JP4223060B2 - High elongation nonwoven fabric and surface material using the same - Google Patents

High elongation nonwoven fabric and surface material using the same Download PDF

Info

Publication number
JP4223060B2
JP4223060B2 JP2007040438A JP2007040438A JP4223060B2 JP 4223060 B2 JP4223060 B2 JP 4223060B2 JP 2007040438 A JP2007040438 A JP 2007040438A JP 2007040438 A JP2007040438 A JP 2007040438A JP 4223060 B2 JP4223060 B2 JP 4223060B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
elongation
surface material
fiber
polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007040438A
Other languages
Japanese (ja)
Other versions
JP2008214766A (en
Inventor
隆文 横山
正広 矢放
郁雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Fibers Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2007040438A priority Critical patent/JP4223060B2/en
Publication of JP2008214766A publication Critical patent/JP2008214766A/en
Application granted granted Critical
Publication of JP4223060B2 publication Critical patent/JP4223060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、毛羽立ちが少なく、低モジュラスで高伸度を有する不織布及びそれを用いた表面材料に関するものである。   The present invention relates to a non-woven fabric having low fuzz, low modulus and high elongation, and a surface material using the same.

ポリエチレンテレフタレートをはじめとするポリエステル系樹脂は数々の特性に優れることから幅広い分野で用いられている。従来から既知の高分子材料を高性能・多様化するために熱可塑性樹脂のポリマーブレンドについて数々の研究が行われているが、一般的に非相溶系のポリマー同士をブレンドしただけでは均一に分散させることが困難であり、安定して生産することは難しいとされてきた。
特許文献1や2のようにポリエステル系樹脂にポリスチレン系樹脂のような非相溶系のポリマーをブレンドすることにより配向結晶化を抑制し、高伸度化がなされているが、これらは非相溶系のブレンドであるため、分散のばらつき、ポリエステル系樹脂とポリスチレン系樹脂の流動性の違いにより発生する単糸切れ、ポリスチレン系樹脂の繊維表面へのブリードアウト等により紡糸性が悪く、高伸度化と安定した生産性を兼ね備えた繊維は得られていない。
Polyester resins such as polyethylene terephthalate are used in a wide range of fields because of their excellent properties. Many studies have been conducted on polymer blends of thermoplastic resins in order to improve the performance and diversification of known polymer materials, but in general, simply blending incompatible polymers together will result in uniform dispersion It has been difficult to achieve stable production.
As described in Patent Documents 1 and 2, oriented crystallization is suppressed by blending an incompatible polymer such as a polystyrene resin with a polyester resin, and high elongation is achieved. Because of this blend, dispersion of dispersion, single yarn breakage caused by the difference in flowability between polyester resin and polystyrene resin, poor spinnability due to bleeding out of polystyrene resin to fiber surface, etc., and high elongation No fiber with stable productivity has been obtained.

そのため、特許文献3のようにその他の成分として相溶化剤等を添加することによりポリマー同士の相溶性を改善したり、2基の押出機を用いて2成分のポリマーを別々に融解後、海島型や鞘芯型等の繊維を作製することが行われている。これらの方法でポリマーを繊維化する場合、相溶化剤等のポリマー以外の成分を用いなければならないこと、設備的に大きくなること等、コスト面や製造面からも複雑な方法となるという問題点がある。
また、特許文献4のように高伸度の不織布を得るためにウェブをニードルパンチやウォータージェットパンチ等で交絡処理を施すことが行われている。機械的交絡を施した不織布を表面材料として用いた場合、不織布の繊維は交絡されているが、繊維表面は抑えられていないため、毛羽立ちやすい。また、交絡による厚みを有し、薄いシートとして用いた場合は、見た目も悪くなり、高目付化が必要となる。
Therefore, the compatibility between polymers can be improved by adding a compatibilizing agent or the like as other components as in Patent Document 3, or two-component polymers can be melted separately using two extruders, Fabrication of a fiber such as a mold or a sheath core type is performed. When polymerizing fibers by these methods, it is necessary to use components other than the polymer such as a compatibilizing agent, and it becomes a complicated method from the viewpoint of cost and manufacturing, such as being large in equipment. There is.
In addition, as in Patent Document 4, in order to obtain a non-woven fabric having a high elongation, the web is subjected to an entanglement process using a needle punch, a water jet punch or the like. When a nonwoven fabric subjected to mechanical entanglement is used as a surface material, the fibers of the nonwoven fabric are entangled, but the fiber surface is not suppressed, and thus it is easy to fluff. Moreover, when it uses as a thin sheet | seat which has the thickness by an entanglement, it looks bad and the high fabric weight is needed.

特許第1447600号公報Japanese Patent No. 1447600 特開2001−089938号公報JP 2001-089938 A 特許第3769379号公報Japanese Patent No. 3769379 特許第3674302号公報Japanese Patent No. 3674302

本発明は、前記のような従来技術の問題を解決しようとするものであり、ポリエステル系樹脂のブレンド紡糸において特定の物性を有するポリスチレン系樹脂を選定することで相溶化剤を用いなくても熱安定性と分散性を向上することが可能であり、紡糸性が良好で、且つ、低モジュラスで高伸度を有する不織布を提供すること、また、表面材料として見た目も良く、毛羽立ちにくい不織布を提供することを目的とするものである。本発明においては、後加工の必要が無いため、コスト面で有利であり、且つ、安定的な生産が可能である。   The present invention is intended to solve the above-mentioned problems of the prior art, and by selecting a polystyrene resin having specific physical properties in blend spinning of a polyester resin, the heat can be obtained without using a compatibilizer. Providing non-woven fabrics that can improve stability and dispersibility, have good spinnability, have low modulus and high elongation, and provide non-woven fabrics that look good and are less fuzzy. It is intended to do. In the present invention, there is no need for post-processing, which is advantageous in terms of cost and enables stable production.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、ポリエステル系樹脂に特定粘度のポリスチレン系樹脂を特定含有率でブレンドして溶融紡糸することにより飛躍的に伸度が向上したポリエステルブレンド長繊維を得ることができ、また、不織布の破断伸度、引裂強度、耐毛羽性の観点から詳細な検討を行い、不織布の部分熱圧着面積率および熱圧着部の形状およびピッチを特定することで破断伸度、引裂強度と耐毛羽性の最適な範囲があることを見出し、本発明に達した。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have achieved a dramatic improvement in elongation by blending a polyester resin with a specific viscosity to a polyester resin at a specific content and melt spinning. Blend long fibers can be obtained, and detailed examination is performed from the viewpoint of the breaking elongation, tear strength, and fluff resistance of the nonwoven fabric, and the partial thermocompression area ratio of the nonwoven fabric and the shape and pitch of the thermocompression bonding portion are specified. Thus, the present inventors have found that there are optimum ranges of elongation at break, tear strength and fluff resistance, and have reached the present invention.

すなわち、本発明は以下のとおりである。
(1)MFRが10g/10min以下であるポリスチレン系樹脂を0.1〜8.0wt%添加したポリエステルブレンド長繊維から構成され、3〜40%の熱圧着面積率で部分熱接合された不織布であって、該長繊維がリン系の難燃剤を含有し、且つ、該不織布のMD、CD方向のいずれの方向の破断伸度が30〜70%、毛羽等級が2.5級以上であり、ポリスチレン系樹脂を添加しない場合の不織布に対する、MD方向の5%モジュラス低下率が20〜50%であり、MD方向の引裂強度増加率が、30〜100%であることを特徴とする耐火被覆材の表面材料
)前記不織布が、スパンボンド不織布であることを特徴とする上記()に記載の耐火被覆材の表面材料用
)前記不織布の目付が10〜160g/m2 であり、且つ、厚みが0.04〜0.8mmであることを特徴とする上記(1)又は(2)に記載の耐火被覆材の表面材料
)前記不織布が、紡糸速度3000〜8000m/minで牽引された繊維から構成され、且つ、繊度が1.0〜4.0dtexであることを特徴とする上記(1)〜(3)のいずれかに記載の耐火被覆材の表面材料
)前記ポリエステルブレンド長繊維の複屈折率Δnが0.015〜0.07であることを特徴とする上記(1)〜(4)のいずれかに記載の耐火被覆材の表面材料
That is, the present invention is as follows.
(1) A non-woven fabric composed of a polyester blend long fiber to which 0.1 to 8.0 wt% of a polystyrene-based resin having an MFR of 10 g / 10 min or less is added and partially thermally bonded at a thermocompression area ratio of 3 to 40%. there are, contain flame retardant phosphorus system the long fibers, and, MD of the nonwoven fabric, 30% to 70% elongation at break in either direction in the CD direction state, and are fluff grade 2.5 or higher grade The fireproof coating is characterized in that the 5% modulus reduction rate in the MD direction is 20 to 50% and the increase rate in tear strength in the MD direction is 30 to 100% with respect to the nonwoven fabric when no polystyrene resin is added. Surface material of the material .
( 2 ) The surface material of the fireproof coating material according to ( 1 ) above, wherein the nonwoven fabric is a spunbonded nonwoven fabric.
(3) the basis weight of the nonwoven fabric is 10~160g / m 2, and, above, wherein the thickness of 0.04~0.8Mm (1) or a fire protection material according to (2) Surface material .
(4) the nonwoven fabric is composed from a towed at a spinning speed of 3000~8000m / min fibers, and, above, wherein the fineness of 1.0~4.0dtex (1) ~ (3) The surface material of the fireproof covering material in any one.
( 5 ) The surface material of the fireproof coating material according to any one of (1) to (4) above, wherein the birefringence Δn of the polyester blend long fiber is 0.015 to 0.07.

本発明の高伸度不織布は、低モジュラスで高伸度を有しているために成型加工時の追従性に特に優れ、且つ、毛羽立ちが少なく、表面材料として用いるのに適した不織布を提供することができる。また、難燃剤を添加することで優れた難燃性を有し、耐火被覆材の表面材料としても適した不織布を提供することができる。   The high elongation nonwoven fabric of the present invention provides a nonwoven fabric suitable for use as a surface material because it has a low modulus and high elongation and is particularly excellent in followability at the time of molding and has less fuzz. be able to. Moreover, the nonwoven fabric which has the outstanding flame retardance by adding a flame retardant and is suitable also as a surface material of a fireproof coating material can be provided.

以下、本発明について具体的に説明する。
本発明に使用するポリスチレン系樹脂は、ポリスチレン、スチレン・共役ジエンブロック共重合体、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、スチレン・アクリル酸エステル共重合体、スチレンメタアクリル酸エステル共重合体等が挙げられる。
本発明においては、主体となるポリエステル系樹脂に対してポリスチレン系樹脂の添加量は、紡糸性や得られる不織布の破断伸度の面から0.1〜8.0wt%が好ましく、より好ましくは0.25〜5.0wt%である。ポリスチレン系樹脂の添加量が0.1wt%未満であると目的とする高伸度化された繊維が得られない。添加量が8.0wt%を超えると高伸度化された繊維は得られるものの、紡糸中に糸切れが多発し、安定して連続した繊維が得られず、生産性が低下する。
Hereinafter, the present invention will be specifically described.
Polystyrene resins used in the present invention are polystyrene, styrene / conjugated diene block copolymers, acrylonitrile / styrene copolymers, acrylonitrile / butadiene / styrene copolymers, styrene / acrylate copolymers, styrene methacrylic acid. An ester copolymer etc. are mentioned.
In the present invention, the amount of the polystyrene resin added to the main polyester resin is preferably 0.1 to 8.0 wt%, more preferably 0 from the viewpoint of spinnability and breaking elongation of the resulting nonwoven fabric. .25 to 5.0 wt%. If the addition amount of the polystyrene-based resin is less than 0.1 wt%, the intended highly stretched fiber cannot be obtained. If the added amount exceeds 8.0 wt%, highly elongated fibers can be obtained, but yarn breaks frequently occur during spinning, and stable and continuous fibers cannot be obtained, resulting in decreased productivity.

本発明に使用するポリエステル系樹脂は、熱可塑性ポリエステルであって、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等が挙げられる。熱可塑性ポリエステルは、エステルを形成する酸成分としてイソフタル酸やフタル酸などが重合または共重合されたポリエステルであってもよい。更には、生分解を有する樹脂、例えば、ポリグリコール酸やポリ乳酸のようなポリ(α−ヒドロキシ酸)、または、これらを主たる繰り返しの単位要素とする共重合体であってもよい。
本発明のポリエステルブレンド長繊維は、ポリエステル系樹脂が海部を形成し、ポリスチレン系樹脂が島部を形成する海島構造を形成することが好ましい。これらブレンド樹脂の延伸時においてポリスチレン系樹脂がポリエステル系樹脂よりも先に溶融状態からガラス状態へと転移して延伸が終了し、海部を形成するポリエステル系樹脂の延伸、配向結晶化が阻害されるものと推定される。それゆえ、海部の配向結晶化は抑制され、低結晶性のまま延伸が終了し、高伸度の繊維が得られる。
The polyester-based resin used in the present invention is a thermoplastic polyester, and examples thereof include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate. The thermoplastic polyester may be a polyester obtained by polymerizing or copolymerizing isophthalic acid or phthalic acid as an acid component for forming an ester. Furthermore, it may be a resin having biodegradation, for example, poly (α-hydroxy acid) such as polyglycolic acid or polylactic acid, or a copolymer having these as main repeating unit elements.
The polyester blend long fiber of the present invention preferably forms a sea-island structure in which a polyester-based resin forms a sea part and a polystyrene-based resin forms an island part. When these blend resins are stretched, the polystyrene resin transitions from the molten state to the glass state prior to the polyester resin, and the stretching is completed, and the stretching and orientation crystallization of the polyester resin that forms the sea part are hindered. Estimated. Therefore, oriented crystallization in the sea is suppressed, and the drawing is completed with low crystallinity, and a fiber with high elongation can be obtained.

このような配向結晶化に対する抑制効果は、含有させるポリスチレン系樹脂のMFRが大きく影響し、MFRが10g/10min以下のポリスチレン系樹脂がポリエステル系樹脂中に適度に分散している状態が好ましく、より好ましくは、MFRが1〜5g/10minの範囲のポリスチレン系樹脂である。10g/10minを超えるMFRのポリスチレン系樹脂場合には、得られる繊維の配向結晶化を抑制する効果が不十分となり、不織布の破断伸度が向上しにくい。
本発明の高伸度不織布を構成するポリエステルブレンド繊維の繊度は、好ましくは1.0〜4.0dtexである。繊度が1.0dtex未満であると不織布の強度が低下し、紡糸時においてエジェクターの張力に繊維が十分に耐えることができず、繊維の一部が切れる場合がある。また、繊度が4.0dtexを超えると、繊維の剛性が大きくなり、且つ、紡糸時に冷却が不十分となるために得られる不織布が硬い風合いのものとなり、強度は大きくなるが、繊維の部分熱接合が難しくなる。
The effect of suppressing such orientational crystallization is greatly affected by the MFR of the polystyrene resin to be contained, and a state in which a polystyrene resin having an MFR of 10 g / 10 min or less is appropriately dispersed in the polyester resin is preferable. A polystyrene resin having an MFR in the range of 1 to 5 g / 10 min is preferable. In the case of an MFR polystyrene-based resin exceeding 10 g / 10 min, the effect of suppressing orientation crystallization of the resulting fiber is insufficient, and the breaking elongation of the nonwoven fabric is difficult to improve.
The fineness of the polyester blend fiber constituting the high elongation nonwoven fabric of the present invention is preferably 1.0 to 4.0 dtex. If the fineness is less than 1.0 dtex, the strength of the nonwoven fabric is lowered, and the fiber cannot sufficiently withstand the tension of the ejector during spinning, and part of the fiber may be cut off. On the other hand, when the fineness exceeds 4.0 dtex, the rigidity of the fiber increases and the resulting nonwoven fabric has a hard texture due to insufficient cooling during spinning, and the strength increases, but the partial heat of the fiber increases. Joining becomes difficult.

本発明の繊維の熱接合は、160〜230℃の加熱下で圧着面積率が3〜40%である必要があり、より好ましくは5〜30%、特に好ましくは7〜20%であり、この範囲であると良好な繊維相互間の接合処理を行うことができる。加工の方法としては、一対のカレンダーロール間にウェブを通して熱接合させる方法が生産性に優れていて好ましい。熱接合処理の温度および圧力は、供給されるウェブの目付、速度等の条件によって適宜選択されるべきものであり、一概には定められない。
上記のカレンダーロールとしては、その表面が平滑なものや模様が彫刻されたもの、例えば、長方形型、ピンポイント型、織目柄、Y柄、あるいはこれらの同種ローラーの組み合わせ、または、異種ローラーの組み合わせからなる複数の回転ローラーの使用も可能である。
The heat bonding of the fibers of the present invention requires that the crimping area ratio is 3 to 40% under heating at 160 to 230 ° C., more preferably 5 to 30%, particularly preferably 7 to 20%. When it is within the range, it is possible to perform a good bonding process between fibers. As a processing method, a method in which a web is thermally bonded between a pair of calendar rolls is preferable because of excellent productivity. The temperature and pressure of the thermal bonding treatment should be appropriately selected depending on conditions such as the basis weight and speed of the web to be supplied, and are not generally determined.
As the above-mentioned calender roll, those having a smooth surface or engraved pattern, for example, a rectangular shape, a pinpoint type, a texture pattern, a Y pattern, or a combination of these similar rollers, or different types of rollers It is also possible to use a plurality of rotating rollers made of a combination.

熱接合部の面積率は、不織布の全面積に対して3〜40%であり、この範囲が、得られる長繊維不織布の適度な強度と伸度、良好な耐毛羽性を図る上で好ましい。熱圧着面積率が3%未満であると、毛羽立ちが多く、40%を超えると不織布がペーパーライクになり、破断伸度、引裂強力等の機械的物性が低下する傾向がある。
本発明の不織布は、破断伸度の向上と表面毛羽の改善の両方を改善したものである。一般に、破断伸度を大きくするためにポリスチレン系樹脂の添加量を多くしてもある割合で毛羽は一定となり、また、毛羽立ちを抑制するために熱圧着面積率を大きくすると、破断伸度が低下するものである。本発明では、ポリスチレン系樹脂の添加量と熱圧着面積率を相互に最適化することにより高伸度で毛羽特性の優れた不織布を得ることができた。
The area ratio of the heat-bonded portion is 3 to 40% with respect to the total area of the nonwoven fabric, and this range is preferable for achieving appropriate strength and elongation and good fluff resistance of the obtained long-fiber nonwoven fabric. When the area ratio of thermocompression bonding is less than 3%, there is a lot of fluffing, and when it exceeds 40%, the nonwoven fabric becomes paper-like, and mechanical properties such as elongation at break and tearing strength tend to decrease.
The nonwoven fabric of the present invention improves both the improvement in elongation at break and the improvement in surface fluff. Generally, even if the amount of polystyrene resin added is increased in order to increase the breaking elongation, the fluff becomes constant at a certain ratio, and when the area ratio of thermocompression bonding is increased in order to suppress fuzzing, the breaking elongation decreases. To do. In the present invention, a nonwoven fabric having high elongation and excellent fluff characteristics can be obtained by optimizing the addition amount of the polystyrene-based resin and the thermal compression area ratio.

この関係は、表2に示したとおりであり、ポリスチレン(PS)系樹脂の添加量が0.2〜5wt%であり、且つ、熱圧着面積率が5〜30%の範囲がより好ましく、特に好ましくは、ポリスチレン系樹脂の添加量が0.5〜2.5wt%であり、かつ、熱圧着面積率が7〜20%の範囲である。特に熱圧着面積率が10%前後で、ポリスチレン系樹脂の添加量が0.5〜2.5wt%の範囲が最も適している。
表2におけるポリスチレン系樹脂の添加量が0.5wt%における熱圧着面積率と破断伸度・毛羽等級の関係を図1に示した。熱圧着面積率が増加するにしたがって毛羽等級も向上し、熱圧着面積率11%以上で毛羽等級が4級になる。しかし、一方で、破断伸度は、熱圧着面積率11%をピークとして、それ以上の熱圧着面積率となると大幅に破断伸度が低下する。これらから、ポリスチレン系樹脂の添加量が0.5wt%において破断伸度と毛羽等級が最適になる熱圧着面積率の範囲は、7〜20%であった。
This relationship is as shown in Table 2, and the addition amount of polystyrene (PS) resin is 0.2 to 5 wt%, and the thermocompression area ratio is more preferably in the range of 5 to 30%. Preferably, the addition amount of polystyrene resin is 0.5 to 2.5 wt%, and the thermocompression area ratio is in the range of 7 to 20%. Particularly suitable is a range where the thermocompression bonding area ratio is around 10% and the addition amount of polystyrene resin is 0.5 to 2.5 wt%.
FIG. 1 shows the relationship between the area ratio of thermocompression bonding, the elongation at break and the fluff grade when the addition amount of polystyrene resin in Table 2 is 0.5 wt%. As the thermal compression area ratio increases, the fluff grade improves, and when the thermal compression area ratio is 11% or more, the fluff grade becomes grade 4. However, on the other hand, the elongation at break reaches a peak at an area ratio of 11% for thermocompression bonding, and the elongation at breakage is significantly reduced when the area ratio for thermocompression bonding is higher. From these, the range of the thermocompression bonding area ratio in which the elongation at break and the fluff grade are optimum when the addition amount of the polystyrene resin is 0.5 wt% is 7 to 20%.

また、表2において熱圧着面積率11%におけるポリスチレン系樹脂添加量の効果を図2に示した。ポリスチレン系樹脂の添加量が増加するにしたがい、配向結晶化の抑制により熱接合効果が向上し、添加量が0.5wt%以上では毛羽等級が4級になる。破断伸度は、ポリスチレン系樹脂の添加量が増加するにしたがって向上するが、2.5wt%以上ではほぼ一定となる。紡糸性の観点を含めると、熱圧着面積率11%におけるポリスチレン系樹脂の添加量の範囲は、0.5〜2.5%が最適であると考えられる。
本発明の不織布は、破断伸度がMD及びCD方向のいずれの方向においても、30〜70%であることが必要であり、より好ましくは、35〜70%である。破断伸度が70%を超えると、使用用途によってはたるみやしわが発生しやすく、特に、表面材料として使用する際には好ましくない。尚、MDとは不織布のマシン方向(タテ)、CDとは幅方向(ヨコ)を示す。
Further, in Table 2, the effect of the amount of the polystyrene resin added at a thermocompression bonding area ratio of 11% is shown in FIG. As the addition amount of the polystyrene resin increases, the thermal bonding effect is improved by suppressing orientation crystallization, and when the addition amount is 0.5 wt% or more, the fluff grade becomes 4th grade. The elongation at break increases as the amount of polystyrene resin added increases, but is almost constant at 2.5 wt% or more. From the viewpoint of spinnability, it is considered that 0.5 to 2.5% is optimal for the range of the addition amount of the polystyrene-based resin at the thermocompression bonding area ratio of 11%.
The nonwoven fabric of the present invention needs to have a breaking elongation of 30 to 70% in any of MD and CD directions, more preferably 35 to 70%. When the elongation at break exceeds 70%, sagging and wrinkles are likely to occur depending on the intended use, and this is not particularly preferred when used as a surface material. In addition, MD shows the machine direction (vertical) of a nonwoven fabric, and CD shows the width direction (horizontal).

本発明で得られる高伸度不織布は、ポリスチレン系樹脂を添加しない場合の不織布に対してMD方向の引裂強度増加率が30〜100%であることが好ましい。引裂強度増加率がこの範囲にあると、耐火被覆材として施工する際に不織布としての十分な強度を有している。引裂強度増加率が30%未満であると不織布を施工する際に穴が開いたり、引裂かれたりする。
本発明で得られる高伸度不織布は、ポリスチレン系樹脂を添加しない場合の不織布に対する5%伸長時のモジュラス低下率が20〜50%であることが好ましい。モジュラス低下率がこの範囲であると、小さな変形応力で不織布の加工が可能である。モジュラス低下率が20%未満であると、不織布を加工する際にズレ、破れ等が生じる。
本発明の高伸度不織布の目付は、10〜160g/m2 が好ましく、厚みは、0.04〜0.8mmが好ましい。目付と厚みがこの範囲にあると表面材料として使用する際に十分な強度が得られる。
It is preferable that the high elongation nonwoven fabric obtained in the present invention has a 30% to 100% increase in tear strength in the MD direction with respect to the nonwoven fabric when no polystyrene resin is added. When the tear strength increase rate is in this range, it has sufficient strength as a non-woven fabric when constructed as a fireproof coating. When the tear strength increase rate is less than 30%, holes are opened or torn when the nonwoven fabric is applied.
The high elongation nonwoven fabric obtained by the present invention preferably has a modulus reduction rate of 20 to 50% at 5% elongation relative to the nonwoven fabric when no polystyrene resin is added. When the modulus reduction rate is within this range, the nonwoven fabric can be processed with a small deformation stress. When the modulus reduction rate is less than 20%, displacement, tearing, or the like occurs when the nonwoven fabric is processed.
The basis weight of the high elongation nonwoven fabric of the present invention is preferably 10 to 160 g / m 2 , and the thickness is preferably 0.04 to 0.8 mm. When the basis weight and thickness are in this range, sufficient strength can be obtained when used as a surface material.

本発明の高伸度不織布を得るに際して紡糸速度は、3000〜8000m/minが好ましく、より好ましくは4000〜6000m/minである。高紡速の方がポリスチレン系樹脂添加による高伸度化効果が大きいため、3000m/min未満でも配向結晶化抑制効果は得られるが、不織布の破断伸度上昇効果が小さく、また、機械的物性が不十分である。8000m/minを超えると高伸度の繊維が得にくくなり、紡糸中に糸切れが発生する可能性があり、不織布の生産性が低下するので好ましくない。
本発明の高伸度ポリエステル長繊維の複屈折率Δnは、0.015〜0.07が好ましく、より好ましくは、0.015〜0.05の範囲である。複屈折率がこの範囲であると、繊維の配向が適度で、高伸度の繊維が得られる。
In obtaining the high elongation nonwoven fabric of the present invention, the spinning speed is preferably 3000 to 8000 m / min, more preferably 4000 to 6000 m / min. The higher spinning speed has a higher elongation effect due to the addition of polystyrene resin, so that an effect of suppressing orientation crystallization can be obtained even at less than 3000 m / min, but the effect of increasing the elongation at break of the nonwoven fabric is small, and mechanical properties are also improved. Is insufficient. If it exceeds 8000 m / min, it will be difficult to obtain fibers with high elongation, yarn breakage may occur during spinning, and the productivity of the nonwoven fabric is reduced, which is not preferable.
The birefringence Δn of the high elongation polyester continuous fiber of the present invention is preferably 0.015 to 0.07, and more preferably 0.015 to 0.05. When the birefringence is within this range, the fibers are moderately oriented and fibers with high elongation can be obtained.

本発明の繊維の形成は、常用の紡糸口金を用いて溶融紡糸で行う。ポリエステル系樹脂と少なくとも一種類以上のポリスチレン系樹脂をブレンドさせるには、ポリエステル系樹脂をマスターバッチ化する方法、ドライブレンドにより混合する方法等が考えられるが、コスト面からドライブレンド法を採用することが好ましい。
本発明で得られる高伸度不織布は、直接、長繊維をウェブ化することにより形成されるスパンボンド法が好適である。スパンボンド法で得られる不織布は、布強度が強く、且つ、ボンディング部の破損による短繊維の脱落がない等の物性上の特徴を有しており、また、低コストで生産性が高いため、衛生、土木、建築、農業・園芸を中心に広範な用途で使用されている。
The fiber of the present invention is formed by melt spinning using a conventional spinneret. To blend a polyester resin and at least one polystyrene resin, a method of masterbatching the polyester resin, a method of mixing by dry blending, etc. can be considered, but the dry blend method should be adopted from the cost aspect. Is preferred.
The high elongation nonwoven fabric obtained by the present invention is preferably a spunbond method formed by directly forming long fibers into a web. The nonwoven fabric obtained by the spunbond method has high fabric strength and has physical properties such as no short fibers falling off due to breakage of the bonding part, and because of low cost and high productivity, It is used in a wide range of applications, mainly in hygiene, civil engineering, architecture, agriculture and horticulture.

本発明の高伸度不織布に用いる難燃剤は、環境安全性に優れるノンハロゲンのリン系化合物の難燃剤が好ましい。また、UL−94燃焼試験によりVTM−1規格を満足することが望ましく、より好ましくはVTM−0規格を満足していることである。燃焼試験規格がVTM−1規格未満では発火による燃焼を想定した場合、延焼を引き起こし、難燃性として十分な性能を持つとは言い難い。
さらに、本発明の目的を損なわない範囲で他の常用の各種添加成分、例えば、各種エラストマー類などの衝撃性改良剤、結晶核剤、着色防止剤、酸化防止剤、耐熱剤、可塑剤、滑剤、耐候剤、着色剤等の添加剤を添加することができる。
さらに、本発明の高伸度不織布には、本発明の目的を損なわない範囲で、常用の後加工、例えば、消臭剤、抗菌剤、防ダニ剤等の付与をしてもよいし、染色、撥水加工、透湿防水加工等を施してもよい。
The flame retardant used for the high elongation nonwoven fabric of the present invention is preferably a non-halogen phosphorus-based flame retardant excellent in environmental safety. Moreover, it is desirable to satisfy VTM-1 standard by UL-94 combustion test, More preferably, it satisfies VTM-0 standard. When the combustion test standard is less than the VTM-1 standard, it is difficult to say that it has a sufficient performance as flame retardancy due to the spread of fire when combustion by ignition is assumed.
Furthermore, other commonly used additive components, for example, impact modifiers such as various elastomers, crystal nucleating agents, anti-coloring agents, antioxidants, heat-resistant agents, plasticizers, lubricants, as long as the object of the present invention is not impaired. Additives such as weathering agents and coloring agents can be added.
Further, the high elongation nonwoven fabric of the present invention may be subjected to conventional post-processing, for example, deodorant, antibacterial agent, acaricide, etc. within the range not impairing the object of the present invention, or dyeing Water repellent finish, moisture permeable waterproof finish, etc. may be applied.

本発明の高伸度不織布は、低モジュラスで高伸度を有している等の特性を活かして幅広い用途展開が可能であり、大きな伸長や複雑な形状変形を伴う高度な成形部材として適している。例えば、ドアトリム、天井成形材、シート内張布などの自動車内装材、緑茶、紅茶、コーヒーなどの食品用フィルターバッグ、防虫剤、芳香剤の揮発性薬品容器等が挙げられる。特に好ましい例として耐火被覆材の表面材料が挙げられる。耐火被覆材としての必要特性として難燃性の他に、成形加工時の追従性のために低モジュラス・高伸度、且つ、施工の際に引裂強度等が要求される。また、表面材料として使用するためには耐毛羽性が重要となる。したがって、本発明の高伸度不織布は、耐火被覆材の表面材料として非常に適した特性を有している。   The high elongation nonwoven fabric of the present invention can be used in a wide range of applications by taking advantage of its low modulus and high elongation characteristics, and is suitable as an advanced molded member with large elongation and complex shape deformation. Yes. Examples thereof include automobile interior materials such as door trims, ceiling molding materials, seat lining fabrics, filter bags for foods such as green tea, tea, and coffee, insect repellents, and volatile chemical containers for fragrances. A particularly preferable example is a surface material of a fireproof coating material. In addition to flame retardancy, it is required to have low modulus and high elongation as well as tear strength during construction as necessary characteristics as a fireproof coating material. In addition, the fuzz resistance is important for use as a surface material. Therefore, the high elongation nonwoven fabric of the present invention has characteristics that are very suitable as a surface material for a fireproof coating material.

以下、実施例などにより本発明をさらに具体的に説明するが、本発明は、これら実施例などにより何ら限定されるものではない。なお、測定方法、評価方法などは下記の通りである。
(1)不織布の破断伸度・5%モジュラス:
島津製作所社製;オートグラフAGS−5G型を用いて、3cm幅の試料を把握長100mm、引張速度300mm/minで伸長し、得られる破断時の荷重を強度、破断時の伸び率を伸度、5%伸長時のモジュラスを5%モジュラスとし、不織布のMD、CD方向についてそれぞれ5回ずつ測定を行い、その総平均値を求めた。また、ポリスチレンを添加しない場合の不織布の5%モジュラスに対する高伸度不織布の5%モジュラスの割合から5%モジュラスの低下率を求めた。
(2)MFR(g/10min):
メルトインデクサー(東洋精機社製:MELT INDEXER S−101)溶融流量装置を用い、オリフィス径1.0475mm、オリフィス長0.8mm、荷重5000g、測定温度200℃の条件で一定体積分を吐出するのに要する時間から10分間当たりの溶融ポリマーの吐出量(g)を算出し、求めた。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Measurement methods, evaluation methods, etc. are as follows.
(1) Breaking elongation and 5% modulus of nonwoven fabric:
Made by Shimadzu Corporation; using Autograph AGS-5G, a 3 cm wide sample is grasped and stretched at a length of 100 mm and a tensile speed of 300 mm / min. The resulting load at break and strength at break, and elongation at break The modulus at 5% elongation was set to 5% modulus, and the nonwoven fabric was measured five times in the MD and CD directions, and the total average value was obtained. Further, the 5% modulus reduction rate was determined from the ratio of the 5% modulus of the high elongation nonwoven fabric to the 5% modulus of the nonwoven fabric when no polystyrene was added.
(2) MFR (g / 10 min):
Using a melt indexer (Toyo Seiki Co., Ltd .: MELT INDEXER S-101) melt flow rate device, a constant volume is discharged under the conditions of an orifice diameter of 1.0475 mm, an orifice length of 0.8 mm, a load of 5000 g, and a measurement temperature of 200 ° C. The amount (g) of molten polymer discharged per 10 minutes was calculated and calculated from the time required for.

(3)毛羽等級:
MD、CD方向に25mm×300mmの試験片を採取し、日本学術振興会型堅牢度試験機を用いて、摩擦子の荷重が200g、摩擦子側には同布を使用し、50回動作をさせて、以下の基準で、耐毛羽性を等級付けた。
1.0級:試験片が破損するほど繊維が剥ぎ取られる。
2.0級:試験片が薄くなるほど甚だしく繊維が剥ぎ取られる。
2.5級:毛玉が大きくはっきりと見られ、複数箇所で繊維が浮き上がり始める。
3.0級:はっきりとした毛玉ができ始め、または小さな毛玉が複数見られる。
3.5級:繊維が3〜5本程度、もしくは数ヶ所に小さな毛玉ができ始める程度に毛
羽立っている。
4.0級:繊維が1〜2本程度、もしくは一ヶ所に小さな毛玉ができはじめる程度に
毛羽立っている。
5.0級:毛羽立ちがない。
(3) Fluff grade:
Samples of 25 mm x 300 mm are taken in the MD and CD directions, and using a Japan Society for the Promotion of Science type fastness tester, the load of the friction element is 200 g, and the same cloth is used on the friction element side. The fuzz resistance was graded according to the following criteria.
1.0 grade: The fiber is peeled off as the test piece breaks.
2.0 grade: The thinner the specimen, the more severe the fiber is peeled off.
Grade 2.5: The pills are large and clearly visible, and the fibers begin to float at multiple locations.
3.0 grade: A clear hairball starts to appear or a plurality of small hairballs are seen.
3.5 grade: About 3 to 5 fibers, or hair to the extent that small pills start to form
Standing up.
4.0 grade: about 1 to 2 fibers, or so that a small pill is starting to form in one place
It is fuzzy.
Grade 5.0: No fuzz.

(4)部分熱圧着面積率(%):
1cm角の試験片をサンプリングして電子顕微鏡で写真を撮影し、その各写真より熱圧着部の面積を測定し、その平均値を熱圧着部の面積とした。また、熱圧着部のパターンのピッチを縦方向及び横方向において測定した。それらの値により、不織布の単位面積当たりに占める熱圧着面積の比率を部分熱圧着面積率として算出した。
(5)引裂強力(N):
幅65mm×長さ100mmの試料片をJIS−L−1096に規定のペンジュラム法にて測定した。また、ポリスチレンを添加しない場合の不織布の引裂強度に対する高伸度不織布の引裂強度の割合から引裂強度の増加率を求めた。
(4) Partial thermocompression area ratio (%):
A 1 cm square test piece was sampled and photographs were taken with an electron microscope, the area of the thermocompression bonding part was measured from each of the photographs, and the average value was taken as the area of the thermocompression bonding part. Moreover, the pitch of the pattern of the thermocompression bonding part was measured in the vertical direction and the horizontal direction. Based on these values, the ratio of the thermocompression bonding area per unit area of the nonwoven fabric was calculated as the partial thermocompression area ratio.
(5) Tear strength (N):
A sample piece having a width of 65 mm and a length of 100 mm was measured by the pendulum method defined in JIS-L-1096. Moreover, the rate of increase in tear strength was determined from the ratio of the tear strength of the high elongation nonwoven fabric to the tear strength of the nonwoven fabric when no polystyrene was added.

(6)複屈折率(Δn):
OLYMPUS社製のBH2型偏光顕微鏡コンペンセーターを用いて、通常の干渉縞法によってレターデーションと繊維径より牽引直後の繊維の複屈折率を求めた。
(7)目付(g/m2 ):
JIS−L−1906に規定の方法で測定した。
(8)厚み:
JIS−L−1906に規定の方法で荷重100g/cm2 の厚みを測定した。
(6) Birefringence index (Δn):
Using a BH2 polarizing microscope compensator manufactured by OLYMPUS, the birefringence of the fiber immediately after towing was determined from the retardation and fiber diameter by a normal interference fringe method.
(7) Weight per unit area (g / m 2 ):
It measured by the method prescribed | regulated to JIS-L-1906.
(8) Thickness:
The thickness at a load of 100 g / cm 2 was measured by the method specified in JIS-L-1906.

(9)繊度(dtex):
1m長の重量を測定してn=5の平均値を求め、10000m長に算出して求めた。
(10)難燃性評価:
UL−94:VTM試験(薄手材料の垂直法燃焼試験)に準じた評価方法で評価を行った。
(11)追従性試験:
幅250mm、長さ450mm、厚み40mmの耐火被覆材を直径90mmのロール状に巻き、ロックウールと表面材の不織布との間で生じるズレを測定した。
○(合格) ズレ:5mm未満
×(不合格)ズレ:5mm以上
(9) Fineness (dtex):
The weight of 1 m length was measured, the average value of n = 5 was determined, and the average value was calculated to be 10,000 m length.
(10) Flame retardancy evaluation:
Evaluation was performed by an evaluation method according to UL-94: VTM test (vertical method combustion test for thin materials).
(11) Follow-up test:
A fireproof coating material having a width of 250 mm, a length of 450 mm, and a thickness of 40 mm was wound into a roll shape having a diameter of 90 mm, and a deviation generated between the rock wool and the nonwoven fabric of the surface material was measured.
○ (Pass) Deviation: Less than 5 mm × (Fail) Deviation: 5 mm or more

(12)ピン固定引張荷重試験:
万能試験機を用いて、幅50mm、長さ225mmの耐火被覆材用不織布を上端から30mmの位置にピンで固定し、把握長150mm、引張速度200mm/minで伸長し、得られる破断時の荷重を引張荷重とし、不織布のMD、CD方向についてそれぞれ5回ずつ測定を行い、その総平均値を求めた。
○:ピン固定引張荷重22N以上
△:ピン固定引張荷重18N以上22N未満
×:ピン固定引張荷重18N未満
(13)難燃性試験:
幅350mm、長さ230mm、厚み40mmの耐火被覆材の不織布面を燃焼面としてJIS L−1091 A−2法(45°メッケルバーナー法)に準じた試験方法で評価を行った。
○(合格) 炭化面積:300cm2 未満、残炎時間:30秒未満
×(不合格)炭化面積:300cm2 以上、残炎時間:30秒以上
以下、実施例及び比較例によって本発明を更に説明する。
(12) Pin fixed tensile load test:
Using a universal testing machine, a non-woven fabric for fireproof coating material with a width of 50 mm and a length of 225 mm is fixed with a pin at a position 30 mm from the upper end, stretched at a grasping length of 150 mm and a pulling speed of 200 mm / min, and the resulting load at break Was measured for 5 times each in the MD and CD directions of the nonwoven fabric, and the total average value was obtained.
○: Pin fixed tensile load 22N or more Δ: Pin fixed tensile load 18N or more and less than 22N ×: Pin fixed tensile load 18N or less (13) Flame resistance test:
Evaluation was performed by a test method according to JIS L-1091 A-2 method (45 ° Meckel burner method) using a nonwoven fabric surface of a fireproof coating material having a width of 350 mm, a length of 230 mm, and a thickness of 40 mm as a combustion surface.
○ (pass) carbide area: 300 cm less than 2, the remaining flame time: less than 30 seconds × (fail) carbide area: 300 cm 2 or more, the remaining flame time: more than 30 seconds or less, further examples and comparative examples present invention described To do.

[実施例1]
リン系の難燃剤を添加したポリエチレンテレフタレート樹脂にMFR2.6g/10minのポリスチレン樹脂を添加量が0.5wt%となるようにドライブレンドにて混合し、常用の溶融紡糸装置に供給した。次に、280℃にて均一に溶融混合し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4700m/minにて溶融紡出して繊度が2.0dtexのポリエステルブレンド長繊維を得た。この繊維を開繊分散してウェブを作成し、エンボスロールとフラットロール間において熱圧着面積率7%で部分熱接合することにより、長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[Example 1]
Polyethylene terephthalate resin to which a phosphorus-based flame retardant was added was mixed with a polystyrene resin having an MFR of 2.6 g / 10 min by dry blending so that the addition amount was 0.5 wt%, and supplied to a conventional melt spinning apparatus. Next, the mixture was uniformly melt-mixed at 280 ° C. and melt-spun from a spinneret having a spinning hole having a circular cross section at a spinning speed of 4700 m / min to obtain a polyester blend long fiber having a fineness of 2.0 dtex. This fiber was spread and dispersed to create a web, and a partial fiber spunbond nonwoven fabric was obtained by partial thermal bonding between an embossing roll and a flat roll at a thermocompression area ratio of 7%. Table 1 shows the physical properties of the obtained nonwoven fabric.

[実施例2]
実施例1においてポリスチレン樹脂の添加量が1.0wt%となるようにブレンドしたこと以外は、実施例1と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[実施例3]
実施例2においてMFRが8g/10minのポリスチレン樹脂をブレンドしたこと以外は、実施例2と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[Example 2]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that blending was performed so that the amount of polystyrene resin added was 1.0 wt% in Example 1. Table 1 shows the physical properties of the obtained nonwoven fabric.
[Example 3]
A long fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 2 except that a polystyrene resin having an MFR of 8 g / 10 min was blended in Example 2. Table 1 shows the physical properties of the obtained nonwoven fabric.

[実施例4]
ポリエチレンテレフタレート樹脂にMFR2.6g/10minのポリスチレン樹脂を添加量が0.2wt%となるようにドライブレンドにて混合し、常用の溶融紡糸装置に供給した。次に、280℃にて均一に溶融混合し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4700m/minにて溶融紡出して繊度が2.0dtexのポリエステルブレンド長繊維を得た。この繊維を開繊分散してウェブを作成し、エンボスロールとフラットロール間において熱圧着面積率11%で部分熱接合することにより、長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[Example 4]
A polyethylene resin of MFR 2.6 g / 10 min was mixed with polyethylene terephthalate resin by dry blending so that the addition amount was 0.2 wt%, and supplied to a conventional melt spinning apparatus. Next, the mixture was uniformly melt-mixed at 280 ° C. and melt-spun from a spinneret having a spinning hole having a circular cross section at a spinning speed of 4700 m / min to obtain a polyester blend long fiber having a fineness of 2.0 dtex. This fiber was spread and dispersed to create a web, and a partial fiber spunbond nonwoven fabric was obtained by partial heat bonding between the embossing roll and the flat roll at a thermocompression area ratio of 11%. Table 1 shows the physical properties of the obtained nonwoven fabric.

[実施例5]
実施例4においてポリスチレン樹脂の添加量が0.5wt%となるようにブレンドしたこと以外は、実施例4と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[実施例6]
実施例4においてポリスチレン樹脂の添加量が1.0wt%となるようにブレンドしたこと以外は、実施例4と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[Example 5]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 4 except that blending was performed so that the amount of polystyrene resin added was 0.5 wt% in Example 4. Table 1 shows the physical properties of the obtained nonwoven fabric.
[Example 6]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 4 except that blending was performed so that the amount of polystyrene resin added was 1.0 wt% in Example 4. Table 1 shows the physical properties of the obtained nonwoven fabric.

[実施例7]
実施例4においてポリスチレン樹脂の添加量が2.5wt%となるようにブレンドしたこと以外は、実施例4と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[実施例8]
実施例4においてポリスチレン樹脂の添加量が5.0wt%となるようにブレンドしたこと以外は、実施例4と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[Example 7]
A long fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 4 except that blending was performed so that the amount of polystyrene resin added was 2.5 wt% in Example 4. Table 1 shows the physical properties of the obtained nonwoven fabric.
[Example 8]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 4 except that blending was performed so that the amount of polystyrene resin added was 5.0 wt% in Example 4. Table 1 shows the physical properties of the obtained nonwoven fabric.

[実施例9]
実施例5において熱圧着面積率30%で部分熱接合したこと以外は、実施例5と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[実施例10]
実施例1において難燃剤を添加していないポリエチレンテレフタレート樹脂にポリスチレン樹脂の添加量が5.0wt%となるようにブレンドしたこと以外は、実施例1と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。
[Example 9]
A continuous fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 5 except that partial heat bonding was performed at a thermocompression bonding area ratio of 30% in Example 5. Table 1 shows the physical properties of the obtained nonwoven fabric.
[Example 10]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that blending was performed so that the addition amount of polystyrene resin was 5.0 wt% in polyethylene terephthalate resin to which no flame retardant was added in Example 1. . Table 1 shows the physical properties of the obtained nonwoven fabric.

[実施例11]
実施例5の高伸度不織布を表面材料とし、ホットメルト剤を用いてロックウールとの貼り合わせを行い、耐火被覆材を作製した。この耐火被覆材の表面材として用いた場合、不織布の必要特性である追従性、ピンによる引張荷重、難燃性について評価し、それらの結果を表3に示した。これらから、耐火被覆材の表面材料として優れた特性を示している。
[比較例1]
実施例1においてポリスチレン樹脂を添加しないこと以外は、実施例1と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。得られた不織布は、実施例1、2で得られた不織布に比べ、破断伸度が約半分程度しかなく、低伸度であった。
[Example 11]
The high elongation nonwoven fabric of Example 5 was used as a surface material, and it was bonded to rock wool using a hot melt agent to prepare a fireproof coating material. When used as a surface material of this fireproof coating material, the following characteristics, which are necessary characteristics of the nonwoven fabric, the tensile load by the pin, and the flame retardance were evaluated, and the results are shown in Table 3. From these, the characteristic outstanding as a surface material of a fireproof coating material is shown.
[Comparative Example 1]
A long fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that no polystyrene resin was added in Example 1. Table 1 shows the physical properties of the obtained nonwoven fabric. The obtained nonwoven fabric had a elongation at break of only about half compared to the nonwoven fabric obtained in Examples 1 and 2, and was a low elongation.

[比較例2]
実施例4においてポリスチレン樹脂を添加しないこと以外は、実施例4と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。得られた不織布は、実施例4〜8で得られた不織布に比べ、破断伸度が約半分程度しかなく、低伸度であった。
[比較例3]
実施例1において熱圧着面積率2%で部分熱接合したこと以外は、実施例1と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。得られた不織布は、実施例1、2で得られた不織布に比べ、破断伸度が約1/3程度しかなく低伸度であった。
[Comparative Example 2]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 4 except that no polystyrene resin was added in Example 4. Table 1 shows the physical properties of the obtained nonwoven fabric. The obtained nonwoven fabric had a elongation at break of only about half as compared with the nonwoven fabric obtained in Examples 4 to 8, and was a low elongation.
[Comparative Example 3]
A continuous fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that partial thermal bonding was performed at a thermocompression bonding area ratio of 2% in Example 1. Table 1 shows the physical properties of the obtained nonwoven fabric. The obtained nonwoven fabric had a elongation at break of only about 1/3 as compared with the nonwoven fabric obtained in Examples 1 and 2, and had a low elongation.

[比較例4]
実施例1において熱圧着面積率50%で部分熱接合したこと以外は、実施例1と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。得られた不織布は、実施例1、2で得られた不織布に比べ、破断伸度が約1/3程度しかなく低伸度であった。
[比較例5]
実施例2においてMFRが18g/10minのポリスチレン樹脂を1.0wt%添加したこと以外は、実施例2と同様にして長繊維スパンボンド不織布を得た。得られた不織布の物性を表1に示す。MFRの数値が大き過ぎたために、実施例2に比較して、伸度は約半分程度であり、高伸度化が出来なかったことがわかる。
[Comparative Example 4]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that partial heat bonding was performed in Example 1 with a thermocompression bonding area ratio of 50%. Table 1 shows the physical properties of the obtained nonwoven fabric. The obtained nonwoven fabric had a elongation at break of only about 1/3 as compared with the nonwoven fabric obtained in Examples 1 and 2, and had a low elongation.
[Comparative Example 5]
A long-fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 2 except that 1.0 wt% of a polystyrene resin having an MFR of 18 g / 10 min was added in Example 2. Table 1 shows the physical properties of the obtained nonwoven fabric. Since the numerical value of MFR was too large, the elongation was about half that of Example 2 and it was found that the elongation could not be increased.

[比較例6]
実施例1においてポリスチレン樹脂を添加量が10wt%となるようにブレンドしたこと以外は、実施例1と同様にして長繊維スパンボンド不織布を得ようとしたが、糸切れの多発と紡口付近での糸曲がりが発生し、紡糸不可の状態であり、連続した糸が得ることは出来なかった。
[比較例7]
比較例2の不織布を表面材料とし、ホットメルト剤を用いてロックウールとの貼り合わせを行い、耐火被覆材を作製した。この耐火被覆材の表面材として用いた場合、不織布の必要特性である追従性、ピンによる引張荷重、難燃性について評価し、それらの結果を表3に示した。これらから、追従性、引張荷重が低く、耐火被覆材の表面材料としては満足のできるものが得られなかった。
[Comparative Example 6]
In Example 1, except that the polystyrene resin was blended so that the addition amount was 10 wt%, an attempt was made to obtain a long-fiber spunbonded nonwoven fabric in the same manner as in Example 1, The yarn was bent and the spinning was impossible, and a continuous yarn could not be obtained.
[Comparative Example 7]
The nonwoven fabric of Comparative Example 2 was used as a surface material, and bonded to rock wool using a hot melt agent to prepare a fireproof coating material. When used as a surface material of this fireproof coating material, the following characteristics, which are necessary characteristics of the nonwoven fabric, the tensile load by the pin, and the flame retardance were evaluated, and the results are shown in Table 3. From these, the followability and the tensile load were low, and satisfactory surface materials for the fireproof coating were not obtained.

Figure 0004223060
Figure 0004223060

Figure 0004223060
Figure 0004223060

Figure 0004223060
Figure 0004223060

本発明は、前記のような従来技術の問題を解決しようとするものであり、ポリエステル系樹脂のブレンド紡糸において特定の物性を有するポリスチレン系樹脂を選定することで相溶化剤を用いなくても熱安定性と分散性を向上することが可能であり、紡糸性が良好で、且つ、低モジュラスで高伸度を有する不織布を提供すること、また、表面材料として見た目も良く、毛羽立ちにくい不織布を提供することを目的とするものである。本発明においては、後加工の必要が無いため、コスト面で有利であり、且つ、安定的な生産が可能である。
本発明の高伸度不織布は、低モジュラスで高伸度を有しているために成型加工時の追従性に特に優れ、且つ、毛羽立ちが少なく、表面材料として表面材料として見た目も良く、毛羽立ちにくい不織布であり、また、難燃剤を添加することで優れた難燃性を有し、耐火被覆材の表面材料としても適した不織布である。
The present invention is intended to solve the above-mentioned problems of the prior art, and by selecting a polystyrene resin having specific physical properties in blend spinning of a polyester resin, the heat can be obtained without using a compatibilizer. Providing non-woven fabrics that can improve stability and dispersibility, have good spinnability, have low modulus and high elongation, and provide non-woven fabrics that look good as surface materials and are less fuzzy. It is intended to do. In the present invention, there is no need for post-processing, which is advantageous in terms of cost and enables stable production.
The high-stretch nonwoven fabric of the present invention has a low modulus and high elongation, so that it is particularly excellent in followability during molding processing, has less fuzz, has a good appearance as a surface material as a surface material, and is less likely to fuzz. It is a nonwoven fabric, and has excellent flame retardancy by adding a flame retardant, and is also suitable as a surface material for fireproof coating materials.

表2におけるポリスチレン系樹脂の添加量が0.5wt%における熱圧着面積率と破断伸度・毛羽等級の関係を示す図である。It is a figure which shows the relationship between the thermocompression-bonding area rate and breaking elongation and a fluff grade in the addition amount of the polystyrene-type resin in Table 2. 表2において熱圧着面積率11%におけるポリスチレン系樹脂添加量の効果を示す図である。In Table 2, it is a figure which shows the effect of the polystyrene-type resin addition amount in 11% of thermocompression-bonding area ratios.

Claims (5)

MFRが10g/10min以下であるポリスチレン系樹脂を0.1〜8.0wt%添加したポリエステルブレンド長繊維から構成され、3〜40%の熱圧着面積率で部分熱接合された不織布であって、該長繊維がリン系の難燃剤を含有し、且つ、該不織布のMD、CD方向のいずれの方向の破断伸度が30〜70%、毛羽等級が2.5級以上であり、ポリスチレン系樹脂を添加しない場合の不織布に対する、MD方向の5%モジュラス低下率が20〜50%であり、MD方向の引裂強度増加率が、30〜100%である高伸度不織布を用いてなることを特徴とする耐火被覆材の表面材料A non-woven fabric composed of a polyester blend long fiber to which 0.1 to 8.0 wt% of a polystyrene-based resin having an MFR of 10 g / 10 min or less is added and partially thermally bonded at a thermocompression area ratio of 3 to 40%, contain flame retardant the long fibers phosphorus-based, and, MD of the nonwoven fabric, 30% to 70% elongation at break in either direction in the CD direction state, and are fluff grade 2.5 or higher grade, polystyrene A 5% modulus reduction rate in the MD direction with respect to the non-woven fabric when no resin is added is 20 to 50%, and a high elongation nonwoven fabric in which the rate of increase in tear strength in the MD direction is 30 to 100%. Characteristic surface material of fireproof coating . 前記不織布が、スパンボンド不織布であることを特徴とする請求項に記載の耐火被覆材の表面材料用 The surface material of the fireproof coating material according to claim 1 , wherein the nonwoven fabric is a spunbonded nonwoven fabric. 前記不織布の目付が10〜160g/m2 であり、且つ、厚みが0.04〜0.8mmであることを特徴とする請求項1又は2に記載の耐火被覆材の表面材料 The surface material of the fireproof coating material according to claim 1 or 2 , wherein the nonwoven fabric has a basis weight of 10 to 160 g / m 2 and a thickness of 0.04 to 0.8 mm. 前記不織布が、紡糸速度3000〜8000m/minで牽引された繊維から構成され、且つ、繊度が1.0〜4.0dtexであることを特徴とする請求項1〜3のいずれかに記載の耐火被覆材の表面材料The fireproof according to any one of claims 1 to 3 , wherein the nonwoven fabric is composed of fibers pulled at a spinning speed of 3000 to 8000 m / min and has a fineness of 1.0 to 4.0 dtex. Surface material of the covering material . 前記ポリエステルブレンド長繊維の複屈折率Δnが0.015〜0.07であることを特徴とする請求項1〜4のいずれかに記載の耐火被覆材の表面材料 The surface material of the fireproof coating material according to any one of claims 1 to 4 , wherein a birefringence Δn of the polyester blend long fiber is 0.015 to 0.07.
JP2007040438A 2007-02-21 2007-02-21 High elongation nonwoven fabric and surface material using the same Active JP4223060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040438A JP4223060B2 (en) 2007-02-21 2007-02-21 High elongation nonwoven fabric and surface material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040438A JP4223060B2 (en) 2007-02-21 2007-02-21 High elongation nonwoven fabric and surface material using the same

Publications (2)

Publication Number Publication Date
JP2008214766A JP2008214766A (en) 2008-09-18
JP4223060B2 true JP4223060B2 (en) 2009-02-12

Family

ID=39835160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040438A Active JP4223060B2 (en) 2007-02-21 2007-02-21 High elongation nonwoven fabric and surface material using the same

Country Status (1)

Country Link
JP (1) JP4223060B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267935B2 (en) * 2008-12-25 2013-08-21 東洋紡株式会社 Method for producing long-fiber non-woven fabric used as a base cloth for disposable body warmers
JP2010196235A (en) * 2009-01-28 2010-09-09 Toyobo Co Ltd Filament nonwoven fabric excellent in formability and production method thereof
JP5428564B2 (en) * 2009-06-18 2014-02-26 東洋紡株式会社 Vehicle interior material member and vehicle interior material using the same
JP2011001650A (en) * 2009-06-18 2011-01-06 Toyobo Co Ltd Filament nonwoven fabric for molded container, which has excellent moldability and printability, and method for producing the same
JP5486332B2 (en) * 2010-02-02 2014-05-07 旭化成せんい株式会社 Biodegradable non-woven fabric
JP5799558B2 (en) * 2010-04-09 2015-10-28 東洋紡株式会社 Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability
JP5888495B2 (en) * 2012-01-11 2016-03-22 東洋紡株式会社 Long-fiber nonwoven fabric with excellent flexibility and wear resistance and its use
JP2013176918A (en) * 2012-02-28 2013-09-09 Keiwa Inc Hinge sheet, radio communication information holding sheet body, radio communication information holding booklet, and method of manufacturing the hinge sheet
JP6216228B2 (en) * 2013-11-13 2017-10-18 旭化成株式会社 Fiber and non-woven fabric
JP6499429B2 (en) * 2014-12-02 2019-04-10 倉敷繊維加工株式会社 Agricultural coating sheet and manufacturing method thereof
JP2016108706A (en) * 2014-12-10 2016-06-20 東洋紡株式会社 Thermal molding spunbond nonwoven fabric
JP2018172828A (en) * 2017-03-31 2018-11-08 旭化成株式会社 Polyester-based filament nonwoven fabric excellent in heat resistance and flame retardance with high strength
JP7092124B2 (en) * 2017-06-09 2022-06-28 東洋紡株式会社 Long-fiber non-woven fabric and filter reinforcement using it
JP7176915B2 (en) * 2018-09-28 2022-11-22 旭化成株式会社 Immunochromatography diagnostic kit
CN112080812B (en) * 2020-08-28 2023-11-21 泰和新材集团股份有限公司 Comfort meta-aramid fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2008214766A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4223060B2 (en) High elongation nonwoven fabric and surface material using the same
DE69826457T2 (en) DEGRADABLE POLYMER FIBERS: MANUFACTURE, PRODUCTS AND USE PROCESSES
JP4027728B2 (en) Nonwoven fabric made of polyester staple fibers
KR20180022820A (en) Non-woven fabric
JP2001348724A (en) Flame-retardant polypropylene fiber, method for producing the same and flame-retardant polypropylene film
JP6548634B2 (en) Polyester binder fiber
US5277974A (en) Heat-bondable filament and nonwoven fabric made of said filament
EP0311860B1 (en) Nonwoven fabric made of heat bondable fibers
KR20200138186A (en) Non-woven sheet
WO2002099175A1 (en) Material for flame-retardant sheet
JP2001049533A (en) Polylactic acid-based conjugate short fiber, nonwoven fabric comprising the same short fiber and production thereof
US20150017866A1 (en) Bi-component fiber for the production of spunbonded fabric
JP6713873B2 (en) Lightweight web for automobile interiors, needle-punched nonwoven fabric using the same, manufacturing method thereof, and automobile interior parts using the same
US20150017867A1 (en) Bi-component fiber for the production of spunbonded fabric
JP2017222950A (en) Spun-bonded nonwoven fabric, method of manufacturing the same, and method of manufacturing molded article using the same
JP2007303012A (en) Ground fabric for tufted carpet and tufted carpet using the ground fabric
US20150017864A1 (en) Bi-component fiber for the production of spunbond fabric
JP4343561B2 (en) High elongation polyolefin fiber
JP3790460B2 (en) Thermal adhesive composite fiber, method for producing the same, and nonwoven fabric using the same
JP2011246853A (en) Short-cut conjugate fiber comprising polylactic acid
JP2003275093A (en) Flame-retardant interior product
JP2007291571A (en) Flame-retardant synthetic fiber, flame-retardant fiber complex body and flame-retardant mattress using the same
JP3147633B2 (en) Non-woven and civil engineering materials
JP4155848B2 (en) High elongation resin molding
JPH032965B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Ref document number: 4223060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350