JP5482244B2 - 球状弾性表面波素子 - Google Patents

球状弾性表面波素子 Download PDF

Info

Publication number
JP5482244B2
JP5482244B2 JP2010018718A JP2010018718A JP5482244B2 JP 5482244 B2 JP5482244 B2 JP 5482244B2 JP 2010018718 A JP2010018718 A JP 2010018718A JP 2010018718 A JP2010018718 A JP 2010018718A JP 5482244 B2 JP5482244 B2 JP 5482244B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
surface region
line
electroacoustic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010018718A
Other languages
English (en)
Other versions
JP2011160091A (ja
Inventor
教尊 中曽
恭行 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010018718A priority Critical patent/JP5482244B2/ja
Publication of JP2011160091A publication Critical patent/JP2011160091A/ja
Application granted granted Critical
Publication of JP5482244B2 publication Critical patent/JP5482244B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、球状弾性表面波素子に関する。
従来、圧電材料で形成されている平坦な表面を有する基材の上記表面上の相互に離れた2つの位置に電気音響変換素子を設けた弾性表面波素子が知られている。電気音響変換素子は通常、例えばすだれ状電極の如き高周波励起/高周波受信・手段である。
この従来の弾性表面波素子においては、一方の電気音響変換素子に高周波電流を供給するとこの一方の電気音響変換素子が弾性表面波(SAW: Surface Acoustic Wave)を基材の表面に発生させ所定の方向に伝搬させることが出来る。そして、他方の電気音響変換素子は上記表面上で一方の電気音響変換素子からの弾性表面波を受信し受信した弾性表面波に対応した高周波電流を生じさせることが出来る。電気音響変換素子がすだれ状電極の場合には、すだれ状電極の複数の電極枝が並んでいる方向がすだれ状電極により発生された弾性表面波が伝搬する方向となり、また上記弾性表面波を効率よく受信する方向となる。
なお、弾性表面波とは、通常のバルク波と呼ばれる縦波や横波と異なり、物質表面にそのエネルギーの多くを集中して伝搬する弾性波である。弾性表面波としては、レーリー波,セザワ波,擬セザワ波,ラブ波等を例示することが出来、異方性材料の表面にも存在しえる。
このような従来の弾性表面波素子は、遅延線,発信機の為の発振素子及び共振素子,周波数を選択する為のフィルター,化学センサー,バイオセンサー,またはリモートタグ等に使用されている。
すだれ状電極が励起させた直後の弾性表面波の幅(弾性表面波の伝搬方向に対し直交する方向の寸法)は、すだれ状電極の複数の電極枝において隣接する2つの電極枝が相互に対面している長さ(重なり幅という)に等しい。
しかしながら、弾性表面波が伝搬する基板の表面が平坦である上述した如き従来の弾性表面波素子では、一方の電気音響変換素子により励起され一方の電気音響変換素子から伝搬された弾性表面波は、一方の電気音響変換素子から遠ざかるにつれてその幅方向に拡散し続けそれが有しているエネルギーを弱めている。従って、弾性表面波励起用の電気音響変換素子と弾性表面波受信用の電気音響変換素子とを離して配置することが出来る距離には限界があり、この結果として、上述した如き従来の弾性表面波素子を利用した上述した如き種々の装置の動作精度の向上には限界があった。
このような従来の弾性表面波素子に対し、非特許文献1では、弾性表面波を励起させ伝搬させることが可能な球状表面を有した基材の上記球状表面において所定の条件で弾性表面波を励起させ伝搬させることで、励起された弾性表面波を伝搬方向と交差する方向に拡散させ続けることなく上記球状表面の最大径の外周線に沿い多数回周回させることが出来ることを開示している。
また、特許文献1は、実用可能な球状弾性表面波素子を開示している。この実用可能な球状弾性表面波素子では、弾性表面波を励起させ伝搬方向と交差する方向に無限に拡散することなく伝搬させ周回させることが可能な最大径の外周線を含む球状表面の一部で構成された円環形状の表面領域を外表面に備えた球形状又は円盤形状の基材の上記表面領域に、電気音響変換素子としてすだれ状電極が設置され、また上記基材の外表面において上記表面領域以外(即ち、弾性表面波が全く伝搬されない領域)が支持部材により支持されている。そして、このような球状弾性表面波素子をボールSAWデバイスとも称している。
球状弾性表面波素子では、基材の外表面において最大径の外周線を含む球状表面の一部で構成された円環形状の表面領域を弾性表面波がその伝搬方向と交差する方向に拡散し続けることなく(即ち、エネルギーを損失させ続けることなく)多数回周回可能である。そしてそのような条件は、W=√(2aλ)であって、aは上記表面領域の上記球の一部の半径であり、λは上記弾性表面波の波長であり、そしてWは上記弾性表面波の幅である。
従って、上述した如き従来の弾性表面波素子を利用した上述した如き種々の装置に比べ、上述した如き従来の弾性表面波素子に代わり球状弾性表面波素子を利用した上述した如き種々の装置は、さらに飛躍的に動作精度を向上させることが可能である。
国際公開WO01/45255号パンフレット
電子情報通信学会技術研究報告(Technical Report of Institute of Electronics, Information and Communication Engineers)US2000巻14号(2000)
球状弾性表面波素子の基材として最も安価に大量に調達可能な例えば水晶を含む圧電性単結晶を使用する場合には、圧電性単結晶を、そのY軸を含みZ軸と直交する平面(Z軸結晶面)がZ軸と交差する位置を中心とした球形状に加工し、上記球形状基材の外表面において上記平面が交差する線の円(上記球形状基材の外表面における最大外周円となる)に沿い前述した如き条件で弾性表面波を励起し伝搬させることにより、励起された弾性表面波を多数回周回させることが出来ることが分かっている。
尚、本発明では、右手系のXYZ座標軸を前提としている。また、水晶ランガサイト結晶についてその結晶方位は圧電材料や結晶学上定義されており、特に+X軸は結晶の対象性から3方向に等価な方位が明確に存在して定義され、それを採用する。
さらに、上記球形状基材の外表面において上記最大外周円に沿い前述した如き条件で励起された弾性表面波は、上記外表面上の位置より異なる電気機械的結合定数のおかげで上記最大外周円を中心とした円環形状の表面領域において上記最大外周円に沿い伝播する間に上記最大外周円の両側に所定の周期で波を打つように蛇行することが判った。これは、圧電性単結晶の異方性に起因している。
しかも上記蛇行した弾性表面波伝搬経路は基材の材料に特有であって、上記円環形状の表面領域において上記蛇行した弾性表面波伝搬経路から離れた位置に弾性表面波が励起されると、そのような弾性表面波は周回中の強度の減衰が早くなったり周回中の強度の減衰が等比級数的ではなく波が生じながらの減衰となることがわかった。
このような状況は、球状弾性表面波素子の動作精度を低下させ、ひいては球状弾性表面波素子を利用した種々の装置の動作精度を低下させている。
本発明は上記事情の下でなされ、この発明の目的は、球状弾性表面波素子の動作精度をより向上させ、ひいては球状弾性表面波素子を利用した種々の装置の動作精度をより向上させることである。
本発明の一実施形態は、水晶またはランガサイトにより形成され、+Y結晶軸を含み+Z結晶軸と直交する平面がZ結晶軸と交差する点を中心とした球面の一部で形成され上記直交する平面が上記球面の一部と交差している最大径の外周線を含み円環上に延出している表面領域を含んでおり、上記表面領域に上記表面領域の円環状の延出方向に沿い励起された弾性表面波が上記外周線に沿い所定の周期で蛇行しながら周回する基材と:上記基材の上記表面領域に上記表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と:を備えていて、電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸との交点から前記最大径の外周線の延出方向に15度以内の範囲内にあり、さらに、前記水晶またはランガサイトが、右旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し+Z方向に1度以上3度以内の角度で回転した位置にあり、一方、前記水晶またはランガサイトが、左旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し−Z方向に1度以上3度以内の角度で回転した位置にあることを特徴とする球状弾性表面波素子である。
また、上記球状弾性表面波素子にあって、電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸あるいは−Y結晶軸方向に一致していてもよい。
上述した如く構成されたことを特徴とするこの発明に従った球状弾性表面波素子によれば、圧電性単結晶の基材上の所定の円環形状の表面領域に励起され伝搬され周回中の弾性表面波の強度を等比級数的に減少させることが出来て、且つ、その減衰率を抑制することでより多重な周回を可能にすることをもって、球状弾性表面波素子の動作精度をより向上させ、ひいては球状弾性表面波素子を利用した種々の装置の動作精度をより向上させることが出来る。
本発明の一実施の形態に従った球状弾性表面波素子を概略的に示す図である。 図1の球状弾性表面波素子における基材上の所定の円環形状の表面領域において上記表面領域の中心となる最大外周線に沿い励起され伝搬された弾性表面波が最も良好に伝搬する所定の周期で蛇行した弾性表面波伝搬経路を平面状に展開して概略的に示す図である。 (A)は、図1の所定の円環形状の表面領域において上記表面領域の中心となる最大外周線上の図2のP点(図1の球状弾性表面波素子における基材の−Y結晶軸の交点)から上記最大外周線上で+30度ずれ図2の所定の周期で蛇行した弾性表面波伝搬経路が上記最大外周線と交差する位置であるK点を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(B)は、図1の所定の円環形状の表面領域において上記最大外周線上で図2の所定の周期で蛇行した弾性表面波伝搬経路から最も離れている図2のP点を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(C)は、図1の所定の円環形状の表面領域において上記最大外周線上の図2のP点から上記最大外周線に対し直交する方向に−2度ずれ図2の所定の周期で蛇行した弾性表面波伝搬経路上に位置したH点を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図である。 (A)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に+3.0度ずれ上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で上記最大外周線に沿い励起され伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(B)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に+1.5度ずれ上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(C)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向にずれず上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(D)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に−1.5度ずれて上記弾性表面波周回経路の最大振幅位置上にある位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図であり;(E)は、図1の所定の円環形状の表面領域において上記表面領域の延出方向に沿い励起され伝搬された弾性表面波が最も良好に伝搬する弾性表面波周回経路が上記表面領域の中心となる最大外周線から上記最大外周線に対し直交する方向に−1.5度ずれた位置に最大振幅を有して蛇行している場合において、上記最大外周線から上記弾性表面波周回経路の最大振幅位置と同じ上記直交する方向に−3.0度ずれ上記弾性表面波周回経路の最大振幅位置から離れた位置を中心に所定の強度及び所定の周波数で励起され上記最大外周線に沿い伝搬された所定の弾性表面波の周回数の増加に伴う振幅(強度)の変化を概略的に示す図である。
図1を参照しながら本発明の一実施の形態に従った球状弾性表面波素子の全体の構成を概略的に説明する。
球状弾性表面波素子10は、例えば水晶又はランガサイトのような三方晶系圧電性単結晶の基材12を備えている。この実施例では、右旋性の水晶を使用した。左旋性の水晶やランガサイトでは、SAWの蛇行の位相がZ軸周りに60度ずれて、蛇行が南北(Z方向)に反転することから、Z軸方向(以後方向の回転方向)に電気音響変換素子22(すだれ状電極)をずらす(回転させる)向きが逆になることが異なる。基材12は、Y結晶軸を含みZ結晶軸と直交する平面(Z軸周りの結晶面)が+Z結晶軸と交差する点を中心Cとした球面の一部で形成され上記直交する平面が上記球面の一部と交差している最大径の外周線14を含み円環状に延出している表面領域16を含んでいる。基材12は、円環状の表面領域16を除いた領域に固定された支柱18を介して図示しない台座に支持されている。この実施の形態では基材12は球形状であるが、円環状の表面領域16を除いた部分を削除した円盤形状とすることも出来る。
なお、三方晶系圧電性単結晶はその結晶面の3回対称性の故に+・−合わせて6本のY結晶軸を有するが図面の煩雑を避ける為のその中の1本の−Y結晶軸のみが図示されていて、これら6本のY結晶軸は最大径の外周線14と中心Cの周りの60度毎に交差している。
表面領域16には最大径の外周線14に沿い弾性表面波20を励起させ伝搬させることが可能である。この明細書の「背景技術」の項目において前述した如く、表面領域16の上記球面の一部の半径に基づいて弾性表面波20の波長及び幅を前述した条件に合致するよう設定することにより、表面領域16において最大径の外周線14に沿い励起され伝搬された弾性表面波20をその伝搬方向と交差する方向に拡散し続けることなく(即ち、エネルギーを損失させ続けることなく)多数回周回させることが可能である。
球状弾性表面波素子10はさらに、基材12の円環状の表面領域16に円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20を励起させ伝搬させる為の電気音響変換素子22を備えている。この実施の形態において電気音響変換素子22は、高周波励起/高周波受信・手段の一種であるすだれ状電極といわれているオルターニット・フェーズアレイを含んでおり、複数の電極枝22aを最大径の外周線14に対し直交する方向に延出させた状態で表面領域16上の所定の範囲に後述する如く設けられている。
すだれ状電極は基材12の円環状の表面領域16の所望の位置に公知のフォトエッチング技術により容易に形成することが出来、この実施の形態では金とクロムの2層構造である。
この実施の形態では、基材12の円環状の表面領域16の外周線14の直径が3.3mmであり、円環状の表面領域16に円環状の表面領域16の延出方向に沿い150MHzの弾性表面波20を励起させるために、すだれ状電極の寸法は:基材12がランガサイトの場合には、複数の電極枝の配列周期は約15.88ミクロンに、複数の電極枝の夫々において相互に対向している長さ(重なり幅)は約228.9ミクロンに、そして複数の電極枝において上記延出方向に沿った両側間の長さは約167ミクロンに設定されていて;基材12が水晶の場合には、複数の電極枝の配列周期は約21.38ミクロンに、複数の電極枝の夫々において相互に対向している長さ(重なり幅)は約265.6ミクロンに、そして複数の電極枝において上記延出方向に沿った両側間の長さは約225ミクロンに設定されている。
電気音響変換素子22には、切り替え部24を介して、高周波信号発生部26、そしてアンプ28及び検出・出力部30の組み合わせが電気的に接続されている。高周波信号発生部26は、切り替え部24を介して電気音響変換素子22に高周波信号を極短時間投入することにより、三方晶系圧電性単結晶の基材12の円環状の表面領域16に円環状の表面領域16の延出方向に沿い弾性表面波20を励起して伝搬させることが出来る。その後、切り替え部24は、電気音響変換素子22が円環状の表面領域16の延出方向に沿い伝搬し周回してきた弾性表面波20を受信するよりも早く、アンプ28及び検出・出力部30の組み合わせの側に切り替えられ、電気音響変換素子22が円環状の表面領域16に沿い伝搬し周回してきて受信した弾性表面波20に対応する高周波信号が切り替え部24を介してアンプ28及び検出・出力部30の組み合わせに送られる。
なお、基材12に用いることのできる圧電性結晶として水晶やランガサイトのほかにニオブ酸リチウム(LiNbO3)やタンタル酸リチウム(LiTa O3)等を例示することができる。水晶やランガサイト以外の圧電性結晶により基材12を形成した場合でも、基材12の外表面において弾性表面波20を周回させることが出来る所定の円環形状の表面領域16は、基材12の結晶面が基材12の球形状の外表面と交差する円環形状の最大径の外周線に沿った基材12の外表面の表面領域となる。
なお、切り替え部24に代わり、高周波信号発生部26から電気音響変換素子22へのみ一方向に高周波信号を送信する、及び電気音響変換素子22において受信した弾性表面波20から変換された高周波信号をアンプ28及び検出・出力部30の組み合わせへのみ送信する、公知の方向性結合回路等を使用することも出来る。
球状弾性表面波素子10を、ガスセンサとして用いる場合、特定のガスに感応する感応膜32を円環状の表面領域16に設ける。感応膜32は、例えば、特定のガスをその表面に吸着させることにより増加したその質量の量に応じて、円環状の表面領域16に沿い伝搬する弾性表面波20の伝搬速度を遅くさせても良いし、或いは、特定のガスを感応膜32内に吸蔵し、その吸蔵量に応じてその感応膜32の機械的堅さを変化させることにより、円環状の表面領域16を伝搬する弾性表面波20の伝搬速度や減衰率を変化させても良い。更には、特定のガスと反応することにより反応した特定のガスの量に応じて吸熱或いは発熱反応を起こし、吸熱或いは発熱反応の量に応じて、円環状の表面領域16を伝搬する弾性表面波20の伝搬速度を変化させても良い。そして感応膜32は、可逆反応を起こす材料であることが望ましい。
例えば、この様な感応膜32として、水素(H2)を吸蔵し水素化物を形成して機械的性質が変化するパラジウム(Pd)、アンモニア(NH3)に対する吸着性が高いプラチナ(Pt)、水素化物を吸着する酸化タングステン(WO3)、一酸化炭素(CO),二酸化炭素(CO2),二酸化硫黄(SO2),二酸化窒素(NO2)等を選択的に吸着するフタロシアニン(Phthalocyanine)等が知られている。
基材12に用いる圧電性結晶の多くは異方性をもち、それを原因として円環状の表面領域16内の位置によって電気機械結合定数が異なる。従って、円環状の表面領域16内において電気音響変換素子22により円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20を励起させた場合、弾性表面波20は上記延出方向に沿い伝搬する間にその音速やパワーフローアングルを異ならせる。そして、弾性表面波20が最も良好に伝搬する(即ち、電気音響変換素子22により弾性表面波20が励起されてから多数回周回して感知できなくなるまでの間にその強度をきれいな等比級数的に減衰させる)周回経路CTは最大径の外周線14の両側に所定の周期で波を打つように蛇行することがわかっている。
逆にいうと、基材12の円環状の表面領域16内に電気音響変換素子22により円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20を励起させる場合には、弾性表面波20の中心をそのような周回経路CT上に位置させるとともに弾性表面波20を伝搬させる方向を周回経路CTの向かう方向に一致させるようにすれば弾性表面波20を最も良好に伝搬させることが出来ることになる。
この実施の形態のように基材12が例えば水晶やランガサイトの如き三方晶系圧電性単結晶の場合には、円環状の表面領域16の延出方向(最大径の外周線14)に沿い弾性表面波20が最も良好に伝搬する周回経路CTは、球形状の基材12を地球に見立て、Z結晶軸を地軸と仮想した場合に赤道と仮想できる最大径の外周線14に沿い120度周期で最大径の外周線14の両側に正弦波の如く波をうち蛇行している。そして周回経路CTの6つの最大振幅位置は、最大径の外周線14に沿った方向において最大径の外周線14上で前述した+・−合わせて6つのY結晶軸(図1に1つだけ図示されている)が交差する位置に対し最大径の外周線14と直交する方向に対応している。
なお、圧電性結晶の結晶軸は、例えばX線回折法により知ることが出来る。また、前述した周回経路CTは基材12の円環状の表面領域16の予め設定した多数の位置の夫々に外部の独立した電気音響変換素子22を接近させて円環状の表面領域16の延出方向に沿い実際に所定の強さの弾性表面波を励起させ伝搬させ周回させ、さらに所定の回数周回した後の弾性表面波の減衰状況を観測することにより実験的に知ることが出来る。
図2は、円環状の表面領域16の最大径の外周線14上における1つの+Y結晶軸(図1参照)との交点Pを0度とした場合の、弾性表面波20が最も良好に伝搬する周回経路CTを図示しており、周回経路CTの波が最大径の外周線14から最も離れた位置(最大振幅位置)におけるパワーフローアングルはゼロになる。なお、当業者であれば、パワーフローアングルは基材12を構成する材料の弾性定数を用いて公知の弾性理論により容易に求めることが出来る。そのような弾性理論の一例は、B. A. Auld. “Acoustic Fields and Waves in solids” vol. 1 and 2, 2nd edition, Krieger Publishing Company (1990)Page 135−161に詳細に記載されている。
図3の(A)には、この実施の形態において複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられている電気音響変換素子22の中心が図2において最大径の外周線14上のP点から最大径の外周線14上で+30度ずれたK点に配置されていて1マイクロ秒だけ150MHzの高周波信号を投入した後に円環状の表面領域16上を表面領域16の延出方向(最大径の外周線14)に沿い励起され伝搬し周回する弾性表面波20が周回数の増加に従い強度(デシベル)を変化させる様子が示されている。ここで上記強度は対数表示されている。
上記K点は弾性表面波20が最も良好に伝搬する周回経路CT上ではあるが、K点に配置されている電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向(即ち、電気音響変換素子22で発生された弾性表面波20が電気音響変換素子22から最初に離れる方向)は、K点における周回経路CTの方向とは一致していない。
図3の(A)からは、弾性表面波20の強度は38周で1/10になり,その後60周まではきれいに等比級数的に減衰しているが、60周を超えると強度の減衰には波が生じることが判る。このことは、図2のK点に電気音響変換素子22の中心が配置された場合には、60周を超えた弾性表面波20は弾性表面波20を基にした種々の計測結果の精度を低下させることが分かる。
図3の(B)には、この実施の形態において複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられている電気音響変換素子22の中心が図2において最大径の外周線14上のP点に配置されていて1マイクロ秒だけ150MHzの高周波信号を投入した後に円環状の表面領域16上を表面領域16の延出方向(最大径の外周線14)に沿い励起され伝搬し周回する弾性表面波20が周回数の増加に従い強度(デシベル)を変化させる様子が示されている。ここで上記強度は対数表示されている。
上記P点は円環状の表面領域16の最大径の外周線14上ではあるが、球形状の基材12を地球に見立て最大径の外周線14を赤道に見立てた時に、弾性表面波20が最も良好に伝搬する周回経路CTは上記P点と同じ経度では上記P点から緯度にして略−2度離れている。したがって、P点に配置されている電気音響変換素子22のすだれ状電極の複数の電極枝22aは、弾性表面波20が最も良好に伝搬する周回経路CT上から外れている。
図3の(B)からは、円環状の表面領域16において弾性表面波20が最も良好に伝搬する周回経路CT上から外れているP点に配置されている電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起された弾性表面波20は、図3の(A)中に図示されている如く弾性表面波20が最も良好に伝搬する周回経路CT上のK点に配置されている電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起された弾性表面波20に比べると強度が小さく、しかも周回数の全体に亘り波を生じながら減衰していることがわかる。このことは、図2のP点に電気音響変換素子22の中心が配置された場合には、周回数の全体に亘り弾性表面波20を基にした種々の計測結果の精度を低下させることが分かる。
図3の(C)には、この実施の形態において複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられている電気音響変換素子22の中心が図2において最大径の外周線14上のP点と同じ経度ではあるが上記P点から緯度にして略−2度離れH点に配置されていて1マイクロ秒だけ150MHzの高周波信号を投入した後に円環状の表面領域16上を表面領域16の延出方向(最大径の外周線14)に沿い励起され伝搬し周回する弾性表面波20が周回数の増加に従い強度(デシベル)を変化させる様子が示されている。ここで上記強度は対数表示されている。
上記H点には弾性表面波20が最も良好に伝搬する周回経路CTの最大振幅位置が交差しており、しかも上記H点において周回経路CTのパワーフローアングルはゼロであり周回経路CTの接線は円環状の表面領域16の最大径の外周線14と同じ方向を向いている。即ち、上記H点における周回経路CTの接線の延出方向は、上記H点に中心が配置された電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と同じ方向であり、ひいては複数の電極枝22aにより励起され複数の電極枝22aから離れる時の弾性表面波20の伝搬方向と同じである。
図3の(C)からは、円環状の表面領域16において弾性表面波20が最も良好に伝搬する周回経路CT上のH点に配置されているとともに上記H点における周回経路CTの接線の延出方向と同じ方向にすだれ状電極の複数の電極枝22aの配列方向を一致させている電気音響変換素子22により励起され円環状の表面領域16の延出方向に沿い励起された弾性表面波20は、図3の(A)中に図示されている如く弾性表面波20が最も良好に伝搬する周回経路CT上のK点に配置されている電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起された弾性表面波20に比べると最初の強度は同じであるがより長い周回数の全体に亘り波を生じることなくきれいに等比級数的に減衰していることが判る。このことは、図2のH点に電気音響変換素子22の中心が配置された場合には、弾性表面波20は弾性表面波20を基にした種々の計測結果の精度を向上させることが分かる。
図3の(A)乃至(C)からは、複数の電極枝22aを円環状の表面領域16の最大径の外周線14に対し直交する方向に向けられているすだれ状電極の電気音響変換素子22の中心が、例えば水晶やランガサイトの如き三方晶系圧電性単結晶の球形状の基材12の円環状の表面領域16において最大径の外周線14上のY結晶軸との交点Pから最大径の外周線14の延出方向に15度以内の範囲内にあれば、電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起され伝搬され周回される弾性表面波20は周回数の全体に亘り全体として大きな波を生じることなく等比級数的に減衰することがわかる。この結果として、このような弾性表面波20を基にして種々の動作を行なう種々の装置の動作精度をより向上させることが出来る。
さらに、電気音響変換素子22の中心が、基材12の円環状の表面領域16において最大径の外周線14上の−Y結晶軸との交点Pから最大径の外周線14に対し直交する方向の−Z方向に1度以上3度以内の位置にあれば、また1.5度以上3度以内であればさらに確実に、電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起され伝搬され周回される弾性表面波20は周回数の全体亘り全体として大きな波を生じることなく等比級数的に減衰することがわかる。この結果として、このような弾性表面波20を基にして種々の動作を行なう種々の装置の動作精度をより向上させることが出来る。図示はしないが、このような減衰が小さくなる現象は、+Y方位に電気音響変換素子がある場合には、+Z方向に一度以上3度以内であればよく、1.5以上3度以内であればさらに確実に効果が期待できる。水晶やランガサイト結晶の結晶系は、その対象性から、−Y方位について電気音響変換素子の位置を定義すれば+Y方位について電気音響変換素子の位置を特定する事に等しく、逆に、+Y方位について電気音響変換素子の位置を定義すれば−Y方位について電気音響変換素子の位置を特定する事に等しいことが結晶学上公知であるために、本発明ではそのいずれかの説明を行い両方の場合の説明をおこなったものとし、その説明の記載を省くものとする。
また、電気音響変換素子22の中心が、基材12の円環状の表面領域16において最大径の外周線14上のY結晶軸との交点Pから最大径の外周線14に対し直交する方向に+2度(Y結晶軸に対応した周回経路CTの最大振幅位置が緯度方向の+側にある場合:図2の経度方向の+・−60度位置及び+・−180度位置)、または−2度(Y結晶軸に対応した周回経路CTの最大振幅位置が緯度方向の−側にある場合:図2の経度方向の0度位置及び+・−120度位置)にあれば、図3の(C)に示されたのと同じになり、電気音響変換素子22により円環状の表面領域16の延出方向に沿い励起され伝搬され周回される弾性表面波20は周回数の全体に亘りきれいに等比級数的に減衰することがわかる。この結果として、このような弾性表面波20を基にして種々の動作を行なう種々の装置の動作精度を最も向上させることが出来る。
図4の(A)乃至(E)には、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CTのパワーフローアングルがゼロになり接線の延出方向を電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と一致させている位置(即ち、円環状の表面領域16の最大径の外周線14から最大径の外周線14に対し直交する方向に最も離れている最大振幅位置)の1つが、最大径の外周線14に沿った経度0度の位置から緯度−1.5度離れた位置を通過している場合に、経度0度の経線上で、緯度+3度,+1.5度,0度,−1.5度,そして−3度離れた位置に電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心を配置し相互に同じ条件で弾性表面波20を励起させ伝搬させ周回させた時に得られる、経過時間に対する弾性表面波20の強度の減衰の様子を概略的に示している。
図4の(D)中では、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CTの最大振幅位置上にあり、そしてその位置の周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している。
ここにおいては、電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CTに沿い伝播され周回するので、周回を開始してからの経過時間(周回数)の増加に伴いその強度をきれいに等比級数的に減少させていることがわかる。
図4の(C)及び(E)中では、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している経度0度の経線上で緯度−1.5度の最大振幅位置から、同じ経度の経線上で夫々+1.5度及び−1.5度の緯度だけ離れて配置(即ち、緯度0度及び緯度−3度に配置)されている。
ここにおいては、電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において円環状の表面領域16の延出方向に伝播され周回する間に、周回を開始してからの経過時間(周回数)の増加に伴いその強度を多少の波を伴ってはいるが全体の傾向としては等比級数的に減少させていることがわかる。
図4の(A)及び(B)中では、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している経度0度の経線上で緯度−1.5度の最大振幅位置から、同じ経度の経線上で夫々+3.0度及び+4.5度の緯度だけ離れて配置(即ち、緯度+1.5度及び緯度+3.0度に配置)されている。
ここにおいては、電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において円環状の表面領域16の延出方向に伝播され周回する間に、周回を開始してからの経過時間(周回数)の増加に伴いその強度を大きな波を伴って全体の傾向としては等比級数的に減少させていることがわかる。
図4の(A)乃至(E)からは、電気音響変換素子22のすだれ状電極の複数の電極枝22aの中心が、円環状の表面領域16において弾性表面波20が最も良好に伝搬する図2中に図示されている蛇行した周回経路CT上のパワーフローアングルがゼロであり接線の延出方向が円環状の表面領域16の最大径の外周線14の延出方向と、即ち電気音響変換素子22のすだれ状電極の複数の電極枝22aの配列方向と、一致している経度0度の経線上で緯度−1.5度のと−3.0度との範囲内にあれば電気音響変換素子22のすだれ状電極により円環状の表面領域16において円環状の表面領域16の延出方向に沿い所定の条件で励起された弾性表面波20は、円環状の表面領域16において円環状の表面領域16の延出方向に伝播され周回する間に、周回を開始してからの経過時間(周回数)の増加に伴いその強度を多少の波を伴ってはいるが全体の傾向としては等比級数的に減少させていることがわかる。
図本信号をさらに周波数解析して150MHz成分を取り出し、150MHz成分の弾性表面波の周回に伴う減衰率からQ値(減衰の小ささを表す値で、振動デバイスの評価パラメータとして公知であり説明を要しない)を求めたところ、(A),(B),(C)の場合について、約32,000程度であったのに比較し、(D),(E)では約36,000あり、より減衰が小さい事を確認した。
10…球状弾性表面波素子、
12…基材、
C…中心、
14…最大径の外周線、
16…表面領域、
18…支柱、
20…弾性表面波、
22…電気音響変換素子、
22a…電極枝、
24…切り替え部、
26…高周波信号発生部、
28…アンプ、
30…検出・出力部、
32…感応膜、
CT…周回経路、
P…Y結晶軸交差位置。

Claims (2)

  1. 水晶またはランガサイトにより形成され、+Y結晶軸を含み+Z結晶軸と直交する平面がZ結晶軸と交差する点を中心とした球面の一部で形成され上記直交する平面が上記球面の一部と交差している最大径の外周線を含み円環上に延出している表面領域を含んでおり、上記表面領域に上記表面領域の円環状の延出方向に沿い励起された弾性表面波が上記外周線に沿い所定の周期で蛇行しながら周回する基材と:
    上記基材の上記表面領域に上記表面領域の円環状の延出方向に沿い弾性表面波を励起させる電気音響変換素子と:
    を備えていて、
    電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸との交点から前記最大径の外周線の延出方向に15度以内の範囲内にあり、
    さらに、前記水晶またはランガサイトが、右旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し+Z方向に1度以上3度以内の角度で回転した位置にあり、
    一方、前記水晶またはランガサイトが、左旋性である場合は、前記音響変換素子の中心が、前記表面領域において前記+Y結晶軸との交点から前記最大径の外周線に対し−Z方向に1度以上3度以内の角度で回転した位置にあることを特徴とする球状弾性表面波素子。
  2. 電気音響変換素子の中心が、上記表面領域において上記+Y結晶軸あるいは−Y結晶軸方向に一致していること
    を特徴とする請求項1記載の球状弾性表面波素子。
JP2010018718A 2010-01-29 2010-01-29 球状弾性表面波素子 Expired - Fee Related JP5482244B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018718A JP5482244B2 (ja) 2010-01-29 2010-01-29 球状弾性表面波素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018718A JP5482244B2 (ja) 2010-01-29 2010-01-29 球状弾性表面波素子

Publications (2)

Publication Number Publication Date
JP2011160091A JP2011160091A (ja) 2011-08-18
JP5482244B2 true JP5482244B2 (ja) 2014-05-07

Family

ID=44591700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018718A Expired - Fee Related JP5482244B2 (ja) 2010-01-29 2010-01-29 球状弾性表面波素子

Country Status (1)

Country Link
JP (1) JP5482244B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143296B2 (ja) * 1999-12-17 2008-09-03 凸版印刷株式会社 弾性表面波素子
JP4426803B2 (ja) * 2003-09-19 2010-03-03 凸版印刷株式会社 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP2005191650A (ja) * 2003-12-24 2005-07-14 Toppan Printing Co Ltd ランガサイト結晶を用いた弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP5093593B2 (ja) * 2008-03-17 2012-12-12 凸版印刷株式会社 球状弾性表面波素子
JP4700749B2 (ja) * 2009-09-28 2011-06-15 凸版印刷株式会社 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置

Also Published As

Publication number Publication date
JP2011160091A (ja) 2011-08-18

Similar Documents

Publication Publication Date Title
JPWO2004086028A1 (ja) センサヘッド、ガスセンサ及びセンサユニット
JP3974765B2 (ja) 弾性表面波素子、弾性表面波素子を用いた電気信号処理装置、及び電気信号処理装置を用いた環境評価装置
JP5093593B2 (ja) 球状弾性表面波素子
JP5141318B2 (ja) 球状弾性表面波素子
JP5482244B2 (ja) 球状弾性表面波素子
JP2008241542A (ja) 球面弾性表面波センサ
JP4899743B2 (ja) 球状弾性表面波センサ
JP5310362B2 (ja) 球状弾性表面波素子
JP2006275999A (ja) 弾性表面波素子とその使用方法
JP2014025741A (ja) 気体検出用弾性表面波センサ
JP4426802B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP2007271577A (ja) センサヘッド及びガスセンサ
JP4426803B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP3974766B2 (ja) 弾性表面波素子
US11333631B2 (en) System, method and computer program product for measuring gas concentration
WO2005029701A1 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP5157828B2 (ja) 弾性表面波素子
JP2005191650A (ja) ランガサイト結晶を用いた弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4700749B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP5309900B2 (ja) 弾性表面波素子
JP2007166253A (ja) 弾性表面波素子およびそれを用いた環境差異検出装置
JP4700748B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4479438B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4399314B2 (ja) 弾性表面波デバイスの駆動測定方法及び装置
JP4700750B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5482244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees