以下、この発明の種々の実施の形態に従った弾性表面波素子を添付の図面を参照しながら詳細に説明する。
[第1の実施の形態]
図1は、この発明の第1の実施の形態に従った弾性表面波素子10を概略的に示す斜視図である。
この弾性表面波素子10は、弾性表面波12が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面14aを有する三次元基体14と、表面14aに弾性表面波12を励起し表面14aに沿って弾性表面波12を伝搬させるとともに表面14aを伝搬する弾性表面波12を受信可能な電気音響変換手段16と、を備えている。
ここにおいて三次元基体14は、球体から相互に平行な1対の平面14bを切り取った形状をしている。このような三次元基体14は、1対の平面14bのいずれかを図示しない台座の平坦な平面上に安定して支持されることが出来る。
なお、三次元基体14の表面14aは、電気音響変換手段16により励起させた弾性表面波12を周回させるには曲面が連続した少なくとも円環状の曲面でなければならず、三次元基体14が球形状またはその一部の形状であるならばその最大外周線を含んでいなければならない。
三次元基体14は、それ自身が弾性表面波12が伝搬可能な材料で形成することが出来るし、或いは、それ自身は弾性表面波12が伝搬可能な材料で形成されておらずその外表面を弾性表面波12が伝搬可能な材料で被覆することにより形成することも出来る。そして後者の場合には、弾性表面波12が伝搬可能な材料の被覆は弾性表面波12が伝搬可能でない材料で形成されている三次元基体14の外表面の全体を必ずしも覆っていなくても、三次元基体14の外表面において弾性表面波12を伝搬させようとする曲面が連続した少なくとも円環状の曲面の一部を含む表面14aを構成するよう前記外表面を覆っていれば良い。
三次元基体14自身を弾性表面波12が伝搬可能な材料で形成する場合には、電気音響変換手段16により所望の弾性表面波12を励起させ伝搬させることが可能であるとともに表面14aを伝搬する弾性表面波12を受信可能な温度の範囲において固体である、単結晶,多結晶,或いは非晶体を上記材料として使用することが出来る。このような単結晶としては、水晶,LiNbO3,LiTaO3,Li2B4O7,Bi12Si20,Ba2NaNb5O15,そしてPb2KNb5O15等を例示することが出来る。また、上述したような多結晶としては、BaTiO3,PbTiO3,そしてPbZrO3等の各種のセラミックやSi3N4セラミック等を例示することが出来る。さらに、上述したような非晶体としては、ガラスやポリフッ化ビニリデン等の高分子を例示することが出来る。
なお製造コストの低減が厳しく問われる産業的な利用を考慮すると、上記材料は電気機械結合係数が大きく、加工しやすく、かつ強度も大きく、低コストで大量生産が可能なものが好ましく、このような要求に良く合致する上記材料としては水晶を例示することが出来る。水晶などの単結晶材料では、その外表面に結晶構造により弾性表面波12を最も効率良く伝搬することが出来る所定の経路が存在し、このような所定の経路の個数は単結晶材料の種類により1つのみ或いは複数存在することが知られている。そして、複数の所定の経路が存在する場合には、その夫々に対応して電気音響変換手段16を設けることにより複数の所定の経路の夫々で相互に独立して弾性表面波12を励起し伝搬させ、また伝搬している弾性表面波12を受信することが出来る。
電気音響変換手段16は、導電性が高く,薄膜化が容易で,三次元基体14の表面14aに対する密着性が良く,しかも精密な寸法精度で成形が容易である材料により形成される。このような材料としては、クロム、金,白金,アルミニウム,又はこれら同士の合金,又はこれらと他の高導電性金属との合金を例示することが出来、これらは例えばスパッタリングや真空蒸着等の公知の薄膜形成法により三次元基体14の表面14aに対し薄膜として良好に密着させることが出来、しかも例えばフォトリソグラフ法やエッチング法やリフトオフ法等の公知の精密成形法により精密な寸法精度で所望の形状を容易に形成することが出来る。これらの例示された材料中では、クロム及びその合金は、三次元基体14の材料として上に例示されている水晶やガラスに対する密着性に特に優れている。また、三次元基体14の表面14aを伝搬する弾性表面波12を受信した時に弾性表面波12のエネルギーの減衰を出来る限り小さくするには、上記材料の密度は出来る限り小さい方が好ましく、上記例示された材料中ではアルミニウムが好ましい。
この実施の形態では、三次元基体14の表面14aに電気音響変換手段16により励起された弾性表面波12は、電気音響変換手段16の構造により規定される弾性表面波・励起/伝搬方向に励起されるとともに伝搬される。なお、図1では、電気音響変換手段16は一方向にのみ弾性表面波12を励起し伝搬しているよう図示されているが、上記一方向とは反対の他方向に励起し伝搬させるよう構成することも可能であり、上記一方向及び上記他方向の両方に同時に励起し伝搬させるよう構成することも可能である。
このような電気音響変換手段16としては、すだれ状電極が最も良く知られており、図1中でも電気音響変換手段16は、すだれ状電極16aとして図示されている。すだれ状電極16aは上記弾性表面波・励起/伝搬方向に相互に所定間隔で離間した複数の端子16bを有している。複数の端子16bの夫々は、上記弾性表面波・励起/伝搬方向に対し交差する方向、好ましくは直交する方向、に延出している。
図2の(A)には、すだれ状電極16aが拡大されて示されている。すだれ状電極16aにおいて1対の引き出し線18に接続されている1対の片の夫々の複数の端子16bは、上記交差する方向に相互に同じ距離を延出しており、三次元基体14の表面14aに弾性表面波12を励起し上記弾性表面波・励起/伝搬方向に伝搬させるとともに表面14aに沿い上記弾性表面波・励起/伝搬方向に伝搬して来た弾性表面波12を受信可能な送受信部16cを有する。複数の端子16bの送受信部16cは、1対の片の夫々の複数の端子16bが上記弾性表面波・励起/伝搬方向において相互に対面する部分として規定される。
なお、すだれ状電極16aは図2の(A)中に図示されている以外に種々の構成のものが知られており、図2の(B)及び(C)中に上記種々の構成の他の2例が図2の(A)と同様に拡大して示されている。
図2の(B)中に示されているすだれ状電極16’aでは、1対の引き出し線18に接続されている1対の片の夫々の複数の端子16’bの夫々の長さが相互に異なっている。詳細には、1対の片の夫々の複数の端子16’b中で上記弾性表面波・励起/伝搬方向において中央に配置されているものが一番長さが長く、上記中央に位置する端子から上記弾性表面波・励起/伝搬方向に沿い遠くに位置するもの程順次長さが短くなっていて、1対の片の複数の端子16’b中で上記交差する方向に最も長く相互に同じ距離を延出している2つの端子が上記中央において相互に隣接して配置されている。
この場合の複数の端子16’bの送受信部16’cは、上記交差する方向に最も長く相互に同じ距離を延出している中央の2つの隣接した端子において上記弾性表面波・励起/伝搬方向で相互に対面する部分として規定される。
図2の(C)中に示されているすだれ状電極16’’aでも、複数の端子16’’bの夫々の長さが相互に異なっている。詳細には、1対の引き出し線18に接続されている1対の片の一方では複数の端子16’’b中で上記弾性表面波・励起/伝搬方向に沿った一方の端に配置されているものが一番長さが長く、他方の端に向うに伴ない長さが順次短くなっている。また、1対の片の他方では複数の端子16’’b中で上記弾性表面波・励起/伝搬方向に沿った一方の端に配置されているものが一番長さが短く、他方の端に向うに伴ない長さが順次長くなっている。従って、すだれ状電極16’’aの複数の端子16’’bにおいて、上記弾性表面波・励起/伝搬方向に沿った一方の端に配置されている最も長さが長いものと他方の端に配置されている最も長さが長いものとが相互に隣接して配置されていない。
しかしながら、この場合でも、複数の端子16’’bの送受信部16’’cは、上記弾性表面波・励起/伝搬方向に沿った両端で上記交差する方向に最も長く相互に同じ距離を延出している2つの最も長い端子において上記弾性表面波・励起/伝搬方向で相互に対面する部分として規定される。
なお、以下の説明では、電気音響変換手段16として図1及び図2の(A)中に図示されている構成のすだれ状電極16aを考えている。
すだれ状電極16aの上述した1対の片は1対の引出し線18により電気音響変換手段操作ユニット20に接続されている。電気音響変換手段操作ユニット20は、発信器20a,切換スイッチ20b,受信器20c,ミキサー20d,アンプ20e,そしてオシロスコープ20fを含んでいる。すだれ状電極16aからの一対の引出し線18は切換スイッチ20b,に接続されていて、切換スイッチ20bには発信器20a及び受信器20cが接続されていて、発信器20a及び受信器20cはミキサー20d及びアンプ20eを介してオシロスコープ20fに接続されている。
発信器20aは約45MHz,100Vの交流電流を作り出す。そして、この交流電流は、切換スイッチ20bを介して3μ秒のバースト波としてすだれ状電極16aに供給される。切換スイッチ20bはバースト波をすだれ状電極16aに供給する時のみ発信器20aに接続され、それ以外は受信器20cに接続されている。従って、三次元基体14の表面14aを上記弾性表面波・励起/伝搬方向に伝搬してきた弾性表面波12をすだれ状電極16aが受信した時には、この受信した弾性表面波12に対応した電気信号がすだれ状電極16aから切換スイッチ20b,受信器20c,ミキサー20d,そしてアンプ20eを介してオシロスコープ20fに入力され、オシロスコープ20fに表示される。
三次元基体14の表面14aに電気音響変換手段16により、電気音響変換手段16の構造により規定される弾性表面波・励起/伝搬方向に励起されるとともに伝搬された弾性表面波12は、図3中に示されているように、上記交差する方向における上述した送受信部16cの長さ(即ち、幅)の範囲内を主として上記弾性表面波・励起/伝搬方向に伝搬されるが、上記幅の両側にも多少の広がりを有しており、しかも、励起され伝搬される弾性表面波12は前記弾性表面波・励起/伝搬方向に沿い伝搬する間に前記交差する方向における幅を変化させるので、上記交差する方向における境界は明瞭でない。
弾性表面波12において上記幅の両側に広がった部分は、この明細書の「発明が解決しようとする課題」の項目において前述したように、上述した如く伝搬した弾性表面波12が電気音響変換手段16の送受信部16cにより受信された時に、雑音として機能することがわかっている。
従って、本願の発明の第1の実施の形態に従った弾性表面波素子10は、図1中に示されているように、上記弾性表面波・励起/伝搬方向に伝搬される弾性表面波12において上記雑音として機能する部分が上記弾性表面波・励起/伝搬方向に伝搬して電気音響変換手段16の送受信部16cにより受信されないようにする為に、上記交差する方向において所望の長さ(即ち、幅)Wを有した所望の弾性表面波伝搬経路22の外側に漏れ出た弾性表面波12の雑音成分が上記弾性表面波・励起/伝搬方向に伝搬するのを阻止する弾性表面波伝搬阻止手段24aを三次元基体14の表面14aに備えている。
この発明では、三次元基体14の表面14aにおいて上記弾性表面波・励起/伝搬方向に伝搬される弾性表面波12に対し上記交差する方向の両側に1対の弾性表面波伝搬阻止部材24aを載置した時に、表面14aを一周する間に、片側で5%,そして両側で10%のエネルギーの減衰が観測され時の1対の弾性表面波伝搬阻止部材24aの間の距離を所望の弾性表面波伝搬経路22の所望の長さ(即ち、幅)Wとして規定している。
この実施の形態では、弾性表面波伝搬阻止手段24aは、表面14aにおいて上記交差する方向における所望の弾性表面波伝搬経路22の両側のいずれか一方の外側の一部に配置されている。
弾性表面波伝搬阻止手段24aは、三次元基体14の表面14a上で上記交差する方向において所望の弾性表面波伝搬経路22の外側へと漏れ出て上記弾性表面波・励起/伝搬方向に向う弾性表面波12の雑音成分を散乱または吸収により減衰させ上記外側を伝搬することを阻止することが出来るあらゆる有機系化合物,無機化合物,金属化合物,またはこれらの化合物の組み合わせにより構成することが出来る。
三次元基体14の表面14aに対する弾性表面波伝搬阻止手段24aの形成は、弾性表面波伝搬阻止手段24aの種類に応じて公知の種々の適切な形成方法を採用することが出来ることはいうまでもない。このような形成方法としては、スパッタリングや真空蒸着等のドライプロセス,フォトリソグラフィーやコーティングやインクジェットプリンティングやエッチング等のウエットプロセスや、貼り付けや、微細切削加工等を例示することが出来る。
弾性表面波伝搬阻止手段24aの材料の主成分を有機系化合物としたならば、光,熱,その他に電離放射線や、酸素のような周辺雰囲気との接触、反応促進物質の添加等により、弾性表面波伝搬阻止手段24aの形成を促進させることが出来る。
また、弾性表面波伝搬阻止手段24aがその材料として硬化性樹脂を使用したならば、三次元基体14の表面14a上の所望の位置への配置は、上記所望の位置の面積が大きくても、硬化前の適度な粘度を有した状況下で塗布又は吹き付けにより容易に素早く行なうことが出来、しかも表面14aとの密着の程度を高めることが出来る。
さらに、弾性表面波伝搬阻止手段24aの材料としては、弾性表面波12の反射率が0%、即ち吸収率が100%、であることが理想であるが、上記反射率が50%以下であっても、そこで弾性表面波12が3回反射されれば3回反射された弾性表面波12はそのエネルギーを10%程度にまで減衰されるので、充分実用的である。このような弾性表面波伝搬阻止手段24aの材料としては、例えば、ウレタンゴムやシリコンゴム等のエラストマーを例示することが出来る。
またさらに、弾性表面波12は液体と接触することにより急激に減衰されるので、三次元基体14の表面14a上の所望の位置へ弾性表面波伝搬阻止手段24aの材料として、沸点が非常に高い、又は不揮発性の液体を薄く塗布しても良い。
このような弾性表面波伝搬阻止手段24aの大きさは、最小の直径又は一辺が上記交差する方向における所望の弾性表面波伝搬経路22の所望の長さ(即ち、幅)Wと同じ程度であれば、所望の雑音低減効果を得ることが可能になり、最大では表面14aにおいて上記交差する方向における所望の弾性表面波伝搬経路22の両側のいずれか一方の外側の全てを覆うよう配置することが出来る。また、三次元基体14の表面14a上の所望の位置への密着の程度が高いほど、同じ弾性表面波伝搬阻止手段24aであれば弾性表面波伝搬阻止効果が高まる。
[第2の実施の形態]
次に、図4を参照しながら、この発明の第2の実施の形態に従った弾性表面波素子30について詳細に説明する。図4は、この発明の第2の実施の形態に従った弾性表面波素子30の外観を概略的に示している斜視図である。
なおこの実施の形態において前述した第1の実施の形態に従った弾性表面波素子10の構成部材と同じ構成部材には前述した第1の実施の形態に従った弾性表面波素子10の対応する同じ構成部材を指摘していた参照符号と同じ参照符号を付して詳細な説明は省略する。
この実施の形態の弾性表面波素子30の構成が第1の実施の形態に従った弾性表面波素子10の構成と異なっているのは、三次元基体14’が球体であり、従って表面14’aも球面であるということである。球体の三次元基体14’は所望の弾性表面波伝搬経路22以外の場所で支持部材32に接続されていて、支持部材32を介して図示しない固定台座に固定されている。
この実施の形態の弾性表面波素子30では、三次元基体14’の表面14’aにおいて上記交差する方向における所望の弾性表面波伝搬経路22の両側の夫々の外側の一部に弾性表面波伝搬阻止手段24a,24bが備えられていることもまた、第1の実施の形態に従った弾性表面波素子10の構成と異なっている。
2つの弾性表面波伝搬阻止手段24a,24bの夫々の構成は相互に同じであっても良いし、相互に異なっていても良い。2つの弾性表面波伝搬阻止手段24a,24bの夫々は、前記第1の実施の形態の弾性表面波伝搬阻止手段24aに関する記載において前述したように種々の公知の材料及び種々の公知の製法を使用して表面14’aにおいて上記両側の夫々の外側の一部に設けられることが出来るし、前記第1の実施の形態に関する記載において前述したように表面14’aにおいて上記両側の夫々の外側の全てを覆うよう設けることも出来る。
このように構成されている第2の実施の形態に従った弾性表面波素子30は、三次元基体14’が球体であることにより、三次元基体14が球体に2つの相互に平行な平坦面14bを形成することにより構成されていた第1の実施の形態に従った弾性表面波素子10と比べ、三次元基体14’の加工に要する製造コストが低減される。
また、三次元基体14の表面14aにおいて上記交差する方向における所望の弾性表面波伝搬経路22の両側のいずれか一方の外側にのみ弾性表面波伝搬阻止手段24aが備えられている第1の実施の形態に従った弾性表面波素子10では、所望の弾性表面波伝搬経路22の両側のいずれか一方の外側に所望の弾性表面波伝搬経路22から漏れ出る弾性表面波の雑音成分が電気音響変換手段16の弾性表面波受信性能に与える影響をなくすことが出来たが、三次元基体14’の表面14’aにおいて上記交差する方向における所望の弾性表面波伝搬経路22の両側の夫々の外側に弾性表面波伝搬阻止手段24a,24bが備えられている第2の実施の形態に従った弾性表面波素子30では、所望の弾性表面波伝搬経路22の両側の外側に所望の弾性表面波伝搬経路22から漏れ出る弾性表面波の雑音成分が電気音響変換手段16の弾性表面波受信性能に与える影響をなくすることができる。このことは、第1の実施の形態に従った弾性表面波素子10に比べ第2の実施の形態に従った弾性表面波素子30は、所望の弾性表面波伝搬経路22を伝搬する弾性表面波12をより精密に測定することが出来ることを意味している。
なお、2つの弾性表面波伝搬阻止手段24a,24bは、表面14’aにおいて所望の弾性表面波伝搬経路22の両側の外側に、上記交差する方向に対称に設けても非対称に設けても、2つの弾性表面波伝搬阻止手段24a,24bを表面14’aにおいて所望の弾性表面波伝搬経路22の両側の外側に設けたことにより得られる効果に差異がない。
[第3の実施の形態]
次に、図5及び図6を参照しながら、この発明の第3の実施の形態に従った弾性表面波素子40について詳細に説明する。図5は、この発明の第3の実施の形態に従った弾性表面波素子40の外観を概略的に示している側面図であり;そして、図6は、図5のVI−VI線に沿ってこの発明の第3の実施の形態に従った弾性表面波素子40の三次元基体14’の表面14’aにおける弾性表面波伝搬阻止手段24cの配置を概略的に示す部分断面図である
なおこの実施の形態において前述した第1の実施の形態に従った弾性表面波素子10の構成部材や第2の実施の形態に従った弾性表面波素子30の構成部材と同じ構成部材には前述した第1の実施の形態に従った弾性表面波素子10や第2の実施の形態に従った弾性表面波素子30の対応する同じ構成部材を指摘していた参照符号と同じ参照符号を付して詳細な説明は省略する。
この実施の形態の弾性表面波素子40の構成が第1の実施の形態に従った弾性表面波素子10や第2の実施の形態に従った弾性表面波素子30の構成と異なっているのは、三次元基体14’の表面14’aが、前記交差する方向における所望の弾性表面波伝搬経路22の両側から前記交差する方向に最も離れた2つの位置で2つの支持部材42,42を介して台座44に支持されていることである。
この実施の形態の弾性表面波素子40ではまた、三次元基体14’の表面14’aにおいて前記交差する方向における所望の弾性表面波伝搬経路22の両側の少なくとも一方の外側に、所望の弾性表面波伝搬経路22に沿い連続して延出して所望の弾性表面波伝搬経路22に対し平行な円環状の弾性表面波伝搬阻止手段24cが設けられていることも、第1の実施の形態に従った弾性表面波素子10や第2の実施の形態に従った弾性表面波素子30の構成と異なっている。
より詳細には、このような円環状の弾性表面波伝搬阻止手段24cは、前記第1の実施の形態の弾性表面波伝搬阻止手段24aに関する記載において前述したように種々の公知の材料及び種々の公知の製法を使用して、表面14’において上記両側の少なくとも一方の外側に設けられることが出来る。
しかしながら、このような円環状の弾性表面波伝搬阻止手段24cは、三次元基体14’の表面14’aにおいて前記交差する方向における所望の弾性表面波伝搬経路22の両側の少なくとも一方の外側に対して出来る限り接近して設けられていれば良いというものではない。何故ならば、弾性表面波伝搬阻止手段24cが弾性表面波12の反射率が50%以下になるよう構成されていたとしても、所望の弾性表面波伝搬経路22の両側の少なくとも一方から円環状の弾性表面波伝搬阻止手段24cまでの前記交差する方向における離間距離が小さすぎると、所望の弾性表面波伝搬経路22の両側の少なくとも一方から円環状の弾性表面波伝搬阻止手段24cに向い漏れ出た弾性表面波12の雑音成分のエネルギー強度が所望の弾性表面波伝搬経路22内の弾性表面波12のエネルギー強度と余り変わらず、円環状の弾性表面波伝搬阻止手段24cに何回か繰り返し反射されても、繰り返し反射された後に電気音響変換手段16に受信される上記漏れ出た弾性表面波12の雑音成分のエネルギー強度は所望の弾性表面波伝搬経路22内の弾性表面波12のエネルギー強度の10%よりも小さくはならず、電気音響変換手段16に雑音として読み取られてしまうからである。
このような問題を解消する為には、所望の弾性表面波伝搬経路22や電気音響変換手段16に対し、円環状の弾性表面波伝搬阻止手段24cを以下のように設けることが好ましい。
例えば、前記弾性表面波伝搬阻止手段24cは前記表面14’aにおいて、前記交差する方向における弾性表面波伝搬経路22の中心22aから前記交差する方向における弾性表面波伝搬経路22の両側の夫々までの距離の2倍以上前記交差する方向において弾性表面波伝搬経路22の両側の夫々から離れた位置の少なくとも一方に配置されていることが好ましい。
或いは、前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの夫々の曲率の中心Cが、前記表面14’aに含まれる前記曲面において前記交差する方向における弾性表面波伝搬経路22の中心22aに合致、より詳細には中心22aを通過する三次元基体14’の半径線上に合致、されていて、弾性表面波伝搬阻止手段24cは、前記表面14’aにおいて前記交差する方向における弾性表面波伝搬経路22の両側の一方の外側で前記交差する方向における弾性表面波伝搬経路22の中心22aから前記交差する方向に+30°以上離れた位置及び前記両側の他方の外側で前記交差する方向における弾性表面波伝搬経路22の中心22aから前記交差する方向に−30°以上離れた位置の少なくともいずれか一方に配置されている、ことが好ましい。
[第4の実施の形態]
次に、図7を参照しながら、この発明の第4の実施の形態に従った弾性表面波素子50について詳細に説明する。図7は、この発明の第4の実施の形態に従った弾性表面波素子50の外観を概略的に示している側面図である
なおこの実施の形態に従った弾性表面波素子50の構成の大部分は、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成の大部分と同じである。従って、図7を参照した第4の実施の形態の弾性表面波素子50の構成部材において図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成部材と同じ構成部材には、第3の実施の形態に従った弾性表面波素子40の対応する構成部材に付されている参照符号と同じ参照符号を付して詳細な説明は省略する。
図7中に示されている、この発明の第4の実施の形態に従った弾性表面波素子50が、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40と異なっているのは、三次元基体14’の表面14’aにおいて前記交差する方向における所望の弾性表面波伝搬経路22の両側の一方の外側に、所望の弾性表面波伝搬経路22に沿い連続して延出していて所望の弾性表面波伝搬経路22に対し平行に設けられている円環状の弾性表面波伝搬阻止手段24cに加えて、前記交差する方向における所望の弾性表面波伝搬経路22の両側の他方の外側にも、所望の弾性表面波伝搬経路22に沿い連続して延出していて所望の弾性表面波伝搬経路22に対し平行にもう1つの円環状の弾性表面波伝搬阻止手段24dが設けられていることである。
三次元基体14’の表面14’aにおいて、前記他方のこのもう1つの円環状の弾性表面波伝搬阻止手段24dは、前記一方の円環状の弾性表面波伝搬阻止手段24cに対し、図6中に2点鎖線で示されている如く、前記交差する方向において所望の弾性表面波伝搬経路22の両側に前記交差する方向における所望の弾性表面波伝搬経路22の中心22aを挟んだ対称に設けられている。
これら2つの円環状の弾性表面波伝搬阻止手段24c,24dは、相互に同じ材料で相互に同じ製造方法で設置することが好ましい。しかしながら、この発明の理念に従えば、2つの円環状の弾性表面波伝搬阻止手段24c,24dは、所望の弾性表面波伝搬阻止機能を達成することが出来るのであれば、相互に別の材料で相互に異なる製造方法で設置することもできる。
[第3の実施の形態における実験結果]
次には、図5及び図6を参照しながら前述した第3の実施の形態に従った弾性表面波素子40の具体例の実験結果を、図8を参照しながら詳細に説明する。
なお、図8の(A)は、図5中の弾性表面波素子40から円環状の弾性表面波伝搬阻止手段24cを無くした場合に、電気音響変換手段16により所望の弾性表面波伝搬経路22に沿い励起され伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を一周する度に電気音響変換手段16により受信され変換された電気信号の出力の大きさを時間の経過とともに示す図であり;そして、
図8の(B)は、図8の(A)の出力を元の励起信号と共振させ信号処理した後に対数増幅した図である。
また、図8の(A’)は、1つの円環状の弾性表面波伝搬阻止手段24cを伴なった図5中の弾性表面波素子40において、電気音響変換手段16により所望の弾性表面波伝搬経路22に沿い励起され伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を一周する度に電気音響変換手段16により受信され変換された電気信号の出力の大きさを時間の経過とともに示す図であり;そして、
図8の(B’)は、図8の(A’)の出力を元の励起信号と共振させ信号処理した後に対数増幅した図である。
この実験のために、図5及び図6を参照しながら前述した第3の実施の形態に従った弾性表面波素子40は以下のようにして準備された。
三次元基体14’は、自身が圧電性を有する三方晶系の水晶を直径10mmの球体に成形することにより形成された。水晶により球体に構成された三次元基体14’は、その球形状の表面14’aにおいてそのZ軸と交差する2つの位置を南極と北極に見立てた場合、赤道に相当する最大外周線を最も良好に弾性表面波12を励起し伝搬させる円環状の弾性表面波・励起/伝搬経路22とすることが出来る。そして、この弾性表面波・励起/伝搬経路22中に、弾性表面波・励起/伝搬経路22の延出方向に所望の弾性表面波12を励起しZ軸回りに伝搬させることができる電気音響変換手段16を形成した。電気音響変換手段16を形成するにあたっては、三次元基体14’の水晶球の表面14’aを純水,アセトン,メタノールにて超音波洗浄し、次に真空蒸着装置において三次元基体14’の水晶球の表面14’aの弾性表面波・励起/伝搬経路22中の所望の位置にクロム/金の薄膜を約1000オングストロームの厚さに形成した。次に、三次元基体14’をスピンコート台上に仮固定してスピンさせる間に、三次元基体14’の表面14’a上にポジ型レジスト液を2μmの厚さに被覆させ、さらにクリーンオーブンにて90°Cで30分間乾燥させた。次に、乾燥したレジスト液を電気音響変換手段16のすだれ状電極16aの為のフォトマスクを介して露光し、三次元基体14’をスピンコート台上から外して専用の現像液中で現像した。次に、三次元基体14’を乾燥させた後に、金用エッチング液(ヨウ素ヨウ化カリウム水溶液)及びクロム用エッチング液(硝酸第二セリウムアンモニウム/過塩素酸混合水溶液)にて余分な薄膜を除去し、所望の寸法形状の電気音響変換手段16のすだれ状電極16aを形成した。
形成されたすだれ状電極16aは合計10本の端子16bを有していて、すだれ状電極16aの半片の複数の端子の配列間隔(ピッチ)は70μm、複数の端子の配列方向における夫々の端子の長さ(幅)は17.5μm、複数の端子の配列方向において相互に隣接した2つの端子が対面する夫々の延出方向における長さ(図2の(A)の送受信部分16c参照)は700μmであつた。
さらに、形成されたすだれ状電極16aの1対の半片の夫々に引き出し線18としての金細線をワイヤボンディングした。また、三次元基体14’の水晶球の表面14’a上において、上記交差する方向における弾性表面波・励起/伝搬経路22の両側の一方から外側に約3.5mm離れて、弾性表面波・励起/伝搬経路22に対し平行な円環状に樹脂ゴムを上記交差する方向における長さ(幅)が約1mmで厚さが約0.4mmに塗布し、丸一日かけて乾燥させることにより弾力性及び柔軟性を保持した円環状の弾性表面波伝搬阻止手段24cを設けた。最後に、一対の引き出し線18に、電気音響変換手段操作ユニット20の切換スイッチ20b(図1参照)が電気的に接続された。
そして、電気音響変換手段操作ユニット20の切換スイッチ20bにより発信器20aからの約45MHz,100Vの交流信号を、3μ秒のバースト波として電気音響変換手段16のすだれ状電極16aに負荷した。
この結果、図5中の弾性表面波素子40から円環状の弾性表面波伝搬阻止手段24cを無くした場合には、図8の(A)中に示されている如く、電気音響変換手段16により所望の弾性表面波伝搬経路22に沿い励起され伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を一周する度に電気音響変換手段16により受信され変換された電気信号の出力OPには、弾性表面波伝搬経路22から上記交差する方向における弾性表面波・励起/伝搬経路22の両側の外側に漏れ出る弾性表面波12の雑音成分NSが含まれており、前記伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を周回する回数が増えるに従い(即ち、弾性表面波12が所望の弾性表面波伝搬経路22に励起され伝搬を開始されてからの時間経過が長くなるに従い)、参照符号LTにより示されている時間経過増大領域において電気信号の出力OPが雑音成分NSにより埋もれてしまうのを見ることが出来る。
この結果に対し、図5中の弾性表面波素子40のように円環状の弾性表面波伝搬阻止手段24cを伴なっている場合には、図8の(A’)中に示されている如く、電気音響変換手段16により所望の弾性表面波伝搬経路22に沿い励起され伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を一周する度に電気音響変換手段16により受信され変換された電気信号の出力OPには、弾性表面波伝搬経路22から上記交差する方向における弾性表面波・励起/伝搬経路22の両側の一方の外側に漏れ出る雑音成分が円環状の弾性表面波伝搬阻止手段24cにより伝搬を阻止されて含まれないので、前記伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を周回する回数が増えても(即ち、弾性表面波12が所望の弾性表面波伝搬経路22に励起され伝搬を開始されてからの時間経過が長くなっても)、参照符号LTにより示されている時間経過増大領域において電気信号の出力OPが雑音成分により埋もれてしまうことがないのを見ることが出来る。
電気音響変換手段操作ユニット20では、周回数が多くエネルギー強度が弱くなった電気信号を観測しやすくするために、発信器20aは出力信号の周波数をHz単位で選択することが可能になっている。
伝搬する弾性表面波12の波長が弾性表面波・励起/伝搬経路22の一周分の距離の整数倍になるよう伝搬する弾性表面波12の周波数を選択するとともに、伝搬する弾性表面波12が電気音響変換手段16及び切換スイッチ20bを介して受信器20cにより受信され電気信号に変換された後にミキサー20dで発信器20aからの弾性表面波励起信号と共振させることにより、電気音響変換手段16の受信感度を向上させることが出来る。共振された後の電気信号は、電気音響変換手段操作ユニット20では、アンプ20eにより対数モードで増幅させ、オシロスコープ20fにより表示される。
図8の(B)には、このようにしてオシロスコープ20fにより対数表示された、図8の(A)中に示されている時間の経過にともなう弾性表面波12からの電気信号出力の強度の変化が示されている。図8の(B)からも、図5中の弾性表面波素子40から円環状の弾性表面波伝搬阻止手段24cを無くした場合には、電気音響変換手段16により所望の弾性表面波伝搬経路22に沿い励起され伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を一周する度に電気音響変換手段16により受信され変換された電気信号の出力OPに、弾性表面波伝搬経路22から上記交差する方向における弾性表面波・励起/伝搬経路22の両側の外側に漏れ出る雑音成分NSが含まれていることから、前記伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を周回する回数が増えるに従い(即ち、弾性表面波12が所望の弾性表面波伝搬経路22に励起され伝搬を開始されてからの時間経過が長くなるに従い)、参照符号LTにより示されている時間経過増大領域において電気信号の出力OPが雑音成分NSにより埋もれてしまうのを見ることが出来る。
図8の(B’)にも、上述したようにしてオシロスコープ20fにより対数表示された、図8の(A’)中に示されている時間の経過にともなう弾性表面波12からの電気信号出力の強度の変化が示されている。図8の(B’)からも、図5中の弾性表面波素子40が円環状の弾性表面波伝搬阻止手段24cを伴なっている場合には、電気音響変換手段16により所望の弾性表面波伝搬経路22に沿い励起され伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を一周する度に電気音響変換手段16により受信され変換された電気信号の出力OPには、弾性表面波伝搬経路22から上記交差する方向における弾性表面波・励起/伝搬経路22の両側の外側に漏れ出る雑音成分NSが含まれていても、弾性表面波伝搬経路22から上記交差する方向における弾性表面波・励起/伝搬経路22の両側の一方の外側に漏れ出る雑音成分が円環状の弾性表面波伝搬阻止手段24cにより伝搬を阻止されて含まれないので、前記伝搬された弾性表面波12が所望の弾性表面波伝搬経路22を周回する回数が増えるに従い(即ち、弾性表面波12が所望の弾性表面波伝搬経路22に励起され伝搬を開始されてからの時間経過が長くなるに従い)、参照符号LTにより示されている時間経過増大領域において電気信号の出力OPが雑音成分NSにより埋もれてしまうことがないのを見ることが出来る。
このことは、図5中の弾性表面波素子40から円環状の弾性表面波伝搬阻止手段24cを無くした場合に比べると、円環状の弾性表面波伝搬阻止手段24cを伴なっている図5中の弾性表面波素子40の場合には、所望の弾性表面波伝搬経路22を周回する弾性表面波12の検出精度が高まることを意味している。
より具体的には、同じ環境下で為されたこの実験では、図5中の弾性表面波素子40から円環状の弾性表面波伝搬阻止手段24cを無くした場合には、周回数60回までしか電気音響変換手段操作ユニット20は所望の弾性表面波伝搬経路22を伝搬する弾性表面波12から電気信号を読み取ることが出来なかったが、円環状の弾性表面波伝搬阻止手段24cを伴なっている図5中の弾性表面波素子40の場合には、周回数150回まで電気音響変換手段操作ユニット20は所望の弾性表面波伝搬経路22を伝搬する弾性表面波12から電気信号を読み取ることが出来たので、所望の弾性表面波伝搬経路22を周回する弾性表面波12の検出精度が2倍以上高まったことを意味している。
[第5の実施の形態]
次に、図9を参照しながら、この発明の第5の実施の形態に従った弾性表面波素子60について詳細に説明する。図9は、この発明の第5の実施の形態に従った弾性表面波素子60の外観を概略的に示している側面図である
なおこの実施の形態に従った弾性表面波素子60の構成の大部分は、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成の大部分と同じである。従って、図9を参照した第5の実施の形態の弾性表面波素子60の構成部材において図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成部材と同じ構成部材には、第3の実施の形態に従った弾性表面波素子40の対応する構成部材に付されている参照符号と同じ参照符号を付して詳細な説明は省略する。
図9中に示されている、この発明の第5の実施の形態に従った弾性表面波素子60が、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40と異なっているのは、三次元基体14’の表面14’aにおいて前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の少なくとも一方に対し円環状の弾性表面波伝搬阻止手段24eが隣接して平行に配置されていることである。
なお、図9中の第5の実施の形態に従った弾性表面波素子60においては、三次元基体14’の表面14’aにおいて前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の夫々に対し、円環状の弾性表面波伝搬阻止手段24eが隣接して平行に設けられている。
三次元基体14’の表面14’aにおいて、前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の前記少なくとも一方の、又は前記夫々の、円環状の弾性表面波伝搬阻止手段24eは、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の円環状の弾性表面波伝搬阻止手段24cと同じ材料で同じ製造方法で上述したように設置することが出来る。しかしながら、この発明の理念に従えば、図9中に図示されている如く前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の夫々に対し、円環状の弾性表面波伝搬阻止手段24eが隣接して平行に設置される場合には、2つの円環状の弾性表面波伝搬阻止手段24e,24eは、所望の弾性表面波伝搬阻止機能を達成することが出来るのであれば、相互に別の材料で相互に異なる製造方法により設置することもできる。
なお図9を参照して上述したこの発明の第5の実施の形態に従った弾性表面波素子60においては、円環状の弾性表面波伝搬阻止手段24eが、三次元基体14’の表面14’aにおいて前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の少なくとも一方の外側に対して、隣接して平行に配置されているというように、非常に接近して設けられている。しかしながら、このような非常に接近した配置では、図5及び図6を参照したこの発明の第3の実施の形態に従った弾性表面波素子40に関する説明において前述したように、弾性表面波伝搬阻止手段24eが弾性表面波12の反射率が50%以下になるよう構成されていたとしても、前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の少なくとも一方から円環状の弾性表面波伝搬阻止手段24eに向い漏れ出た弾性表面波12の雑音成分のエネルギー強度が上記領域内の弾性表面波12のエネルギー強度と余り変わらず、円環状の弾性表面波伝搬阻止手段24eに何回か繰り返し反射されても、繰り返し反射された後に電気音響変換手段16に受信される上記漏れ出た弾性表面波12の雑音成分のエネルギー強度は上記領域内の弾性表面波12のエネルギー強度の10%よりも小さくはならず、電気音響変換手段16に雑音として読み取られてしまう。
しかしながら、このことは、図9中に示されている如く円環状の弾性表面波伝搬阻止手段24eを伴なった第5の実施の形態に従った弾性表面波素子60は、図9中に示されている弾性表面波素子60から円環状の弾性表面波伝搬阻止手段24eを取り除いた場合と比べると、前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の少なくとも一方から外側に向い漏れ出る弾性表面波12の雑音成分のエネルギー強度をその減少率は少ないが確かに減少させて電気音響変換手段16に受信される上記漏れ出た弾性表面波12の雑音成分から変換される雑音成分の電気信号を減少させる、ことを意味している。
[第6の実施の形態]
次に、図10を参照しながら、この発明の第6の実施の形態に従った弾性表面波素子70について詳細に説明する。図10は、この発明の第6の実施の形態に従った弾性表面波素子70の外観を概略的に示している側面図である
なおこの実施の形態に従った弾性表面波素子70の構成の大部分は、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成の大部分と同じである。従って、図10を参照した第6の実施の形態の弾性表面波素子70の構成部材において図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成部材と同じ構成部材には、第3の実施の形態に従った弾性表面波素子40の対応する構成部材に付されている参照符号と同じ参照符号を付して詳細な説明は省略する。
図10中に示されている、この発明の第6の実施の形態に従った弾性表面波素子70が、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40と異なっているのは、三次元基体14’の表面14’aにおいて前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の少なくとも一方に対し、円環状の弾性表面波伝搬阻止手段24fが隣接して平行に配置されていることである。
なお、図10中の第6の実施の形態に従った弾性表面波素子70においては、三次元基体14’の表面14’aにおいて前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部の夫々に対し、円環状の弾性表面波伝搬阻止手段24fが上述した如く隣接した状態で平行に連続して延出して設けられている。
この実施の形態の円環状の弾性表面波伝搬阻止手段24fはさらに、前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部に対応して隣接した部分が、前記弾性表面波・励起/伝搬方向に対し交差する傾斜線72の連続により鋸歯状に構成されている。傾斜線72は、所望の弾性表面波伝搬経路22の中心線22aに対する傾斜角度θが+20°と+90°との間、又は−20°と−90°との間であることが好ましい。
このように構成されている第6の実施の形態に従った弾性表面波素子70において、前記交差する方向における電気音響変換手段16のすだれ状電極16aの複数の端子16bの送受信部16cの長さによって規定される幅を有し前記弾性表面波・励起/伝搬方向に延出する領域の両側部に対応して隣接した部分が、前記弾性表面波・励起/伝搬方向に対し交差する傾斜線72の連続により鋸歯状に構成されている部分を有する円環状の弾性表面波伝搬阻止手段24fは、図5及び図6を参照しながら前述した第3の実施の形態に従った弾性表面波素子40の円環状の弾性表面波伝搬阻止手段24cの場合と同じ程度の機能を発揮する。
[第7の実施の形態]
次に、図11及び図12を参照しながら、この発明の第7の実施の形態に従った弾性表面波素子80について詳細に説明する。図11は、この発明の第7の実施の形態に従った弾性表面波素子80の外観を概略的に示している側面図であり;そして、図12は、図11のXII−XII線に沿ってこの発明の第7の実施の形態に従った弾性表面波素子80の三次元基体14’の表面14’aにおける弾性表面波伝搬阻止手段82aの配置を概略的に示す部分断面図である
なおこの実施の形態に従った弾性表面波素子80の構成の大部分は、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成の大部分と同じである。従って、図11及び図12を参照した第7の実施の形態の弾性表面波素子80の構成部材において図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成部材と同じ構成部材には、第3の実施の形態に従った弾性表面波素子40の対応する構成部材に付されている参照符号と同じ参照符号を付して詳細な説明は省略する。
図11及び図12中に示されている、この発明の第7の実施の形態に従った弾性表面波素子80では、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40と同様に、三次元基体14’の表面14’aにおいて弾性表面波伝搬経路22中で前記交差する方向の中心22aに電気音響変換手段16がすだれ状電極16aを備えていて、電気音響変換手段16のすだれ状電極16aの複数の端子16bは前記交差する方向に沿い延びており、前記交差する方向におけるすだれ状電極16aの複数の端子16bの夫々の曲率の中心Cが、表面14’aに含まれる曲面において前記交差する方向における弾性表面波伝搬経路22の中心22aに合致、より詳細には中心22aを通過する三次元基体14’の半径線上に合致、されている。
図11及び図12中に示されている、この発明の第7の実施の形態に従った弾性表面波素子80が、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40と異なっているのは、三次元基体14’の表面14’aにおける弾性表面波伝搬阻止手段82aの構成と配置である。
この実施の形態の弾性表面波伝搬阻止手段82aは、三次元基体14’の表面14’a上で前記交差する方向において所望の弾性表面波伝搬経路22の外側へと漏れ出た弾性表面波12の雑音成分を散乱または吸収により減衰させ上記外側を前記弾性表面波・励起/伝搬方向に伝搬することを阻止することが出来る、表面14’aに形成された凸又は凹形状又は凹凸を混在させた形状により構成されている。
そして、表面14’aに対する弾性表面波伝搬阻止手段82aの凸又は凹形状の突出高さt又は落ち込み深さt’は、前記交差する方向において弾性表面波伝搬経路22の外側へと漏れ出た弾性表面波12の雑音成分の波長の1/10よりも大きいことが好ましい。
弾性表面波伝搬阻止手段82aは、表面14’aにおいて前記交差する方向における弾性表面波伝搬経路22の両側の一方の外側で前記交差する方向における弾性表面波伝搬経路22の中心22aから前記交差する方向に+30°までの間の一方の領域及び前記両側の他方の外側で前記交差する方向における弾性表面波伝搬経路22の中心22aから前記交差する方向に−30°までの間の他方の領域の少なくともいずれかの領域に、弾性表面波伝搬経路22に沿い延出した円環状の少なくとも一部、好ましくは円環状、に配置されている。
弾性表面波伝搬阻止手段82aは、表面14’aをエッチング,レーザー加工,切削加工等の公知の加工方法により形成することが出来る。
図13の(A),(B),そして(C)には、弾性表面波伝搬阻止手段82aの種々の例が拡大して示されている。
図13の(A)に示されている弾性表面波伝搬阻止手段82aでは、上記少なくともいずれかの領域内で前記弾性表面波・励起/伝搬方向に対し+20°と+90°との間の傾斜角θ又は−20°と−90°との間の傾斜角θ’に傾斜した外形線を含む複数の要素が弾性表面波伝搬経路22に沿い相互間に隙間を生じさせることなく配置されている。このような弾性表面波伝搬阻止手段82aは、上記一方の領域及び上記他方の領域内の両方に上述した如く配置されていることが好ましい。
図13の(B)に示されている弾性表面波伝搬阻止手段82aでは、上記一方の領域及び上記他方の領域内の両方の夫々において前記弾性表面波・励起/伝搬方向に対し+20°と+90°との間の傾斜角θ(図13の(A)参照)又は−20°と−90°との間の傾斜角θ’(図13の(A)参照)に傾斜した外形線を含む含む複数の要素が弾性表面波伝搬経路22に沿い相互間に所定の距離離間して配置されている。上記一方の領域の複数の要素の夫々と上記他方の領域の複数の要素の夫々は相互に同じ構成であることが好ましく、上記一方の領域の複数の要素の夫々に対し上記他方の領域の複数の要素の夫々は弾性表面波・励起/伝搬方向に各要素の半分の距離HPだけずれて配置されている。
図13の(C)に示されている弾性表面波伝搬阻止手段82aは、上記一方の領域及び上記他方の領域内の両方の夫々において前記弾性表面波・励起/伝搬方向に対し+20°と+90°との間の傾斜角θ(図13の(A)参照)又は−20°と−90°との間の傾斜角θ’(図13の(A)参照)に傾斜した外形線を含む含む複数の要素が弾性表面波伝搬経路22に沿い相互間に所定の距離離間して配置されている。そして、前記交差する方向において、弾性表面波伝搬経路22に対しこのように配置されている複数の要素の外側に、上述した如き外形線を含んでいる複数の要素が弾性表面波伝搬経路22に沿い相互間に所定の距離離間してさらに配置されている。さらに、前記交差する方向において弾性表面波伝搬経路22に対し内側に上述した如く配置されている複数の要素の相互間の隙間に対応するよう弾性表面波伝搬経路22に対し外側に上述した如く配置されている複数の要素が位置付けられている。
図13の(A),(B),そして(C)に図示されている弾性表面波伝搬阻止手段82aの種々の例では、前記交差する方向における弾性表面波伝搬経路22の両側の少なくともいずれか一方から上記両側の外側に向い漏れ出た弾性表面波12の雑音成分は弾性表面波伝搬阻止手段82aの上述した如き複数の要素により散乱を繰り返され減衰させられてしまい、弾性表面波伝搬経路22に沿い一周して電気音響変換手段16に受信されるものはそのエネルギーが非常に減衰されている。そして、図13の(A)及び(B)の夫々に示されているように前記交差する方向における弾性表面波伝搬経路22の両側の少なくともいずれか一方又は両方の夫々の外側で1つの円環状に複数の要素が配裂されている場合よりも、図13の(C)に示されているように前記交差する方向における弾性表面波伝搬経路22の両側の少なくともいずれか一方又は両方の夫々の外側で2つ以上の複数の円環状に複数の要素が配裂されている場合の方が、上述した雑音成分の減衰効果が大きくなる。
なお、本願の発明者の実験によれば、図13の(A)に図示されている弾性表面波伝搬阻止手段82aの例であっても、そのような弾性表面波伝搬阻止手段82aを持たない場合に比べると、この発明の第7の実施の形態に従った弾性表面波素子80は、約2倍の弾性表面波読み取り精度を得ることが出来た。
[第8の実施の形態]
次に、図14を参照しながら、この発明の第8の実施の形態に従った弾性表面波素子90について詳細に説明する。図14は、この発明の第8の実施の形態に従った弾性表面波素子90の外観を概略的に示している側面図である。
なおこの実施の形態に従った弾性表面波素子90の構成の大部分は、図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成の大部分と同じである。従って、図14を参照した第8の実施の形態の弾性表面波素子90の構成部材において図5及び図6を参照しながら前述したこの発明の第3の実施の形態に従った弾性表面波素子40の構成部材と同じ構成部材には、第3の実施の形態に従った弾性表面波素子40の対応する構成部材に付されている参照符号と同じ参照符号を付して詳細な説明は省略する。
図14中に示されている、この発明の第8の実施の形態に従った弾性表面波素子90は、図11乃至図13を参照しながら前述した、この発明の第7の実施の形態に従った弾性表面波素子80において弾性表面波伝搬阻止手段82aを構成している、前記弾性表面波・励起/伝搬方向に対し+20°と+90°との間の傾斜角θ(図13の(A)参照)又は−20°と−90°との間の傾斜角θ’(図13の(A)参照)に傾斜した外形線を含む含む複数の要素の代わりに、略円形状の凸形状又は凹形状の複数の要素により構成された弾性表面波伝搬阻止手段92aを備えている。これ以外の構成は、図11乃至図13を参照しながら前述した、この発明の第7の実施の形態に従った弾性表面波素子80の構成と同じである。
第8の実施の形態に従った弾性表面波素子90の弾性表面波伝搬阻止手段92aも、図11乃至図13を参照しながら前述した、この発明の第7の実施の形態に従った弾性表面波素子80の弾性表面波伝搬阻止手段82aと同様に、三次元基体14’の表面14’a上に配置される。即ち、図13の(A)乃至(C)に示された傾斜した外形線による複数の要素に代わり、略円形状の凸形状又は凹形状の複数の要素を使用する。
このような第8の実施の形態に従った弾性表面波素子90の弾性表面波伝搬阻止手段92aは、第7の実施の形態に従った弾性表面波素子80の弾性表面波伝搬阻止手段82aと同様に三次元基体14’の表面14’aに形成することが出来るし、同様に機能することが出来る。
なお、第8の実施の形態に従った弾性表面波素子90の弾性表面波伝搬阻止手段92aの略円形状の凸形状又は凹形状の複数の要素は、これらに衝突した弾性表面波12の雑音成分を表面14’aに沿う全方向に散乱させるので、図13の(A)や(B)に示された傾斜した外形線による複数の要素に比べると、これらに衝突した弾性表面波12の雑音成分の減衰作用が強い。
[種々の実施の形態の変形例及び共通事項]
上述した第1乃至第8の実施の形態においては、弾性表面波素子10,30,40,50,60,70,80,そして90の夫々において三次元基体14又は14’を固定部材として機能する図示しない台座又は台座44に対し支持し固定する為に図示しない台座又は台座44と三次元基体14又は14’の表面14a又は14’aとの間に介在される図示しない支持部材又は支持部材32又は42において三次元基体14又は14’の表面14a又は14’aと接触する部位を、図1,図4,図5,図7,図9,そして図10中に図示されている弾性表面波素子10,30,40,50,60,そして70の夫々において使用されている弾性表面波伝搬阻止手段24a,24b,24c,24d,24e,そして24fと同じ材料や同じ製法により形成し、三次元基体14又は14’の表面と密着させることにより、弾性表面波伝搬阻止手段としても機能することが出来るようになる。
そして上述したように、図示しない支持部材又は支持部材32又は42における前述した接触する部位を弾性表面波伝搬阻止手段24a,24b,24c,24d,24e,そして24fと同じ材料や同じ製法により形成した場合には、上記接触する部位における弾性表面波12の前述した雑音成分の伝搬阻止機能の性能次第で、弾性表面波伝搬阻止手段24a,24b,24c,24d,24e,そして24fの面積の縮小や削除が可能となる。
また、上述した第1乃至第8の実施の形態においては、1つの電気音響変換手段16のみが使用されていたが、弾性表面波伝搬経路22において前記弾性表面波・励起/伝搬方向に離間したもう1つの電気音響変換手段をさらに使用することも出来る。この場合には、これら2つの電気音響変換手段の一方を弾性表面波12の励起及び伝搬専用とし、他方を伝搬している弾性表面波12の受信専用として使用することができる。そして、一方の電気音響変換手段の為の電気音響変換手段操作ユニット及び他方の電気音響変換手段の為の電気音響変換手段操作ユニットの夫々の電気回路を励起及び伝搬専用及び受信専用として構成することが出来る。このような専用の電気回路は、上述した第1乃至第8の実施の形態の為の電気音響変換手段操作ユニット20が弾性表面波12の励起及び伝搬の為の発信器20aと伝搬している弾性表面波12の受信の為の受信器20cとを切り換える切換スイッチ20bを含む兼用の電気回路を使用しているのに比べ、構成が簡素であり、従って雑音成分を含む電気信号が生じる機会を減少させる。そして、一方の電気音響変換手段が励起及び伝搬する弾性表面波に、また他方の電気音響変換手段が受信し変換した電気信号に雑音成分が混じる機会を減少させている。即ち、受信専用の電気音響変換手段による弾性表面波測定精度を向上させることが可能になる。
さらに、上述した第1乃至第8の実施の形態において三次元基体14又は14’は、球形状又は球体から1対の平面を切り欠いた形状、或いは球形状又は球体をしていたが、半球形状又は部分的な球形状、或いは半球形状又は部分的な球形状から少なくとも1対の平面を切り欠いた形状であっても良く、このような場合には、弾性表面波12が伝搬可能な表面14a又は14’aも曲面が連続した少なくとも円環形状の曲面の一部を含んでいれば、即ち、完全な円環形状でなくとも曲面が連続していれば、良い。
そして、この場合に、このような表面14a又は14’aに設けられる電気音響変換手段16は、このような表面14a又は14’aにおける前記弾性表面波・励起/伝搬方向に離間したもう1つの電気音響変換手段又は弾性表面波反射手段と組み合わされて使用されることになる。上述した如く電気音響変換手段16がもう1つの電気音響変換手段と組み合わされて使用される場合には、一方を弾性表面波12の励起及び伝搬専用とし、他方を伝搬している弾性表面波12の受信専用として使用することができる。
このように、半球形状又は部分的な球形状、或いは半球形状又は部分的な球形状から少なくとも1対の平面を切り欠いた形状を有する三次元基体を使用した弾性表面波素子は、球形状又は球体から1対の平面を切り欠いた形状、或いは球形状又は球体の三次元基体14又は14’を使用した上述した第1乃至第8の実施の形態に従った弾性表面波素子10,30,40,50,60,70,80,そして90の夫々よりも外形寸法を小型にすることが出来る。
さらに、図9,図10,図11,そして図14中に示されている第5乃至第8の実施の形態の弾性表面波素子60,70,80,そして90の夫々の弾性表面波伝搬阻止手段24e,24f,82a,又は92aは、三次元基体14’の表面14’aにおいて前記交差する方向における対応する弾性表面波伝搬経路22の両側の少なくとも一方と重複して配置させることが出来る。
前述したように、励起され伝搬される弾性表面波12は前記弾性表面波・励起/伝搬方向に沿い伝搬する間に前記交差する方向における幅を変化、即ち、弾性表面波伝搬経路22は前記弾性表面波・励起/伝搬方向に沿い延出する間に前記交差する方向における長さWを変化、させる。
従って、三次元基体14’の表面14’aにおいて弾性表面波伝搬阻止手段24e,24f,82a,又は92aが、前記交差する方向における弾性表面波伝搬経路22の両側の一方にのみ重複する場合には、前記交差する方向における弾性表面波伝搬経路22の最小の長さWに対する前記交差する方向における前記重複する長さの割合が50%以下とすることが好ましい。
或いは、三次元基体14’の表面14’aにおいて弾性表面波伝搬阻止手段24e,24f,82a,又は92aが、前記交差する方向における弾性表面波伝搬経路22の両側の両方に重複する場合には、前記交差する方向における弾性表面波伝搬経路22の最小の長さWに対する前記交差する方向における前記両方に重複する長さの合計の割合が50%以下とすることが好ましい。
なお、前述した全ての実施の形態において、弾性表面波伝搬阻止手段24a,24b,24c,24d,24e,24f,82a,そして92aの夫々は、三次元基体14又は14’の表面14a又は14’aにおいて、電気音響変換素子16により前記弾性表面波・励起/伝搬方向に励起され伝搬される弾性表面波12を、弾性表面波12のエネルギーの80%以上を保って弾性表面波伝搬経路22中で伝搬させることが好ましい。
10…弾性表面波素子、12…弾性表面波、14,14’…三次元基体、14a,14’a…表面、16…電気音響変換素子、16a…すだれ状電極、16b…端子、16c…送受信部、22…弾性表面波伝搬経路、22a…中心、24a,24b,24c、24d,24e,24f…弾性表面波伝搬阻止手段、32…支持部材、40…弾性表面波素子、42…支持部材、50…弾性表面波素子、60…弾性表面波素子、70…弾性表面波素子、72…傾斜線、80…弾性表面波素子、82a…弾性表面波伝搬阻止手段、90…弾性表面波素子、92a…弾性表面波伝搬阻止手段。