JP4960616B2 - Short fiber, method for producing the same, and precursor thereof - Google Patents

Short fiber, method for producing the same, and precursor thereof Download PDF

Info

Publication number
JP4960616B2
JP4960616B2 JP2005283965A JP2005283965A JP4960616B2 JP 4960616 B2 JP4960616 B2 JP 4960616B2 JP 2005283965 A JP2005283965 A JP 2005283965A JP 2005283965 A JP2005283965 A JP 2005283965A JP 4960616 B2 JP4960616 B2 JP 4960616B2
Authority
JP
Japan
Prior art keywords
fiber
component
sea
island
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005283965A
Other languages
Japanese (ja)
Other versions
JP2007092235A (en
Inventor
裕憲 合田
みゆき 沼田
三枝 神山
信幸 山本
民男 山本
健治 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005283965A priority Critical patent/JP4960616B2/en
Publication of JP2007092235A publication Critical patent/JP2007092235A/en
Application granted granted Critical
Publication of JP4960616B2 publication Critical patent/JP4960616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、繊維直径が1μm以下である短繊維とその製造方法に関し、更に詳しくは、繊維直径が1μm以下でありながら、繊維直径及び繊維長が殆ど均一であって任意に決めることができ、かつ抄紙法等による繊維構造体を製造する際に高度に均一分散された状態を達成可能な短繊維とその製造方法及びその中間原料繊維に関するものである。   The present invention relates to a short fiber having a fiber diameter of 1 μm or less and a manufacturing method thereof, and more specifically, while the fiber diameter is 1 μm or less, the fiber diameter and the fiber length are almost uniform and can be arbitrarily determined. In addition, the present invention relates to a short fiber that can achieve a highly uniformly dispersed state when a fiber structure is manufactured by a papermaking method, a manufacturing method thereof, and an intermediate raw fiber.

近年、繊維直径が1〜100nmの範囲で定義されるナノファイバーに代表されるように、繊維直径1000nm(=1μm)以下の超極細繊維が研究対象として着目されており、吸湿性や低分子物質吸着性等の特異性から、超高性能フィルター、電池やキャパシタ等のセパレータ、或いはハードディスクやシリコンウェハース等の研磨材等、高機能材料の原料として検討されている。今後、従来にない新しい機能を発現させるためには、繊維直径や繊維の分散状態及び繊維密度を、繊維の含まれる材料や繊維構造体中でナノオーダーのレベルで随意にコントロールすることが必要とされる。例えば、繊維直径がナノレベルで異なる2種類以上の繊維を不織布の厚み方向に密度勾配をもつ構造としたり、目的に応じて任意の繊維直径、繊維長の短繊維を混合して密度をコントロールできれば、高性能フィルターやセパレータでより精密で高性能な機能を出すことが可能となると考えられる。   In recent years, ultrafine fibers with a fiber diameter of 1000 nm (= 1 μm) or less have attracted attention as research objects, as represented by nanofibers defined with a fiber diameter of 1 to 100 nm. Due to its specificity such as adsorptivity, it has been studied as a raw material for highly functional materials such as ultra-high performance filters, separators such as batteries and capacitors, or abrasives such as hard disks and silicon wafers. In the future, it will be necessary to arbitrarily control the fiber diameter, fiber dispersion state, and fiber density at the nano-order level in the materials and fiber structures that contain the fibers in order to develop new functions that have not existed in the past. Is done. For example, if two or more types of fibers with different fiber diameters at the nano level have a structure having a density gradient in the thickness direction of the nonwoven fabric, or if the density can be controlled by mixing short fibers of any fiber diameter and fiber length according to the purpose It is believed that more sophisticated and higher performance functions can be achieved with high performance filters and separators.

混合紡糸の繊維の海成分を抽出する方式により、島成分ドメインの60%以上が1〜150nmの範囲にある超極細繊維の製造を可能としたことが記載されている(例えば特許文献1参照。)。しかしながら、繊維直径が30nmの範囲にあるものは全繊維数の70%であり、残り30%もの繊維はこれから外れるほど繊維直径分布の広いものであった。また、混合紡糸繊維は、繊維直径のコントロールに海成分を構成するポリマーと島成分を構成するポリマーの混合比率や溶融粘度差、溶解度パラメータ等が影響するため、適切な樹脂の種類と分子量等を選ぶ必要があり、曳糸性等を考慮しても、任意に目標繊維直径の超極細繊維を得ることは非常に困難である。   It is described that it is possible to produce ultra-fine fibers in which 60% or more of the island component domains are in the range of 1 to 150 nm by a method of extracting the sea component of the fiber of the mixed spinning (see, for example, Patent Document 1). ). However, those having a fiber diameter in the range of 30 nm accounted for 70% of the total number of fibers, and the remaining 30% of the fibers had a broader fiber diameter distribution as they deviated from this. In addition, mixed spinning fibers are affected by the mixing ratio, melt viscosity difference, solubility parameter, etc. of the polymer constituting the sea component and the island component in controlling the fiber diameter. It is necessary to select, and it is very difficult to obtain an ultrafine fiber having a target fiber diameter arbitrarily even in consideration of spinnability and the like.

また、ポリビニルアルコールとポリアクリロニトリルの混合紡糸繊維を機械的に叩解してフィブリル化させることにより得られる繊維直径が50〜500nmの繊維を用いて、不織布を得る方法が記されている(例えば特許文献2参照。)。ただし、当然のことながら、未叩解の非フィブリル繊維が多く存在し、繊維直径を任意にコントロールすることが不可能に近い。   In addition, a method for obtaining a nonwoven fabric using fibers having a fiber diameter of 50 to 500 nm obtained by mechanically beating fibrillated mixed spinning fibers of polyvinyl alcohol and polyacrylonitrile is described (for example, Patent Documents). 2). However, as a matter of course, there are many unbeaten non-fibrillar fibers, and it is almost impossible to arbitrarily control the fiber diameter.

一方で、繊維直径が均一にされたとしても、繊維長にバラツキがあると、やはり均一な密度の繊維構造体が得られず、偶然性に等しい粗密を生じてしまう。特許文献1に記載の混合紡糸繊維の海成分を除去する方法や特許文献2のような叩解型フィブリル繊維では当然、均一な繊維長を得ることはできない。海島型繊維を所定の長さにカットした後で海成分を除去し、極細繊維を得る手段が開示されている(例えば特許文献3及び4参照。)。カット端からも海成分溶解成分を浸透させ、効率よく海成分を除去することを狙ったものであるが、本発明者らの検討によれば、単に先にカットした上でも、島成分の繊維直径が1μm以下の海島型繊維では、中央部の海成分除去が難しく、超極細繊維の収率を上げることが困難である。また、島成分の繊維の間隔をコントロールすることが困難で、そのまま応用できるものではない。一方、海島型繊維をトウの状態で海成分を除去した後、カットする方法も記載されているが、島成分の繊維直径が1μm以下の海島型繊維では、中央部の海成分を構成するポリマーの除去が困難で超極細繊維の収率を上げることは困難である(例えば特許文献5参照。)。
前述の如く、1μm以下の超極細繊維で、繊維直径及び繊維長がともにほぼ均一である超極細短繊維は存在していなかった。
On the other hand, even if the fiber diameter is made uniform, if the fiber length varies, a fiber structure with a uniform density cannot be obtained, and coarseness equal to chance occurs. The method of removing the sea component of the mixed spun fiber described in Patent Document 1 and the beating fibril fiber as in Patent Document 2 naturally cannot obtain a uniform fiber length. Means for removing sea components after cutting sea-island fibers to a predetermined length to obtain ultrafine fibers are disclosed (see, for example, Patent Documents 3 and 4). Although the sea component dissolved component is infiltrated also from the cut end and aims to efficiently remove the sea component, according to the study by the present inventors, the island component fiber can be cut even after being cut first. In the sea-island fiber having a diameter of 1 μm or less, it is difficult to remove the sea component at the center, and it is difficult to increase the yield of the ultrafine fiber. In addition, it is difficult to control the interval between the fibers of the island component, and it cannot be applied as it is. On the other hand, a method of cutting sea island-type fibers after removing sea components in a tow state is also described. However, in the case of sea-island fibers having an island component fiber diameter of 1 μm or less, the polymer constituting the sea component in the central portion is described. It is difficult to remove the fiber, and it is difficult to increase the yield of ultrafine fibers (for example, see Patent Document 5).
As described above, there were no ultra-fine short fibers having an ultra-fine fiber of 1 μm or less and a substantially uniform fiber diameter and fiber length.

特開2004−169261号公報JP 2004-169261 A 特開2003−129393号公報JP 2003-129393 A 特開2003−105660号公報JP 2003-105660 A 特開平7−331581号公報Japanese Patent Laid-Open No. 7-331581 特開2003−253555号公報JP 2003-253555 A

本発明は、上記従来技術を背景になされたもので、その目的は、繊維直径と繊維長の分布が少ない均一な繊維直径1μm以下の短繊維を提供することにある。   The present invention has been made against the background of the above prior art, and an object thereof is to provide a short fiber having a uniform fiber diameter of 1 μm or less with a small distribution of fiber diameter and fiber length.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、島成分間隔を精密に制御でき、かつ海成分抽出除去性の良好となるように適切な海成分を構成するポリマーと島成分を構成するポリマーを選択して精密多島海島複合紡糸を行い、この未延伸糸又は延伸糸を50〜1000μmにカット後、海成分を除去する方法で、繊維直径及び繊維長が比較的均一であり、分散性が良好で繊維構造体の構造を目的に応じて任意に制御可能な超極細短繊維の発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have been able to precisely control the island component interval and have a polymer that constitutes an appropriate sea component so that the sea component extraction / removability is good. By selecting the polymer that constitutes the island component and performing precise archipelago sea-island composite spinning, cutting the undrawn yarn or drawn yarn to 50 to 1000 μm and then removing the sea component, the fiber diameter and fiber length are relatively The inventors have reached the invention of ultra-fine fibers that are uniform, have good dispersibility, and can arbitrarily control the structure of the fiber structure according to the purpose.

すなわち本発明の課題は熱可塑性樹脂からなり、繊維直径が10〜1000nm、以下に定義する繊維直径変動係数(CVd)が0〜15、繊維長が50〜1000μm、以下に定義する繊維長変動係数(CVl)が0〜20であって、かつアスペクト比(=繊維長/繊維直径)が100〜2000であることを特徴とする短繊維であり、該短繊維が、易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維から得られる短繊維であって、該海島型複合繊維が溶融紡糸により得られ、溶融紡糸温度における海成分と島成分との溶融粘度比(海成分/島成分)が1.1〜2.0であり、該海島型複合繊維の横断面における該島成分の繊維直径(Xd)が10〜1000nm、島数が100以上、島成分間の海成分の厚み(S)が0.001≦S/Xd≦0.5である海島型複合繊維を50〜1000μmの繊維長にカットした後、海成分を抽出除去して島成分を短繊維として得ることを特徴とする、短繊維の製造方法によって解決することができる。
繊維直径変動係数(CVd)=σd/Xd×100(%)
[但し、繊維直径は繊維断面における長径と短径の平均値とし、σdは繊維直径分布の標準偏差、Xdは平均繊維直径を示す。]
繊維長変動係数(CVl)=σl/Xl×100(%)
[但し、σlは繊維長分布の標準偏差、Xlは平均繊維長を示す。]
That is, the subject of this invention consists of a thermoplastic resin, the fiber diameter is 10-1000 nm, the fiber diameter variation coefficient (CVd) defined below is 0-15, the fiber length is 50-1000 μm, and the fiber length variation coefficient defined below. (CVl) is 0-20, and the aspect ratio (= fiber length / fiber diameter) is 100-2000, the short fiber is an easily soluble component as a sea component, A short fiber obtained from a sea-island composite fiber having an island component as a hardly soluble component, wherein the sea-island composite fiber is obtained by melt spinning, and a melt viscosity ratio (sea component) between the sea component and the island component at the melt spinning temperature. / Island component) is 1.1 to 2.0, the fiber diameter (Xd) of the island component in the cross section of the sea-island type composite fiber is 10 to 1000 nm, the number of islands is 100 or more, and the sea component between the island components Thickness (S) of 0.0 A sea fiber type composite fiber satisfying 1 ≦ S / Xd ≦ 0.5 is cut into a fiber length of 50 to 1000 μm, and then the sea component is extracted and removed to obtain the island component as a short fiber. It can be solved by the manufacturing method .
Fiber diameter variation coefficient (CVd) = σd / Xd × 100 (%)
[However, the fiber diameter is the average value of the major axis and minor axis in the fiber cross section, σd is the standard deviation of the fiber diameter distribution, and Xd is the average fiber diameter. ]
Fiber length variation coefficient (CVl) = σl / Xl × 100 (%)
[However, σl represents the standard deviation of the fiber length distribution, and Xl represents the average fiber length. ]

本発明によれば、繊維直径が1μm以下の超極細繊維でありながら、繊維直径及び繊維長が均一で、かつ分散性が良好な短繊維が得られる。これは、従来の混合紡糸繊維の海成分の抽出による超極細繊維や、叩解フィブリル化により得られる超極細繊維では達成できなかったことである。   According to the present invention, it is possible to obtain a short fiber having a uniform fiber diameter and fiber length and good dispersibility even though the fiber diameter is a superfine fiber having a fiber diameter of 1 μm or less. This is not possible with conventional ultra-fine fibers obtained by extracting sea components from mixed spun fibers or with ultra-fine fibers obtained by beating fibrillation.

以下本発明の実施形態について詳細に説明する。
本発明の繊維は熱可塑性樹脂からなり、10〜1000nmの繊維直径をもち、以下の式で定義される繊維直径変動係数が0〜15であることを特徴とする。
繊維直径変動係数(CVd)=σd/Xd×100(%)
但し、ここでいう繊維直径は、繊維断面の最大径と最小径の平均値をいい、σdは繊維直径分布の標準偏差、Xdは平均繊維直径を示す。
Hereinafter, embodiments of the present invention will be described in detail.
The fiber of the present invention is made of a thermoplastic resin, has a fiber diameter of 10 to 1000 nm, and has a fiber diameter variation coefficient defined by the following formula of 0 to 15.
Fiber diameter variation coefficient (CVd) = σd / Xd × 100 (%)
However, the fiber diameter here refers to the average value of the maximum diameter and the minimum diameter of the fiber cross section, σd is the standard deviation of the fiber diameter distribution, and Xd is the average fiber diameter.

繊維直径が10nm未満であると、分子間力の影響が強くなるためか繊維構造自身が不安定で個々の超極細繊維の分繊性が悪く、現在のところ、超極細繊維が均一に分散された繊維構造体を得ることが困難である。また、1000nmを超えると、本発明が目指すような特異な物性が得られる繊維直径の領域からは外れる。特に好ましい範囲は50〜900nmである。   If the fiber diameter is less than 10 nm, the influence of intermolecular force becomes strong, or the fiber structure itself is unstable and the fineness of individual ultrafine fibers is poor. At present, the ultrafine fibers are uniformly dispersed. It is difficult to obtain a fibrous structure. On the other hand, when the thickness exceeds 1000 nm, the fiber diameter deviates from the region of the fiber diameter where the unique physical properties aimed by the present invention are obtained. A particularly preferable range is 50 to 900 nm.

また、繊維直径変動係数(CVd)は0〜15の範囲、好ましくは0〜10の範囲にあることがナノレベルの構造制御が可能な繊維の変動係数として必要であるCVdが15を超えると、ナノレベルの精密な繊維構成勾配のある繊維構造体を設計することが困難である。   Further, when the fiber diameter variation coefficient (CVd) is in the range of 0 to 15, preferably in the range of 0 to 10, when the CVd required as the fiber variation coefficient capable of nano-level structure control exceeds 15, It is difficult to design a fiber structure having a precise fiber composition gradient at the nano level.

さらに本発明の繊維は50〜1000μmの繊維長をもち、以下の式で定義される繊維長変動係数が0〜20であることを特徴とする。
繊維長変動係数(CVl)=σl/Xl×100(%)
但し、ここでσlは繊維長分布の標準偏差、Xlは平均繊維長を示す。
Furthermore, the fiber of the present invention has a fiber length of 50 to 1000 μm, and has a fiber length variation coefficient defined by the following formula of 0 to 20.
Fiber length variation coefficient (CVl) = σl / Xl × 100 (%)
Here, σl represents the standard deviation of the fiber length distribution, and Xl represents the average fiber length.

繊維長は50〜1000μm、好ましくは100〜500μmの範囲である。50μmを下回ると、不織布表面からの繊維脱落やシート強力が低下する可能性がある。また、1000μmを超えると、超極細短繊維としたときに絡みが生じやすく、結束や毛玉状の欠点となって、構造体の均質性を阻害する。   The fiber length is in the range of 50 to 1000 μm, preferably 100 to 500 μm. If the thickness is less than 50 μm, fiber dropout from the nonwoven fabric surface and sheet strength may be reduced. On the other hand, when the thickness exceeds 1000 μm, entanglement is likely to occur when the fiber is formed as an ultra-fine fiber, which causes defects such as bundling or pill-like shape, and inhibits the homogeneity of the structure.

また、繊維変動係数(CVl)は0〜20の範囲、好ましくは0〜10の範囲にあることがナノレベルの構造制御が可能な繊維の変動係数として必要であるCVlが20を超えると、ナノレベルの精密な繊維構成勾配のある繊維構造体を設計することが困難である。これらの平均繊維長及び繊維長変動係数を所定の範囲にするためには、ギロチンカッター等、繊維をカットする装置の精度を上げることが好ましい。 Further, when the fiber length variation coefficient (CVl) is in the range of 0 to 20, preferably in the range of 0 to 10, when the CVl necessary as the fiber variation coefficient capable of nano-level structure control exceeds 20, It is difficult to design a fiber structure having a precise fiber composition gradient at the nano level. In order to set the average fiber length and the fiber length variation coefficient within a predetermined range, it is preferable to increase the accuracy of an apparatus for cutting fibers such as a guillotine cutter.

繊維長/平均繊維直径で定義されるアスペクト比は100〜2000の範囲内にある必要があり、好ましくは200〜1500、更に好ましくは300〜1000の範囲内である。アスペクト比が100を下回ると、不織布表面からの繊維脱落やシート強力が低下する可能性が大となり、2000を超えると短繊維としたときに絡みが生じやすく、結束や毛玉状の欠点となって、構造体の均質性を阻害する。繊維直径に応じて適切なアスペクト比の繊維長を選択することで、不織布の均一性と強力が共に強いものが得られる。   The aspect ratio defined by the fiber length / average fiber diameter needs to be in the range of 100 to 2000, preferably in the range of 200 to 1500, and more preferably in the range of 300 to 1000. If the aspect ratio is less than 100, there is a great possibility that the fiber drop off from the nonwoven fabric surface and the sheet strength will decrease, and if it exceeds 2000, entanglement is likely to occur when short fibers are formed, resulting in defects such as bundling and hairballs, Impairs structure homogeneity. By selecting a fiber length having an appropriate aspect ratio according to the fiber diameter, a nonwoven fabric having both high uniformity and strength can be obtained.

上述する短繊維の製造方法として、島繊維直径が1μm以下であり、かつ島数が100以上の精密な多島海島型複合繊維を製造した後、これを所定の繊維長にカットした短繊維の発生前駆体を経て、海成分を溶出又は分解することによって島成分からなる短繊維を取り出す方法が好ましい。海成分の溶出又は分解を予め行っておき、短繊維として抄紙工程に供給する方式もあるが、海島型複合短繊維の状態で繊維発生前駆体として不織布メーカーへ出荷する形態をとり、抄紙工程のパルパー又はパルパーの前工程に海成分の溶剤や分解促進薬液によって海成分を除去する方法、あるいは前駆体の状態で抄紙を行った後、海成分を除去する方式をとることもできる。   As a manufacturing method of the short fiber described above, after manufacturing a precise island-island type composite fiber having an island fiber diameter of 1 μm or less and an island number of 100 or more, the short fiber is cut into a predetermined fiber length. The method of taking out the short fiber which consists of an island component by eluting or decomposing | disassembling a sea component through a generating precursor is preferable. There is also a method of elution or decomposition of sea components in advance and supplying it to the papermaking process as short fibers, but in the state of sea island type composite short fibers, it is shipped to the nonwoven fabric manufacturer as a fiber generation precursor, and the papermaking process A method of removing the sea component by a sea component solvent or a decomposition accelerating chemical solution in the pre-process of the pulper or the pulper, or a method of removing the sea component after paper making in a precursor state may be employed.

なお、繊維ウエブを形成する方法は湿式不織布法(抄紙法)に限定されることはないが、1μm以下の短繊維をより均一に分散するには、抄紙法が最も好ましい手段である。抄紙法としては、従来公知の方法、例えば、水平長網方式、傾斜ワイヤー型短網方式、円網方式、又は長網・円網コンビネーション方式により形成することができる。なお、短繊維を結合させるために、用途や目的に応じて、抄紙後の湿式不織布ウェブをカレンダーローラーやエンボスローラーを用いて圧接してもよいし、ウォーターニードルで繊維を厚み方向に絡合させたり、バインダー繊維の混繊やケミカルバインダーにより熱接着してもよい。   The method for forming the fiber web is not limited to the wet nonwoven fabric method (papermaking method), but the papermaking method is the most preferred means for more evenly dispersing short fibers of 1 μm or less. As a papermaking method, it can be formed by a conventionally known method, for example, a horizontal long net method, an inclined wire type short net method, a circular net method, or a long net / circular net combination method. In order to bind the short fibers, the wet nonwoven web after papermaking may be pressed using a calendar roller or an embossing roller depending on the application or purpose, or the fibers are entangled in the thickness direction with a water needle. Alternatively, heat bonding may be performed using a mixture of binder fibers or a chemical binder.

該海島型複合繊維からなる短繊維の発生前駆体とする前段階の海島型複合繊維の製造方法を述べる。その海島重量比率は特に限定されないが、海成分:島成分=10:90〜60:40の範囲にすることが好ましく、特に海成分:島成分=20:80〜40:60の範囲が好ましい。海成分の割合が60重量%を越えると、海成分溶解に必要な溶剤の量が多くなったり分解に必要な剤の量や時間が増えたり、安全性や環境負荷、そしてコストの面で問題がある。また、10重量%未満の場合には島成分同士が膠着する可能性がある。   A method for producing a sea-island composite fiber in the previous stage as a precursor for generating short fibers composed of the sea-island composite fiber will be described. The sea / island weight ratio is not particularly limited, but is preferably in the range of sea component: island component = 10: 90 to 60:40, and particularly preferably in the range of sea component: island component = 20: 80 to 40:60. If the proportion of the sea component exceeds 60% by weight, the amount of the solvent necessary for dissolving the sea component increases, the amount and time of the agent necessary for decomposition increase, and there are problems in terms of safety, environmental load, and cost. There is. Moreover, when it is less than 10% by weight, the island components may stick together.

また、島数は100以上であることが重要である。島数が多いほど海成分を溶解除去して繊維を製造する場合の生産性が高くなり、親糸繊維直径を極度に小さくすることなしに島繊維直径が1μm以下の繊維を比較的容易に得ることができる。ここで、島数100未満の場合には、海成分を溶解除去しても繊維直径の小さい極細繊維が得られない。特に、島数500以上にすることが好ましい。島数の上限は特に限定されることはないが、紡糸口金の製造コストが高くなるだけではなく、加工精度自体も低下しやすくなるので1000以下とするのが好ましい。   It is important that the number of islands is 100 or more. The higher the number of islands, the higher the productivity in producing fibers by dissolving and removing sea components, and it is relatively easy to obtain fibers having an island fiber diameter of 1 μm or less without extremely reducing the parent fiber diameter. be able to. Here, when the number of islands is less than 100, an ultrafine fiber having a small fiber diameter cannot be obtained even if sea components are dissolved and removed. In particular, the number of islands is preferably 500 or more. The upper limit of the number of islands is not particularly limited, but it is preferably set to 1000 or less because not only the manufacturing cost of the spinneret increases, but also the processing accuracy itself tends to decrease.

更に、海島型複合繊維は、その島成分間の海成分の厚み(S)が0.001≦S/Xd≦0.5(Xdは平均繊維直径)とすることが必要である。S/Xd値が0.001未満であると島成分同士が膠着する可能性があり、島成分が分離しにくくなる。また、S/Xd値が0.5を越えると、島成分の分離性はよくなるものの、高速紡糸性や延伸倍率を上げることができないため、目標の繊維直径の繊維を得ることが難しくなり、また、海成分溶解後の繊維の強度が小さくなることや、厚い海成分を溶解除去する間に島成分の溶解が進み、島成分間の均質性が低下することがある。   Further, the sea-island type composite fiber needs to have a thickness (S) of sea components between the island components of 0.001 ≦ S / Xd ≦ 0.5 (Xd is an average fiber diameter). If the S / Xd value is less than 0.001, the island components may stick together, making it difficult to separate the island components. Further, if the S / Xd value exceeds 0.5, the island component separation is improved, but the high-speed spinnability and the draw ratio cannot be increased, so that it becomes difficult to obtain a fiber having a target fiber diameter. In addition, the strength of the fiber after dissolution of the sea component may decrease, or the dissolution of the island component may progress while dissolving and removing the thick sea component, and the homogeneity between the island components may decrease.

前述のS/Xd値を達成する海成分を構成するポリマーと島成分を構成するポリマーの必要条件は、海成分の抽出性をも考慮すると、海成分を溶融粘度が高くかつ易溶解性であるポリマーとし、島成分を溶融粘度が低くかつ難溶解性のポリマーとすることである。特に、海成分を構成するポリマーと島成分を構成するポリマーの溶融粘度の関係が重要であり、海成分を構成するポリマーの溶融粘度が小さい場合には島成分同士が膠着する可能性がある。海成分を構成するポリマーの溶融粘度が島成分に比べて大きい関係を満たしていれば、海成分の複合重量比率が50%以下になっても、島成分同士が大部分膠着して海島繊維と異なる繊維となることはない。島成分同士が膠着すると、海成分を溶解除去した際に極細繊維だけではなく異型繊維まで作成されることとなり、本発明の目的とする均一な繊維直径の短繊維が得ることができない。特に好ましい溶融粘度比(海成分/島成分)は1.1〜2.0、特に1.3〜1.5の範囲である。この比が1.1未満の場合には溶融紡糸時に島成分が膠着しやすくなり、一方2.0を超える場合には粘度差が大きすぎるために紡糸調子が低下しやすい。   The requirements for the polymer constituting the sea component and the polymer constituting the island component that achieve the S / Xd value described above are such that the sea component has a high melt viscosity and is easily soluble in consideration of the extractability of the sea component. A polymer is used, and the island component is a low melt viscosity and hardly soluble polymer. In particular, the relationship between the melt viscosity of the polymer that constitutes the sea component and the polymer that constitutes the island component is important. When the melt viscosity of the polymer that constitutes the sea component is small, the island components may be stuck together. If the melt viscosity of the polymer that constitutes the sea component satisfies a larger relationship than the island component, even if the composite weight ratio of the sea component is 50% or less, the island components are mostly stuck together and the sea island fibers It will not be a different fiber. When island components are stuck together, not only ultrafine fibers but also irregular fibers are created when sea components are dissolved and removed, and short fibers having a uniform fiber diameter, which is the object of the present invention, cannot be obtained. A particularly preferred melt viscosity ratio (sea component / island component) is in the range of 1.1 to 2.0, particularly 1.3 to 1.5. If this ratio is less than 1.1, the island components are likely to stick together during melt spinning, whereas if it exceeds 2.0, the difference in viscosity is too large and the spinning tone tends to decrease.

また、ここで、易溶解性成分と難溶解性成分としているのは、ある溶剤又は薬剤に対して、一方のポリマーは溶出又は分解し、他方のポリマーは溶出又は分解されにくいポリマーの組合せを選択し、その易溶解性成分を海成分として選択することを意味する。ここで、海成分の抽出性(ある溶剤又は薬剤に対して溶出性又は分解性)に関しては、島成分に対する海成分を構成するポリマーの溶解速度が200倍以上であることにより、島成分分離性が良好となる。溶解速度が200倍未満の場合には、繊維断面中央部の海成分を溶解する間に、分離した繊維断面表層部の島成分が、繊維直径が小さいために溶解されるため、海成分の相当量が減量されているにもかかわらず、繊維断面中央部の海成分を完全に溶解除去できず、島成分の太さ斑や島成分自体の溶剤侵食につながり、本発明の目的とする均一な繊維直径の短繊維が得ることができない。   Here, the easily soluble component and the hardly soluble component are selected as a combination of polymers that dissolve or decompose one polymer and hardly dissolve or decompose the other polymer with respect to a certain solvent or drug. This means that the readily soluble component is selected as the sea component. Here, regarding the extractability of the sea component (elution or decomposability with respect to a certain solvent or drug), the island component separability is achieved by the fact that the dissolution rate of the polymer constituting the sea component in the island component is 200 times or more Becomes better. When the dissolution rate is less than 200 times, the island component of the separated fiber cross-section surface layer is dissolved because the fiber diameter is small while the sea component at the center of the fiber cross-section is dissolved. Even though the amount is reduced, the sea component at the center of the fiber cross section cannot be completely dissolved and removed, leading to thick spots of the island component and solvent erosion of the island component itself. Short fibers with a fiber diameter cannot be obtained.

以上は主に海成分の除去する点から、本発明の目的とする均一な繊維直径の短繊維を製造する方法を述べたものである。他の観点として紡糸・延伸工程に着目した場合には、紡糸の際に用いる口金の構成や、海島成分を構成するポリマーの種類、溶融粘度等も重要になる。溶融粘度については上述のとおりであり、ポリマー種類については以下に述べる。   The above describes the method for producing short fibers having a uniform fiber diameter, which is an object of the present invention, mainly from the viewpoint of removing sea components. When focusing on the spinning / stretching process as another viewpoint, the configuration of the die used for spinning, the type of polymer constituting the sea-island component, the melt viscosity, and the like are also important. The melt viscosity is as described above, and the polymer type is described below.

海成分を構成するポリマーは、熱可塑性樹脂であって、溶融紡糸時における溶融粘度が島成分を構成するポリマーよりも高いことが必須であり、かつ溶剤あるいは分解性薬剤に対する島成分を構成するポリマーとの溶解速度比が200以上であればいかなるポリマーであってもよいが、特に繊維形成性の良いポリエステル類、ポリアミド類、ポリエチレンやポリスチレン等のポリオレフィン類を好ましい例としてあげることができる。ポリアミド類は脂肪族ポリアミド類が好ましい。更に具体例を挙げれば、アルカリ水溶液易溶解性ポリマーとして、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリオキシアルキレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルが最適である。しかし、共重合成分はこれらのみに限定されるわけではなく、これらを共重合した上で更に別の共重合成分が存在していても構わない。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。これ以外にも、海成分を構成するポリマーとそれを溶解する溶剤あるいは分解性薬剤の組み合わせとして、ナイロン6やナイロン66等の脂肪族ポリアミドに対するギ酸、ポリスチレンに対するトリクロロエチレン等やポリエチレン(特に高圧法低密度ポリエチレンや直鎖状低密度ポリエチレン)に対する熱トルエンやキシレン等の炭化水素系溶剤、ポリビニルアルコールやエチレン変性ビニルアルコール系ポリマーに対する熱水を例として挙げることができる。   The polymer constituting the sea component is a thermoplastic resin, and it is essential that the melt viscosity at the time of melt spinning is higher than the polymer constituting the island component, and the polymer constituting the island component for the solvent or degradable drug Any polymer may be used as long as the dissolution rate ratio is 200 or more, and polyesters, polyamides, and polyolefins such as polyethylene and polystyrene having particularly good fiber-forming properties can be mentioned as preferred examples. The polyamide is preferably an aliphatic polyamide. As specific examples, polylactic acid, ultra-high molecular weight polyalkylene oxide condensation polymer, polyoxyalkylene glycol compound and 5-sodium sulfoisophthalic acid copolyester are optimal as the alkaline aqueous solution-soluble polymer. However, the copolymerization component is not limited to these, and another copolymerization component may exist after the copolymerization thereof. Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution and the like. In addition to this, formic acid for aliphatic polyamides such as nylon 6 and nylon 66, trichlorethylene for polystyrene and polyethylene (especially high pressure method low density) Examples thereof include hydrocarbon solvents such as hot toluene and xylene for polyethylene and linear low-density polyethylene), and hot water for polyvinyl alcohol and ethylene-modified vinyl alcohol polymers.

共重合ポリエステル系ポリマーの中でも、5−ナトリウムスルホイソフタル酸6〜12モル%と分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合させた固有粘度が0.4〜0.6dL/gのポリエチレンテレフタレート系共重合ポリエステルが好ましい。ここで、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。また、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加作用があるが、反応性が悪くなってブレンド系になるため、耐熱性や紡糸安定性の面で問題が生じる可能性がある。また、共重合量が10重量%以上になると、溶融粘度低下作用があるので、好ましくない。以上のことから上記の範囲が適切であると考えられる。   Among copolyester polymers, an intrinsic viscosity of 0.4 to 0.6 dL / g obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000 is used. Polyethylene terephthalate copolymer polyester is preferred. Here, 5-sodium sulfoisophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. In addition, PEG has a hydrophilicity increasing action that is considered to be due to its higher-order structure as the molecular weight increases. However, since the reactivity becomes poor and a blend system is produced, problems arise in terms of heat resistance and spinning stability. there is a possibility. On the other hand, if the copolymerization amount is 10% by weight or more, there is an effect of decreasing the melt viscosity, which is not preferable. From the above, it is considered that the above range is appropriate.

島成分を構成するポリマーは熱可塑性樹脂であり、溶融紡糸時の海成分粘度より小さくなり、かつ前述のような海成分との溶解速度比があれば、いかなる繊維形成性ポリマーであってもよい。中でも、ポリアミド類、ポリエステル類、ポリオレフィン類などが好適な例として挙げられる。具体的には、機械的強度や耐熱性を要求される用途では、ポリエステル類では、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート又はこれらを主たる繰返し単位とし、イソフタル酸若しくは5−スルホイソフタル酸金属塩等の芳香族ジカルボン酸、アジピン酸若しくはセバシン酸等の脂肪族ジカルボン酸、ε−カプロラクトン等のヒドロキシカルボン酸縮合物、若しくはジエチレングリコール、トリメチレングリコール、テトラメチレングリコール若しくはヘキサメチレングリコール等のグリコール成分等との共重合体が好ましい。また、ポリアミド類では、ナイロン6、ナイロン66等の脂肪族ポリアミド類が好ましい。一方、ポリオレフィン類は酸やアルカリ等に侵され難いことや、比較的低い融点のために繊維として取り出した後のバインダー成分として使える等の特徴があり、高密度ポリエチレン、中密度ポリエチレン、高圧法低密度ポリエチレン、直鎖状低密度ポリエチレン、アイソタクティックポリプロピレン、エチレンプロピレン共重合体、無水マレイン酸などのビニルモノマーのエチレン共重合体等を好ましい例としてあげることができる。さらに島成分は丸断面に限らず、異型断面であってもよい。   The polymer constituting the island component is a thermoplastic resin, and any fiber-forming polymer may be used as long as it is lower than the viscosity of the sea component at the time of melt spinning and has a dissolution rate ratio with the sea component as described above. . Among them, polyamides, polyesters, polyolefins and the like are preferable examples. Specifically, in applications where mechanical strength and heat resistance are required, in polyesters, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate or the main repeating unit thereof, isophthalic acid or 5- Aromatic dicarboxylic acids such as metal salts of sulfoisophthalic acid, aliphatic dicarboxylic acids such as adipic acid or sebacic acid, hydroxycarboxylic acid condensates such as ε-caprolactone, or diethylene glycol, trimethylene glycol, tetramethylene glycol or hexamethylene glycol A copolymer with a glycol component or the like is preferred. Of the polyamides, aliphatic polyamides such as nylon 6 and nylon 66 are preferable. On the other hand, polyolefins are not easily attacked by acids, alkalis, etc., and have a characteristic that they can be used as binder components after being taken out as fibers due to their relatively low melting point. Preferred examples include high density polyethylene, linear low density polyethylene, isotactic polypropylene, ethylene propylene copolymer, and ethylene copolymer of vinyl monomer such as maleic anhydride. Furthermore, the island component is not limited to a round cross section, and may be an irregular cross section.

特にポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、イソフタル酸共重合率が20モル%以下のポリエチレンテレフタレートイソフタレート、若しくはポリエチレンナフタレート等の脂芳族ポリエステル類、あるいは、ナイロン6、ナイロン66等の脂肪族ポリアミド類が、高い融点による耐熱性や力学的特性を備えているので、特許文献2に記載されているようなポリビニルアルコール/ポリアクリロニトリル混合紡糸繊維からなる超極細フィブリル化繊維に比べ、耐熱性や強度を要求される用途へ適用できるため、好ましいと考える。   In particular, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene terephthalate isophthalate having an isophthalic acid copolymerization rate of 20 mol% or less, or aliphatic polyesters such as polyethylene naphthalate, or nylon 6, nylon 66, etc. Since aliphatic polyamides have heat resistance and mechanical properties due to a high melting point, they are more heat resistant than ultrafine fibrillated fibers made of polyvinyl alcohol / polyacrylonitrile mixed spun fibers as described in Patent Document 2. It is considered preferable because it can be applied to applications that require properties and strength.

なお、海成分を構成するポリマー及び島成分を構成するポリマーについて、製糸性及び抽出後の短繊維の物性に影響を及ぼさない範囲で、必要に応じて、有機充填剤、酸化防止剤、熱安定剤、光安定剤、難燃剤、滑剤、帯電防止剤、防錆剤、架橋剤、発泡剤、蛍光剤、表面平滑剤、表面光沢改良剤、フッ素樹脂等の離型改良剤、等の各種添加剤を含んでいても差し支えない。   In addition, with regard to the polymer that constitutes the sea component and the polymer that constitutes the island component, organic fillers, antioxidants, thermal stability, as necessary, within a range that does not affect the physical properties of the spinning fiber and the short fibers after extraction. Various additives such as additives, light stabilizers, flame retardants, lubricants, antistatic agents, rust preventives, crosslinking agents, foaming agents, fluorescent agents, surface smoothing agents, surface gloss improvers, mold release improvers such as fluororesins, etc. It does not matter even if it contains an agent.

溶融紡糸に用いられる口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば中空ピンや微細孔より押し出された島成分流とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。好ましく用いられる紡糸口金例を図1及び2に示すが、必ずしもこれらに限定されるものではない。本発明の海島型複合繊維断面において平均繊維直径(Xd)と島成分間の海成分の厚み(S)の関係が0.001≦S/Xd≦0.5を満たすことが重要であり、これらの式を満たすような断面を作成できる口金であれば、どのような口金でもよい。なお図1は中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式であり、図2は微細孔方式で島成分を形成する方法である。   As the die used for melt spinning, an arbitrary one such as a hollow pin group or a fine hole group for forming an island component can be used. For example, a spinneret in which an island component flow extruded from a hollow pin or a fine hole and a sea component flow that is designed to fill the gap between them are merged and compressed to form a sea island cross section. Good. Examples of spinnerets that are preferably used are shown in FIGS. 1 and 2, but are not necessarily limited thereto. In the sea-island type composite fiber cross section of the present invention, it is important that the relationship between the average fiber diameter (Xd) and the thickness (S) of the sea component between the island components satisfies 0.001 ≦ S / Xd ≦ 0.5. Any base can be used as long as it can create a cross section that satisfies the following formula. FIG. 1 shows a method in which a hollow pin is discharged into a sea component resin reservoir portion and is joined and compressed. FIG. 2 shows a method in which island components are formed by a fine hole method.

吐出された海島型複合繊維は冷却風により固化され、所定の引き取り速度に設定した回転ローラーあるいはエジェクターにより引き取られ、未延伸糸を得る。この引き取り速度は特に限定されないが、200m/分〜5000m/分であることが望ましい。200m/分以下では生産性が悪い。また、5000m/分以上では紡糸安定性が悪い。   The discharged sea-island type composite fiber is solidified by cooling air and taken up by a rotating roller or an ejector set at a predetermined take-up speed to obtain an undrawn yarn. The take-up speed is not particularly limited, but is preferably 200 m / min to 5000 m / min. Productivity is poor at 200 m / min or less. Also, spinning stability is poor at 5000 m / min or more.

得られた未延伸糸は、海成分を抽出後に得られる繊維の用途・目的に応じて、そのままカット工程あるいはその後の抽出工程に供してもよいし、目的とする強度・伸度・熱収縮特性に合わせるために、延伸工程や熱処理工程を経由して、カット工程あるいはその後の抽出工程に供することができる。延伸工程は紡糸と延伸を別ステップで行う別延方式でもよいし、一工程内で紡糸後直ちに延伸を行う直延方式を用いてもかまわない。以上の製造方法で得られたフィラメントをそのまま、或いは数十本〜数百万本単位に束ねたトウにしてギロチンカッターやロータリーカッターなどでカットすることで、繊維長50〜1000μmの海島複合短繊維なる、短繊維前駆体を得ることができる。この海成分を適切な条件下で溶解除去することで、目的の短繊維を得ることができる。   The obtained undrawn yarn may be subjected to the cutting process or the subsequent extraction process as it is depending on the use and purpose of the fiber obtained after extracting the sea component, and the intended strength, elongation and heat shrinkage characteristics Therefore, it can be subjected to a cutting step or a subsequent extraction step via a stretching step or a heat treatment step. The stretching process may be a separate stretching method in which spinning and stretching are performed in separate steps, or a straight stretching method in which stretching is performed immediately after spinning in one process may be used. The sea-island composite short fiber having a fiber length of 50 to 1000 μm is obtained by cutting the filament obtained by the above production method as it is or using a guillotine cutter or a rotary cutter as a tow bundled in units of tens to millions. Thus, a short fiber precursor can be obtained. The target short fiber can be obtained by dissolving and removing this sea component under appropriate conditions.

海成分の除去に続いて、中和後、抄紙工程前に、繊維の分散剤として、ポリエ−テルエステル、C8スルホサクシネ−ト、ポリオキシエチレン(POE)・ノニルフェノ−ルエ−テル・サルフェ−ト・アミン、POE・ノニルフェノ−ルエ−テル・サルフェ−ト・ナトリウム、POE・ノニルフェノ−ル、POE・オレイルエ−テル、フッソ系の活性剤、変性シリコ−ン等を使用することができる。分散剤はこれらに限定されるものではなく、複数種類用いてもよい。また、パルプ状物の分散性を高めるために、ドライ、ウエットあるいは分散剤を添加したウエットの状態で、パルパ−、リファイナ−、ビ−タ−等にかけてパルプ状物間の絡まりを低下させることも可能である。   Following the removal of the sea component, after neutralization and before the paper making process, as a fiber dispersant, a polyester ester, C8 sulfosuccinate, polyoxyethylene (POE) nonylphenol ether sulfate, Amine, POE nonylphenol ether sulfate sodium, POE nonylphenol, POE oleyl ether, fluorine-based activator, modified silicone and the like can be used. A dispersing agent is not limited to these, You may use multiple types. In addition, in order to increase the dispersibility of the pulp-like material, the entanglement between the pulp-like materials may be reduced by applying it to a pulper, refiner, beater, etc. in a wet state with dry, wet or dispersant added. Is possible.

海島型複合繊維をアルカリ減量処理して得られる短繊維のみを用いて常法により抄紙することも可能であるが、繊維構造体の目的に応じて、それ以外の組成、又は同組成のポリマ−からなるショ−トカット等を混抄することも可能である。   Although it is possible to make paper by a conventional method using only short fibers obtained by subjecting sea-island type composite fibers to an alkali weight loss treatment, depending on the purpose of the fiber structure, other compositions or polymers of the same composition It is also possible to mix short cuts made of

以下、実施例により、本発明を更に具体的に説明する。
なお、実施例における各項目は次の方法で測定した。
(1)溶融粘度測定
常温(約25℃)で24時間真空乾燥した後のポリマーを紡糸時の溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度−溶融粘度曲線を作成した。以下に記載の溶融粘度とは、せん断速度が1000秒−1での値を示している。
Hereinafter, the present invention will be described more specifically with reference to examples.
In addition, each item in an Example was measured with the following method.
(1) Melt viscosity measurement The polymer after vacuum drying at room temperature (about 25 ° C) for 24 hours is set in an orifice set to the melt temperature at the time of spinning, melted and held for 5 minutes, and then extruded under several levels of load. Plot the shear rate and melt viscosity at that time. The plot was gently connected to create a shear rate-melt viscosity curve. The melt viscosity described below indicates a value at a shear rate of 1000 sec- 1 .

(2)溶解速度測定
海成分及び島成分のポリマーを、各々、径0.3mm、長さ0.6mmのキャピラリーを24孔もつ口金から吐出し、1000〜2000m/分の紡糸速度で引き取って得た未延伸糸を残留伸度が30〜60%の範囲になるように延伸して、83dtex/24フィラメントのマルチフィラメントを作成した。これを所定の溶剤及び溶解温度で浴比100として、溶解時間と溶解量から減量速度を算出した。表中では海島溶解速度差が200倍以上の場合を○、200倍以下の場合を×とした。
(2) Dissolution rate measurement Obtained by discharging the sea component and island component polymers from a die having a diameter of 0.3 mm and a length of 0.6 mm from a die having 24 holes and spinning at a spinning speed of 1000 to 2000 m / min. The undrawn yarn was drawn so that the residual elongation was in the range of 30 to 60% to prepare a multifilament of 83 dtex / 24 filament. Using this as a bath ratio of 100 at a predetermined solvent and dissolution temperature, the rate of weight loss was calculated from the dissolution time and the dissolution amount. In the table, the case where the sea-island dissolution rate difference was 200 times or more was marked with ◯, and the case where it was 200 times or less was marked with ×.

(3)平均繊維直径と島成分間の海成分の厚み(S)の測定
透過型電子顕微鏡TEMで、倍率30000倍で繊維断面写真を撮影し、測定した。TEMの機械によっては測長機能を活用して測定し、また無いTEMについては、撮った写真を拡大コピーして、縮尺を考慮した上で定規にて測定すればよい。ただし、繊維直径は、繊維断面における長径と短径の平均値と定義した。島成分間の海成分の厚み(S)は、島成分間の距離をランダムに50点測定し、その平均値と定義した。
(3) Measurement of average fiber diameter and thickness (S) of sea component between island components Fiber cross-sectional photographs were taken at a magnification of 30000 times and measured with a transmission electron microscope TEM. Depending on the TEM machine, the length measurement function is used for measurement, and for a TEM that does not exist, the photograph taken may be enlarged and copied with a ruler after taking the scale into consideration. However, the fiber diameter was defined as the average value of the major axis and the minor axis in the fiber cross section. The thickness (S) of the sea component between the island components was defined as an average value obtained by randomly measuring 50 distances between the island components.

(4)平均繊維直径の均一性
海成分溶解除去後の極細繊維の30000倍TEM観察により、ランダムに選択した50本の繊維の繊維直径データにおいて、平均繊維直径(Xd)と標準偏差(σd)を算出し、以下で定義する繊維直径変動係数(CVd)を算出した。
繊維直径変動係数(CVd)=σd/Xd×100(%)
(4) Uniformity of average fiber diameter The average fiber diameter (Xd) and standard deviation (σd) in the fiber diameter data of 50 fibers randomly selected by 30,000 times TEM observation of ultrafine fibers after dissolution removal of sea components. The fiber diameter variation coefficient (CVd) defined below was calculated.
Fiber diameter variation coefficient (CVd) = σd / Xd × 100 (%)

(5)繊維長
走査型電子顕微鏡(SEM)により、海成分溶解除去後の短繊維を基盤上に寝かせた状態とし、20〜500倍で測定した。SEMの機械によっては測長機能を活用して測定し、また無いSEMについては、撮った写真を拡大コピーして、縮尺を考慮した上で定規にて測定すればよい。
(5) Fiber length Using a scanning electron microscope (SEM), the short fibers after dissolution and removal of sea components were placed on a base and measured at 20 to 500 times. Depending on the SEM machine, the length measurement function is used for measurement, and for the SEM that does not exist, the photograph taken may be enlarged and copied, and the scale taken into consideration, and measured with a ruler.

(6)繊維長均一性
測定した繊維長のデータから、ランダムに50点を選択し、その平均値(Xl)と各測定データより算出した標準偏差(σl)を算出した後、以下の式で定義される繊維長変動係数(CVl)を算出した。
繊維長変動係数(CVl)=σl/Xl×100(%)
(6) Fiber length uniformity After randomly selecting 50 points from the measured fiber length data, and calculating the average value (Xl) and the standard deviation (σl) calculated from each measured data, The defined fiber length variation coefficient (CVl) was calculated.
Fiber length variation coefficient (CVl) = σl / Xl × 100 (%)

(7)未分散欠点又は絡み
目付50g/m2となるように、JIS P8222に記載の手抄き装置で短繊維の100%繊維ウェブを作成し、130℃の無風状態で30分間乾燥後、5mm角の正方形に切って静かに走査型電子顕微鏡(SEM)の試料台に乗せ、この表面を20〜500倍で観察し、目視で未開繊束状、毛玉状(糸の絡まり)等の分散不良を確認し、明らかにできるものの数を測定した。分散不良が5mm角中、21箇所以上確認された場合は×(不良)、20箇所以下の場合は○(良)と判定した。
(7) Undispersed defect or entanglement A 100% fiber web of short fibers was prepared with a hand-drawing apparatus described in JIS P8222 so that the basis weight was 50 g / m2, and after drying for 30 minutes in a windless state at 130 ° C., 5 mm Cut into squares and place them gently on a scanning electron microscope (SEM) sample stage, observe this surface at 20 to 500 times, and visually check for unsatisfactory dispersion such as unopened bundles, pills (strings of yarn), etc. The number of things that could be confirmed and clarified was measured. When the dispersion failure was confirmed at 21 or more places in 5 mm square, it was judged as x (defect), and when it was 20 places or less, it was judged as ○ (good).

(8)海成分抽出性
上記ウェブ上で、海成分の抽出除去が不十分で束状となっている繊維が11箇所以上確認された場合は×(不良)、10箇所以下の場合は○(良)とした。
(8) Sea component extractability On the above-mentioned web, when the extraction and removal of the sea component is insufficient and 11 or more bundled fibers are confirmed, × (defect), and when 10 or less, ○ ( Good).

(9)共重合ポリエステルの共重合成分の定性、定量解析
繊維サンプルを重水素化トリフルオロ酢酸/重水素化クロロホルム=1/1混合溶媒に溶解後、日本電子株式会社製、JEOL A−600 超伝導FT−NMRを用いて核磁気共鳴スペクトル(1H−NMR)を測定した。そのスペクトルパターンから常法に従って、定性・定量評価を行った。
(9) Qualitative and quantitative analysis of copolymerization component of copolyester After dissolving fiber sample in deuterated trifluoroacetic acid / deuterated chloroform = 1/1 mixed solvent, JEOL Ltd., JEOL A-600 super A nuclear magnetic resonance spectrum ( 1 H-NMR) was measured using conductive FT-NMR. Qualitative and quantitative evaluation was performed from the spectrum pattern according to a conventional method.

またポリエチレングリコール共重合量などは必要に応じて以下の手法も用いた。つまり
繊維サンプルを過剰量のメタノールとともに封管し、オートクレーブ中、260℃、4時間メタノール分解した。分解物をガスクロマトグラフィー(HEWLETT PACKARD社製、HP6890 Series GC System)を用いて共重合成分の量を定量し、測定したポリマーの重量を基準としたときの重量百分率を求めた。また標準サンプルとの保持時間の比較により定性評価も行った。
Moreover, the following methods were also used for the polyethylene glycol copolymerization amount and the like as required. That is, the fiber sample was sealed with an excess amount of methanol, and decomposed with methanol in an autoclave at 260 ° C. for 4 hours. The amount of the copolymerization component was quantitatively determined for the decomposition product using gas chromatography (HP6890 Series GC System, manufactured by HEWLETT PACKARD), and the weight percentage based on the measured polymer weight was determined. Qualitative evaluation was also performed by comparing the retention time with the standard sample.

[実施例1]
島成分に285℃での溶融粘度が120Pa・secのポリエチレンテレフタレート、海成分に平均分子量4000のポリエチレングリコールを4重量%、5−ナトリウムスルホイソフタル酸を9mol%共重合した285℃での溶融粘度が135Pa・secである改質ポリエチレンテレフタレートを使用し、海成分:島成分=10:90の重量比率で図1に示す形状をもつ島数400の口金を用いて紡糸し、紡糸速度1500m/minで引き取り、未延伸糸を得た。海成分と島成分のアルカリ減量速度差は1000倍で海成分はかなりアルカリ水溶液易分解性であった。これを3.9倍に延伸した後、ギロチンカッターで1000μmにカットして、短繊維前駆体を得た。これを4%NaOH水溶液で95℃にて10%減量したところ、繊維直径と繊維長が比較的均一である短繊維が生成していることを確認した。短繊維前駆体(海島複合短繊維)の断面をTEM観察して平均繊維直径(Xd)と島成分間の海成分の厚み(S)を調べたところ、S/Xd=0.03であり、請求項3及び請求項7に記載した範囲内であった。また、繊維直径及びその変動係数、繊維長及びその変動係数、アスペクト比、未分散欠点又は絡み、及び海成分抽出性について表1に記す通り、繊維直径及び繊維長ともに均一で、分散性、抽出性の良好であることが確認できた。
[Example 1]
Polyethylene terephthalate having a melt viscosity of 120 Pa · sec at 285 ° C. for the island component, 4% by weight of polyethylene glycol having an average molecular weight of 4000 for the sea component, and 9 mol% of 5-sodium sulfoisophthalic acid, and a melt viscosity at 285 ° C. Using a modified polyethylene terephthalate of 135 Pa · sec, spinning is performed using a base having a shape shown in FIG. 1 with a weight ratio of sea component: island component = 10: 90, and a spinning speed of 1500 m / min. The undrawn yarn was obtained by taking-up. The difference in alkali weight loss between the sea component and the island component was 1000 times, and the sea component was quite easily decomposable in alkaline aqueous solution. This was stretched 3.9 times and then cut to 1000 μm with a guillotine cutter to obtain a short fiber precursor. When this was reduced 10% at 95 ° C. with a 4% NaOH aqueous solution, it was confirmed that short fibers having a relatively uniform fiber diameter and fiber length were produced. When the cross section of the short fiber precursor (sea-island composite short fiber) was observed with a TEM and the average fiber diameter (Xd) and the thickness of the sea component between the island components (S) were examined, S / Xd = 0.03, It was within the range described in claims 3 and 7. Also, as shown in Table 1, fiber diameter and its coefficient of variation, fiber length and its coefficient of variation, aspect ratio, undispersed defects or entanglement, and sea component extractability, both fiber diameter and fiber length are uniform, dispersibility, and extraction It was confirmed that the property was good.

[実施例2〜3、比較例1]
実施例1におけるカット長のみを変更した結果を表1に示す。
[Examples 2 to 3, Comparative Example 1]
The results of changing only the cut length in Example 1 are shown in Table 1.

[比較例2]
島成分に285℃での溶融粘度が120Pa・secのポリエチレンテレフタレート、海成分に285℃での溶融粘度が140Pa・secである平均分子量4000のポリエチレングリコールを4重量%、5−ナトリウムスルホイソフタル酸を8mol%共重合した改質ポリエチレンテレフタレートを使用し、図1に示す形状をもつ島数400の口金を用いて海成分:島成分=70:30の海島比率で紡糸し、紡糸速度1500m/minで引き取り、未延伸糸を得た。これを1.7倍で延伸した後、ギロチンカッターで500μmにカットして、短繊維前駆体を得た。これを4%NaOH水溶液で95℃にて70%減量したところ、海成分を減量するのに時間がかかるため、表面付近にある島成分が余分に減量され、平均繊維直径は不均一となった。短繊維前駆体の断面をTEM観察したところ、平均繊維直径(Xd)と島成分間の海成分の厚み(S)を調べたところ、S/Xd=0.8であり、請求項3及び請求項7記載の範囲から外れており、海島の均質性が崩れていた。また、繊維直径及びその変動係数、繊維長及びその変動係数、アスペクト比、未分散欠点又は絡み、及び海成分抽出性について表1に記す通りである。
[Comparative Example 2]
Polyethylene terephthalate having a melt viscosity at 285 ° C. of 120 Pa · sec as the island component, polyethylene glycol having an average molecular weight of 4000 having a melt viscosity at 285 ° C. of 140 Pa · sec as the sea component, 4% by weight, and 5-sodium sulfoisophthalic acid. Using a modified polyethylene terephthalate copolymerized with 8 mol%, spinning was performed at a sea-island ratio of sea component: island component = 70: 30 using a base of 400 islands having the shape shown in FIG. 1, and at a spinning speed of 1500 m / min. The undrawn yarn was obtained by taking-up. This was stretched by 1.7 times and then cut to 500 μm with a guillotine cutter to obtain a short fiber precursor. When this was reduced by 70% at 95 ° C. with a 4% NaOH aqueous solution, it took time to reduce the sea component, so the island component near the surface was excessively reduced and the average fiber diameter became uneven. . When the cross section of the short fiber precursor was observed with a TEM, the average fiber diameter (Xd) and the thickness of the sea component between the island components (S) were examined, and S / Xd = 0.8. It was out of the range described in Item 7, and the homogeneity of the sea island was broken. Further, the fiber diameter and its variation coefficient, the fiber length and its variation coefficient, the aspect ratio, the undispersed defect or entanglement, and the sea component extractability are as shown in Table 1.

[実施例4]
島成分に285℃での溶融粘度が115Pa・secのポリエチレンテレフタレートを使用し、海成分に285℃での溶融粘度が130Pa・secである平均分子量4000のポリエチレングリコールを3重量%、5−ナトリウムスルホイソフタル酸を10mol%共重合した改質ポリエチレンテレフタレートを海成分:島成分=30:70の重量比率で、島数900の口金(図1と同型)を用いて紡糸し、3500m/minで引き取り、未延伸糸を得た。アルカリ減量速度差は2000倍であった。これを2.3倍に延伸した後、ギロチンカッターで500μmにカットして、短繊維前駆体を得た。これを4%NaOH水溶液で95℃にて30%減量したところ、繊維直径と繊維長が比較的均一である短繊維が生成していることを確認した。短繊維前駆体(海島複合短繊維)の断面をTEM観察して平均繊維直径(Xd)と島成分間の海成分の厚み(S)を調べたところ、S/Xd=0.22であり、請求項3及び請求項7に記載した範囲内であった。また、繊維直径及びその変動係数、繊維長及びその変動係数、アスペクト比、未分散欠点又は絡み、及び海成分抽出性について表1に記す通り、繊維直径及び繊維長ともに均一で、分散性、抽出性の良好であることが確認できた。
[Example 4]
Polyethylene terephthalate having a melt viscosity of 115 Pa · sec at 285 ° C. is used as the island component, and 3% by weight of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 130 Pa · sec at 285 ° C. is used as the sea component. A modified polyethylene terephthalate copolymerized with 10 mol% of isophthalic acid was spun using a base having the number of islands of 900 (same type as in FIG. 1) at a weight ratio of sea component: island component = 30: 70, and taken up at 3500 m / min. An undrawn yarn was obtained. The alkali weight loss rate difference was 2000 times. This was stretched 2.3 times and then cut to 500 μm with a guillotine cutter to obtain a short fiber precursor. When this was reduced by 30% at 95 ° C. with a 4% NaOH aqueous solution, it was confirmed that short fibers having a relatively uniform fiber diameter and fiber length were produced. When the cross-section of the short fiber precursor (sea-island composite short fiber) was observed with a TEM and the average fiber diameter (Xd) and the thickness of the sea component between the island components (S) were examined, S / Xd = 0.22. It was within the range described in claims 3 and 7. Also, as shown in Table 1, fiber diameter and its coefficient of variation, fiber length and its coefficient of variation, aspect ratio, undispersed defects or entanglement, and sea component extractability, both fiber diameter and fiber length are uniform, dispersibility, and extraction It was confirmed that the property was good.

[比較例3]
実施例4におけるカット長を変更した結果を表1に示す。
[Comparative Example 3]
The results of changing the cut length in Example 4 are shown in Table 1.

[実施例5]
島成分に285℃での溶融粘度が120Pa・secのポリエチレンテレフタレートを使用し、海成分に285℃での溶融粘度が135Pa・secである平均分子量4000のポリエチレングリコールを3重量%、5−ナトリウムスルホイソフタル酸を9mol%共重合した改質ポリエチレンテレフタレートを用いて、海成分:島成分=30:70の重量比率で、島数1000の口金(図1と同型)を用いて紡糸し、1000m/minで引き取り、未延伸糸を得た。アルカリ減量速度差は1200倍であった。これを80℃の温水バス中で22倍に延伸した後、更に90℃の加熱ローラー通過後乾熱状態で2.3倍延伸して、ギロチンカッターで100μmにカットして、短繊維前駆体を得た。これを海成分のみを溶解除去するため、4%NaOH水溶液で95℃にて30%減量したところ、繊維直径と繊維長が比較的均一である短繊維が生成していることを確認した。短繊維前駆体(海島複合短繊維)の断面をTEM観察して、平均繊維直径(Xd)と島成分間の海成分の厚み(S)を調べたところ、S/Xd=0.24であり、請求項3及び請求項7に記載した範囲内であった。また、繊維直径及びその変動係数、繊維長及びその変動係数、アスペクト比、未分散欠点又は絡み、及び海成分抽出性について表1に記す通り、繊維直径及び繊維長ともに均一で、分散性、抽出性の良好であることが確認できた。
[Example 5]
Polyethylene terephthalate having a melt viscosity of 120 Pa · sec at 285 ° C. is used as the island component, and 3% by weight of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 135 Pa · sec at 285 ° C. is used as the sea component. Using modified polyethylene terephthalate copolymerized with 9 mol% of isophthalic acid, spinning was performed using a base having the number of islands (same type as FIG. 1) at a weight ratio of sea component: island component = 30: 70, and 1000 m / min. The undrawn yarn was obtained. The alkali weight loss rate difference was 1200 times. This was stretched 22 times in a hot water bath at 80 ° C., then further passed 2.3 times in a dry heat state after passing through a heating roller at 90 ° C., cut to 100 μm with a guillotine cutter, and a short fiber precursor was obtained. Obtained. In order to dissolve and remove only the sea component, it was confirmed that a short fiber having a relatively uniform fiber diameter and fiber length was produced when the amount was reduced by 30% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the short fiber precursor (sea-island composite short fiber) was observed with a TEM and the average fiber diameter (Xd) and the thickness of the sea component between the island components (S) were examined, S / Xd = 0.24. And within the ranges described in claims 3 and 7. Also, as shown in Table 1, fiber diameter and its coefficient of variation, fiber length and its coefficient of variation, aspect ratio, undispersed defects or entanglement, and sea component extractability, both fiber diameter and fiber length are uniform, dispersibility, and extraction It was confirmed that the property was good.

[比較例4]
実施例5におけるカット長を変更した結果を表1に示す。
[Comparative Example 4]
Table 1 shows the result of changing the cut length in Example 5.

参考例6
島成分に270℃での溶融粘度が60Pa・secのポリエチレンテレフタレートを使用し、海成分に270℃での溶融粘度が175Pa・secであるD体純度が99%のポリ乳酸を用いて、海成分:島成分=20:80の重量比率で、島数500の口金(図1と同型)を用いて紡糸し、1000m/minで引き取り、未延伸糸を得た。アルカリ減量速度差は1000倍であった。これを2.0倍に延伸した後、ギロチンカッターで1000μmにカットして、短繊維前駆体を得た。これを海成分のみを溶解除去するため、4%NaOH水溶液で95℃にて20%減量したところ、繊維直径と繊維長が比較的均一である短繊維が生成していることを確認した。短繊維前駆体(海島複合短繊維)の断面をTEM観察して、平均繊維直径(Xd)と島成分間の海成分の厚み(S)を調べたところ、S/Xd=0.29であり、請求項3及び請求項7に記載した範囲内であった。また、繊維直径及びその変動係数、繊維長及びその変動係数、アスペクト比、未分散欠点又は絡み、及び海成分抽出性について表1に記す通り、繊維直径及び繊維長ともに均一で、分散性、抽出性の良好であることが確認できた。
[ Reference Example 6 ]
Using polyethylene terephthalate having a melt viscosity at 270 ° C. of 60 Pa · sec as the island component and using polylactic acid having a melt viscosity of 175 Pa · sec at 270 ° C. and a purity of 99% as the sea component, : Island component = 20: 80 weight ratio, spinning using a 500 island cap (same type as in FIG. 1) and drawing at 1000 m / min to obtain an undrawn yarn. The alkali weight loss rate difference was 1000 times. After extending this 2.0 times, it cut | disconnected to 1000 micrometers with the guillotine cutter, and obtained the short fiber precursor. In order to dissolve and remove only the sea component, it was confirmed that short fibers having a relatively uniform fiber diameter and fiber length were produced when the amount was reduced by 20% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the short fiber precursor (sea-island composite short fiber) was observed with a TEM and the average fiber diameter (Xd) and the thickness of the sea component between the island components (S) were examined, S / Xd = 0.29. And within the ranges described in claims 3 and 7. Also, as shown in Table 1, fiber diameter and its coefficient of variation, fiber length and its coefficient of variation, aspect ratio, undispersed defects or entanglement, and sea component extractability, both fiber diameter and fiber length are uniform, dispersibility, and extraction It was confirmed that the property was good.

[実施例7]
島成分に285℃での溶融粘度が115Pa・secのナイロン6を使用し、海成分に285℃での溶融粘度が140Pa・secである平均分子量4000のポリエチレングリコールを4重量%、5−ナトリウムスルホイソフタル酸を8mol%共重合した改質ポリエチレンテレフタレートを用いて、海成分:島成分=20:80の重量比率で、島数1000の口金(図1と同型)を用いて紡糸し、1000m/minで引き取り、未延伸糸を得た。ここで、島成分であるナイロン6はアルカリ溶液には実質的に溶解しないので、十分海島溶解速度差がある。これを3.1倍で延伸した後、ギロチンカッターで500μmにカットして、短繊維前駆体を得た。これを海成分のみを溶解除去するため、4%NaOH水溶液で95℃にて30%減量したところ、繊維直径と繊維長が比較的均一である短繊維が生成していることを確認した。短繊維前駆体(海島複合短繊維)の断面をTEM観察して、平均繊維直径(Xd)と島成分間の海成分の厚み(S)を調べたところ、S/Xd=0.27であり、請求項3及び請求項7に記載した範囲内であった。また、繊維直径及びその変動係数、繊維長及びその変動係数、アスペクト比、未分散欠点又は絡み、及び海成分抽出性について表1に記す通り、繊維直径及び繊維長ともに均一で、分散性、抽出性の良好であることが確認できた。
[Example 7]
Nylon 6 having a melt viscosity of 115 Pa · sec at 285 ° C. is used as the island component, and polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 140 Pa · sec at 285 ° C. is used as the sea component. Using modified polyethylene terephthalate copolymerized with 8 mol% of isophthalic acid, spinning was performed using a base having the number of islands (same type as FIG. 1) at a weight ratio of sea component: island component = 20: 80, and 1000 m / min. The undrawn yarn was obtained. Here, since nylon 6 which is an island component does not substantially dissolve in an alkaline solution, there is a sufficient sea-island dissolution rate difference. This was stretched by 3.1 times and then cut to 500 μm with a guillotine cutter to obtain a short fiber precursor. In order to dissolve and remove only the sea component, it was confirmed that a short fiber having a relatively uniform fiber diameter and fiber length was produced when the amount was reduced by 30% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the short fiber precursor (sea-island composite short fiber) was observed with a TEM and the average fiber diameter (Xd) and the thickness of the sea component between the island components (S) were examined, S / Xd = 0.27. And within the ranges described in claims 3 and 7. Also, as shown in Table 1, fiber diameter and its coefficient of variation, fiber length and its coefficient of variation, aspect ratio, undispersed defects or entanglement, and sea component extractability, both fiber diameter and fiber length are uniform, dispersibility, and extraction It was confirmed that the property was good.

Figure 0004960616
Figure 0004960616

なお、特許文献1の実施例に示されるナノファイバーの繊維直径分布は、繊維直径が平均繊維直径±15nmに存在する繊維数が約70%であることから、ほぼ標準偏差が15nm近傍にあると云え、これからすると、CVdが18〜31にあることから、本発明の短繊維が従来技術より如何に均一であるかが理解できよう。   The fiber diameter distribution of the nanofibers shown in the examples of Patent Document 1 is that the number of fibers present in the average fiber diameter ± 15 nm is about 70%, so that the standard deviation is approximately 15 nm. No, it can be understood how uniform the short fiber of the present invention is compared with the prior art since the CVd is 18 to 31.

本発明によれば、繊維直径が1μm以下の繊維でありながら、繊維直径及び繊維長が均一で、かつ分散性が良好な短繊維が得られる。これは、従来の混合紡糸繊維の島繊維抽出による超極細繊維や、叩解フィブリル化により得られる超極細繊維では達成できなかったことである。本発明の超極細短繊維は、繊維直径や繊維長を任意に制御することができるため、湿式不織布等の繊維構造体において、繊維直径がナノメートルレベルでの密度勾配層構造等の構造制御が可能となり、またこれまでにない目付や厚みの超薄葉紙が得られる可能性を秘めており、セパレータ用途で燃料電池やリチウム電池等の小型化かつ大容量化の技術革新に貢献することが期待され、今後のナノファイバー構造体の開発に大きく寄与すると確信する。   According to the present invention, a short fiber having a uniform fiber diameter and fiber length and good dispersibility can be obtained even though the fiber diameter is 1 μm or less. This is not possible with conventional ultra-fine fibers obtained by island fiber extraction of mixed spun fibers or with ultra-fine fibers obtained by beating fibrillation. Since the ultra-fine short fiber of the present invention can arbitrarily control the fiber diameter and fiber length, in a fiber structure such as a wet nonwoven fabric, the structure control such as a density gradient layer structure at a fiber diameter of nanometer level is possible. It is possible to obtain ultra-thin paper with an unprecedented basis weight and thickness, and it is expected to contribute to technological innovations for downsizing and increasing the capacity of fuel cells and lithium batteries in separator applications. I am convinced that it will greatly contribute to the development of nanofiber structures in the future.

本発明の短繊維の発生前駆体である海島型複合繊維を紡糸するために用いられる紡糸口金の一概略図である。1 is a schematic view of a spinneret used for spinning a sea-island type composite fiber that is a precursor for generating short fibers according to the present invention. 本発明の短繊維の発生前駆体である海島型複合繊維を紡糸するために用いられる紡糸口金の他の概略図である。FIG. 4 is another schematic view of a spinneret used for spinning sea-island type composite fibers that are precursors for generating short fibers according to the present invention.

符号の説明Explanation of symbols

1:分配前島成分ポリマー溜め部分
2:島成分分配用導入孔
3:海成分導入孔
4:分配前海成分ポリマー溜め部分
5:個別海成分/島成分=鞘/芯構造形成部
6:海島全体合流絞り部
1: Pre-distribution island component polymer reservoir part 2: Island component distribution introduction hole 3: Sea component introduction hole 4: Pre-distribution sea component polymer reservoir part 5: Individual sea component / island component = sheath / core structure forming part 6: Whole sea island Joint throttle part

Claims (11)

熱可塑性樹脂からなり、繊維直径が10〜1000nm、以下に定義する繊維直径変動係数(CVd)が0〜15、繊維長が50〜1000μm、以下に定義する繊維長変動係数(CVl)が0〜20であって、かつアスペクト比(=繊維長/繊維直径)が100〜2000であることを特徴とする短繊維であり、該短繊維が、易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維から得られる短繊維であって、該海島型複合繊維が溶融紡糸により得られ、溶融紡糸温度における海成分と島成分との溶融粘度比(海成分/島成分)が1.1〜2.0であり、該海島型複合繊維の横断面における該島成分の繊維直径(Xd)が10〜1000nm、島数が100以上、島成分間の海成分の厚み(S)が0.001≦S/Xd≦0.5である海島型複合繊維を50〜1000μmの繊維長にカットした後、海成分を抽出除去して島成分を短繊維として得ることを特徴とする、短繊維の製造方法。
繊維直径変動係数(CVd)=σd/Xd×100(%)
[但し、繊維直径は繊維断面における長径と短径の平均値とし、σdは繊維直径分布の標準偏差、Xdは平均繊維直径を示す。]
繊維長変動係数(CVl)=σl/Xl×100(%)
[但し、σlは繊維長分布の標準偏差、Xlは平均繊維長を示す。]
Made of a thermoplastic resin, the fiber diameter is 10 to 1000 nm, the fiber diameter variation coefficient (CVd) defined below is 0 to 15, the fiber length is 50 to 1000 μm, and the fiber length variation coefficient (CVl) defined below is 0 to A short fiber having an aspect ratio (= fiber length / fiber diameter) of 100 to 2000, wherein the short fiber has an easily soluble component as a sea component and a hardly soluble component as an island component. The sea-island type composite fiber is obtained by melt spinning, and the melt viscosity ratio (sea component / island component) between the sea component and the island component at the melt spinning temperature is 1. 0.1 to 2.0, and the fiber diameter (Xd) of the island component in the cross section of the sea-island composite fiber is 10 to 1000 nm, the number of islands is 100 or more, and the thickness (S) of the sea component between the island components is 0.001 ≦ S / Xd ≦ 0.5 After cutting a certain sea-island type composite fiber to fiber length of 50 to 1000 [mu] m, and wherein the obtaining the short fibers of the island component to extract and remove the sea component, the manufacturing method of the short fibers.
Fiber diameter variation coefficient (CVd) = σd / Xd × 100 (%)
[However, the fiber diameter is the average value of the major axis and minor axis in the fiber cross section, σd is the standard deviation of the fiber diameter distribution, and Xd is the average fiber diameter. ]
Fiber length variation coefficient (CVl) = σl / Xl × 100 (%)
[However, σl represents the standard deviation of the fiber length distribution, and Xl represents the average fiber length. ]
熱可塑性樹脂がポリエステル類、ポリアミド類、及びポリオレフィン類から選ばれる少なくとも1種の熱可塑性樹脂である請求項1に記載の短繊維の製造方法The method for producing short fibers according to claim 1, wherein the thermoplastic resin is at least one thermoplastic resin selected from polyesters, polyamides, and polyolefins. 海成分がポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリアルキレングリコール共重合ポリエステル及びポリオキシアルキレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルから選択される少なくとも1種のアルカリ水溶液易溶解性ポリマーである請求項又は請求項に記載の短繊維の製造方法。 At least one alkaline aqueous solution in which the sea component is selected from polylactic acid, ultra-high molecular weight polyalkylene oxide condensation polymer, polyalkylene glycol copolymer polyester, and polyoxyalkylene glycol copolymer polyester and 5-sodium sulfoisophthalic acid copolymer polyester method for producing a staple fiber according to claim 1 or claim 2, which is readily soluble polymer. 海成分が5−ナトリウムスルホイソフタル酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合したポリエチレンテレフタレート系共重合ポリエステルである請求項1〜3のいずれかに記載の短繊維の製造方法。 According to any one of claims 1 to 3 sea component is polyethylene terephthalate-based copolyester obtained by polymerizing 3 to 10 wt% copolymer of polyethylene glycol of 5-sodium sulfoisophthalic acid 6-12 mol% and a molecular weight from 4,000 to 12,000 Of manufacturing short fibers. 熱可塑性樹脂がポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ナイロン6、ナイロン66、高密度ポリエチレン、低密度ポリエチレン、又はアイソタクティックポリプロピレンである請求項1〜4のいずれかに記載の短繊維の製造方法。The thermoplastic resin is polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, nylon 6, nylon 66, high density polyethylene, low density polyethylene, or isotactic polypropylene. The manufacturing method of the short fiber of description. 溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維である、短繊維の発生前駆体であって、該海島型複合繊維が溶融紡糸により得られ、溶融紡糸温度における海成分と島成分との溶融粘度比(海成分/島成分)が1.1〜2.0であり、
該海島型複合繊維の横断面における熱可塑性樹脂からなる該島成分の繊維直径(Xd)が10〜1000nm、以下に定義する繊維直径変動係数(CVd)が0〜15、島成分の繊維長が50〜1000μm、以下に定義する繊維長変動係数(CVl)が0〜20であり、かつアスペクト比(=繊維長/繊維直径)が100〜2000であり、
島数が100以上、島成分間の海成分の厚み(S)が0.001≦S/Xd≦0.5、該海島型複合繊維の繊維長50〜1000μmの海島型複合繊維であることを特徴とする繊維の発生前駆体。
繊維直径変動係数(CVd)=σd/Xd×100(%)
[但し、繊維直径は繊維断面における長径と短径の平均値とし、σdは繊維直径分布の標準偏差、Xdは平均繊維直径を示す。]
繊維長変動係数(CVl)=σl/Xl×100(%)
[但し、σlは繊維長分布の標準偏差、Xlは平均繊維長を示す。]
A sea-island type composite fiber having an easily soluble component as a sea component and a hardly soluble component as an island component, a short fiber generation precursor , the sea-island type composite fiber obtained by melt spinning, and a sea component at a melt spinning temperature The melt viscosity ratio (sea component / island component) between the island component and the island component is 1.1 to 2.0,
The fiber diameter (Xd) of the island component made of a thermoplastic resin in the cross section of the sea-island type composite fiber is 10 to 1000 nm, the fiber diameter variation coefficient (CVd) defined below is 0 to 15, and the fiber length of the island component is 50-1000 μm, the fiber length variation coefficient (CVl) defined below is 0-20, and the aspect ratio (= fiber length / fiber diameter) is 100-2000,
It is a sea- island type composite fiber having 100 or more islands, a sea component thickness (S) between the island components of 0.001 ≦ S / Xd ≦ 0.5, and a fiber length of the sea-island type composite fiber of 50 to 1000 μm. Characteristic short fiber generation precursor.
Fiber diameter variation coefficient (CVd) = σd / Xd × 100 (%)
[However, the fiber diameter is the average value of the major axis and minor axis in the fiber cross section, σd is the standard deviation of the fiber diameter distribution, and Xd is the average fiber diameter. ]
Fiber length variation coefficient (CVl) = σl / Xl × 100 (%)
[However, σl represents the standard deviation of the fiber length distribution, and Xl represents the average fiber length. ]
海成分がポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリアルキレングリコール共重合ポリエステル及びポリオキシアルキレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルから選択される少なくとも1種のアルカリ水溶液易溶解性ポリマーである請求項に記載の短繊維の発生前駆体。 At least one alkaline aqueous solution in which the sea component is selected from polylactic acid, ultra-high molecular weight polyalkylene oxide condensation polymer, polyalkylene glycol copolymer polyester, and polyoxyalkylene glycol copolymer polyester and 5-sodium sulfoisophthalic acid copolymer polyester The short fiber generation precursor according to claim 6 , which is a readily soluble polymer. 海成分が5−ナトリウムスルホイソフタル酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合したポリエチレンテレフタレート系共重合ポリエステルである請求項又は請求項に記載の短繊維の発生前駆体。 According to claim 6 or claim 7 which is polyethylene terephthalate-based copolyester sea component are polymerized copolymer 3-10 wt% of polyethylene glycol of 5-sodium sulfoisophthalic acid 6-12 mol% and a molecular weight from 4,000 to 12,000 A short fiber generation precursor. 熱可塑性樹脂がポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ナイロン6、ナイロン66、高密度ポリエチレン、低密度ポリエチレン、又はアイソタクティックポリプロピレンである請求項6〜8のいずれかに記載の短繊維の発生前駆体。The thermoplastic resin is polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, nylon 6, nylon 66, high-density polyethylene, low-density polyethylene, or isotactic polypropylene. The short fiber generation precursor described. 請求項1〜5のいずれか1項記載の短繊維の製造方法により得られる短繊維。The short fiber obtained by the manufacturing method of the short fiber of any one of Claims 1-5. 請求項6〜9のいずれか1項記載の短繊維前駆体から海成分を除去して得られる短繊維。The short fiber obtained by removing a sea component from the short fiber precursor of any one of Claims 6-9.
JP2005283965A 2005-09-29 2005-09-29 Short fiber, method for producing the same, and precursor thereof Active JP4960616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283965A JP4960616B2 (en) 2005-09-29 2005-09-29 Short fiber, method for producing the same, and precursor thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283965A JP4960616B2 (en) 2005-09-29 2005-09-29 Short fiber, method for producing the same, and precursor thereof

Publications (2)

Publication Number Publication Date
JP2007092235A JP2007092235A (en) 2007-04-12
JP4960616B2 true JP4960616B2 (en) 2012-06-27

Family

ID=37978269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283965A Active JP4960616B2 (en) 2005-09-29 2005-09-29 Short fiber, method for producing the same, and precursor thereof

Country Status (1)

Country Link
JP (1) JP4960616B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US8513147B2 (en) * 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
JP5204725B2 (en) * 2009-06-09 2013-06-05 Kbセーレン株式会社 Method for producing polyurethane microfiber
JP2011058124A (en) * 2009-09-10 2011-03-24 Teijin Fibers Ltd Polylactic acid microfiber
JP5486332B2 (en) * 2010-02-02 2014-05-07 旭化成せんい株式会社 Biodegradable non-woven fabric
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
JP2012092458A (en) * 2010-10-26 2012-05-17 Teijin Fibers Ltd Ultrafine fiber for binder
JP5819620B2 (en) * 2011-03-17 2015-11-24 帝人株式会社 Polyester microfiber
US20120302120A1 (en) * 2011-04-07 2012-11-29 Eastman Chemical Company Short cut microfibers
US8871052B2 (en) 2012-01-31 2014-10-28 Eastman Chemical Company Processes to produce short cut microfibers
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
WO2014192746A1 (en) * 2013-05-30 2014-12-04 帝人株式会社 Organic resin non-crimped staple fiber
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
JP7176886B2 (en) * 2018-08-16 2022-11-22 帝人フロンティア株式会社 Island-in-the-sea composite fibers and ultrafine fiber bundles
EP3882381A4 (en) * 2018-11-16 2023-04-26 Toray Industries, Inc. Ultrafine fibers and liquid fiber dispersion
EP3978079A4 (en) * 2019-05-31 2023-06-28 Kao Corporation Film forming composition and ultra-fine short fibers
CN114846181A (en) * 2019-12-17 2022-08-02 株式会社可乐丽 Sea-island composite fiber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209583A (en) * 1994-06-07 1996-08-13 Kuraray Co Ltd Paper made from aromatic polyester and its production
JP3301672B2 (en) * 1994-06-07 2002-07-15 株式会社クラレ Aromatic polyester pulp and method for producing the same
JP3957355B2 (en) * 1996-03-29 2007-08-15 日本バイリーン株式会社 Sea-island fiber and non-woven fabric using the same
JP3678511B2 (en) * 1996-09-09 2005-08-03 旭化成せんい株式会社 Ultrafine short fiber for papermaking and method for producing the same
JP3741886B2 (en) * 1998-12-22 2006-02-01 日本バイリーン株式会社 Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JP4184917B2 (en) * 2002-10-23 2008-11-19 東レ株式会社 Nanofiber assembly
JP2005256253A (en) * 2004-03-15 2005-09-22 Kasen Nozuru Seisakusho:Kk Spinneret apparatus for sea-island type conjugate fiber, core-sheath type conjugate flow forming part and method for producing sea-island type conjugate fiber
TWI341339B (en) * 2004-03-30 2011-05-01 Teijin Fibers Ltd Island-in-sea type composite fibers and process for producing same

Also Published As

Publication number Publication date
JP2007092235A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4960616B2 (en) Short fiber, method for producing the same, and precursor thereof
EP2138633B1 (en) Thin paper
JP4976487B2 (en) Wet nonwovens and filters
JP5027688B2 (en) Flexible nonwoven fabric
US8128850B2 (en) Method of producing islands-in-sea type composite spun fiber
JP4950472B2 (en) Method for producing short cut nanofibers
JP2010070870A (en) Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
JP5607748B2 (en) Multilayer filter media and filters
EP3431162A1 (en) Filter medium for liquid filter and liquid filter
US10550803B2 (en) Filter medium for filter, method for producing the same, and filter
JP4994313B2 (en) Method for producing short cut nanofiber and method for producing wet nonwoven fabric
JP5284889B2 (en) Fiber products
JP5329919B2 (en) Sound absorbing structure manufacturing method and sound absorbing structure
JP2012223396A (en) Nonwoven fabric for cosmetic product, and the cosmetic product
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
JP2019199668A (en) Mask filter and face mask
JP2013256461A (en) Sheet for body skin contact and cosmetic product
JP2012092461A (en) Thin paper
JP2012237084A (en) Nonwoven fabric for filter and air filter
JP4922964B2 (en) Dry nonwoven fabric
JP2014201847A (en) Air-laid nonwoven fabric and fiber product
JP7176886B2 (en) Island-in-the-sea composite fibers and ultrafine fiber bundles
JP2012092458A (en) Ultrafine fiber for binder
JP2017170352A (en) Fuel filter material, manufacturing method therefor, and gasoline filter
JP4725349B2 (en) Suede-like artificial leather

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4960616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250