記[1]〜[4]のいずれかに記載の生分解性長繊維不織布。   [5] The biodegradable long fiber nonwoven fabric according to any one of [1] to [4], wherein the biodegradable long fiber nonwoven fabric has a boiling water shrinkage of 4.0% or less.

[6]前記生分解性長繊維不織布の引張強度が2〜25N/30mmである、前記[1]〜[5]のいずれかに記載の生分解性長繊維不織布。   [6] The biodegradable long fiber nonwoven fabric according to any one of [1] to [5], wherein the biodegradable long fiber nonwoven fabric has a tensile strength of 2 to 25 N / 30 mm.

[7]前記生分解性長繊維不織布の地合係数が0.5〜2.0である、前記[1]〜[6]のいずれかに記載の生分解性長繊維不織布。   [7] The biodegradable long fiber nonwoven fabric according to any one of [1] to [6], wherein the formation factor of the biodegradable long fiber nonwoven fabric is 0.5 to 2.0.

[8]前記生分解性長繊維不織布の少なくとも1層が融点140℃以下の脂肪族ポリエステルを含有する、前記[1]〜[7]のいずれかに記載の生分解性長繊維不織布。   [8] The biodegradable long fiber nonwoven fabric according to any one of [1] to [7], wherein at least one layer of the biodegradable long fiber nonwoven fabric contains an aliphatic polyester having a melting point of 140 ° C. or lower.

[9]前記[1]〜[8]のいずれかに記載の生分解性長繊維不織布からなる食品用フィルター。   [9] A food filter comprising the biodegradable long fiber nonwoven fabric according to any one of [1] to [8].

本発明に係る生分解性長繊維不織布は、紡糸性が良好で食品用フィルターとして成分抽出性に優れ、且つ、透明性と寸法安定性の両方が良好である。   The biodegradable long fiber nonwoven fabric according to the present invention has good spinnability, excellent component extractability as a food filter, and good transparency and dimensional stability.

板状の分散板等のような気流を制御する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which controls airflows, such as a plate-shaped dispersion board. 沸水収縮率と透明性との関係を示すグラフである。It is a graph which shows the relationship between boiling water shrinkage | contraction rate and transparency. ドラフト比と配向結晶性との関係を示すグラフである。It is a graph which shows the relationship between draft ratio and oriented crystallinity. 紡糸温度と配向結晶性との関係を示すグラフである。It is a graph which shows the relationship between spinning temperature and oriented crystallinity.

以下、本発明の実施形態について詳細に説明する。
本発明に係る生分解性長繊維不織布を構成するポリ乳酸系重合体としては、ポリL−乳酸、ポリD−乳酸、L−乳酸とD−乳酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、及びL−乳酸とD−乳酸とヒドロキシカルボン酸との共重合体からなる群から選ばれるいずれかの重合体、又は該重合体の2種類以上のブレンド体が挙げられる。本発明においては、ポリ乳酸系重合体の融点は150℃以上である。また、ポリL−乳酸とポリD−乳酸とのブレンド物を溶融紡糸することで200〜240℃の高い融点を有するステレオコンプレックス構造を使用することができる。
Hereinafter, embodiments of the present invention will be described in detail.
Examples of the polylactic acid polymer constituting the biodegradable long-fiber nonwoven fabric according to the present invention include poly L-lactic acid, poly D-lactic acid, a copolymer of L-lactic acid and D-lactic acid, and L-lactic acid and hydroxycarboxylic acid. Any polymer selected from the group consisting of copolymers with acids, copolymers of D-lactic acid and hydroxycarboxylic acids, and copolymers of L-lactic acid, D-lactic acid and hydroxycarboxylic acids, or Two or more types of blends of the polymers may be mentioned. In the present invention, the polylactic acid polymer has a melting point of 150 ° C. or higher. Moreover, the stereocomplex structure which has a high melting | fusing point of 200-240 degreeC can be used by melt-spinning the blend of poly L-lactic acid and poly D-lactic acid.

上記ポリ乳酸系重合体の成分として用いられるヒドロキシカルボン酸としては、例えば、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げられる。これらの中では、グリコール酸、ヒドロキシカプロン酸が好ましい。   Examples of the hydroxycarboxylic acid used as a component of the polylactic acid polymer include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxyoctanoic acid. Of these, glycolic acid and hydroxycaproic acid are preferred.

前記ポリ乳酸系重合体のMIは、5〜30g/10minが好ましく、より好ましくは5〜20g/10minである。MIが5g/10min以上であれば溶融粘性が適切であり、紡糸工程において繊維の配向結晶化が進み、十分な単糸強度が得られる傾向がある。他方、MIが30g/10min以下であると溶融粘性が適切なため、紡糸工程において単糸切れが発生することが少なく、単糸強度が高いものが得られる。   The MI of the polylactic acid polymer is preferably 5 to 30 g / 10 min, more preferably 5 to 20 g / 10 min. If the MI is 5 g / 10 min or more, the melt viscosity is appropriate, and the orientation crystallization of the fiber proceeds in the spinning process, and a sufficient single yarn strength tends to be obtained. On the other hand, when the MI is 30 g / 10 min or less, the melt viscosity is appropriate, so that single yarn breakage is less likely to occur in the spinning process, and a single yarn strength is high.

本発明に係る生分解性長繊維の繊維形状としては、通常の丸型断面の他にも中空断面、芯鞘型複合断面、分割型複合断面等、その目的と用途に応じて任意の繊維断面形状を選択することができる。
本発明に係る生分解性長繊維不織布は、ティーバッグ等の袋形状にして用いるためには、製袋機によるヒートシール加工で、接着強度が高いことが好ましい。接着強度の良好なヒートシール性、すなわち、高いヒートシール強度を得るためには、不織布の少なくとも一方の面に、融点140℃以下の脂肪族ポリエステルを含む繊維を積層して融点差を設けることにより、ヒートシール加工時に低融点樹脂成分だけが軟化又は溶融して接着剤として機能させることが好ましい。
As the fiber shape of the biodegradable long fiber according to the present invention, in addition to a normal round cross section, a hollow cross section, a core-sheath composite cross section, a split composite cross section, etc., any fiber cross section depending on its purpose and application The shape can be selected.
In order to use the biodegradable long-fiber nonwoven fabric according to the present invention in the shape of a bag such as a tea bag, it is preferable that the adhesive strength is high by heat sealing using a bag making machine. In order to obtain heat-sealability with good adhesive strength, that is, high heat-seal strength, by laminating a fiber containing an aliphatic polyester having a melting point of 140 ° C. or lower on at least one surface of the nonwoven fabric to provide a difference in melting point It is preferable that only the low melting point resin component is softened or melted during the heat sealing process to function as an adhesive.

前記脂肪族ポリエステルの融点は、ポリ乳酸系重合体の融点よりも10〜80℃低温であることが好ましく、20〜60℃低温であることがより好ましい。本発明に用いる脂肪族ポリエステルとしては、例えば、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリエチレンテレフタレート・アジペート、ポリブチレンサクシネート・アジペート、ポリブチレンテレフタレート・アジペート、ポリカプロラクトン等を挙げることができる。さらに、繊維構造として単成分の他に、鞘芯構造やサイドバイサイド等の2成分からなる複合繊維構造、例えば、芯が高融点で鞘が低融点の複合繊維構造であり、具体的には、芯がポリ乳酸系重合体等の高融点樹脂、鞘が脂肪族ポリエステル等の低融点樹脂が好ましい。   The melting point of the aliphatic polyester is preferably 10 to 80 ° C lower than the melting point of the polylactic acid polymer, and more preferably 20 to 60 ° C. Examples of the aliphatic polyester used in the present invention include polyethylene succinate, polybutylene succinate, polyethylene terephthalate adipate, polybutylene succinate adipate, polybutylene terephthalate adipate, and polycaprolactone. Further, in addition to a single component as a fiber structure, a composite fiber structure having two components such as a sheath core structure and side-by-side, for example, a composite fiber structure having a high melting point in the core and a low melting point in the sheath, specifically, a core Is preferably a high melting point resin such as a polylactic acid polymer, and a low melting point resin such as an aliphatic polyester.

前記脂肪族ポリエステルのMIは、5〜30g/10minが好ましく、より好ましくは5〜20g/10minである。MIが5g/10min以上であれば溶融粘性が適切であり、紡糸工程において繊維の配向結晶化が進み、十分な単糸強度が得られる傾向がある。他方、MIが30g/10min以下であると溶融粘性が適切なため、紡糸工程において単糸切れが発生することが少なく、単糸強度が高いものが得られる。   The aliphatic polyester has an MI of preferably 5 to 30 g / 10 min, more preferably 5 to 20 g / 10 min. If the MI is 5 g / 10 min or more, the melt viscosity is appropriate, and the orientation crystallization of the fiber proceeds in the spinning process, and a sufficient single yarn strength tends to be obtained. On the other hand, when the MI is 30 g / 10 min or less, the melt viscosity is appropriate, so that single yarn breakage is less likely to occur in the spinning process, and a single yarn strength is high.

低融点繊維を積層する方法は、例えば、前記樹脂を融解させて、半溶融状態の樹脂又はその繊維状物を不織布に塗布するカーテンスプレー方式、融解した樹脂をノズルより吐出させて不織布に塗布するコーティング方式、又は、高融点繊維ウェブと低融点繊維ウェブを積層してから、熱ロール等で接合して積層不織布を得る方法等が挙げられる。   The method of laminating low-melting fibers is, for example, a curtain spray method in which the resin is melted and a semi-molten resin or its fibrous material is applied to the nonwoven fabric, and the molten resin is discharged from a nozzle and applied to the nonwoven fabric. Examples thereof include a coating method or a method of laminating a high-melting fiber web and a low-melting fiber web and then joining them with a hot roll to obtain a laminated nonwoven fabric.

本発明に係る生分解性長繊維不織布は、超音波溶断、又は、ヒートシールができることが好ましい。シール強度は、2N/30mm以上が好ましく、より好ましくは3N/30mm以上である。ヒートシール条件は適宜選択することができ、例えば、ヒートシールの温度条件は、シール面の樹脂の融点から5〜80℃低温であることが好ましい。   The biodegradable long fiber nonwoven fabric according to the present invention is preferably capable of ultrasonic fusing or heat sealing. The seal strength is preferably 2N / 30 mm or more, more preferably 3N / 30 mm or more. The heat sealing conditions can be appropriately selected. For example, the heat sealing temperature conditions are preferably 5 to 80 ° C. lower than the melting point of the resin on the sealing surface.

さらに、本発明に係る生分解性長繊維不織布には、所望の効果を損なわない範囲で、他の常用の各種添加成分、例えば、各種エラストマー類等の衝撃性改良剤、結晶核剤、着色防止剤、酸化防止剤、熱安定剤、可塑剤、滑剤、耐候剤、抗菌剤、着色剤、顔料、染料等の添加剤を添加することができる。   Furthermore, the biodegradable long-fiber nonwoven fabric according to the present invention has various other commonly used additive components, for example, impact modifiers such as various elastomers, crystal nucleating agents, and coloring prevention, as long as the desired effects are not impaired. Additives such as additives, antioxidants, heat stabilizers, plasticizers, lubricants, weathering agents, antibacterial agents, colorants, pigments, dyes and the like can be added.

本発明に係る生分解性長繊維不織布は、スパンボンド法にて効率よく製造することができる。すなわち、前記のポリ乳酸系重合体を加熱溶融して紡糸口金から吐出させ、得られた紡出糸条を公知の冷却装置を用いて冷却し、エアーサッカー等の吸引装置にて牽引細化する。引き続き、吸引装置から排出された糸条群を開繊させた後、コンベア上に堆積させてウェブとする。次いで、このコンベア上に形成されたウェブに加熱されたエンボスロール等の部分熱圧着装置を用いて部分的に熱圧着を施すことにより、長繊維スパンボンド不織布が得られる。   The biodegradable long fiber nonwoven fabric according to the present invention can be efficiently produced by a spunbond method. That is, the polylactic acid-based polymer is heated and melted and discharged from a spinneret, and the obtained spun yarn is cooled using a known cooling device, and is pulled and thinned by a suction device such as an air soccer. . Subsequently, the yarn group discharged from the suction device is opened and then deposited on a conveyor to form a web. Next, the web formed on the conveyor is partially subjected to thermocompression bonding using a partial thermocompression bonding apparatus such as a heated embossing roll to obtain a long fiber spunbond nonwoven fabric.

スパンボンド法を用いる場合、特に限定されないが、ウェブの均一性を向上させるために、例えば、特開平11−131355号公報に開示されているようなコロナ設備等により繊維を帯電させる方法や、平板状の分散板等のような気流を制御する装置(図1参照)を用いてエジェクターの噴出し部分の気流の速度分布を調整する等をして繊維を開繊させた後にウェブを吹き付け、ウェブの飛散を抑制しながら捕集面に積層する方法を用いることで更に好ましい製法となる。   When using the spunbond method, although not particularly limited, in order to improve the uniformity of the web, for example, a method of charging fibers with a corona facility or the like as disclosed in JP-A-11-131355, a flat plate The fiber is opened after the fibers are opened by adjusting the velocity distribution of the air flow at the ejecting part of the ejector using a device (see FIG. 1) for controlling the air flow such as a cylindrical dispersion plate. It becomes a more preferable manufacturing method by using the method of laminating | stacking on a collection surface, suppressing scattering of.

スパンボンド法で得られる不織布は、布強度が強く、かつ、ボンディング部の破損による短繊維の脱落がない等の物性上の特徴を有しており、また、低コストで生産性が高いため、衛生、土木、建築、農業・園芸、生活資材を中心に広範な用途で使用されている。   The non-woven fabric obtained by the spunbond method has high fabric strength and has physical properties such as no short fibers falling off due to breakage of the bonding part, and because of low cost and high productivity, It is used in a wide range of applications, mainly in hygiene, civil engineering, architecture, agriculture / horticulture, and living materials.

本発明に係る生分解性長繊維の繊維径は15〜40μmであり、より好ましくは18〜35μmである。繊維径が15μm以上であれば、透明性を十分なものに設計できる。また、紡糸時においてエジェクターの張力に繊維が十分に耐えることができずに繊維の一部が切れるおそれが少ない繊維径が40μm以下であれば、不織布化して、機械的強度や剛性、成分抽出性、透明性、シール性に優れる食品用フィルターとすることができる。   The fiber diameter of the biodegradable long fiber according to the present invention is 15 to 40 μm, more preferably 18 to 35 μm. If the fiber diameter is 15 μm or more, the transparency can be designed to be sufficient. In addition, if the fiber diameter is 40 μm or less because the fiber cannot sufficiently withstand the tension of the ejector during spinning and the fiber is less likely to be cut, it is made into a non-woven fabric and has mechanical strength, rigidity, and component extractability. , A filter for foods having excellent transparency and sealing properties.

本発明に係る生分解性長繊維不織布の熱圧着は、不織布の糸と糸を熱で圧着させる方法であれば特に限定されないが、凹凸の表面構造を有するエンボスロールとフラットロールからなる一対の加熱ロール間に不織布を通過させ、不織布全体に均等に分散された熱圧着部を形成させることにより好適に行うことができる。エンボスロールにより熱圧着を行う場合、不織布全面積に対して5〜40%の範囲における熱圧着面積率での熱圧着が行われることが好ましく、より好ましくは7〜30%であり、さらに好ましくは7〜20%である。熱圧着面積率がこの範囲内であると良好な繊維相互間の熱圧着処理を行うことができ、得られる不織布の適度な機械的強度や剛性、透明性、成分抽出性、寸法安定性を図る上で好ましい。熱圧着処理温度及び圧力は、供給されるウェブの目付、速度等の条件によって適宜選択されるべきものであり、一概には定められないが、ポリ乳酸系重合体の融点よりも10〜90℃低い温度であることが好ましく、より好ましくは20〜60℃低い温度である。   The thermocompression bonding of the biodegradable long-fiber nonwoven fabric according to the present invention is not particularly limited as long as it is a method of heat-bonding the yarns of the nonwoven fabric with heat, but a pair of heating composed of an embossing roll and a flat roll having an uneven surface structure It can be suitably performed by passing the nonwoven fabric between the rolls and forming a thermocompression bonding portion that is evenly dispersed throughout the nonwoven fabric. When thermocompression bonding is performed with an embossing roll, it is preferable that thermocompression bonding is performed at a thermocompression area ratio in the range of 5 to 40% with respect to the total area of the nonwoven fabric, more preferably 7 to 30%, and even more preferably. 7 to 20%. If the area ratio of thermocompression bonding is within this range, it is possible to perform a good thermocompression-bonding process between fibers, and to achieve appropriate mechanical strength, rigidity, transparency, component extractability, and dimensional stability of the obtained nonwoven fabric. Preferred above. The thermocompression treatment temperature and pressure should be appropriately selected depending on conditions such as the basis weight and speed of the web to be supplied, and are not generally determined, but are 10 to 90 ° C. higher than the melting point of the polylactic acid polymer. The temperature is preferably low, and more preferably 20 to 60 ° C.

本発明に係る生分解性長繊維不織布の沸水収縮率は、4.0%以下であることが好ましく、より好ましくは3.5%以下である。沸水収縮率が4.0%以下であると熱成型加工等での収縮がほとんど無く、工程安定性に優れ、また、100℃近い高温環境下にさらされるような使用形態でも形態保持性に優れる。   The boiling water shrinkage of the biodegradable long fiber nonwoven fabric according to the present invention is preferably 4.0% or less, and more preferably 3.5% or less. When the boiling water shrinkage is 4.0% or less, there is almost no shrinkage due to thermoforming, etc., and the process stability is excellent, and the form retainability is excellent even in a usage form exposed to a high temperature environment close to 100 ° C. .

本発明に係る生分解性長繊維不織布の透明性は、好ましくは60%以上であり、より好ましくは65%以上、さらに好ましくは70%以上である。透明性が60%未満では、不織布を通じて中身の状態が見えにくく、不鮮明になる。   The transparency of the biodegradable long fiber nonwoven fabric according to the present invention is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more. If the transparency is less than 60%, it is difficult to see the state of the contents through the nonwoven fabric, and the transparency becomes unclear.

本発明に係る生分解性長繊維不織布の目付は、10〜30g/mであり、好ましくは12〜25g/mである。目付が10g/m以上であれば、透明性・成分抽出性を保ちながら機械的強度も充分確保できる。他方、目付が30g/m以下であれば、透明性・成分抽出性を得ることができる。本発明に係る生分解性長繊維不織布の厚みは、0.02〜0.50mmであることが好ましく、より好ましくは0.03〜0.30mmである。目付と厚みがこの範囲内にあると食品用フィルターとして使用する際に優れた透明性、機械的強度、成分抽出性が得られる。 The basis weight of the biodegradable long fiber nonwoven fabric according to the present invention is 10 to 30 g / m 2 , preferably 12 to 25 g / m 2 . If the basis weight is 10 g / m 2 or more, sufficient mechanical strength can be secured while maintaining transparency and component extractability. On the other hand, if the basis weight is 30 g / m 2 or less, transparency and component extractability can be obtained. The thickness of the biodegradable long fiber nonwoven fabric according to the present invention is preferably 0.02 to 0.50 mm, more preferably 0.03 to 0.30 mm. When the basis weight and thickness are within this range, excellent transparency, mechanical strength, and component extractability can be obtained when used as a food filter.

本発明に係る生分解性長繊維不織布の平均見掛け密度は、0.10〜0.50g/cmが好ましく、より好ましくは0.10〜0.30g/cmである。平均見掛け密度は、不織布の剛性、透明性、粉漏れ性及び成分抽出性に関係し、上記の範囲であると繊維間隙が適度であるため、食品用フィルターとして適している。平均見掛け密度が0.10g/cm以上であれば、繊維間隙を調整し粉漏れ量を適度に抑えながら、機械的強度も充分にできる。他方、平均見掛け密度が0.50g/cm以下であれば繊維間隙を小さくしすぎず、成分抽出性を適度に保ち、製品品位を充分に高いものにすることができる。 The average apparent density of the biodegradable long fiber nonwoven fabric according to the present invention is preferably 0.10 to 0.50 g / cm 3 , more preferably 0.10 to 0.30 g / cm 3 . The average apparent density is related to the rigidity, transparency, powder leakage, and component extractability of the nonwoven fabric, and if it is in the above range, the fiber gap is appropriate, so it is suitable as a food filter. If the average apparent density is 0.10 g / cm 3 or more, the mechanical strength can be sufficiently achieved while adjusting the fiber gap and appropriately suppressing the amount of powder leakage. On the other hand, if the average apparent density is 0.50 g / cm 3 or less, the fiber gap is not made too small, the component extractability is kept moderate, and the product quality can be made sufficiently high.

本発明に係る生分解性長繊維不織布のMD方向の引張強度は、2〜25N/30mmであることが好ましく、より好ましくは3〜25N/30mmである。引張強度がこの範囲以上であると製袋加工時の生産安定性や食品用フィルターとしての使用時に破れ防止等に優れる。   The tensile strength in the MD direction of the biodegradable long fiber nonwoven fabric according to the present invention is preferably 2 to 25 N / 30 mm, and more preferably 3 to 25 N / 30 mm. When the tensile strength is above this range, it is excellent in production stability at the time of bag making and in preventing tearing when used as a food filter.

本発明に係る生分解性長繊維不織布の地合係数は、0.5〜2.0であることが好ましく、より好ましくは0.5〜1.5である。地合係数は、不織布の均一性を示すため、強度、剛性、透明性、粉漏れ性及び成分抽出性に関係する。上記の範囲であると不織布の均一性が最適であるため、食品用フィルターとしての強度、剛性、透明性、袋形状への加工適性及び粉漏れ性に優れる。   The formation coefficient of the biodegradable long fiber nonwoven fabric according to the present invention is preferably 0.5 to 2.0, more preferably 0.5 to 1.5. The formation coefficient is related to strength, rigidity, transparency, powder leakage and component extractability in order to indicate the uniformity of the nonwoven fabric. Since the uniformity of the nonwoven fabric is optimal within the above range, the strength, rigidity, transparency, suitability for processing into a bag shape and powder leakage are excellent as a food filter.

本発明に係る生分解性長繊維を得る際の紡糸温度は、ポリ乳酸系重合体の融点よりも10〜70℃高い温度であることが好ましく、より好ましくは10〜50℃高い温度である。紡糸温度がこの範囲であると単糸切れ等の発生が無く、配向結晶性が適度で、機械的強度や寸法安定性に優れた不織布が得られる。   The spinning temperature for obtaining the biodegradable long fiber according to the present invention is preferably a temperature that is 10 to 70 ° C. higher than the melting point of the polylactic acid polymer, and more preferably a temperature that is 10 to 50 ° C. higher. When the spinning temperature is within this range, there is no occurrence of single yarn breakage and the like, and a nonwoven fabric having an appropriate orientation crystallinity and excellent mechanical strength and dimensional stability can be obtained.

本発明に係る生分解性長繊維を得る際の紡糸速度は、3000〜6000m/minであることが好ましく、より好ましくは3500〜5000m/minである。紡出糸条を牽引細化する際の牽引速度が上記の範囲内であると、生分解性長繊維の配向結晶化が十分で機械的特性や寸法安定性に優れた不織布が得られ、且つ、紡糸中に糸切れが発生する可能性が少なく、不織布の生産性の点からも好ましい。   The spinning speed when obtaining the biodegradable long fiber according to the present invention is preferably 3000 to 6000 m / min, more preferably 3500 to 5000 m / min. If the pulling speed when pulling the spun yarn is within the above range, a non-woven fabric excellent in mechanical properties and dimensional stability can be obtained with sufficient orientational crystallization of the biodegradable long fibers, and There is little possibility of yarn breakage during spinning, which is preferable from the viewpoint of the productivity of the nonwoven fabric.

本発明に係る生分解性長繊維を得る際のドラフト比は、400〜2500であることが好ましく、より好ましくは700〜2250である。紡出糸条を牽引細化する際のドラフト比が上記の範囲内であると、生分解性長繊維の配向結晶化が十分で機械的特性や寸法安定性に優れた不織布が得られ、且つ、紡糸中に糸切れや熱圧着時のロール取られが発生する可能性が低いため、不織布の生産性の点からも好ましい。   The draft ratio for obtaining the biodegradable long fiber according to the present invention is preferably 400 to 2500, and more preferably 700 to 2250. If the draft ratio when pulling the spun yarn is within the above range, a nonwoven fabric excellent in mechanical properties and dimensional stability can be obtained with sufficient orientational crystallization of the biodegradable long fibers, and Further, since there is a low possibility of occurrence of yarn breakage or roll removal during thermocompression bonding during spinning, it is also preferable from the viewpoint of the productivity of the nonwoven fabric.

本発明に係る生分解性長繊維の複屈折率Δnは、0.005〜0.025であり、好ましくは0.010〜0.020である。複屈折率がこの範囲であると、繊維の配向性が適度で、機械的強度や寸法安定性に優れた不織布が得られる。   The birefringence Δn of the biodegradable long fiber according to the present invention is 0.005 to 0.025, preferably 0.010 to 0.020. When the birefringence is within this range, a nonwoven fabric having an appropriate fiber orientation and excellent mechanical strength and dimensional stability can be obtained.

本発明に係る生分解性長繊維の結晶化度は、30〜50%であり、好ましくは35〜45%である。結晶化度がこの範囲内であると、機械的強度や寸法安定性に優れた繊維が得られる。   The crystallinity of the biodegradable long fiber according to the present invention is 30 to 50%, preferably 35 to 45%. When the crystallinity is within this range, a fiber excellent in mechanical strength and dimensional stability can be obtained.

図2に、本発明の実施例における生分解性長繊維不織布の沸水収縮率と透明性との関係を示す。繊維径を大きくすると透明性を高くできるが、配向結晶化が進みにくいために沸水収縮率が大きくなり、寸法安定性が低くなる。図3と4に、本発明の実施例における生分解性長繊維不織布の、それぞれドラフト比及び紡糸温度と、複屈折率(Δn)及び結晶化度で示される配向結晶性との関係を示す。ドラフト比を大きくするほど、繊維の配向結晶性が増加する。また、太繊径の紡糸条件では、紡糸温度を低温化するほど、冷却性が高まることで延伸効率が上がり、繊維の配向結晶化を進行させることができる。これらのデータから、本発明の所望の効果を奏するよう鋭意研究した結果、本願発明者らは、紡糸温度の低温化とドラフト比拡大により太繊径を維持しつつ、配向結晶性を高めることで、透明性と沸水収縮率の向上の両立を達成した。即ち、不織布において透明性の向上と沸水収縮率に表わされる寸法安定性の向上とは相反する関係にあるが、本発明者らは繊維の太繊径化と配向結晶性とを最適範囲とすることによって透明性の向上と寸法安定性の向上の両立を達成した。   In FIG. 2, the relationship between the boiling-water shrinkage | contraction rate and transparency of the biodegradable long fiber nonwoven fabric in the Example of this invention is shown. When the fiber diameter is increased, the transparency can be increased, but since the orientation crystallization is difficult to proceed, the boiling water shrinkage ratio is increased and the dimensional stability is decreased. 3 and 4 show the relationship between the draft ratio and spinning temperature, and the oriented crystallinity indicated by the birefringence index (Δn) and the degree of crystallinity, respectively, of the biodegradable long-fiber nonwoven fabric in the examples of the present invention. As the draft ratio is increased, the oriented crystallinity of the fiber is increased. Also, under the spinning conditions of large diameters, the lower the spinning temperature, the higher the cooling efficiency and the higher the drawing efficiency and the more the oriented crystallization of the fibers can proceed. From these data, as a result of earnest research to achieve the desired effect of the present invention, the inventors of the present application have increased the oriented crystallinity while maintaining a large fiber diameter by lowering the spinning temperature and increasing the draft ratio. Achieved both improvement of transparency and shrinkage of boiling water. That is, in the non-woven fabric, the improvement in transparency and the improvement in dimensional stability expressed by the boiling water shrinkage ratio are in a contradictory relationship, but the present inventors set the fiber fine diameter and the oriented crystallinity in the optimum range. As a result, both the improvement of transparency and the improvement of dimensional stability were achieved.

本発明に係る生分解性長繊維不織布は、お湯の中に入れた際に、表面に浮くことなく、速やかに沈むように、親水性に優れていることが好ましい。親水剤としては、食品用として用いられる界面活性剤、例えば、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどの水溶液、エチルアルコール溶液、又はエチルアルコールと、水の混合溶液等が好ましい。塗布する方法は、グラビアロール方式、キスロール方式、浸漬方式、スプレー方式などの公知の方法を適用することができる。   The biodegradable long fiber nonwoven fabric according to the present invention is preferably excellent in hydrophilicity so as to sink quickly without being floated on the surface when placed in hot water. As the hydrophilic agent, surfactants used for foods, for example, aqueous solutions such as sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, ethyl alcohol solution, or a mixed solution of ethyl alcohol and water are preferable. As a method for applying, a known method such as a gravure roll method, a kiss roll method, a dipping method, or a spray method can be applied.

本発明に係る生分解性長繊維不織布には、本発明の所望の効果を損なわない範囲で、常用の後加工、例えば、消臭剤、抗菌剤等の付与をしてもよいし、染色、撥水加工、透水加工等を施してもよい。
本発明に係る生分解性長繊維不織布は、透明性に優れているために中身が鮮明に見えるので意匠性に優れ、かつ、寸法安定性に優れているために緑茶、紅茶、コーヒー等の食品用フィルターとして非常に適した特性を有している。食品用フィルターとしては、平袋でもよいが、立体形状であると、中身が一層良く見え、抽出が効果的に行われるので好ましい。立体形状としては、四面体形状、三角錐立体形状等が好ましい。
The biodegradable long fiber nonwoven fabric according to the present invention may be subjected to conventional post-processing, for example, deodorant, antibacterial agent, etc., within a range not impairing the desired effect of the present invention, dyeing, You may give water-repellent processing, water-permeable processing, etc.
The biodegradable long-fiber non-woven fabric according to the present invention is excellent in transparency because of its excellent transparency, so it has excellent design, and because of its excellent dimensional stability, it is a food such as green tea, black tea, coffee, etc. It has very suitable characteristics as a filter. As a food filter, a flat bag may be used, but a three-dimensional shape is preferable because the contents look better and extraction is performed effectively. As the three-dimensional shape, a tetrahedral shape, a triangular pyramid shape, and the like are preferable.

立体形状の食品用フィルターは、被抽出物を充填し封入した後、袋詰めされて販売されるが、購入した消費者が袋から取り出して使用する時には、速やかに元の立体形状に戻ることが要求される。本発明の生分解性長繊維不織布は、コシがあり、適度な剛性を有しているため、上記のような要求を十分に満足することができる。   Three-dimensional food filters are packed and sold after filling with the extractables, but they can be quickly returned to the original three-dimensional shape when the purchased consumer removes them from the bag and uses them. Required. The biodegradable long fiber nonwoven fabric of the present invention is stiff and has an appropriate rigidity, so that it can sufficiently satisfy the above requirements.

以下、実施例により本発明を具体的に説明するが、本発明は、これらにより何ら限定されるものではない。なお、測定方法、評価方法等は下記の通りである。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. Measurement methods, evaluation methods, etc. are as follows.

(1)平均繊維径(μm):キーエンス社製のマイクロスコープ顕微鏡(VH−8000)を用い、繊維の直径を1000倍に拡大して測定し、各20本の平均値で求めた。 (1) Average fiber diameter (μm): Using a microscope microscope (VH-8000) manufactured by Keyence Corporation, the diameter of the fiber was enlarged 1000 times and measured, and the average value of 20 fibers was obtained.

(2)複屈折率(Δn):OLYMPUS社製のBH2型偏光顕微鏡コンペンセーターを用いて、通常の干渉縞法によってレターデーションと繊維径より牽引直後の繊維の複屈折率を求めた。 (2) Birefringence (Δn): The birefringence of the fiber immediately after towing was determined from the retardation and fiber diameter by a normal interference fringe method using a BH2 polarizing microscope compensator manufactured by OLYMPUS.

(3)結晶化度(%):PerkinElmer社製の示差走査熱量計DSC6000を用い、昇温速度を10℃/minで、40℃から300℃に昇温して結晶化発熱量ΔHc、結晶融解熱量ΔHmを測定した。結晶化度(%)は下記式により求めた:
結晶化度χc(%)=(ΔHm−ΔHc)/93×100
*93J/gはポリ乳酸の完全結晶の融解熱量である。
(3) Crystallinity (%): Using a differential scanning calorimeter DSC6000 manufactured by PerkinElmer Co., Ltd., with a temperature increase rate of 10 ° C./min and a temperature increase from 40 ° C. to 300 ° C., crystallization exotherm ΔHc, crystal melting The amount of heat ΔHm was measured. Crystallinity (%) was determined by the following formula:
Crystallinity χc (%) = (ΔHm−ΔHc) / 93 × 100
* 93 J / g is the heat of fusion of complete crystals of polylactic acid.

(4)目付(g/m):JIS L−1906に準拠して測定した。 (4) Weight per unit area (g / m 2 ): Measured according to JIS L-1906.

(5)厚み(mm):JIS L−1906に規定の方法で荷重100g/cmの厚みを測定した。 (5) Thickness (mm): The thickness at a load of 100 g / cm 2 was measured by the method specified in JIS L-1906.

(6)平均見掛け密度(g/cm):JIS L−1906に規定の方法で測定した目付と厚みから単位体積当たりの質量を求めた:
平均見掛け密度(g/cm)=(目付 g/m)/((厚みmm)×1000)
(6) Average apparent density (g / cm 3 ): The mass per unit volume was determined from the basis weight and thickness measured by the method defined in JIS L-1906:
Average apparent density (g / cm 3 ) = (weight per unit area g / m 2 ) / ((thickness mm) × 1000)

(7)熱圧着面積率(%):1cm角の試験片をサンプリングして電子顕微鏡で写真を撮影し、その各写真より熱圧着部の面積を測定し、その平均値を熱圧着部の面積とした。また、熱圧着部のパターンのピッチをMD方向及びCD方向において測定し、これらの値により、不織布の単位面積当たりに占める熱圧着面積の比率を熱圧着面積率として算出した。 (7) Thermocompression area ratio (%): A 1 cm square test piece was sampled and photographed with an electron microscope, the area of the thermocompression bonding part was measured from each photograph, and the average value was the area of the thermocompression bonding part. It was. Moreover, the pitch of the pattern of the thermocompression bonding part was measured in MD direction and CD direction, and the ratio of the thermocompression bonding area per unit area of the nonwoven fabric was calculated as the thermocompression bonding area ratio based on these values.

(8)透明性(%):マクベス分光光度計(CE-7000A型:サカタインク製)で反射率(L値)を測定し、標準白板のL値(Lw0)と標準黒板のL値(Lb0)の差を求めて基準とし、試料を白板上に置いたL値(Lw)と同様に黒板状に置いたL値(Lb)から下記式に従って透明性を求めた:
透明性(%)={(Lw−Lb)/(Lw0−Lb0)}×100
(8) Transparency (%): The reflectance (L value) was measured with a Macbeth spectrophotometer (CE-7000A type: manufactured by Sakata Ink), and the L value (L w0 ) of the standard white board and the L value of the standard blackboard ( L b0) as a reference to obtain the difference, the sample was determined transparency L value placed on white plate (L w) as well as a blackboard shaped to place the L value from (L b) according to the following formula:
Transparency (%) = {(L w −L b ) / (L w0 −L b0 )} × 100

(9)沸水収縮率(%):JIS L−1906に準拠し、縦25cm×横25cmの試験片を試料の幅1m当たり3箇所採取し、沸騰水中に3分間浸漬し、自然乾燥後にMD方向及びCD方向の収縮率を求めた。それぞれの平均値を算出し、MD方向とCD方向のいずれか大きい方の収縮率をその不織布の沸水収縮率とした。 (9) Boiling water shrinkage rate (%): In accordance with JIS L-1906, three 25 cm long x 25 cm wide test specimens were taken per 1 m width of the sample, immersed in boiling water for 3 minutes, and after natural drying, MD direction The shrinkage in the CD direction was determined. Each average value was calculated, and the larger shrinkage rate in the MD direction or the CD direction was taken as the boiling water shrinkage rate of the nonwoven fabric.

(10)引張強度(N/30mm):島津製作所社製オートグラフAGS−5G型を用いて、30mm幅の試料を把握長100mm、引張速度300mm/minで伸長し、得られた破断時の荷重を強度とし、不織布のMD方向について5回測定を行い、その平均値を求めた。 (10) Tensile strength (N / 30 mm): Using an autograph AGS-5G manufactured by Shimadzu Corporation, a 30 mm wide sample was stretched at a grip length of 100 mm and a tensile speed of 300 mm / min, and the resulting load at break Was measured 5 times in the MD direction of the nonwoven fabric, and the average value was obtained.

(11)地合係数: 20cm×30cmの試験片を採取し、野村商事製フォーメーションテスター(FMT−MIII)測定器を用い、CCDカメラにより18cm×25cmの範囲を撮影した透過像を128×128の画素に分解し、各々の画素の受ける光の強さを測定し、透過率を算出した。地合係数は、測定サンプルの各微小部位(5mm×5mm)の透過率の標準偏差(σ)を平均透過率(E)で除した値であり、微小単位目付のバラツキを表し、値が小さいほど均一性が高いことを示す。
地合係数=σ/E×100
(11) Formation coefficient: A test piece of 20 cm × 30 cm was collected, and a transmission image obtained by photographing a range of 18 cm × 25 cm with a CCD camera using a Nomura Corporation formation tester (FMT-MIII) measuring device was 128 × 128. The intensity of light received by each pixel was measured, and the transmittance was calculated. The formation coefficient is a value obtained by dividing the standard deviation (σ) of the transmittance of each minute part (5 mm × 5 mm) of the measurement sample by the average transmittance (E). The higher the uniformity is.
Formation coefficient = σ / E × 100

(12)ヒートシール強度(N/30mm):島津製作所社製オートグラフAGS−5G型を用いて30mm幅の試料のヒートシール部分を約50mm上下方向に剥離して取り付け、把握長50mm、引張速度100mm/minで伸長し、得られる破断時の荷重を強度とし、不織布のMD方向について5回測定を行い、その平均値を求めた。ヒートシール条件は、シール温度150℃、シール時間1秒、圧力0.5MPa、シール面積7mm×25mmであった。 (12) Heat seal strength (N / 30 mm): Using a Autograph AGS-5G model manufactured by Shimadzu Corporation, the heat seal portion of a 30 mm width sample is peeled off and attached approximately 50 mm in the vertical direction, grasping length 50 mm, tensile speed Elongation was performed at 100 mm / min, and the resulting load at break was regarded as strength. The nonwoven fabric was measured five times in the MD direction, and the average value was obtained. The heat seal conditions were a seal temperature of 150 ° C., a seal time of 1 second, a pressure of 0.5 MPa, and a seal area of 7 mm × 25 mm.

(13)ドラフト比:下記式からドラフト比を算出した:
ドラフト比=紡速(m/min)/吐出線速度(m/min)
吐出線速度(m/min)=単孔吐出量(g/min)/{溶融密度(g/cm3)×[紡口径(cm)/2]2×π}
*ポリ乳酸の溶融密度:1.11g/cm3を使用
(13) Draft ratio: The draft ratio was calculated from the following formula:
Draft ratio = spinning speed (m / min) / discharge linear velocity (m / min)
Discharge linear velocity (m / min) = single hole discharge amount (g / min) / {melt density (g / cm 3 ) × [nozzle diameter (cm) / 2] 2 × π}
* Polylactic acid melt density: 1.11 g / cm 3 used

(14)MI(g/10min):メルトインデクサー(東洋精機社製:MELT INDEXER S−101)溶融流量装置を用い、JIS K−7210に準じてオリフィス径2.095mm、オリフィス長0.8mm、荷重2.16kg、測定温度190℃の条件で一定体積分を吐出するのに要する時間から10分間当たりの溶融ポリマーの吐出量(g)を算出して求めた。 (14) MI (g / 10 min): Melt indexer (manufactured by Toyo Seiki Co., Ltd .: MELT INDEXER S-101) melt flow rate apparatus, orifice diameter 2.095 mm, orifice length 0.8 mm according to JIS K-7210, It calculated | required by calculating the discharge amount (g) of the molten polymer per 10 minutes from the time required to discharge a fixed volume on condition of a load of 2.16 kg and measurement temperature of 190 degreeC.

[実施例1]
融点167℃、MI 12g/10minであるポリ乳酸系重合体を常用の溶融紡糸装置に供給して205℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比2240にて溶融紡糸して平均繊維径が20μmのポリ乳酸長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付12g/mのウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することにより生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 1]
A polylactic acid polymer having a melting point of 167 ° C. and an MI of 12 g / 10 min is supplied to a conventional melt spinning apparatus, melted at 205 ° C. A polylactic acid long fiber having an average fiber diameter of 20 μm was obtained by melt spinning at a ratio of 2240. Next, this fiber is spread and dispersed by using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to produce a web having a basis weight of 12 g / m 2 , and between the embossing roll and the flat roll. Was subjected to partial thermocompression bonding at a thermocompression area ratio of 15% to obtain a biodegradable long fiber nonwoven fabric. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例2]
実施例1においてポリ乳酸長繊維の平均繊維径が26μmとなるように紡糸したこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 2]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the polylactic acid long fiber was spun so that the average fiber diameter was 26 μm in Example 1. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例3]
実施例1においてポリ乳酸長繊維の平均繊維径が30μmとなるように紡糸したこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 3]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the polylactic acid long fiber was spun so as to have an average fiber diameter of 30 μm in Example 1. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例4]
実施例3においてポリ乳酸長繊維不織布の目付が20g/mとなるように紡糸したこと以外は、実施例3と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 4]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that the polylactic acid long fiber nonwoven fabric was spun so as to have a basis weight of 20 g / m 2 in Example 3. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例5]
実施例1において紡糸速度4000m/min、且つ、ドラフト比730にて溶融紡糸し、ポリ乳酸長繊維の平均繊維径が35μmとなるように紡糸したこと以外は、実施例1と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 5]
Biodegradation was performed in the same manner as in Example 1 except that melt spinning was performed at a spinning speed of 4000 m / min and a draft ratio of 730 in Example 1, and the polylactic acid long fibers were spun so that the average fiber diameter was 35 μm. Long-fiber nonwoven fabric was obtained. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例6]
実施例2において長繊維不織布の目付が20g/mとなるように紡糸し、フラットロールにて熱圧着したこと以外は、実施例2と同様にして生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 6]
A biodegradable long-fiber nonwoven fabric was obtained in the same manner as in Example 2 except that spinning was performed so that the basis weight of the long-fiber nonwoven fabric was 20 g / m 2 and thermocompression bonding was performed using a flat roll. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例7]
融点167℃、MI 12g/10minであるポリ乳酸系重合体を常用の溶融紡糸装置に供給して205℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比995にて溶融紡糸して平均繊維径が30μmのポリ乳酸長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付20g/mのウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率3%で部分熱圧着することにより生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 7]
A polylactic acid polymer having a melting point of 167 ° C. and an MI of 12 g / 10 min is supplied to a conventional melt spinning apparatus, melted at 205 ° C. A polylactic acid long fiber having an average fiber diameter of 30 μm was obtained by melt spinning at a ratio of 995. Next, the fiber is spread and dispersed by using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to produce a web having a basis weight of 20 g / m 2 , and between the embossing roll and the flat roll. The biodegradable long-fiber nonwoven fabric was obtained by partial thermocompression bonding at a thermocompression bonding area ratio of 3%. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例8]
融点167℃、MI 12g/10minであるポリ乳酸系重合体を常用の溶融紡糸装置に供給して205℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比995にて溶融紡糸して平均繊維径が30μmのポリ乳酸長繊維を得た。次に、この繊維を開繊分散して目付12g/mのウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することにより生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 8]
A polylactic acid polymer having a melting point of 167 ° C. and MI of 12 g / 10 min is supplied to a conventional melt spinning apparatus and melted at 205 ° C., and a spinning speed of 4500 m / min from a spinneret having a spinning hole having a circular cross section is obtained. A polylactic acid long fiber having an average fiber diameter of 30 μm was obtained by melt spinning at a ratio of 995. Next, this fiber is spread and dispersed to prepare a web having a basis weight of 12 g / m 2 , and a biodegradable long fiber nonwoven fabric is obtained by partial thermocompression bonding between an embossing roll and a flat roll at a thermocompression area ratio of 15%. It was. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例9]
融点167℃、MI 12g/10minであるポリ乳酸系重合体を常用の溶融紡糸装置に供給して205℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比995にて溶融紡糸して平均繊維径が30μmのポリ乳酸長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付12g/mのウェブを作製した。次に、融点115℃、MI 13g/10minであるポリブチレンサクシネートを常用の溶融紡糸装置に供給して205℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比480にて溶融紡糸して平均繊維が15μmの生分解性ポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付3g/mのウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することにより生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 9]
A polylactic acid polymer having a melting point of 167 ° C. and an MI of 12 g / 10 min is supplied to a conventional melt spinning apparatus, melted at 205 ° C. A polylactic acid long fiber having an average fiber diameter of 30 μm, melt-spun at a ratio of 995, is spread and dispersed by using a dispersing device (inclination angle of 4 ° with respect to the filament of the flat plate) to control the basis weight of 12 g / m. Two webs were made. Next, polybutylene succinate having a melting point of 115 ° C. and MI of 13 g / 10 min is supplied to a conventional melt spinning apparatus and melted at 205 ° C. , Using a dispersion device (inclination angle of 4 ° with respect to the filament of the flat plate) to spread and weight the biodegradable polyester long fiber having an average fiber of 15 μm melt-spun at a draft ratio of 480, and a basis weight A 3 g / m 2 web was made. A biodegradable long-fiber nonwoven fabric was obtained by partial thermocompression bonding of the two-layer web between an embossing roll and a flat roll at a thermocompression area ratio of 15%. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[実施例10]
融点167℃、MI 12g/10minであるポリ乳酸系重合体を常用の溶融紡糸装置に供給して205℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比995にて溶融紡糸して平均繊維径が30μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付10g/mのウェブを作製した。次に、融点167℃、MI 12g/10minであるポリ乳酸系重合体を芯とし、融点115℃、MI 13g/10minであるポリブチレンサクシネートを鞘として、常用の溶融紡糸装置に供給して205℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比950にて溶融紡糸して平均繊維径が20μmの生分解性長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付8g/mのウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することにより生分解性長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[Example 10]
A polylactic acid polymer having a melting point of 167 ° C. and MI of 12 g / 10 min is supplied to a conventional melt spinning apparatus and melted at 205 ° C., and a spinning speed of 4500 m / min from a spinneret having a spinning hole having a circular cross section is obtained. A polyester long fiber having an average fiber diameter of 30 μm, melt-spun at a ratio of 995, is spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the filament of the flat plate) using a flat plate-like air flow, and the basis weight is 10 g / m 2. The web was made. Next, a polylactic acid polymer having a melting point of 167 ° C. and MI of 12 g / 10 min is used as a core, and a polybutylene succinate having a melting point of 115 ° C. and MI of 13 g / 10 min is used as a sheath. A flat airflow is controlled for biodegradable long fibers having an average fiber diameter of 20 μm by melting and spinning at a spinning speed of 4500 m / min and a draft ratio of 950 from a spinneret having a circular cross-section spinning hole melted at ℃ Using a dispersing device (an inclination angle of 4 ° with respect to the filament of a flat plate), the fiber was spread and dispersed to produce a web having a basis weight of 8 g / m 2 . A biodegradable long-fiber nonwoven fabric was obtained by partial thermocompression bonding of the two-layer web between an embossing roll and a flat roll at a thermocompression area ratio of 15%. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[比較例1]
実施例1においてドラフト比560で溶融紡糸したポリ乳酸長繊維の平均繊維径を12μmとし、生分解性長繊維の目付が20g/mとなるように紡糸したこと以外は、実施例1と同様にして生分解性長繊維不織布を得たが、不織布の透明性が低く、食品用フィルターとして十分な透明性を得ることができなかった。得られた不織布の物性を以下の表1に示す。
[Comparative Example 1]
The same as in Example 1 except that the polylactic acid long fiber melt-spun at a draft ratio of 560 in Example 1 was spun so that the average fiber diameter was 12 μm and the basis weight of the biodegradable long fiber was 20 g / m 2. Thus, a biodegradable long fiber nonwoven fabric was obtained, but the transparency of the nonwoven fabric was low, and sufficient transparency as a food filter could not be obtained. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[比較例2]
融点167℃、MI 12g/10minであるポリ乳酸系重合体を常用の溶融紡糸装置に供給して230℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比200にて溶融紡糸して平均繊維径が30μmのポリ乳酸長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付20g/mのウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することにより生分解性長繊維不織布を得たが、食品用フィルターとして十分な寸法安定性を得ることができなかった。得られた不織布の物性を以下の表1に示す。
[Comparative Example 2]
A polylactic acid polymer having a melting point of 167 ° C. and MI of 12 g / 10 min is supplied to a conventional melt spinning apparatus and melted at 230 ° C., and a spinning speed of 4500 m / min from a spinneret having a spinning hole having a circular cross section is obtained. A polylactic acid long fiber having an average fiber diameter of 30 μm was obtained by melt spinning at a ratio of 200. Next, the fiber is spread and dispersed by using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to produce a web having a basis weight of 20 g / m 2 , and between the embossing roll and the flat roll. In Example 2, a biodegradable long-fiber nonwoven fabric was obtained by partial thermocompression bonding at a thermocompression area ratio of 15%, but sufficient dimensional stability as a food filter could not be obtained. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

[比較例3]
比較例2においてドラフト比360で溶融紡糸したポリ乳酸長繊維の平均繊維径を50μmとし、生分解性長繊維の目付が20g/mとなるように紡糸したが、ロールでの収縮が大きく、生分解性長繊維不織布を得ることができなかった。
[Comparative Example 3]
In Comparative Example 2, the polylactic acid long fiber melt-spun at a draft ratio of 360 was spun so that the average fiber diameter was 50 μm and the basis weight of the biodegradable long fiber was 20 g / m 2 . A biodegradable long-fiber nonwoven fabric could not be obtained.

[比較例4]
実施例3においてポリ乳酸長繊維の目付が40g/mとなるようにウェブを作製したこと以外は、実施例3と同様にして生分解性長繊維不織布を得たが、不織布の透明性が低く、食品用フィルターとして十分な透明性を得ることができなかった。得られた不織布の物性を以下の表1に示す。
[Comparative Example 4]
A biodegradable long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that the web was prepared so that the basis weight of the polylactic acid long fiber was 40 g / m 2 in Example 3. It was low and sufficient transparency as a food filter could not be obtained. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.

Figure 2015074842
Figure 2015074842

本発明の生分解性長繊維不織布は、透明性や寸法安定性、成分抽出性に優れるため、食品用フィルターとして好適に用いられる。   Since the biodegradable long fiber nonwoven fabric of the present invention is excellent in transparency, dimensional stability, and component extractability, it is suitably used as a food filter.

Claims (9)

融点が150℃以上のポリ乳酸系重合体を主成分とし、平均繊維径が15〜40μmであり、複屈折率が0.005〜0.025であり、そして、結晶化度が30〜50%であるポリ乳酸長繊維からなる、目付が10〜30g/mであることを特徴とする生分解性長繊維不織布。 The main component is a polylactic acid polymer having a melting point of 150 ° C. or higher, the average fiber diameter is 15 to 40 μm, the birefringence is 0.005 to 0.025, and the crystallinity is 30 to 50%. A biodegradable long-fiber non-woven fabric comprising a polylactic acid long fiber having a basis weight of 10 to 30 g / m 2 . 前記ポリ乳酸系重合体が、ポリL−乳酸、ポリD−乳酸、L−乳酸とD−乳酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、及びL−乳酸とD−乳酸とヒドロキシカルボン酸との共重合体からなる群から選ばれる重合体、又は該重合体の2種類以上のブレンド体である、請求項1に記載の生分解性長繊維不織布。   The polylactic acid polymer is poly L-lactic acid, poly D-lactic acid, a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, D-lactic acid and hydroxycarboxylic acid, 2. A polymer selected from the group consisting of a copolymer with an acid and a copolymer of L-lactic acid, D-lactic acid and hydroxycarboxylic acid, or a blend of two or more of the polymers. The biodegradable long fiber nonwoven fabric described in 1. 前記生分解性長繊維不織布の熱圧着面積率が5〜40%であり、且つ、平均見掛け密度が0.1〜0.5g/cmである、請求項1又は2に記載の生分解性長繊維不織布。 The biodegradability according to claim 1 or 2, wherein the biodegradable long-fiber nonwoven fabric has a thermocompression bonding area ratio of 5 to 40% and an average apparent density of 0.1 to 0.5 g / cm 3 . Long fiber nonwoven fabric. 前記生分解性長繊維不織布の透明性が60%以上である、請求項1〜3のいずれか1項に記載の生分解性長繊維不織布。   The biodegradable long fiber nonwoven fabric according to any one of claims 1 to 3, wherein the biodegradable long fiber nonwoven fabric has a transparency of 60% or more. 前記生分解性長繊維不織布の沸水収縮率が4.0%以下である、請求項1〜4のいずれか1項に記載の生分解性長繊維不織布。   The biodegradable long fiber nonwoven fabric according to any one of claims 1 to 4, wherein the biodegradable long fiber nonwoven fabric has a boiling water shrinkage of 4.0% or less. 前記生分解性長繊維不織布の引張強度が2〜25N/30mmである、請求項1〜5のいずれか1項に記載の生分解性長繊維不織布。   The biodegradable long fiber nonwoven fabric according to any one of claims 1 to 5, wherein the biodegradable long fiber nonwoven fabric has a tensile strength of 2 to 25 N / 30 mm. 前記生分解性長繊維不織布の地合係数が0.5〜2.0である、請求項1〜6のいずれか1項に記載の生分解性長繊維不織布。   The biodegradable long fiber nonwoven fabric according to any one of claims 1 to 6, wherein the formation coefficient of the biodegradable long fiber nonwoven fabric is 0.5 to 2.0. 前記生分解性長繊維不織布の少なくとも1層が融点140℃以下の脂肪族ポリエステルを含有する、請求項1〜7のいずれか1項に記載の生分解性長繊維不織布。   The biodegradable long fiber nonwoven fabric according to any one of claims 1 to 7, wherein at least one layer of the biodegradable long fiber nonwoven fabric contains an aliphatic polyester having a melting point of 140 ° C or lower. 請求項1〜8のいずれか1項に記載の生分解性長繊維不織布からなる食品用フィルター。   A food filter comprising the biodegradable long fiber nonwoven fabric according to any one of claims 1 to 8.
JP2013211006A 2013-10-08 2013-10-08 Biodegradable filament nonwoven fabric and filter for food obtained by using the same Pending JP2015074842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211006A JP2015074842A (en) 2013-10-08 2013-10-08 Biodegradable filament nonwoven fabric and filter for food obtained by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211006A JP2015074842A (en) 2013-10-08 2013-10-08 Biodegradable filament nonwoven fabric and filter for food obtained by using the same

Publications (1)

Publication Number Publication Date
JP2015074842A true JP2015074842A (en) 2015-04-20

Family

ID=52999935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211006A Pending JP2015074842A (en) 2013-10-08 2013-10-08 Biodegradable filament nonwoven fabric and filter for food obtained by using the same

Country Status (1)

Country Link
JP (1) JP2015074842A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147119A1 (en) * 2014-03-27 2015-10-01 大紀商事株式会社 Nonwoven fabric sheet, and extraction-use filter and extraction-use bag using same
JP2018204168A (en) * 2017-06-05 2018-12-27 旭化成株式会社 Biodegradable long fiber non-woven fabric
CN109804112A (en) * 2016-10-14 2019-05-24 旭化成株式会社 Biological degradability non-woven fabrics
WO2019181827A1 (en) * 2018-03-23 2019-09-26 東洋紡株式会社 Long-fiber nonwoven fabric and filter reinforcing material using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003277A1 (en) * 2002-07-01 2004-01-08 Asahi Kasei Fibers Corporation Nonwoven fabric and tea bag
JP2004232119A (en) * 2003-01-29 2004-08-19 Asahi Kasei Fibers Corp Filament nonwoven fabric having excellent transparency
JP2006034683A (en) * 2004-07-28 2006-02-09 Asahi Kasei Fibers Corp Soup stock bag
JP2009228154A (en) * 2008-03-21 2009-10-08 Asahi Kasei Fibers Corp Low-basis weight nonwoven fabric
JP2011157118A (en) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp Filter for food made of biodegradable laminate nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003277A1 (en) * 2002-07-01 2004-01-08 Asahi Kasei Fibers Corporation Nonwoven fabric and tea bag
JP2004232119A (en) * 2003-01-29 2004-08-19 Asahi Kasei Fibers Corp Filament nonwoven fabric having excellent transparency
JP2006034683A (en) * 2004-07-28 2006-02-09 Asahi Kasei Fibers Corp Soup stock bag
JP2009228154A (en) * 2008-03-21 2009-10-08 Asahi Kasei Fibers Corp Low-basis weight nonwoven fabric
JP2011157118A (en) * 2010-02-02 2011-08-18 Asahi Kasei Fibers Corp Filter for food made of biodegradable laminate nonwoven fabric

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147119A1 (en) * 2014-03-27 2015-10-01 大紀商事株式会社 Nonwoven fabric sheet, and extraction-use filter and extraction-use bag using same
JP5933149B2 (en) * 2014-03-27 2016-06-08 大紀商事株式会社 Nonwoven fabric sheet, extraction filter and extraction bag using the same
US9732453B2 (en) 2014-03-27 2017-08-15 Ohki Co., Ltd. Nonwoven fabric sheet, and extraction filter and extraction bag using the same
CN109804112A (en) * 2016-10-14 2019-05-24 旭化成株式会社 Biological degradability non-woven fabrics
JPWO2018070490A1 (en) * 2016-10-14 2019-06-24 旭化成株式会社 Biodegradable nonwoven fabric
EP3527706A4 (en) * 2016-10-14 2019-10-30 Asahi Kasei Kabushiki Kaisha Biodegradable nonwoven fabric
US11697896B2 (en) 2016-10-14 2023-07-11 Asahi Kasei Kabushiki Kaisha Method for producing a biodegradable nonwoven fabric
JP2018204168A (en) * 2017-06-05 2018-12-27 旭化成株式会社 Biodegradable long fiber non-woven fabric
WO2019181827A1 (en) * 2018-03-23 2019-09-26 東洋紡株式会社 Long-fiber nonwoven fabric and filter reinforcing material using same
JPWO2019181827A1 (en) * 2018-03-23 2021-03-25 東洋紡株式会社 Long-fiber non-woven fabric and filter reinforcement using it
JP7287385B2 (en) 2018-03-23 2023-06-06 東洋紡株式会社 Long fiber nonwoven fabric and filter reinforcing material using the same

Similar Documents

Publication Publication Date Title
JP6898482B2 (en) Single-layer or multi-layer polyester long-fiber non-woven fabric and food filters using it
JP3939326B2 (en) Non-woven fabric and tea bag
DE69826457T2 (en) DEGRADABLE POLYMER FIBERS: MANUFACTURE, PRODUCTS AND USE PROCESSES
JP5486332B2 (en) Biodegradable non-woven fabric
RU2493964C2 (en) Fibrous sheet material
JP5503989B2 (en) Food filter made of biodegradable laminated nonwoven fabric
JP6239337B2 (en) Polyester long fiber nonwoven fabric and food filter using the same
JPH09316765A (en) Unidirectionally stretchable nonwoven fabric and its production
JP2015074842A (en) Biodegradable filament nonwoven fabric and filter for food obtained by using the same
TWI764442B (en) Ecofriendly composite fiber spunbond non-woven fabric comprising plant-derived polyethylene and manufacturing method thereof
JPH0450353A (en) Melt-blown nonwoven fabric
JP4493275B2 (en) Long fiber nonwoven fabric with excellent transparency
WO2023032763A1 (en) Biodegradable nonwoven fabric and use of same
JP2018003238A (en) Polyester filament nonwoven fabric and filter for food using the same
JP4140997B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP4140996B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP4433799B2 (en) Degradable non-woven fabric, agricultural material using the same, and herbicidal sheet
JP2005113278A (en) Biodegradable nonwoven fabric and filter using the same
JP7211070B2 (en) spunbond nonwoven fabric
JP2009102796A (en) Nonwoven fabric formed of polylactic acid based composite staple fiber, and method for producing the same
EP4337818A1 (en) Nonwoven fabric with enhanced strength
CA3218433A1 (en) Nonwoven fabric with enhanced strength
JP2021171434A (en) Extraction sheet material and extraction bag
JP2009114619A (en) Polylactic acid conjugated staple fiber and method for production thereof
MXPA99010051A (en) Degradable polymer fibers;preperation;product;and methods of use

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627