JP5799558B2 - Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability - Google Patents

Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability Download PDF

Info

Publication number
JP5799558B2
JP5799558B2 JP2011085319A JP2011085319A JP5799558B2 JP 5799558 B2 JP5799558 B2 JP 5799558B2 JP 2011085319 A JP2011085319 A JP 2011085319A JP 2011085319 A JP2011085319 A JP 2011085319A JP 5799558 B2 JP5799558 B2 JP 5799558B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
long
fiber
component
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011085319A
Other languages
Japanese (ja)
Other versions
JP2011231446A (en
Inventor
貴史 恋田
貴史 恋田
坂本 浩之
浩之 坂本
吉田 英夫
英夫 吉田
英夫 磯田
英夫 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2011085319A priority Critical patent/JP5799558B2/en
Publication of JP2011231446A publication Critical patent/JP2011231446A/en
Application granted granted Critical
Publication of JP5799558B2 publication Critical patent/JP5799558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

本発明は、柔軟性、耐摩耗性、ヒートシール性に優れた、使い捨てカイロ用基布に好適な長繊維不織布に関する。更に詳しくは、カイロ用表皮基布がフイルムラミネート加工を省略してもヒートシール加工が可能な長繊維不織布に関する。   The present invention relates to a long-fiber non-woven fabric that is excellent in flexibility, wear resistance, and heat sealability and is suitable for a base cloth for disposable body warmers. More specifically, the present invention relates to a long-fiber nonwoven fabric that can be heat-sealed even if the skin base fabric for warmers omits film lamination.

使い捨てカイロは、一般的に空気に曝すことで発熱する組成物を利用しており、製品寿命等は包材の通気性の影響を強く受けるため、通気性を制御し易い有孔フィルム、微孔フィルム等が包材として用いられている。しかしながら、これらのフイルムはヒートシール性は満たされるが、柔軟性に乏しく、ゴワツキ感があり、衣服内で用いることが多い使い捨てカイロにおいては、使用快適性に問題があり、同時に両機能を満たすカイロ用被覆材は提案されていない。   Disposable warmers generally use a composition that generates heat when exposed to air, and the product life is strongly influenced by the air permeability of the packaging material. A film or the like is used as a packaging material. However, these films satisfy heat sealability, but are inflexible, have a feeling of tingling, and in disposable warmers that are often used in clothing, there is a problem in use comfort, and at the same time, warmers that satisfy both functions. No coating material has been proposed.

快適性の問題を解消するために、例えば特許文献1、2では、使い捨てカイロ用包材として、フィルム特有の貼りついた触感、ゴワゴワする肌触り等を防ぎ、布的触感を持たせると共に、包材層の裂けにくさを付与する狙いとしてフイルムに不織布をラミネート加工したものが提案されている。しかしながら、従来の不織布を用いた場合は、包材の裂け難さと毛羽立ちの少なさを配慮すると、硬くなってゴワゴワ感が増し、逆に繊維触感を持たせ柔軟性を保持させると、毛羽立ちや形態保持性が悪くなる問題があった。   In order to solve the problem of comfort, for example, in Patent Documents 1 and 2, as a packaging material for a disposable body warmer, a film-specific sticky touch, a rough touch, etc. are prevented, and a cloth touch is given, and a packaging material is provided. In order to give the layer a difficulty in tearing, a non-woven fabric laminated to a film has been proposed. However, when using a conventional nonwoven fabric, considering the difficulty of tearing the packaging material and less fluffing, it becomes harder and more irritating. There was a problem of poor retention.

かかる問題を解消する方法として、例えば特許文献3では、エンボス加工により凹凸を付与した不織布とラミネートフィルムとの接合を調整して肌との接着面の柔軟性を改良する方法が提案されている。しかしながら、かかる方法においても、不織布の柔軟性を改良する検討がなされておらず、ラミネートにより不織布の非接合部をラミネートフィルムと主体的に接合させるので、不織布の柔らかさが拘束されて不織布の柔軟性を充分生かせない問題があった。   As a method for solving such a problem, for example, Patent Document 3 proposes a method for improving the flexibility of the adhesive surface with the skin by adjusting the bonding between a nonwoven fabric provided with irregularities by embossing and a laminate film. However, even in such a method, no study has been made to improve the flexibility of the nonwoven fabric, and the non-joint portion of the nonwoven fabric is mainly joined to the laminate film by lamination, so that the softness of the nonwoven fabric is restricted. There was a problem that could not make full use of sex.

また、特許文献4では、不織布の厚みと見掛密度を限定して温熱機能を改良する方法が提案されている。しかしながら、かかる方法は、厚みで発熱体からの初期の熱移動を調整するのみであり、不織布の柔軟性やヒートシール性、形態保持性を向上させる検討がなされておらず、使い捨てカイロとして実用上の不具合が生じやすい。   Moreover, in patent document 4, the method of limiting the thickness and apparent density of a nonwoven fabric, and improving a thermal function is proposed. However, this method only adjusts the initial heat transfer from the heating element by the thickness, and has not been studied to improve the flexibility, heat sealability, and shape retention of the nonwoven fabric, and is practically used as a disposable body warmer. It is easy for problems to occur.

ラミネート性の改良方法として、例えば特許文献5では、不織布片面の繊維表面に低融点樹脂皮膜を塗布する方法が提案されている。この方法は、煩雑なコーティング工程を加える必要があり、コストアップが不可避である。また、不織布自身の柔軟性とヒートシール性及び耐熱性の問題点も解決されていない。   As a method for improving the laminating property, for example, Patent Document 5 proposes a method of applying a low-melting point resin film to the fiber surface on one side of the nonwoven fabric. In this method, it is necessary to add a complicated coating process, and cost increase is inevitable. Further, the problems of flexibility, heat sealability and heat resistance of the nonwoven fabric itself have not been solved.

また、ラミネート性向上による形態保持性の改良方法として、例えば特許文献6〜8では、熱接着成分を繊維化してラミネートする方法が提案されている。これらの方法は、低融点成分を繊維化しているので、低温でのラミネートは可能だが、耐熱性に劣る問題があった。   For example, Patent Documents 6 to 8 propose a method of forming a thermal adhesive component into a fiber and laminating it as a method for improving shape retention by improving laminating properties. In these methods, since the low melting point component is made into a fiber, lamination at a low temperature is possible, but there is a problem that the heat resistance is inferior.

同様に、特許文献9では、低融点繊維不織布と低融点フイルムを用いた低温シール性等に優れるラミネート不織布が提案されている。この方法では、低温シール性は良くなるが、不織布の耐熱性が不充分な問題が残る。   Similarly, Patent Document 9 proposes a laminated nonwoven fabric excellent in low-temperature sealing property using a low-melting fiber nonwoven fabric and a low-melting film. In this method, the low temperature sealing property is improved, but the problem of insufficient heat resistance of the nonwoven fabric remains.

柔軟性を改良する方法として、例えば特許文献10、11では、不織布を構成する繊維に扁平断面繊維を用いる方法が提案されている。これらの方法では、柔軟性向上以外の利点として、扁平断面繊維を用いるので、不織布の平滑性が向上して印刷性が改良されることと、厚みが薄くなり伝熱性が良くなる効果が開示されている。確かに、扁平断面繊維を用いると、断面二次モーメントの低い方向では曲げ剛性が低下するが、断面二次モーメントの高い方向では剛性が著しく高くなり、全方向の柔軟性を付与することは困難である。更に、フラット化により厚みに由来する柔らかさは付与できなくなる。従って、ペーパーライクな接触感となり柔らかな風合いを付与できない問題があった。また、ヒートシール性は、フィルムラミネートで行うので、不織布のヒートシール性は改良されていない。   As a method for improving the flexibility, for example, Patent Documents 10 and 11 propose a method of using a flat cross-sectional fiber as a fiber constituting the nonwoven fabric. In these methods, as an advantage other than the improvement in flexibility, since flat cross-section fibers are used, the smoothness of the nonwoven fabric is improved, the printability is improved, and the effect of reducing the thickness and improving the heat transfer is disclosed. ing. Certainly, when flat cross-section fibers are used, the bending rigidity decreases in the direction where the cross-sectional secondary moment is low, but the rigidity becomes extremely high in the direction where the cross-sectional secondary moment is high, making it difficult to provide flexibility in all directions. It is. Furthermore, the softness derived from the thickness cannot be imparted by flattening. Accordingly, there is a problem that a paper-like contact feeling is obtained and a soft texture cannot be imparted. Moreover, since heat sealability is performed by film lamination, the heat sealability of the nonwoven fabric is not improved.

不織布の伝熱特性を利用する方法として、例えば、特許文献12では、不織布の断熱性を高めて、発熱体の発熱を有効に利用する方法が提案され、特許文献13では、特許文献12と逆に不織布の断熱性を低下させて熱損失を低減する方法が提案されている。しかしながら、断熱性が良すぎると、発熱体の発熱を伝達し難くなり温まり難く、断熱性が悪すぎると発熱体の発熱を制御し難くなり熱すぎる問題が発生する。即ち、不織布に対して適度の伝熱効率の付与が必要であるが、これらの方法は、その範囲が無視されており、快適性の配慮に欠けるものである。   As a method of utilizing the heat transfer characteristics of the nonwoven fabric, for example, Patent Document 12 proposes a method of increasing the heat insulating property of the nonwoven fabric and effectively utilizing the heat generated by the heating element. In addition, there has been proposed a method for reducing heat loss by lowering the heat insulating property of the nonwoven fabric. However, if the heat insulating property is too good, it is difficult to transmit the heat generated by the heating element and it is difficult to warm up. If the heat insulating property is too bad, it becomes difficult to control the heat generation of the heating element, causing a problem of being too hot. In other words, moderate heat transfer efficiency needs to be imparted to the nonwoven fabric, but these methods are neglected in their scope and lack comfort considerations.

不織布の柔軟性を向上させる方法として、例えば特許文献14では、伸縮性を持つポリトリメチレンテレフタレートを用いて、ソフトな風合いを付与する方法が提案され、特許文献15では、ポリブチレンテレフタレートに非晶性ポリエステルをブレンドして、素材のモジュラスを低減させ、柔らかさとヒートシール性を付与する方法が提案されている。これらの方法では、柔軟性は向上するが、繊維が柔らかなため、不織布強度が弱く破れやすい問題が残る。また、不織布のヒートシール性は改良されておらず、フィルムラミネートが開示されている。   As a method for improving the flexibility of a nonwoven fabric, for example, Patent Document 14 proposes a method of imparting a soft texture using stretchable polytrimethylene terephthalate, and Patent Document 15 discloses an amorphous material for polybutylene terephthalate. A method has been proposed in which a functional polyester is blended to reduce the modulus of the material and to impart softness and heat sealability. In these methods, the flexibility is improved, but since the fibers are soft, there remains a problem that the strength of the nonwoven fabric is weak and easily broken. Further, the heat sealability of the nonwoven fabric is not improved, and a film laminate is disclosed.

上述のように、従来の使い捨てカイロ用包材の改良では、柔軟性、耐磨耗性、及び形態保持性、不織布のヒートシール性を全て満足したものが得られていないのが現状である。   As described above, in the conventional improvement of the packaging material for disposable warmers, a material satisfying all of flexibility, abrasion resistance, shape retention, and heat sealability of the nonwoven fabric has not been obtained.

実開昭51−23769号公報Japanese Utility Model Publication No. 51-23769 実開昭55−59616号公報Japanese Utility Model Publication No. 55-59616 特開平2−297362号公報JP-A-2-297362 特開平3−1856号公報JP-A-3-1856 特開平9−300547号公報Japanese Patent Laid-Open No. 9-300547 特開平8−131472号公報JP-A-8-131472 特開平10−314208号公報Japanese Patent Laid-Open No. 10-314208 特開平10−328224号公報Japanese Patent Laid-Open No. 10-328224 特開平11−56894号公報JP 11-56894 A 特開2004−24748号公報JP 2004-24748 A 特開2004−24749号公報Japanese Patent Laid-Open No. 2004-24749 特開2004−41299号公報JP 2004-41299 A 特開2004−42300号公報JP 2004-42300 A 特開平11−89869号公報JP 11-89869 A 特開2007−105163号公報JP 2007-105163 A

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、柔軟性、耐磨耗性、及び形態保持性に優れ、更には、不織布のみのヒートシール性にも優れた、使い捨てカイロ用基布に好適な長繊維不織布を提供することにある。   The present invention was invented in view of the current state of the prior art, and its purpose was excellent in flexibility, abrasion resistance, and shape retention, and further excellent in heat sealability of only a nonwoven fabric. An object of the present invention is to provide a long-fiber nonwoven fabric suitable for a disposable warmer base fabric.

本発明者らは、上記目的を達成するために鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明の完成に至った。即ち、本発明は、以下の構成からなるものである。
1.ポリブチレンテレフタレートを95重量%以上含有し、複屈折率が0.100〜0.125である長繊維からなる不織布において、縦方向の目付当りの5%伸張時応力が、22℃雰囲気では、0.5〜1.1N/50mm(g/m)、乾熱120℃雰囲気では、0.10〜0.40N/50mm(g/m)、縦方向の22℃雰囲気での目付当り破断強力が1.1〜3.0N/50mm(g/m)で、交絡処理していないことを特徴とする長繊維不織布。
2.不織布の剛軟度が30〜70mmであり、エンボス加工されたことを特徴とする上記1に記載の長繊維不織布。
3.ポリブチレンテレフタレート(A成分)に対して、A成分と非相溶でありかつ120〜160℃のガラス転移点温度を有する熱可塑性ポリスチレン系共重合体(B成分)を0.05〜4.0重量%混合して得られるポリエステルからなる長繊維で構成されたことを特徴とする上記1又は2に記載の長繊維不織布。
4.ポリブチレンテレフタレートの固有粘度が0.8以上である請求項1〜3のいずれかに記載の長繊維不織布。
5.ポリブチレンテレフタレートの固有粘度が0.8〜1.2である上記4に記載の長繊維不織布。
6.カイロ用基布として上記1〜5のいずれかに記載の長繊維不織布を用いたことを特徴とするカイロ。
As a result of intensive studies to achieve the above object, the present inventors have found that the above problems can be solved by the following means, and have completed the present invention. That is, this invention consists of the following structures.
1. In a non-woven fabric made of long fibers containing 95% by weight or more of polybutylene terephthalate and having a birefringence of 0.100 to 0.125, the stress at 5% elongation per unit weight in the vertical direction is 0 in an atmosphere at 22 ° C. .5 to 1.1 N / 50 mm (g / m 2 ), dry heat at 120 ° C. atmosphere, 0.10 to 0.40 N / 50 mm (g / m 2 ) per unit weight at 22 ° C. in the longitudinal direction Is 1.1 to 3.0 N / 50 mm (g / m 2 ) and is not entangled.
2. 2. The long fiber nonwoven fabric according to 1 above, wherein the nonwoven fabric has a bending resistance of 30 to 70 mm and is embossed.
3. 0.05 to 4.0 thermoplastic polystyrene copolymer (component B) which is incompatible with component A and has a glass transition temperature of 120 to 160 ° C. with respect to polybutylene terephthalate (component A). 3. The long fiber nonwoven fabric according to 1 or 2 above, which is composed of long fibers made of polyester obtained by mixing by weight%.
4). The long-fiber nonwoven fabric according to any one of claims 1 to 3, wherein the intrinsic viscosity of polybutylene terephthalate is 0.8 or more.
5. 5. The long fiber nonwoven fabric according to 4 above, wherein the polybutylene terephthalate has an intrinsic viscosity of 0.8 to 1.2.
6). A warmer using the long-fiber nonwoven fabric according to any one of 1 to 5 as a base cloth for a warmer.

本発明の長繊維不織布は、柔軟性、耐磨耗性、形態維持に充分な耐久性を維持できる力学特性を保持して、加熱時の変形が容易なためヒートシール性にも優れた不織布である。従って、本発明の長繊維不織布は、特に使い捨てカイロ用基布にフィルムラミネートを省略しても使用できるため、、柔軟な風合いを損なわず、カイロが製造可能となり、性能、コストダウンにも寄与でき、極めて有用なカイロ用基布用長繊維不織布である。   The long-fiber non-woven fabric of the present invention is a non-woven fabric excellent in heat sealability because it retains mechanical properties capable of maintaining flexibility, abrasion resistance, and durability sufficient for maintaining the shape, and is easy to deform during heating. is there. Therefore, the long-fiber nonwoven fabric of the present invention can be used even if the film laminate is omitted from the disposable warmer base fabric, so that a warmer can be produced without impairing the flexible texture, and can contribute to performance and cost reduction. It is a very useful long fiber nonwoven fabric for a base cloth for warmers.

以下、本発明の長繊維不織布を詳述する。
本発明の長繊維不織布は、ポリブチレンテレフタレートを95重量%以上含有するポリエステル繊維からなるものである。
本発明におけるポリブチレンテレフタレートは、耐熱性を維持して、低モジュラス化による柔軟性を付与するためのものであり、汎用性の高い安価な素材である。
本発明におけるポリブチレンテレフタレートの固有粘度は、0.8以上が好ましい。固有粘度が0.8未満では、A成分と非相溶でありかつ120〜160℃のガラス転移点温度を有する熱可塑性ポリスチレン系共重合体(B成分)を含有する場合、糸切れが顕著で不織布化できなくなる場合があり、又、不織布化できても、タフネスさが劣り脆くなるので、伸度が低下して好ましくない。固有粘度が1.2を越えると、配向結晶化を生じる紡糸速度が低下して、高伸度を保持するためには、紡糸速度を低く設定する必要から、生産性が低下する問題がある。本発明のより好ましい固有粘度は0.8〜1.2、最も好ましくは、0.9〜1.1である。なお、本発明では、固有粘度は不織布を構成する繊維の固有粘度である。
本発明では、ポリブチレンテレフタレート成分に対して特性を低下させない範囲で、必要に応じて、共重合成分を含む各種の樹脂や、抗酸化剤、耐光剤、着色剤、抗菌剤、難燃剤、消臭剤などの改質剤を添加することができる。
Hereinafter, the long-fiber nonwoven fabric of the present invention will be described in detail.
The long-fiber nonwoven fabric of the present invention is made of a polyester fiber containing 95% by weight or more of polybutylene terephthalate.
The polybutylene terephthalate in the present invention is for maintaining flexibility and imparting flexibility by reducing the modulus, and is a versatile and inexpensive material.
The intrinsic viscosity of the polybutylene terephthalate in the present invention is preferably 0.8 or more. When the intrinsic viscosity is less than 0.8, thread breakage is remarkable when a thermoplastic polystyrene copolymer (component B) that is incompatible with the component A and has a glass transition temperature of 120 to 160 ° C. is contained. There are cases where it becomes impossible to make a nonwoven fabric, and even if it can be made into a nonwoven fabric, the toughness is inferior and becomes brittle, so the elongation is lowered, which is not preferable. When the intrinsic viscosity exceeds 1.2, the spinning speed at which orientation crystallization occurs is lowered, and in order to maintain a high elongation, it is necessary to set the spinning speed low, and there is a problem that productivity is lowered. The more preferred intrinsic viscosity of the present invention is 0.8 to 1.2, most preferably 0.9 to 1.1. In addition, in this invention, an intrinsic viscosity is an intrinsic viscosity of the fiber which comprises a nonwoven fabric.
In the present invention, various resins containing a copolymer component, antioxidants, light-proofing agents, colorants, antibacterial agents, flame retardants, extinguishing agents, and the like, as long as they do not deteriorate the properties of the polybutylene terephthalate component. Modifiers such as odorants can be added.

本発明の不織布を構成する繊維は、長繊維である。短繊維不織布では、繊維端が毛羽立ちの原因になるので好ましくない。長繊維では、繊維が切断しない限り毛羽立ちが発生しないので、本発明では長繊維からなる不織布を使用する。長繊維不織布としては、スパンボンド不織布、長繊維トウ不織布などが挙げられるが、スパンボンド不織布が、高速紡糸による力学特性の制御が容易なことから好ましい。   The fibers constituting the nonwoven fabric of the present invention are long fibers. Short fiber nonwoven fabrics are not preferred because the fiber ends cause fuzz. In the case of long fibers, fluff does not occur unless the fibers are cut, and therefore a nonwoven fabric made of long fibers is used in the present invention. Examples of the long fiber nonwoven fabric include a spunbond nonwoven fabric and a long fiber tow nonwoven fabric, and the spunbond nonwoven fabric is preferable because the mechanical properties can be easily controlled by high-speed spinning.

本発明の不織布を構成する長繊維の複屈折率は、0.100〜0.125である。複屈折率が0.100未満では、力学特性が劣り、耐磨耗性や形態維持性能が劣るので好ましくない。0.125を越えると、剛直性が増加し、ヒートシール性も劣るようになり好ましくない。本発明の複屈折率は、より好ましくは0.110〜0.120である。   The birefringence of the long fibers constituting the nonwoven fabric of the present invention is 0.100 to 0.125. If the birefringence is less than 0.100, the mechanical properties are inferior, and the abrasion resistance and form maintaining performance are inferior. If it exceeds 0.125, the rigidity increases and the heat sealability becomes inferior. The birefringence of the present invention is more preferably 0.110 to 0.120.

本発明の不織布の縦方向の22℃雰囲気での目付当りの5%伸張時応力は、0.5〜1.1N/50mm(g/m)である。0.5N/50mm(g/m)未満では、塑性変形しやすくなり、取扱性や形態保持機能が劣るので好ましくない。1.1N/50mm(g/m)を越えると、柔軟性が劣り好ましくない。本発明の好ましい22℃雰囲気での5%伸張時応力は、0.6〜1.0N/50mm(g/m)であり、より好ましくは0.65〜0.85N/50mm(g/m)である。なお、本発明では、取扱性の観点から、不織布の縦方向の特性を特に限定しているが、横方向の5%伸張時応力に関しては、好ましくは縦方向の0.5〜1.0倍の範囲である。 The non-woven fabric of the present invention has a 5% elongation stress per unit weight in a longitudinal 22 ° C. atmosphere of 0.5 to 1.1 N / 50 mm (g / m 2 ). If it is less than 0.5 N / 50 mm (g / m 2 ), plastic deformation is likely to occur, and the handleability and form retention function are inferior. If it exceeds 1.1 N / 50 mm (g / m 2 ), the flexibility is inferior, which is not preferable. The stress at 5% elongation in a preferable 22 ° C. atmosphere of the present invention is 0.6 to 1.0 N / 50 mm (g / m 2 ), more preferably 0.65 to 0.85 N / 50 mm (g / m). 2 ). In the present invention, the longitudinal characteristics of the nonwoven fabric are particularly limited from the viewpoint of handleability, but the stress at 5% elongation in the transverse direction is preferably 0.5 to 1.0 times the longitudinal direction. Range.

本発明の不織布の縦方向の乾熱120℃雰囲気での目付当りの5%伸張時応力は、0.10〜0.40N/50mm(g/m)である。0.10N/50mm(g/m)未満では、熱加工時に変形しやすくなり、加工性が劣る問題を生じる場合がある。0.40N/50mm(g/m)を越えると、熱変形し難くなり、ヒートシール性が劣るので好ましくない。本発明の好ましい乾熱120℃雰囲気での目付当りの5%伸張時応力は、0.15〜0.35N/50mm(g/m)であり、より好ましくは0.20〜0.30N/50mm(g/m)である。 The non-woven fabric of the present invention has a 5% elongation stress per unit weight in a longitudinal dry heat 120 ° C. atmosphere of 0.10 to 0.40 N / 50 mm (g / m 2 ). If it is less than 0.10 N / 50 mm (g / m < 2 >), it will become easy to deform | transform at the time of heat processing, and the problem that workability may be inferior may be produced. If it exceeds 0.40 N / 50 mm (g / m 2 ), it is difficult to be thermally deformed and heat sealability is inferior, which is not preferable. The stress at 5% elongation per unit weight in a preferable dry heat atmosphere of 120 ° C. of the present invention is 0.15 to 0.35 N / 50 mm (g / m 2 ), more preferably 0.20 to 0.30 N / 50 mm (g / m 2 ).

本発明の不織布の縦方向の22℃雰囲気での目付当り破断強力は、1.1〜3.0N/50mm(g/m)である。1.1N/50mm(g/m)未満では、着用時や取扱時の破断や破れを発生しやすくなり好ましくない。3.0N/50mm(g/m)を越えると剛直性が増加して柔軟性が低下するので好ましくない。本発明での好ましい22℃雰囲気での目付当り破断強力は、1.3〜2.8N/50mm(g/m)であり、より好ましくは、1.6〜2.7N/50mm(g/m)である。 The breaking strength per unit weight in a 22 ° C. atmosphere in the longitudinal direction of the nonwoven fabric of the present invention is 1.1 to 3.0 N / 50 mm (g / m 2 ). If it is less than 1.1 N / 50mm (g / m < 2 >), it will become easy to generate | occur | produce the fracture | rupture and tear at the time of wear or handling, and is unpreferable. Exceeding 3.0 N / 50 mm (g / m 2 ) is not preferable because rigidity increases and flexibility decreases. The preferred breaking strength per unit area in a 22 ° C. atmosphere in the present invention is 1.3 to 2.8 N / 50 mm (g / m 2 ), more preferably 1.6 to 2.7 N / 50 mm (g / m). m 2 ).

本発明の不織布は、不織布を構成する繊維を損傷させないため、交絡処理していない不織布に限定される。ここで交絡処理とは、ニードルパンチ交絡処理、水流交絡処理などの処理により、構成繊維が不織布の断面方向に絡み合いを生じる処理を言う。交絡処理を行うと、長繊維を用いても繊維が切断され、毛羽立ちを生じやすくなるので好ましくない。本発明でいう交絡処理しない不織布とは、エンボス加工、熱接着加工などの圧着加工で不織布を固定された不織布を言う。本発明では、交絡処理されていない不織布であれば特には限定されないが、圧着面積が全面に及ぶとフィルム化してしまい柔軟性が低下するので好ましくない。フィルム化させない圧着方法としては、エンボス加工が望ましい。エンボス加工における好ましい圧着面積率は、柔軟性と表面平滑性と耐磨耗性を同時に満足できる30%未満であり、特に好ましくは8〜25%である。本発明のエンボス加工文様は、特には制限されないが、好ましくは柔軟性が保持できる凸横楕円ドットや凸格子柄ドットなどが挙げられる。   Since the nonwoven fabric of this invention does not damage the fiber which comprises a nonwoven fabric, it is limited to the nonwoven fabric which has not been entangled. Here, the entanglement process refers to a process in which the constituent fibers are entangled in the cross-sectional direction of the nonwoven fabric by a process such as a needle punch entanglement process or a hydroentanglement process. When the entanglement treatment is performed, even if long fibers are used, the fibers are cut and fuzzing tends to occur, which is not preferable. The nonwoven fabric which is not entangled in the present invention refers to a nonwoven fabric to which the nonwoven fabric is fixed by a crimping process such as embossing or thermal bonding. In the present invention, the nonwoven fabric is not particularly limited as long as it is not entangled, but it is not preferable since the film is formed into a film and the flexibility decreases when the crimping area reaches the entire surface. Embossing is desirable as a pressure bonding method without forming a film. A preferable pressure-bonding area ratio in embossing is less than 30%, particularly preferably 8 to 25%, which can satisfy flexibility, surface smoothness and wear resistance at the same time. The embossed pattern of the present invention is not particularly limited, but preferably includes convex horizontal elliptical dots and convex grid pattern dots that can maintain flexibility.

本発明の不織布は、柔軟性の指標となるJIS L1096による剛軟性A法に準拠した剛軟度が、好ましくは30〜70mmである。剛軟度が30mm未満では、柔らかすぎて取扱性に問題が出る場合があり、70mmを越えると、硬い風合いを感じるので、好ましくない場合がある。本発明でのより好ましい剛軟度は35〜65mmであり、更に好ましくは40〜60mmである。   The nonwoven fabric of the present invention preferably has a bending resistance of 30 to 70 mm in accordance with bending rigidity A method according to JIS L1096, which is an index of flexibility. If the bending resistance is less than 30 mm, it may be too soft and there may be a problem in handleability. If it exceeds 70 mm, a hard texture may be felt, which may not be preferable. The more preferred bending resistance in the present invention is 35 to 65 mm, and further preferably 40 to 60 mm.

本発明の不織布を構成する長繊維の複屈折率を、ポリブチレンテレフタレートのみを高速紡糸域(紡糸速度が3500m/分以上)で紡糸することにより、0.100〜0.125の範囲とすることは困難である。高速紡糸域で複屈折率を0.100〜0.125にするためには、ポリブチレンテレフタレート(A成分)に対してポリブチレンテレフタレートと非相溶で、且つ、ガラス転移点温度が120〜160℃の非晶性熱可塑性樹脂(B成分)を0.05〜4重量%ブレンドした系での溶融吐出繊条を高速紡糸することで得られる。B成分をブレンドしない繊維の場合は、高速紡糸域では複屈折率が0.125を越えて配向結晶化が進み、剛直性が増し、変形し難くなるため、柔軟性とヒートシール性が低下するので好ましくない。本発明におけるB成分として、好ましい熱可塑性樹脂としては、熱可塑性ポリスチレン系共重合体があげられる。(B成分)は、A成分と相溶性を有しないことにより、A成分中で島成分として独立に存在する特性を有し、また、海成分であるA成分のガラス転移点温度より高い特定のガラス転移点温度とすることにより、B成分が紡糸張力を受けてポリエステルの配向結晶化を抑制する効果を発揮する。B成分としては、例えば、122℃のガラス転移点温度を有するスチレン−メタクリル酸メチル−無水マレイン酸共重合体樹脂(市販品では、例えば、Rohm GmbH&Co.KGのPLEXIGLAS hw55)や155℃のガラス転移点温度を有するスチレン−無水マレイン酸共重合体樹脂(市販品では、例えば、SARTOMER製SMA1000)が少量の添加量で高い配向結晶化抑制効果を期待できるので特に好ましい。なお、ガラス転移点温度が120℃未満では、配向結晶化抑制効果が少なくなるので、本発明実施形態では推奨できない。   The birefringence of the long fibers constituting the nonwoven fabric of the present invention is set to a range of 0.100 to 0.125 by spinning only polybutylene terephthalate in a high-speed spinning region (spinning speed of 3500 m / min or more). It is difficult. In order to adjust the birefringence to 0.100 to 0.125 in the high-speed spinning region, the polybutylene terephthalate (component A) is incompatible with polybutylene terephthalate and has a glass transition temperature of 120 to 160. It is obtained by spinning at high speed a melt-discharge fiber in a system in which 0.05 to 4% by weight of an amorphous thermoplastic resin (component B) at 0 ° C. is blended. In the case of fibers not blended with the B component, in the high speed spinning region, the birefringence exceeds 0.125, the orientation crystallization proceeds, the rigidity increases, and it becomes difficult to deform, so the flexibility and heat sealability are reduced. Therefore, it is not preferable. As the B component in the present invention, a preferable thermoplastic resin includes a thermoplastic polystyrene copolymer. (B component) has a characteristic of being independently present as an island component in the A component by not having compatibility with the A component, and is higher than the glass transition temperature of the A component which is a sea component. By setting the glass transition temperature, the B component exhibits an effect of suppressing the oriented crystallization of the polyester under the spinning tension. Examples of the B component include a styrene-methyl methacrylate-maleic anhydride copolymer resin having a glass transition temperature of 122 ° C. (commercially available product, for example, REX GMBH & Co. KG's PLEXIGLAS hw55) and a glass transition of 155 ° C. A styrene-maleic anhydride copolymer resin having a point temperature (in the case of a commercial product, for example, SMA1000 manufactured by SARTOMER) is particularly preferable because a high effect of suppressing the orientation crystallization can be expected with a small addition amount. It should be noted that if the glass transition temperature is less than 120 ° C., the effect of suppressing orientation crystallization is reduced, which is not recommended in the embodiment of the present invention.

本発明のポリエステルでは、A成分に対するB成分の混合割合は0.05〜4.0重量%が好ましく、より好ましくは0.08〜3.0重量%であり、更に好ましくは0.1〜1.5重量%である。B成分の混合量が0.05重量%未満では、配向結晶化抑制効果が少なくなり、繊維の配向度と比重が高くなり、柔軟性とヒートシール性が低下するので好ましくない。混合量が4.0重量%を超えると、高速紡糸時は糸切れが顕著となり紡糸が不可となり、糸切れしない低速紡糸域では、繊維の配向度が非常に低いものしか得られず、弱い不織布しか得られないうえに、生産性も劣るので好ましくない。   In the polyester of the present invention, the mixing ratio of the B component to the A component is preferably 0.05 to 4.0% by weight, more preferably 0.08 to 3.0% by weight, still more preferably 0.1 to 1%. .5% by weight. When the amount of the B component is less than 0.05% by weight, the effect of suppressing orientation crystallization is reduced, the degree of orientation and specific gravity of the fiber are increased, and flexibility and heat sealability are deteriorated. When the mixing amount exceeds 4.0% by weight, yarn breakage becomes noticeable during high-speed spinning, and spinning becomes impossible. In a low-speed spinning region where yarn breakage does not occur, only fibers with a very low degree of orientation can be obtained, and a weak nonwoven fabric. In addition, it is not preferable because it is not only obtained but also inferior in productivity.

本発明の不織布を構成する長繊維の比重は、特には限定されないが、好ましくは、1.30〜1.35である。比重は結晶化の評価メジャーであり、複屈折率が高くても、配向結晶化を抑制しているため、比較的低い比重を本発明の不織布では示す。比重が1.30は、ポリブチレンテレフタレートの非晶比重は1.28であるが、繊維化では比重が1.30以下にならないので下限値としては1.30となる。比重が1.35を越えると配向結晶化が進んでいるため剛直性が増加して柔軟性が低下し、ヒートシール性も悪くなる問題がある場合がある。本発明でのより好ましい繊維の比重は、1.30〜1.33であり、更に好ましくは1.31〜1.32である。但し、ポリブチレンテレフタレートのみでは、牽引伸張による冷延伸効果でボイドを発生する場合があり、低比重の繊維となる場合があり、低比重繊維は、小角X線回折像(SAXS)でボイドの散乱干渉像が認められる。したがって、上記比重は、SAXS回折像でボイドの散乱干渉像が認められない繊維に限定したものである。又、無機物、例えば酸化チタンなどのダル剤を添加した場合にも変るので、熱可塑性樹脂の比重を言う。   Although the specific gravity of the long fiber which comprises the nonwoven fabric of this invention is not specifically limited, Preferably, it is 1.30-1.35. Specific gravity is an evaluation measure for crystallization, and even if the birefringence is high, oriented crystallization is suppressed, so that the nonwoven fabric of the present invention exhibits a relatively low specific gravity. When the specific gravity is 1.30, the non-crystalline specific gravity of polybutylene terephthalate is 1.28. However, since the specific gravity does not become 1.30 or less in fiberization, the lower limit is 1.30. If the specific gravity exceeds 1.35, orientation crystallization is progressing, so that there is a problem that rigidity is increased, flexibility is lowered, and heat sealability is deteriorated. The specific gravity of the more preferable fiber in the present invention is 1.30 to 1.33, and more preferably 1.31 to 1.32. However, with polybutylene terephthalate alone, voids may be generated due to the cold drawing effect due to traction stretching, which may result in low specific gravity fibers. Low specific gravity fibers are scattered by small angle X-ray diffraction images (SAXS). An interference image is observed. Therefore, the specific gravity is limited to fibers in which no void scattering interference image is observed in the SAXS diffraction image. It also changes when a dull agent such as an inorganic substance such as titanium oxide is added, and therefore the specific gravity of the thermoplastic resin.

本発明の不織布を構成する長繊維の繊度は、特に限定されないが、被覆性と柔軟性を維持できる0.5〜5dtexが好ましい。より好ましくは1〜4dtexである。本発明の不織布を構成する長繊維の断面形状は、特に限定されないが、丸断面以外に異形断面、中空断面、中空異形断面を用いることができる。本発明の不織布の目付は、特に限定されないが、使い捨てカイロ用基布として用いる場合、柔軟性と被覆性の観点から15〜50g/mが好ましく、20〜45g/mがより好ましい。本発明不織布の22℃雰囲気での縦方向の伸度は、特には限定されないが、好ましくは30〜70%、より好ましくは35〜68%、更に好ましくは40〜65%である。伸度が30%未満では、剛直性が増加して柔らかさが劣ると共に不織布のタフさがなくなり構造保持性も劣るものとなる場合があり、伸度が70%を超えると、引き伸ばされ易くなり、形態保持性や加工性が劣る場合があるので、使用条件により、所望の適正伸度を設定するのが望ましい。 Although the fineness of the long fiber which comprises the nonwoven fabric of this invention is not specifically limited, 0.5-5 dtex which can maintain a coating property and a softness | flexibility is preferable. More preferably, it is 1-4 dtex. The cross-sectional shape of the long fibers constituting the nonwoven fabric of the present invention is not particularly limited, but an irregular cross-section, a hollow cross-section, and a hollow irregular cross-section can be used in addition to the round cross-section. Basis weight of the nonwoven fabric of the present invention is not particularly limited, when used as a base fabric for disposable body warmer, more preferably 15 to 50 g / m 2 in terms of flexibility and coverage, 20~45g / m 2 is more preferable. The elongation in the machine direction of the nonwoven fabric of the present invention in the 22 ° C. atmosphere is not particularly limited, but is preferably 30 to 70%, more preferably 35 to 68%, and still more preferably 40 to 65%. If the elongation is less than 30%, the rigidity is increased and the softness is inferior, and the nonwoven fabric may be tough and the structure retention may be inferior. If the elongation exceeds 70%, it is easily stretched. Since form retainability and workability may be inferior, it is desirable to set a desired appropriate elongation depending on use conditions.

次に、本発明の不織布の製造方法の一例を以下に示すが、本発明の製造方法はこれらに限定されるものではない。
例えば、A成分として用いるポリブチレンテレフタレートは、樹脂の固有粘度が0.9以上1.4以下のものを用いると、公知の紡糸方法では、繊維の固有粘度は0.8〜1.2の範囲になるので、この範囲のポリブチレンテレフタレートを用いるのが好ましい。樹脂水分や紡糸条件等により樹脂固有粘度の低下度合は異なるが、例えば、樹脂の固有粘度が0.75のものを用いた、単成分の通常紡糸では繊維の固有粘度が0.65くらいまで低下するが、繊維形成は容易にできる。しかし、B成分を含有させると、糸切れが顕著となり繊維形成が困難となる。樹脂固有粘度が0.87では、繊維の固有粘度が0.78くらいまで低下しても、単成分では糸切れせず繊維形成は容易だが、B成分を含有させると、糸切れが発生して繊維形成が不良となる。B成分を含有させたときの、通常の紡糸条件での糸切れが発生しない繊維の固有粘度は0.8以上であり、樹脂の固有粘度は0.9以上とするのが好ましい。他方、樹脂固有粘度が高すぎるものを用いると、低い紡糸速度で配向結晶化を生じる傾向があり、低速での生産を余儀なくされるので、特定繊度を維持するとノズル単孔あたりの生産性が低下して好ましくない。例えば、樹脂の固有粘度が1.55を越えると繊維の固有粘度も1.4前後となり、3500m/分以下の低紡糸速度で配向結晶化するので、細繊度とするためには単孔吐出量を低く設定する必要から生産性が低下する問題がある。
Next, although an example of the manufacturing method of the nonwoven fabric of this invention is shown below, the manufacturing method of this invention is not limited to these.
For example, the polybutylene terephthalate used as the component A is a resin having an intrinsic viscosity of 0.9 or more and 1.4 or less. In a known spinning method, the intrinsic viscosity of the fiber is in the range of 0.8 to 1.2. Therefore, it is preferable to use polybutylene terephthalate in this range. The degree of decrease in the intrinsic viscosity of the resin varies depending on the resin moisture, spinning conditions, etc., but, for example, in the case of single component normal spinning using an intrinsic viscosity of the resin of 0.75, the intrinsic viscosity of the fiber is reduced to about 0.65. However, fiber formation is easy. However, when the B component is contained, yarn breakage becomes remarkable and fiber formation becomes difficult. When the intrinsic viscosity of the resin is 0.87, even if the intrinsic viscosity of the fiber is reduced to about 0.78, the single component does not break the yarn and fiber formation is easy. However, if the B component is contained, the yarn breakage occurs. Fiber formation is poor. When the component B is contained, the intrinsic viscosity of the fiber that does not cause yarn breakage under normal spinning conditions is preferably 0.8 or more, and the intrinsic viscosity of the resin is preferably 0.9 or more. On the other hand, using a resin whose intrinsic viscosity is too high tends to cause orientational crystallization at a low spinning speed, which necessitates production at a low speed, so maintaining the specific fineness decreases the productivity per nozzle single hole. It is not preferable. For example, if the intrinsic viscosity of the resin exceeds 1.55, the intrinsic viscosity of the fiber is about 1.4, and orientation crystallization occurs at a low spinning speed of 3500 m / min or less. There is a problem that productivity is lowered because it is necessary to set the value low.

例えば、固有粘度1.00のポリブチレンテレフタレート99.5重量部とB成分としてスチレン−メタクリル酸メチル−無水マレイン酸共重合体(例えば、PLEXIGLAS hw55)0.5重量部を乾燥機でブレンド乾燥し、次いで、通常の溶融紡糸機にて、孔長(L)と孔径(D)の比(L/D)が1〜5のオリフィスを持つノズルを用いて、A成分の融点+20〜50℃である紡糸温度、例えば265℃にて紡糸する。L/Dが1未満では、バラス効果が大きくなりやすく高速紡糸では糸切れが発生しやすくなる。L/Dが5を越えると、剪断力でA成分とB成分が分離しやすくなるので、配向結晶化抑制効果が繊維断面内で均質になりにくい問題がある。本発明では、繊維断面内で均質にA成分中にB成分が分散できるために、L/Dは好ましくは2〜4であり、より好ましくは3である。吐出量は所望の繊度を得るために、設定牽引速度に応じて設定する。例えば、2dtexの繊維を得たい場合、牽引による紡糸速度を4500m/分に設定する時は、単孔吐出量を0.9g/分にて吐出する。   For example, 99.5 parts by weight of polybutylene terephthalate having an intrinsic viscosity of 1.00 and 0.5 parts by weight of a styrene-methyl methacrylate-maleic anhydride copolymer (for example, PLEXIGLAS hw55) as a B component are blended and dried in a dryer. Then, in a normal melt spinning machine, using a nozzle having an orifice with a ratio (L / D) of the hole length (L) to the hole diameter (D) of 1 to 5, the melting point of the component A +20 to 50 ° C. Spin at a certain spinning temperature, eg 265 ° C. If L / D is less than 1, the ballast effect tends to increase, and yarn breakage is likely to occur during high speed spinning. When L / D exceeds 5, the A component and the B component are easily separated by a shearing force, so that there is a problem that the effect of suppressing crystallization of orientation is difficult to be uniform in the fiber cross section. In the present invention, L / D is preferably 2 to 4, more preferably 3, because the B component can be uniformly dispersed in the A component within the fiber cross section. The discharge amount is set according to the set pulling speed in order to obtain a desired fineness. For example, when it is desired to obtain a fiber of 2 dtex, when the spinning speed by pulling is set to 4500 m / min, the single hole discharge rate is discharged at 0.9 g / min.

紡糸された吐出糸条はノズル直下〜10cm下で冷却風により冷却されつつ、下方に設置された牽引ジェットにて3000〜5000m/分の紡糸速度で牽引細化されて固化する。A成分が固化する前にB成分が固化して、A成分は、配向結晶化し難くなり、得られる長繊維の複屈折率と比重を低く保つことができる。   The spun yarn spun is cooled by cooling air immediately below the nozzle to 10 cm, and is drawn and solidified by a pulling jet installed below at a spinning speed of 3000 to 5000 m / min. The B component is solidified before the A component is solidified, and the A component is difficult to be oriented and crystallized, and the birefringence and specific gravity of the obtained long fiber can be kept low.

牽引紡糸された固有粘度0.95の長繊維は、下方に設置された吸引ネットコンベア上に振落されてウェッブ化される。連続して、ウェッブはバラケないように100〜210℃にて予備圧着されてハンドリング性を確保される。次いで、巻き取られ、又は、連続して、エンボス加工される。圧着面積率が8〜25%の場合、用いるエンボスローラーのエンボス文様は、圧着面積となる凸部面積が6〜23%に設定したドット文様を用いることが好ましい。本発明でのエンボス加工温度は、素材と目付、加工速度、線圧により好ましい温度が異なるが、140〜230℃、特に160〜220℃で行うことが好ましい。   The traction-spun long fiber having an intrinsic viscosity of 0.95 is shaken down on a suction net conveyor installed below to be webbed. Continuously, the web is preliminarily pressure-bonded at 100 to 210 ° C. so as not to be loosened, thereby ensuring handling properties. It is then wound or continuously embossed. When the crimping area ratio is 8 to 25%, it is preferable that the embossed pattern of the embossing roller to be used is a dot pattern in which the convex area that is the crimping area is set to 6 to 23%. The embossing temperature in the present invention is preferably 140 to 230 ° C., particularly 160 to 220 ° C., although a preferable temperature differs depending on the material, basis weight, processing speed, and linear pressure.

なお、本発明の不織布は、必要に応じて、片面を印刷加工することができる。印刷加工は、グラビア印刷、フレキソ印刷、オフセットのいずれかの印刷機を用いて表面全面に施されていることが好ましい。印刷加工に使用されるインキは、ポリエステル系樹脂やポリウレタン系樹脂をバインダーとするものがポリエステル不織布との接着性の点で好ましい。印刷加工の厚みは全面に10μm以上が好ましく、より好ましくは15μm以上である。印刷加工の代わりにフィルムのラミネート加工をしてもよい。なお、本発明不織布は、接合面にフィルムラミネートしないでもヒートシールが可能な使い捨てカイロ用基布に使用できる不織布であり、接合面にはフィルムラミネートしない使用形態が望ましい。低温シールが必要な場合においては、フィルムラミネートしてもよい。この場合、ラミネートフィルムは多孔性フィルムを使用することが好ましい。ラミネートされるフィルムの厚みは、柔軟性を損なわない範囲で5〜100μm程度が好ましい。   In addition, the nonwoven fabric of this invention can print one side as needed. The printing process is preferably performed on the entire surface using a gravure printing, flexographic printing, or offset printing machine. The ink used for printing is preferably a polyester resin or polyurethane resin as a binder from the viewpoint of adhesiveness to the polyester nonwoven fabric. The thickness of the printing process is preferably 10 μm or more over the entire surface, more preferably 15 μm or more. A film may be laminated instead of printing. In addition, this invention nonwoven fabric is a nonwoven fabric which can be used for the base fabric for disposable warmers which can heat seal even if it does not film laminate on a joining surface, and the usage form which does not film laminate on a joining surface is desirable. When low temperature sealing is required, film lamination may be performed. In this case, the laminate film is preferably a porous film. The thickness of the laminated film is preferably about 5 to 100 μm as long as flexibility is not impaired.

以下に実施例を示して本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例で記載する特性の評価は以下の方法による。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The characteristics described in the examples are evaluated by the following method.

1.ガラス転移点温度及び融点
樹脂のサンプル5mgを採取し、示差走査型熱量計(TA instruments社製Q100)によって、窒素雰囲気下で20℃から10℃/分にて290℃まで昇温させたときの発熱ピーク位置の温度をガラス転移点温度、吸熱ピーク位置の温度を融点として評価した。
1. Glass transition temperature and melting point When a 5 mg sample of a resin was taken and heated from 20 ° C. to 290 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere by a differential scanning calorimeter (TA Instruments Q100). The temperature at the exothermic peak position was evaluated as the glass transition temperature, and the temperature at the endothermic peak position as the melting point.

2.ポリブチレンテレフタレートの固有粘度
フェノール/テトラクロルエタン:6/4の混合溶媒25ml中に溶解ろ過し、30℃にてオストワルド粘度計を用いて測定した溶液粘度(ηsp/c)を求め、0に補外した濃度0の点の値を固有粘度(η)とする。
2. Intrinsic viscosity of polybutylene terephthalate Dissolve and filter in 25 ml of a mixed solvent of phenol / tetrachloroethane: 6/4, and determine the solution viscosity (ηsp / c) measured at 30 ° C. using an Ostwald viscometer. The value of the removed point of density 0 is defined as intrinsic viscosity (η).

3.複屈折率
不織布又はウェッブから取り出した単繊維をベレックコンペンセーターを装着した偏向顕微鏡によりレターデーションと繊維径により求めたn=5の平均値を繊維の複屈折率(Δn)とした。
3. Birefringence The average value of n = 5 obtained from the retardation and fiber diameter of a single fiber taken out from the nonwoven fabric or web by a deflection microscope equipped with a Belek Compensator was defined as the birefringence (Δn) of the fiber.

4.比重
不織布又はウェッブから取り出した単繊維を硝酸カルシウム4水和物と浄水の混合液からなる密度勾配管により30℃で測定したn=3の平均値を繊維の比重とした。
4). Specific gravity The average value of n = 3, which was measured at 30 ° C. with a density gradient tube made of a mixed solution of calcium nitrate tetrahydrate and purified water, was taken as the specific gravity of the fibers.

5.不織布の目付
JIS L1906(2000)に準じて測定した単位面積あたりの質量(Ms):g/mを目付とした。
5. Non-woven fabric basis weight Mass per unit area (Ms) measured according to JIS L1906 (2000): g / m 2 was used as the basis weight.

5.不織布の縦方向の伸度および破断強力
幅50mm、縦方向の測定長さ200mmのサンプルを、JIS L1906(2000)に準拠して、22℃および120℃雰囲気にて測定した引張り強さと伸び率の破断までの曲線(SS曲線)を測定して、グラフより破断までの最大強力を示す時の伸び率の平均値を縦方向の伸度(DE)、最大強力の平均値を縦方向の破断強力(DT)として求めた。
5. Tensile strength and elongation of non-woven fabric measured in a 22 ° C. and 120 ° C. atmosphere in accordance with JIS L1906 (2000) for a sample having a width of 50 mm and a measurement length of 200 mm in a longitudinal direction. Measure the curve to rupture (SS curve), and when the maximum strength from the graph to the rupture is shown, the average value of elongation is the longitudinal elongation (DE), and the average maximum strength is the rupture strength in the vertical direction. Calculated as (DT).

7.不織布の縦方向の5%伸張時応力
上記5.でSS曲線から求めた伸度5%伸張時の強力の平均値を縦方向の5%伸張時応力として求めた。
7). 4. Stress at 5% elongation in the longitudinal direction of the nonwoven fabric The average value of the strength at 5% elongation obtained from the SS curve was obtained as the stress at 5% elongation in the longitudinal direction.

8.不織布の圧着面積率
任意の20箇所で30mm角に裁断し、SEMにて50倍の写真を撮る。撮影写真をA3サイズに印刷して圧着単位面積を切り抜き、面積(S0)を求める。次いで圧着単位面積内において圧着部のみを切り抜き圧着部面積(Sp)を求め、圧着面積率(P)を算出する。その圧着面積率P 20点の平均値を求めた。
P=Sp/S0 (n=20)
8). Crimp area ratio of non-woven fabric Cut to 30 mm square at 20 arbitrary places, and take a 50 times photograph with SEM. The photographed photograph is printed in A3 size, the crimping unit area is cut out, and the area (S0) is obtained. Next, only the crimping part is cut out within the crimping unit area to obtain the crimping part area (Sp), and the crimping area ratio (P) is calculated. The average value of the crimping area ratio P of 20 points was determined.
P = Sp / S0 (n = 20)

9.不織布の剛軟度
幅20mm、縦方向の長さ200mmの試料を用い、JIS L1096(2000)剛軟性A法に準拠した条件で測定した(n=10の平均値)(単位:mm)。
9. The bending resistance of the nonwoven fabric was measured using a sample having a width of 20 mm and a longitudinal length of 200 mm under conditions conforming to JIS L1096 (2000) bending resistance A method (average value of n = 10) (unit: mm).

10.不織布の耐磨耗性
JIS L1096(2000)II法に準拠して、株式会社大栄科学精器製作所製「学振型染色物摩擦堅牢度試験機」を用いて、不織布を試料とし、摩擦布は金巾3号を使用して、荷重500gfを使用、摩擦回数100往復にて摩擦させ、不織布表面の毛羽立ち、磨耗状態を下記の基準で目視判定で評価した(n=5の平均値)。
0級:損傷大
1級:損傷中
2級:損傷小
3級:損傷なし、毛羽発生あり小
4級:損傷なし、毛羽発生微小
5級:損傷なし、毛羽なし
10. Abrasion resistance of non-woven fabric In accordance with JIS L1096 (2000) II method, a non-woven fabric was used as a sample using a “Gakushin type dyeing friction fastness tester” manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd. Using a gold width No. 3, using a load of 500 gf, rubbing with a friction frequency of 100 reciprocations, the surface of the nonwoven fabric was evaluated for fluffing and wear by the following criteria (average value of n = 5).
Level 0: High damage Level 1: Damaged Level 2: Small damage Level 3: No damage, small fluff generation Level 4: No damage, fluff generation micro Level 5: No damage, no fluff

11.不織布のヒートシール性
A4版に切り出した不織布の接合面を2枚に重ねて、富士インパルス株式会社製のヒートシーラー(FA−450−5W型)を用い、加熱を5.5、冷却を10、設定はマニュアルにして、ヒートシールし、接合部を手で剥離しようとして、剥離の状態により、以下の評価をした。
5級:シール接合良好、接合部は剥離しない。
4級:シール接合少し斑あり、接合部は剥離しない。
3級:シール接合するが接合斑あり、接合側辺部は少し剥離する。
2級:シール接合やや不良でかなり剥離する。
1級:シール接合されていない。
11. Heat sealing property of non-woven fabric The joint surfaces of non-woven fabrics cut into A4 plates are stacked on two sheets, using a heat sealer (FA-450-5W type) manufactured by Fuji Impulse Co., Ltd., heating is 5.5, cooling is 10, The setting was made manually, heat-sealed, the joint was peeled by hand, and the following evaluation was made according to the peeled state.
Grade 5: Good seal bonding, and the bonded portion does not peel off.
Grade 4: There are some spots on the seal joint, and the joint does not peel off.
Third grade: Sealing is joined, but there are joining spots, and the joining side is peeled off a little.
Second grade: Peels considerably due to slightly poor seal bonding.
First grade: Not sealed.

12.官能評価
作成した長繊維不織布を、20cm×15cmに切断して試料とし、これを二つ折りして、この間に市販の使い捨てカイロから取り出した発熱部分を挿入して周囲を熱シールして10cm×15cmのカイロを作成した。なお、ヒートシール性不良の不織布はメルトインデックス10の30μmの低密度ポリエチレンフィルムラミネートしてカイロを作成した。この作成したカイロに対して、パネラー5名による以下の官能評価を行った。
(1)柔らかさ
作成したカイロを手で軽く接んでもらい、柔らかさを官能評価した。
4級:日本製紙クレリア製「クリネックス」並み〜より柔らかい、2級:旭化成製「クリーンワイプP」並みを基準にして、それらの中間を3級、2級より硬い場合を1級として、5名のパネラーの平均値を評価値にした。なお、3級以上を合格とした。
(2)毛羽立ち性
作成したカイロを、下着(腎部)に外れないように縫いつけて8時間作業した後、目視で以下の基準で官能評価した。
4級:毛羽剥離なし、3級:毛羽微小剥離なし、2級:毛羽小〜中剥離微小、1級:毛羽大剥離中以上とし、5名の平均値とした。3級以上を合格とした。
12 Sensory evaluation The produced long fiber non-woven fabric was cut into 20 cm × 15 cm to prepare a sample, and this was folded in half, and a heat generating portion taken out from a commercially available disposable body warmer was inserted between them, and the surroundings were heat-sealed to be 10 cm × 15 cm Created Cairo. The non-woven fabric with poor heat sealability was laminated by laminating a 30 μm low density polyethylene film having a melt index of 10 to produce a warmer. The following sensory evaluation was performed on the created body warmer by five panelists.
(1) Softness The created warmers were lightly touched by hand, and the softness was subjected to sensory evaluation.
4th grade: Nippon Paper Cleria's “Kleenex” comparable to softer, 2nd grade: Asahi Kasei's “clean wipe P” grade, based on 3rd grade, 2nd grade is harder than 2nd grade, 5 people The average value of the panelists was used as the evaluation value. Grade 3 or higher was accepted.
(2) Fluffiness The prepared body warmers were sewn so as not to come off the underwear (kidney) and worked for 8 hours, and then visually evaluated according to the following criteria.
4th grade: No fluff peeling, 3rd grade: No fluff fine peeling, 2nd grade: Small fluff to medium peeling fine, 1st grade: During fluff large peeling or more, the average value of 5 persons was used. Grade 3 or higher was accepted.

<実施例1>
固有粘度1.00のポリブチレンテレフタレート(以下、「PBT」と言う))99.6重量%とスチレン−メタクリル酸メチル−無水マレイン酸共重合体樹脂(Rohm GmbH&Co.KGのPLEXIGLAS hw55(以下、「hw55」と言う))0.4重量%を混合乾燥し、ノズルオリフィスがL/D3.0のノズルを用い、紡糸温度265℃、単孔吐出量0.7g/分にて常法により溶融紡糸し、紡糸速度4500m/分にて引取り、ネットコンベア上に振落してウェッブを得た。連続して、ネット上で190℃の予備圧着ローラーにて押さえ処理を行い、固有粘度0.94、単糸繊度1.5dtexの長繊維からなるウェッブを得た。次いで、圧着面積率16%の210℃に加熱した凸楕円エンボスローラーにて、線圧30kN/mにてエンボス加工して、目付量30g/mの長繊維不織布を得た。得られた不織布の詳細と評価結果を表1に示す。実施例1の不織布は、柔らかく毛羽立ちがなく、柔軟性、耐磨耗性、及びヒートシール性がともに優れた不織布であった。
<Example 1>
99.6% by weight of polybutylene terephthalate (hereinafter referred to as “PBT”) having an intrinsic viscosity of 1.00 and a styrene-methyl methacrylate-maleic anhydride copolymer resin (REX GmbH & Co. KG's PLEXIGLAS hw55 (hereinafter referred to as “PBT”) hw55 ”)) 0.4% by weight mixed and dried, using a nozzle with a nozzle orifice of L / D3.0, spinning at a spinning temperature of 265 ° C. and a single hole discharge rate of 0.7 g / min. Then, it was taken up at a spinning speed of 4500 m / min and shaken on a net conveyor to obtain a web. Continuously, a press treatment was performed on a net with a pre-press roller at 190 ° C. to obtain a web made of long fibers having an intrinsic viscosity of 0.94 and a single yarn fineness of 1.5 dtex. Next, embossing was performed at a linear pressure of 30 kN / m with a convex elliptical embossing roller heated to 210 ° C. with a crimping area ratio of 16% to obtain a long fiber nonwoven fabric having a basis weight of 30 g / m 2 . The details and evaluation results of the obtained nonwoven fabric are shown in Table 1. The nonwoven fabric of Example 1 was soft and free from fluff and was excellent in flexibility, wear resistance, and heat sealability.

<実施例2>
目付量が40g/mとなるようにコンベア速度を調整した以外、実施例1と同様にして長繊維不織布を得た。得られた不織布の詳細と評価結果を表1に示す。実施例2の不織布は、柔らかく毛羽立ちがなく、柔軟性と耐磨耗性及びヒートシール性がともに優れた不織布であった。
<Example 2>
A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the conveyor speed was adjusted so that the basis weight was 40 g / m 2 . The details and evaluation results of the obtained nonwoven fabric are shown in Table 1. The nonwoven fabric of Example 2 was a nonwoven fabric that was soft and free of fluff and excellent in flexibility, wear resistance, and heat sealability.

<実施例3>
目付量が20g/mとなるようにコンベア速度を調整した以外、実施例1と同様にして長繊維不織布を得た。得られた不織布の詳細と評価結果を表1に示す。実施例3の不織布は、柔らかく毛羽立ちがなく、柔軟性と耐磨耗性及びヒートシール性がともに優れた不織布であった。
<Example 3>
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the conveyor speed was adjusted so that the basis weight was 20 g / m 2 . The details and evaluation results of the obtained nonwoven fabric are shown in Table 1. The nonwoven fabric of Example 3 was soft and free of fluff and was excellent in flexibility, wear resistance, and heat sealability.

<実施例4>
PBTを99.0重量%、hw55を1.0重量%とした以外は、実施例1と同様にして長繊維不織布を得た。得られた不織布の詳細と評価結果を表1に示す。実施例4の不織布は、柔らかく毛羽立ちがなく、柔軟性と耐磨耗性及びヒートシール性がともに優れた不織布であった。
<Example 4>
A long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that PBT was 99.0% by weight and hw55 was 1.0% by weight. The details and evaluation results of the obtained nonwoven fabric are shown in Table 1. The nonwoven fabric of Example 4 was soft and free of fluff and was excellent in flexibility, wear resistance, and heat sealability.

<実施例5>
固有粘度0.87のPBTを用い、予備圧着温度及びエンボス加工温度をやや低温とした以外、実施例1と同様にして得られた、固有粘度0.82の繊維からなる不織布の詳細と評価結果を表1に示す。実施例5の不織布は、柔らかく毛羽立ちがなく、柔軟性と耐磨耗性及びヒートシール性がともに優れた不織布であった。
<Example 5>
Details and evaluation results of the nonwoven fabric made of fibers having an intrinsic viscosity of 0.82 obtained in the same manner as in Example 1 except that the PBT having an intrinsic viscosity of 0.87 was used and the pre-compression bonding temperature and the embossing temperature were slightly lowered. Is shown in Table 1. The nonwoven fabric of Example 5 was soft and free of fluff and was excellent in flexibility, abrasion resistance, and heat sealability.

<実施例6>
固有粘度1.30のPBTを用いた以外、実施例1と同様にして得られた、固有粘度1.19の繊維からなる不織布の詳細と評価結果を表1に示す。実施例6の不織布は、柔らかく毛羽立ちがなく、柔軟性と耐磨耗性及びヒートシール性がともに優れた不織布であった。
<Example 6>
Table 1 shows the details of the nonwoven fabric made of fibers having an intrinsic viscosity of 1.19 and evaluation results obtained in the same manner as in Example 1 except that PBT having an intrinsic viscosity of 1.30 was used. The nonwoven fabric of Example 6 was a nonwoven fabric that was soft and free of fluff and excellent in flexibility, abrasion resistance, and heat sealability.

Figure 0005799558
Figure 0005799558

<比較例1>
PBTを100重量%とし、hw55を使用しなかった以外は、実施例1と同様にして長繊維不織布を得た。得られた不織布の詳細と評価結果を表2に示す。比較例1の不織布は、配向結晶化して複屈折率(Δn)と比重が高くなり、本発明要件の力学特性は満たすものの、耐磨耗性、ヒートシール性が劣る不織布であった。
<Comparative Example 1>
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that PBT was 100% by weight and hw55 was not used. Table 2 shows details and evaluation results of the obtained nonwoven fabric. The nonwoven fabric of Comparative Example 1 was oriented and crystallized to increase the birefringence index (Δn) and specific gravity, satisfying the mechanical properties of the present invention, but inferior in wear resistance and heat sealability.

<比較例2>
単孔吐出量を0.5g/分とし、紡糸速度を2000m/分とした以外、比較例1と同様にして得た不織布の詳細と評価結果を表2に示す。比較例2は中速紡糸域の繊維であるが、複屈折率は本発明範囲に入るが、力学特性は劣り硬くなるので、ヒートシール性がやや劣り、柔軟性と耐磨耗性も劣る不織布であった。
<Comparative Example 2>
Table 2 shows details and evaluation results of the nonwoven fabric obtained in the same manner as in Comparative Example 1 except that the single hole discharge rate was 0.5 g / min and the spinning speed was 2000 m / min. Comparative Example 2 is a fiber in the medium speed spinning region, but the birefringence falls within the range of the present invention, but the mechanical properties are inferior and hard, so the heat sealability is slightly inferior, and the nonwoven fabric is also inferior in flexibility and wear resistance. Met.

<比較例3>
単孔吐出量0.25g/分とし、紡糸速度を1000m/分とした以外は、比較例1と同様にして得た長繊維不織布の詳細と評価結果を表2に示す。比較例3は低速紡糸のために繊維の複屈折率が低くなり、ヒートシール性は改良されるが、力学特性が劣るため耐久性、耐磨耗性が悪い不織布となる。
<Comparative Example 3>
Table 2 shows the details and evaluation results of the long fiber nonwoven fabric obtained in the same manner as in Comparative Example 1 except that the single hole discharge rate was 0.25 g / min and the spinning speed was 1000 m / min. Comparative Example 3 has a low fiber birefringence due to low speed spinning and improved heat sealability. However, since the mechanical properties are inferior, the nonwoven fabric has poor durability and wear resistance.

<比較例4>
実施例1と同様にして作成したウェッブを、ペネ数60でニードルパンチ加工して長繊維不織布を得た。得られた不織布の詳細と評価結果を表2に示す。比較例4の不織布は、交絡処理をしているため、柔軟性は良いが、ヒートシール性と耐磨耗性が劣る不織布となる。
<Comparative Example 4>
A web prepared in the same manner as in Example 1 was needle punched with a penetrating number of 60 to obtain a long fiber nonwoven fabric. Table 2 shows details and evaluation results of the obtained nonwoven fabric. Since the nonwoven fabric of Comparative Example 4 is entangled, the flexibility is good, but the nonwoven fabric is inferior in heat sealability and wear resistance.

<比較例5>
エンボス加工ローラーを圧着面積45%の凹形織目柄とした以外、実施例1と同様にして得た長繊維不織布の詳細と評価結果を表2に示す。比較例5は、エンボス加工による圧着面積が高くなりペーパーライクな柔軟性に劣る不織布となる。
<Comparative Example 5>
Table 2 shows the details and evaluation results of the long-fiber nonwoven fabric obtained in the same manner as in Example 1 except that the embossing roller has a concave woven pattern having a pressure bonding area of 45%. The comparative example 5 becomes a nonwoven fabric inferior in paper-like flexibility because the crimping area by embossing is increased.

<比較例6>
hw55の添加量を0.001重量%とした以外、実施例1と同様にして得た長繊維不織布の詳細と評価結果を表2に示す。比較例6は、hw55の添加量が少ないため、配向結晶化抑制効果が得られず、柔軟性、耐磨耗性、ヒートシール性が劣る不織布となる。
<Comparative Example 6>
Table 2 shows the details and evaluation results of the long fiber nonwoven fabric obtained in the same manner as in Example 1 except that the amount of hw55 added was 0.001% by weight. In Comparative Example 6, since the added amount of hw55 is small, the effect of suppressing orientation crystallization cannot be obtained, and the nonwoven fabric is inferior in flexibility, wear resistance, and heat sealability.

<比較例7>
固有粘度0.65のポリエチレンテレフタレート(PET)99.5重量%とhw55を0.5重量%を混合乾燥し、ノズルオリフィスがL/D3.0のノズルを用い、紡糸温度285℃、単孔吐出量0.88g/分にて常法により溶融紡糸し、紡糸速度3500m/分にて引取り、ネットコンベア上に振落してウェッブを得た。連続して、ネット上で100℃の予備圧着ローラーにて押さえ処理を行い、単糸繊度2.5dtexの長繊維からなるウェッブを得た。次いで、圧着面積率18%の140℃に加熱した横楕円エンボスローラーにて、線圧30kgfにてエンボス加工して、目付50g/mの不織布を得た。得られた不織布の詳細と評価結果を表2に示す。比較例7の不織布は、剛軟度が高く硬直なため、耐磨耗性は許容されるが、柔軟性とヒートシール性に劣る不織布であった。
<Comparative Example 7>
Mixing and drying 99.5% by weight of polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 and 0.5% by weight of hw55, using a nozzle with a nozzle orifice of L / D3.0, spinning temperature of 285 ° C., single hole discharge Melt spinning was carried out by a conventional method at an amount of 0.88 g / min, taken up at a spinning speed of 3500 m / min, and shaken on a net conveyor to obtain a web. Continuously, a pressing process was performed on a net with a pre-press roller at 100 ° C. to obtain a web made of long fibers having a single yarn fineness of 2.5 dtex. Subsequently, it was embossed at a linear pressure of 30 kgf with a horizontal elliptical embossed roller heated to 140 ° C. with a crimp area ratio of 18% to obtain a nonwoven fabric with a basis weight of 50 g / m 2 . Table 2 shows details and evaluation results of the obtained nonwoven fabric. The non-woven fabric of Comparative Example 7 was a non-woven fabric inferior in flexibility and heat-sealability, although its abrasion resistance was allowed because of its high bending resistance and rigidity.

<比較例8>
PBTを95重量%、hw55を5重量%とした以外は、実施例1と同様にして紡糸したが、糸切れが顕著でウェッブが得られなかった。比較例8の詳細を表2に示す。比較例8は、B成分の添加量が多すぎるため、ウェッブを得ることも困難であった。
<Comparative Example 8>
Spinning was carried out in the same manner as in Example 1 except that PBT was changed to 95% by weight and hw55 was changed to 5% by weight. However, yarn breakage was remarkable and no web was obtained. Details of Comparative Example 8 are shown in Table 2. In Comparative Example 8, it was difficult to obtain a web because the amount of component B added was too large.

<比較例9>
PBTを99.5重量%、東洋紡績株式会社製ペルプレン(登録商標)P40Bを0.5重量%とした以外、実施例1と同様にして得た長繊維不織布の詳細と特性を表2に示す。比較例9は、無添加のものより力学特性は少し柔軟になるが、耐磨耗性、ヒートシール性に劣る不織布となる。
<Comparative Example 9>
Table 2 shows the details and characteristics of the long-fiber nonwoven fabric obtained in the same manner as in Example 1 except that 99.5% by weight of PBT and 0.5% by weight of Perprene (registered trademark) P40B manufactured by Toyobo Co., Ltd. were used. . Comparative Example 9 is a nonwoven fabric that is slightly inferior in wear resistance and heat sealability, although its mechanical properties are slightly more flexible than those of the additive-free one.

<比較例10>
固有粘度0.62のPBTを用いた以外、実施例5と同様にして得られた、繊維の固有粘度が0.54の不織布の詳細結果を表2に示す。比較例10の不織布は、固有粘度が低いため、製糸性が悪く糸切れが多くなり、糸切れがドリップ化しており、エンボス加工では収縮して不織布は硬く、やや脆くなるため、不織布の評価は行わなかった。
<Comparative Example 10>
Table 2 shows the detailed results of the nonwoven fabric having an intrinsic viscosity of 0.54 obtained in the same manner as in Example 5 except that PBT having an intrinsic viscosity of 0.62 was used. Since the non-woven fabric of Comparative Example 10 has low intrinsic viscosity, the yarn-making property is poor, the yarn breakage is increased, the yarn breakage is dripped, and the embossing shrinks and the nonwoven fabric is hard and somewhat brittle. Did not do.

<比較例11>
固有粘度0.62のPBTを用いたのみ以外、比較例10と同様にして得られた、繊維の固有粘度が0.56の不織布の詳細結果を表2に示す。比較例11の不織布は、固有粘度は低いが製糸性に問題はなかったが、不織布は、やや脆く、柔軟性、耐摩耗性、ヒートシール性、毛羽立ち性が劣る不織布であった。
<Comparative Example 11>
Table 2 shows the detailed results of the nonwoven fabric having an intrinsic viscosity of 0.56 obtained in the same manner as in Comparative Example 10 except that PBT having an intrinsic viscosity of 0.62 was used. Although the nonwoven fabric of Comparative Example 11 had a low intrinsic viscosity, there was no problem with the yarn forming property. However, the nonwoven fabric was slightly brittle and inferior in flexibility, wear resistance, heat sealability, and fluffiness.

<参考例1>
固相重合により得られた固有粘度1.55のPBTを用いた以外、実施例1と同様にして不織布を得ようとしたが、糸切れするので、糸切れしない紡糸速度(吐出量も変更)にした以外、実施例1と同様にして得られた繊維の固有粘度1.42の長繊維不織布の詳細と特性を表2に示す。長繊維不織布比較例11は、耐磨耗性、毛羽立ち性は良好だが、ヒートシール性にやや難点がある不織布で本発明の許容範囲ではあるが、紡糸速度を低くする必要があり、生産性に問題がある事例である。
<Reference Example 1>
Except for using PBT having an intrinsic viscosity of 1.55 obtained by solid phase polymerization, an attempt was made to obtain a nonwoven fabric in the same manner as in Example 1, but the yarn was broken, so the spinning speed at which the yarn was not broken (the discharge rate was also changed) Table 2 shows details and characteristics of the long-fiber non-woven fabric having an intrinsic viscosity of 1.42 obtained in the same manner as in Example 1 except for the above. The long-fiber non-woven fabric comparative example 11 is a non-woven fabric that has good abrasion resistance and fuzziness, but has a slight difficulty in heat sealability, and is within the allowable range of the present invention. This is an example of a problem.

Figure 0005799558
Figure 0005799558

本発明の長繊維不織布は、柔軟性、耐磨耗性、形態保持性、及びヒートシール性に優れ、表面がフラットで印刷性にも優れているので、使い捨てカイロ用基布に特に最適な材料を提供することができる。これらの用途に展開されることで生産性と品質の向上をもたらし、産業界に大きく寄与することが期待される。
The long fiber nonwoven fabric of the present invention is excellent in flexibility, abrasion resistance, form retention, and heat sealability, and has a flat surface and excellent printability. Can be provided. It is expected to contribute to the industry by bringing about improvement in productivity and quality by expanding to these applications.

Claims (5)

ポリブチレンテレフタレート(A成分)を95重量%以上含有し、A成分に対して、A成分と非相溶でありかつ120〜160℃のガラス転移点温度を有する熱可塑性ポリスチレン系共重合体(B成分)を0.05〜4.0重量%混合して得られるポリエステルからなり、複屈折率が0.100〜0.125である長繊維からなる不織布において、縦方向の目付当りの5%伸張時応力が、22℃雰囲気では、0.5〜1.1N/50mm(g/m)、乾熱120℃雰囲気では、0.10〜0.40N/50mm(g/m)、縦方向の22℃雰囲気での目付当り破断強力が1.1〜3.0N/50mm(g/m)で、交絡処理していないことを特徴とする長繊維不織布。 A thermoplastic polystyrene copolymer (B ) containing 95% by weight or more of polybutylene terephthalate (A component) , incompatible with the A component and having a glass transition temperature of 120 to 160 ° C. 5% elongation per unit weight in the longitudinal direction in a non-woven fabric composed of long fibers having a birefringence of 0.100 to 0.125, which is made of polyester obtained by mixing 0.05 to 4.0% by weight of component) when stress is at the 22 ° C. atmosphere, 0.5~1.1N / 50mm (g / m 2), the dry heat 120 ° C. atmosphere, 0.10~0.40N / 50mm (g / m 2), longitudinal A long-fiber nonwoven fabric characterized by having a breaking strength per unit weight in an atmosphere of 22 ° C. of 1.1 to 3.0 N / 50 mm (g / m 2 ) and not entangled. 不織布の剛軟度が30〜70mmであり、エンボス加工されたことを特徴とする請求項1記載の長繊維不織布。   The long-fiber nonwoven fabric according to claim 1, wherein the nonwoven fabric has a bending resistance of 30 to 70 mm and is embossed. ポリブチレンテレフタレートの固有粘度が0.8以上である請求項1または2に記載の長繊維不織布。 The long fiber nonwoven fabric according to claim 1 or 2 , wherein the intrinsic viscosity of polybutylene terephthalate is 0.8 or more. ポリブチレンテレフタレートの固有粘度が0.8〜1.2である請求項に記載の長繊維不織布。 The long fiber nonwoven fabric according to claim 3 , wherein the intrinsic viscosity of the polybutylene terephthalate is 0.8 to 1.2. カイロ用基布として請求項1〜4のいずれかに記載の長繊維不織布を用いたことを特徴とするカイロ。 The long-fiber nonwoven fabric according to any one of claims 1 to 4 is used as a base fabric for a warmer.
JP2011085319A 2010-04-09 2011-04-07 Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability Active JP5799558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085319A JP5799558B2 (en) 2010-04-09 2011-04-07 Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010090542 2010-04-09
JP2010090542 2010-04-09
JP2011085319A JP5799558B2 (en) 2010-04-09 2011-04-07 Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability

Publications (2)

Publication Number Publication Date
JP2011231446A JP2011231446A (en) 2011-11-17
JP5799558B2 true JP5799558B2 (en) 2015-10-28

Family

ID=45321043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085319A Active JP5799558B2 (en) 2010-04-09 2011-04-07 Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability

Country Status (1)

Country Link
JP (1) JP5799558B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888495B2 (en) * 2012-01-11 2016-03-22 東洋紡株式会社 Long-fiber nonwoven fabric with excellent flexibility and wear resistance and its use
JP5935327B2 (en) * 2012-01-11 2016-06-15 東洋紡株式会社 Non-woven for Cairo
JP2016108706A (en) * 2014-12-10 2016-06-20 東洋紡株式会社 Thermal molding spunbond nonwoven fabric
JP6715082B2 (en) * 2016-05-23 2020-07-01 旭化成株式会社 Non-woven fabric with excellent heat resistance and durability and high strength

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140996B2 (en) * 1997-10-31 2008-08-27 ユニチカ株式会社 Polyester long fiber nonwoven fabric and method for producing the same
JP4701630B2 (en) * 2004-05-12 2011-06-15 東レ株式会社 Spunbond nonwoven fabric
JP2007105163A (en) * 2005-10-12 2007-04-26 Toyobo Co Ltd Disposable pocket heater
JP4348634B2 (en) * 2005-10-12 2009-10-21 東洋紡績株式会社 Spunbond nonwoven fabric
JP4223060B2 (en) * 2007-02-21 2009-02-12 旭化成せんい株式会社 High elongation nonwoven fabric and surface material using the same

Also Published As

Publication number Publication date
JP2011231446A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5888495B2 (en) Long-fiber nonwoven fabric with excellent flexibility and wear resistance and its use
CN103046232B (en) Stretchable bulky nonwoven fabric and its manufacturing method
JP5799558B2 (en) Long fiber nonwoven fabric with excellent flexibility, wear resistance, and heat sealability
JP6826213B2 (en) Non-woven fabric and composite sound absorbing material using this as a skin material
WO1997040230A1 (en) Non-impregnated base material useful as a base fabric for artificial leather, artificial leather thereof and process for their production
JP5935327B2 (en) Non-woven for Cairo
JP2011001650A (en) Filament nonwoven fabric for molded container, which has excellent moldability and printability, and method for producing the same
JP2010196235A (en) Filament nonwoven fabric excellent in formability and production method thereof
JP4122182B2 (en) Non-woven fabric for disposable warmers and disposable warmers with excellent printability
JP5267935B2 (en) Method for producing long-fiber non-woven fabric used as a base cloth for disposable body warmers
JP2017222950A (en) Spun-bonded nonwoven fabric, method of manufacturing the same, and method of manufacturing molded article using the same
JP4109438B2 (en) Surface material and wallpaper and method for producing the same
JP2849929B2 (en) Moisture permeable laminate
JP5128336B2 (en) Stretchable nonwoven fabric and method for producing the same
JP6428998B2 (en) Vehicle seat back material
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JP2011010820A (en) Disposable body warmer
JP5095291B2 (en) Leather-like sheet and method for producing the same
JP4086954B2 (en) Artificial leather substrate and manufacturing method thereof
JP2004100068A (en) Bulky composite nonwoven fabric
JP6087073B2 (en) Silver-like artificial leather and method for producing the same
JP4228289B2 (en) Composite stretchable nonwoven fabric and method for producing the same
JP4046272B2 (en) Non-woven fabric for warmer packaging and disposable warmer
JP4443854B2 (en) Moisture permeable elastomer sheet
JPS62121045A (en) Blank for expansible clothing and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R151 Written notification of patent or utility model registration

Ref document number: 5799558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350