JP4700748B2 - 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置 - Google Patents

弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置 Download PDF

Info

Publication number
JP4700748B2
JP4700748B2 JP2009222864A JP2009222864A JP4700748B2 JP 4700748 B2 JP4700748 B2 JP 4700748B2 JP 2009222864 A JP2009222864 A JP 2009222864A JP 2009222864 A JP2009222864 A JP 2009222864A JP 4700748 B2 JP4700748 B2 JP 4700748B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
dimensional substrate
electroacoustic transducer
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009222864A
Other languages
English (en)
Other versions
JP2009303266A (ja
Inventor
教尊 中曽
一司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2009222864A priority Critical patent/JP4700748B2/ja
Publication of JP2009303266A publication Critical patent/JP2009303266A/ja
Application granted granted Critical
Publication of JP4700748B2 publication Critical patent/JP4700748B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置に関係している。
弾性表面波(SAW:Surface Acoustic Wave)が励起可能であり励起された弾性表面波を伝搬させることが可能な表面を有する基体と、前記基体の表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記伝搬する前記弾性表面波を受信可能な電気音響変換素子と、を備えた弾性表面波素子は従来から良く知られている。
弾性表面波素子は、遅延線,発振素子,共振素子,周波数選択素子,例えば化学センサやバイオセンサや圧力センサを含む種々のセンサ,或いはリモートタグ等として使用されている。
国際公開 WO 01/45255 号公報は、球形状の弾性表面波素子を開示している。この球形状の弾性表面波素子の基体は、弾性表面波が励起可能であり励起された弾性表面波を伝搬させることが可能な球形状の表面を有している。前記球形状の弾性表面波素子の電気音響変換素子は、基体の球形状の表面において円環状に連続している所定の幅を有した帯域に配置されていて、前記表面に励起した弾性表面波を前記帯域が連続している方向に沿い伝搬させ繰り返し周回させるよう構成されている。
球形状の弾性表面波素子では、基体の表面の円環状に連続している弾性表面波伝搬帯域に電気音響変換素子により励起された弾性表面波を、弾性表面波伝搬帯域内で実質的に減衰することなく上記表面を繰り返し周回させることが出来る。
国際公開 WO 01/45255 号公報
弾性表面波素子の基体は、その表面に沿い弾性表面波を伝搬させるために、基体の全体が、弾性表面波が励起されることが可能であると共に励起された弾性表面波を伝搬可能な材料で作られているか、或いは、その表面に弾性表面波励起伝搬可能材料により形成された薄膜を付着させることにより作られている。
前記薄膜との組み合わせにより形成する前記基体は、現時点では製造コストが高く大量生産に不向きであることが分かっている。弾性表面波励起伝搬可能材料のみにより形成された前記基体では、前記基体の表面において前記弾性表面波を伝搬させようとする方向によって前記弾性表面波を伝搬或いは周回させることが出来ない等の弾性表面波を伝搬する性能に差異が生じることが分かっている。また前記表面において、前記弾性表面波を相互に異なった複数の方向に伝搬させる、或いは周回させる、ことが困難である。
この発明は、上記事情の下で為され、この発明の目的は、大量生産に適していて常に安定して良好な弾性表面波伝搬性能を発揮することが可能な弾性表面波素子、及びこのような弾性表面波素子を用いた環境差異検出装置を提供することである。
上記目的を達成する為に、この発明に従った別の弾性表面波素子は:
弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体がLi結晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、Li結晶のC結晶軸と直交する方向を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
ことを特徴としている。
上記目的を達成する為に、この発明に従ったさらに別の弾性表面波素子はまた:
弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
を備えていて、
前記3次元基体がLi結晶であり、
前記3次元基体の前記表面において前記電気音響変換素子は、Li結晶のC結晶軸から任意の方向に30°と40°との間で傾斜した方向を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
ことを特徴としている。
上記目的を達成する為に、この発明に従った環境差異検出装置は、この発明の上述した弾性表面波素子の表面において複数の交線に沿い複数の電気音響変換素子に弾性表面波を励起させ伝搬させるとともに伝搬する前記弾性表面波を受信させて受信信号を出力させ、複数の電気音響変換素子から出力される受信信号を比較し、前記表面において複数の弾性表面波が伝搬する複数の部分が接する空間の複数の部分の環境の差異を検出する、ことを特徴としている。
なおこの発明では、擬似弾性表面波や前記3次元基体を形成している結晶材料の表面の直下に電気音響変換素子により励起され伝搬される例えば回廊波も弾性表面波と称して記述している。さらに、例えば弾性境界波のように表面上に異なる物質が接している3次元基体の前記表面に沿い伝搬する、通常は弾性表面波と称さないような弾性波であっても、ここでは弾性表面波と称して記述している。
また、3次元基体の表面において弾性表面波が伝搬する部分に何等かの膜を形成したり、或いは前記表面に電気音響変換素子を何等かの膜を介して形成しても、そのような膜が弾性表面波の所望の伝搬を実質的に阻害しなければそのような膜の存在を許容する。
この発明に従った前述の弾性表面波素子、及びこの発明に従った前述の弾性表面波素子を使用したこの発明に従った環境差異検出装置においては、弾性表面波を伝搬させる表面を有している3次元基体を、Li結晶により形成し、しかも夫々の結晶の前記表面において夫々の結晶の特定の結晶面と前記表面との交線に沿い電気音響変換素子により前記表面に励起された弾性表面波を伝搬させるようにし、前記交線を前記表面の最大外周線にしていることにより、弾性表面波素子を容易に安価に大量生産することができ、しかも常に安定して良好な弾性表面波伝搬性能を発揮させることが可能になっている。
なお、3次元基体の表面に弾性表面波を励起しまた受信する為の本発明で記載する「送受信部分」は、「送信部分」と「受信部分」とに機能を分離した2つの相互に独立した部分として構成することも出来る。このように「送信部分」と「受信部分」とを相互に独立した部分として構成するとこれらの為の駆動回路及び検出回路の設計が容易になるが、弾性表面波が上記表面を周回する場合には、1回の周回の度に相互に独立した「送信部分」と「受信部分」を弾性表面波が通過するので弾性表面波の伝搬効率が「送信部分」と「受信部分」とを相互に独立した部分として構成しない場合に比べ幾分低下するが実用上は問題がない。
この発明の第1の実施の形態に従った弾性表面波素子の概略図である。 この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の全体をLi結晶により形成した場合に3次元基体の外表面に弾性表面波を伝搬させる伝搬表面帯の基準となる最大外周線をLi結晶の一群の結晶面の1つに沿い規定する様子及び電気音響変換素子を配置するのに好ましい帯域を概略的に示す斜視図である。 この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の全体をLi結晶により形成した場合に3次元基体の外表面に弾性表面波を伝搬させる伝搬表面帯の基準となる最大外周線をLi結晶の別の群の結晶面の1つに沿い規定する様子を概略的に示す斜視図である。 (A)は、この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の伝搬表面帯中において対応する最大外周線に対し電気音響変換素子が配置される好ましい状態を概略的に示す図であり;そして、 (B)は、この発明の第1の実施の形態に従った弾性表面波素子の3次元基体の伝搬表面帯中において対応する最大外周線に対しすだれ状電極による電気音響変換素子が配置されるさらに好ましい状態を概略的に示す図である。 この発明の第2の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。 この発明の第3の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。 この発明の第4の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。 図7の弾性表面波素子の3次元基体の外表面の伝搬表面帯に対し所定の隙間を介し対向して配置されるよう3次元基体の台座に電気音響変換素子が形成されている様子を概略的に示す部分断面図である。 この発明の第5の実施の形態に従った弾性表面波素子を概略的に示す斜視図である。
[第1の実施の形態]
以下、この発明に従った弾性表面波素子の第1の実施の形態を添付の図面中の図1ないし図3を参照しながら詳細に説明する。
図1には、第1の実施の形態の弾性表面波素子10の外観が示されている。この弾性表面波素子10は:弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部によってなる伝搬表面帯12aを含む表面を有する3次元基体12と;伝搬表面帯12aに前記弾性表面波を励起し伝搬表面帯12aに沿い弾性表面波を伝搬させるとともに伝搬表面帯12aに伝搬する前記弾性表面波を受信可能な電気音響変換素子14と;を備えている。
なおここで伝搬表面帯12aは図面の簡略化の為に幅方向Wの寸法が伝搬表面帯12aが円環状に連続する方向において一定であるように描かれているが、実際には3次元基体12の表面において伝搬表面帯12aが円環状に連続する方向に弾性表面波が伝搬する間には、弾性表面波は図1に示されているように幅方向Wにおける寸法が一定であることもあるし、幅方向Wにおける寸法が拡散と収縮とを繰り返すこともある。
いずれにせよ、伝搬表面帯12aを伝搬する弾性表面波は電気音響変換素子14から所望の距離を、或いは1周回当たり、少なくとも80%以上のエネルギーを保ち伝搬することが実用上望まれている。
この実施の形態において3次元基体12は、全体がLi結晶により球形状に形成されている。従って、この実施の形態においては、伝搬表面帯12aが3次元基体12の球形状の表面において円環状に連続している。伝搬表面帯12aは3次元基体12の最大外周線12bに沿い連続しており、好ましくは伝搬表面帯12aの範囲内に最大外周線12bが含まれている。
3次元基体12の外表面において最大外周線12bは、図2中に示されているように、Li結晶のC結晶軸から任意の方向(なおここで、上記任意の方向とはC結晶軸を中心とした360°の全周中の任意の角度方向である)に30°と40°との間で傾斜した方向CAを法線とする結晶面と3次元基体12の外表面との交線に一致している。即ち、3次元基体12の外表面において伝搬表面帯12aが沿っている最大外周線12bは、Li結晶の1つの結晶面上を延出している。3次元基体12の外表面において上記結晶面に沿い弾性表面波が伝搬する間には、上記結晶面に対し交差するよう弾性表面波を伝搬させた場合に上記結晶面において生じる弾性表面波のエネルギーの大きな拡散が生じないので、3次元基体12の外表面において弾性表面波を最も効率良く伝搬させることが出来る。
全体がLi結晶により球形状に形成されている前述の第1の実施の形態の3次元基体12の外表面においてはさらに、それに沿い伝搬表面帯12aが連続している最大外周線12bを以下のようにしても規定することが出来る。
即ち、3次元基体12の外表面において最大外周線12bを、図3中に示されているように、Li結晶のC結晶軸と直交する方向CBを法線とする結晶面と3次元基体12の外表面との交線に一致させる。このことは、この場合においても、3次元基体12の外表面において伝搬表面帯12aが沿っている最大外周線12bは、Li結晶のC結晶軸から任意の方向(ここにおいても、上記任意の方向とはC結晶軸を中心とした360°の全周中の任意の角度方向である)に30°と40°との間で傾斜した方向CAを法線とする結晶面とは別に規定されている結晶面上を延出していることを意味している。3次元基体12の外表面においてこの別に規定されている結晶面に沿い弾性表面波が伝搬する間にも、図2を参照しながら説明した前述の結晶面の場合と同様に、上記別に規定されている結晶面に対し交差する方向には弾性表面波のエネルギーの大きな拡散が生じないので、3次元基体12の外表面において弾性表面波を最も効率良く伝搬させることが出来る。
また、3次元基体12の表面を伝搬する表面弾性波がその伝搬方向に対し上記表面に沿い直交する方向に実際にどの程度の幅を有しているのかは、例えば上記表面に水滴を付着させ上記表面において水滴が付着した部分では表面弾性波が伝搬しなくなることから視覚的に推測することも出来る。
また、一般に、電気音響変換素子としてすだれ状電極を用いて高い周波数の弾性表面波を励起する場合には、すだれ状電極の有効幅(即ち、すだれ状電極において、3次元基体の表面に対しすだれ状電極が弾性表面波を励起させ所望の方向に伝搬させることが出来るとともに上記表面を伝搬した弾性表面波を受信することが出来る部分の、上記表面に沿って上記所望の方向とは直交する方向の寸法)は小さくなるが、上記有効幅は、上記表面において弾性表面波が伝搬する伝搬表面帯(図1では、参照符号12aにより指摘されている)が上記所望の方向となる最大外周線(図1では、参照符号12bにより指摘されている)に対し直交する方向において有している曲率の曲率半径の1.5倍よりも大きくなると、弾性表面波を励起し受信する効率が大きく低下することが分かっている。
3次元基体12は、その外表面において電気音響変換素子14により励起された弾性表面波が伝搬する伝搬表面帯12a以外の部分が支持腕16を介して支持台18に支持されている。伝搬表面帯12aを伝搬する弾性表面波に対しいかなる影響も与えないようにする為に、伝搬表面帯12aには電気音響変換素子14を除き何も接触させない。従って、この実施の形態においては、伝搬表面帯12aにおいて電気音響変換素子14に弾性表面波を励起させる為や伝搬表面帯12aを伝搬し電気音響変換素子14に受信された弾性表面波を電気音響変換素子14から受け取る為の電気音響変換素子制御ユニット20は、電気音響変換素子14から3次元基体12の外表面において伝搬表面帯12a以外の領域上を延びるリード線により電気音響変換素子14に接続されている。電気音響変換素子制御ユニット20は例えば、図1中に示されている如く、インピーダンスマッチング回路20a,サーキュレータ20,高周波電源を含む発信器20c,アンプ20d,そしてディジタルオシロスコープ20e等を備えている。なお、発信器20cに代わり高周波電波受
信アンテナを使用することも出来る。
電気音響変換素子14は、図4の(A)中に示されているように、伝搬表面帯12aに励起した弾性表面波のエネルギーの流れる密度が最大となる方位MDが最大外周線12bに対し20°以内になるよう構成されていることが好ましい。なお、この角度はより好ましくは10°以内であり、さらに好ましくは5°以内である。このことは、電気音響変換素子14により伝搬表面帯12aに励起された弾性表面波は、3次元基体12の外表面上で最大外周線12bに沿い例えば周回毎にエネルギーの80%以上を保つような小さな減衰率で周回することが出来るのであれば伝搬するにつれて励起された直後の幅よりも最大外周線12bから拡散する傾向にあっても良いが、上記の角度範囲内にあることが好ましいことを意味している。
なお本発明において記載される「最大外周線に沿う」は、弾性表面波が周回或いは伝搬経路に亘り伝搬する場合に、弾性表面波のエネルギーの流れる密度が最大となる方向が最大外周線に対し好ましくは20°以内、より好ましくは10°以内、さらに好ましくは5°以内の範囲内である場合をいう。
この実施の形態において、電気音響変換素子14は3次元基体12の外表面上で伝搬表面帯12aの範囲内に直接形成されている。この実施の形態において電気音響変換素子14は例えば櫛型電極のようなすだれ状電極22であって、例えば蒸着や印刷やスパッタリングやゾル・ゲル法などの種々の公知の方法により上記外表面上に直接形成されることが出来る。
電気音響変換素子14がすだれ状電極22により形成されている場合、すだれ状電極22は、図4の(B)中に良く示されているように、すだれ状電極22において伝搬表面帯12aに対し弾性表面波を励起するとともに伝搬表面帯12aに伝搬する弾性表面波を受信可能な送受信部分(前述の有効幅の部分)に対し3次元基体12の外表面に沿い直交する線が、伝搬表面帯12aが沿っている対応する最大外周線12bに対し10°以下の範囲に含まれるよう構成されていることが好ましい。より詳細には、すだれ状電極22のパターンの各端子(線要素)22aにおける前記送受信部分(すだれ状電極22の場合には、パターンの各端子(線要素)22aが最大外周線12bに沿った方向において相互に重複する部分)に対し伝搬表面帯12aの外表面に沿って延出する直交線OLが最大外周線12bに対し10°以下の範囲内にあることが好ましいことを意味している。
その理由は、図4の(A)を参照しながら前述したように、電気音響変換素子14を、伝搬表面帯12aに励起した弾性表面波のエネルギーの流れる密度が最大となる方位MDを最大外周線12bに対し20°以内になるよう構成することが好ましい理由と同じである。
さらに、最大外周線12bに沿った方向におけるすだれ状電極22のパターンの複数の端子22a(図4の(B)参照)の配列周期Pは、最大外周線12bの曲率半径の1/10以下であることが好ましい。配列周期Pは、すだれ状電極22が励起する弾性表面波の一波長(即ち、振動周期)分の長さに相当している。
弾性表面波の波長(即ち、すだれ状電極22のパターンの複数の端子22aの配列周期P)が弾性表面波が伝搬する伝搬表面帯12aに含まれる最大外周線12bの曲率半径(伝搬表面帯12aがこの実施の形態のように球面の一部により構成されている場合は、上記球面の半径)の1/10よりも大きいと、湾曲した伝搬表面帯12aの幾何学的な特徴が伝搬表面帯12aを伝搬する弾性表面波が拡散しようとするのを抑制する機能が弱くなる。従って、3次元基体12の表面の伝搬表面帯12aに比較的長い波長の弾性表面波を所望の距離だけ伝搬させようとする場合には、伝搬表面体12aに含まれる最大外周線12bの曲率半径を上記波長との上述した関係を充たすよう予め設定しなければならない。
従って、伝搬表面帯12bにおいて効率良く弾性表面波を伝搬させるには前記配列周期にすることが好ましい。
さらに、3次元基体12が上述したようにLi結晶により形成されている場合、3次元基体12の外表面に対し弾性表面波を励起し外表面に沿い弾性表面波を伝搬させるとともに外表面を伝搬する弾性表面波を受信可能な電気音響変換素子14の送受信部分が、3次元基体12の外表面において前記交線(最大外周線12b)の一部を含むように配置されていることが好ましい事もわかっている。このような配置であると、電気音響変換素子14の送受信部分が弾性表面波を励起し受信する効率をより高めることが出来る。
このような配置に加え、3次元基体12が上述したようにLi結晶により形成されているとともに図2中に示されているように最大外周線12bが規定されている場合には、電気音響変換素子14の前記送受信部の上記効率をより高める為には、電気音響変換素子14の前記送受信部がさらに、3次元基体12の外表面において図2中に示されているように前記C軸から任意の方向に75°と105°との間を示す帯域AAに配置されていることがさらに好ましいことも分かっている。
球形状の3次元基体12を地球と仮想すると、C軸は地球における地軸に相当し、図3中に示されているように規定された最大外周線12bは地球における経線に相当し、そして図2中に示されているように規定された帯域AAは地球における北緯15°と南緯15°とに挟まれ赤道に沿い円環状に連続して伸びる帯状の部分に相当する。
なお図2において帯域AAは、図面の煩雑さを防ぐ為に、3次元基体12の外表面上で見える部分しか示されていないが、実際には3次元基体12の外表面上で見えない部分にも連続して円環状になっている。
[第2の実施の形態]
つぎに、図5を参照しながら、この発明に従った弾性表面波素子の第2の実施の形態を詳細に説明する。
この実施の形態の弾性表面波素子30では、前述した第1の実施の形態に従った弾性表面波素子10の3次元基体12の外表面上に前述した如く規定することが出来る複数の伝搬表面帯12aの中の任意の複数の夫々において他の伝搬表面帯12aと交差しない部分に前述した如く電気音響変換素子14を形成し、各電気音響変換素子14は前述の電気音響変換素子制御ユニット20に接続されている。
図5において伝搬表面帯12aは、図面の煩雑さを防ぐ為に、3次元基体12の外表面上で見える部分しか示されていないが、実際には3次元基体12の外表面上で見えない部分にも最大外周線12bに沿い連続して円環状になっている。
なおここにおいて、3次元基体12が上述したようにLi結晶により形成されている場合、3次元基体12の外表面に対し弾性表面波を励起し外表面に沿い弾性表面波を伝搬させるとともに外表面を伝搬する弾性表面波を受信可能な電気音響変換素子14の送受信部分が、3次元基体12の外表面において前記交線(最大外周線12b)の一部を含むように配置されている、ことが好ましい。このような配置により電気音響変換素子14の送受信部分が弾性表面波を励起し受信する効率をより高めることが出来る。
このような配置に加え、3次元基体12が上述したようにLi結晶により形成されているとともに図2中に示されているように最大外周線12bが規定されている場合には、電気音響変換素子14の前記送受信部の上記効率をより高める為に、電気音響変換素子14の前記送受信部がさらに、3次元基体12の外表面において、図2中に示されているように前記C軸から任意の方向に75°と105°との間を示す帯域AAに配置されていることがさらに好ましい。
さらにこの実施の形態では、3次元基体12の外表面において電気音響変換素子14を形成した複数の伝搬表面帯12aや帯域AAを除いた位置に、3次元基体12を図示しない何等かの台座に支持する為の支持部材32が固定されている。
このように構成されている第2の実施の形態に従った弾性表面波素子30は、第1の実施の形態に従った弾性表面波素子10に比べると、環境差異検出装置として使用した時により優れている。その理由は以下の通り。
前述の弾性表面波素子10のように、1つの電気音響変換素子14とそれに接続された1つの電気音響変換素子制御ユニット20しか使用しない場合には、前述した外部環境の変化の影響で弾性表面波素子10に何等かの物理的な変化(例えば、外部環境の温度の変化による3次元基体12の膨張或いは収縮)が生じた時に、伝搬表面帯12aを伝搬する弾性表面波の伝搬速度や1周期当たりに要する伝搬時間に微妙な変化が生じる。
従って、前述したように伝搬表面帯12aが接する空間に満たされている流体(気体や流体)の変化(即ち、伝搬表面帯12aが接する外部環境の変化)をより精密に検出しようとするならば、前述した外部環境の変化の影響による弾性表面波素子10の物理的な変化を考慮しなければならない。
図5を参照した第2の実施の形態に従った弾性表面波素子30によれば、3次元基体12の外表面において電気音響変換素子14を形成した複数の伝搬表面帯12aの中の少なくとも1つの伝搬表面帯12aを変化を検出しようと意図している外部環境から隔離するとともに、電気音響変換素子14を形成した複数の伝搬表面帯12aの中の残りの少なくとも1つの伝搬表面帯12aを前記外部環境に接触するよう構成する。
このような構成であれば、外部環境から隔離されている伝搬表面帯12a上の電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号は外部環境の変化に伴なう弾性表面波素子10の物理的な変化を示し、前記外部環境に接触した前記残りの少なくとも1つの伝搬表面帯12aの電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号は外部環境の変化に伴なう弾性表面波素子10の物理的な変化に加えて外部環境の変化を示すことになる。
従って、前記外部環境に接触した前記残りの少なくとも1つの伝搬表面帯12aの電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号から、外部環境から隔離されている伝搬表面帯12a上の電気音響変換素子14からそれが対応している前述の電気音響変換素子制御ユニット20が受信した信号を差し引けば、純粋に外部環境の変化のみを検出することが可能になる。
[第3の実施の形態]
次に、図6を参照しながら、この発明に従った弾性表面波素子の第3の実施の形態を詳細に説明する。
第3の実施の形態に従った弾性表面波素子40は、3次元基体12が凹所又は中空部を有していて、これら凹所又は中空部の内表面12cが、弾性表面波が伝搬可能な曲面が円環状に連続した伝播表面帯12aを含んでいる。図6には中空部の一種である貫通孔を有した3次元基体12が示されている。
3次元基体12は、前述の第1の実施の形態の3次元基体12と同様に、全体がLi結晶により形成されている。そして、前述の第1の実施の形態の3次元基体12の外表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記外表面との交線に伝搬表面帯12aを沿わせる基準となる最大外周線12bが規定されていたのと同様に、第3の実施の形態に従った弾性表面波素子40の3次元基体12の内表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記内表面との交線に伝搬表面帯12aを沿わせる基準となる少なくとも1つの最大外周線12bが規定されている。そして、この内表面上で最大外周線12bに沿い連続して延出するよう伝搬表面帯12aが規定されている。この実施の形態の3次元基体12の内表面における伝搬表面帯12aの規定の仕方は、前述の第1の実施の形態の3次元基体12の外表面における伝搬表面帯12aの規定の仕方と同じである。従って好ましくは前記内表面上の伝搬表面帯12aの範囲内に最大外周線12bが含まれる。
そして、この実施の形態の3次元基体12の内表面における伝搬表面帯12aにも、伝搬表面帯12aの範囲内で最大外周線12bに沿い弾性表面波を大きく減衰させることなく伝搬させるよう電気音響変換素子14が形成されていて、電気音響変換素子14には前述の電気音響変換素子制御ユニット20が接続されている。
この実施の形態においても、前記内表面は伝搬表面帯12aが前述した所定の方法により規定されていれば、伝搬表面帯12a以外の部位の形状は任意である。
この実施の形態の弾性表面波素子40は、電気音響変換素子14により伝搬表面帯12aに励起され伝搬表面帯12a内を例えば1周回当たり80%以上のエネルギーを保って大きく減衰することなく伝搬する弾性表面波が、3次元基体12の内表面における伝搬表面帯12aが接する環境である貫通孔の内部空間を通過する流体(気体又は流体)の種々の変化に対応して、変化するのを電気音響変換素子14を介して電気音響変換素子制御ユニット20により電気信号として受信することにより、前記環境の変化、即ち差異、を検知することが出来る。
さらに、この実施の形態においても、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、前記内表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面と前記内表面との複数の交線に一致させた複数の最大外周線12bに沿った複数の伝搬表面帯12aの夫々に、他の伝搬表面帯12aとの交差部位を除き前述の電気音響変換素子制御ユニット20が接続されている電気音響変換素子14を形成することが出来る。そしてこの場合も、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、より精密に環境の差異を検出することが出来る環境差異検出装置として使用することが出来る。
またさらに、この実施の形態においても、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、3次元基体12が上述したようにLi結晶により形成されている場合、3次元基体12の内表面に対し弾性表面波を励起し外表面に沿い弾性表面波を伝搬させるとともに内表面を伝搬する弾性表面波を受信可能な電気音響変換素子14の送受信部分が、3次元基体12の内表面において前記交線(最大外周線12b)の一部を含むことが好ましい。このような配置により電気音響変換素子14の送受信部分が弾性表面波を励起し受信する効率をより高めることが出来る。
このような配置に加え、3次元基体12が上述したようにLi結晶により形成されているとともに図2中に示されているように最大外周線12bが規定されている場合には、電気音響変換素子14の前記送受信部の上記効率をより高める為に、電気音響変換素子14の前記送受信部がさらに、3次元基体12の内表面において、図2中に示されているように前記C軸から任意の方向に75°と105°との間を示す帯域AAに配置されていることがさらに好ましい。
[第4の実施の形態]
次に、図7及び図8を参照しながら、この発明に従った弾性表面波素子の第4の実施の形態を詳細に説明する。
第4の実施の形態に従った弾性表面波素子50は、前述の第1の実施の形態の3次元基体12と同様に、全体がLi結晶により形成されている球形状の3次元基体12を備えている。3次元基体12の外表面には、3次元基体12の材料の複数の結晶面と前記外表面との複数の交線の少なくとも1つを最大外周線12bとし最大外周線12bに沿い円環状に連続する伝搬表面帯12aを規定している。この実施の形態の弾性表面波素子50の3次元基体12の外表面上の伝搬表面帯12aもまた、前述の第1の実施の形態の3次元基体12の外表面上の伝搬表面帯12aと同様に、好ましくは伝搬表面帯12aの範囲内に最大外周線12bを含んでいる。
この実施の形態の弾性表面波素子50が、第1の実施の形態の弾性表面波素子10と異なっているのは、3次元基体12の外表面上の伝搬表面帯12aに表面弾性波を励起させ、励起させた弾性表面波を伝搬表面帯12aの範囲内で最大外周線12bに沿い伝搬させる電気音響変換素子14が3次元基体12の外表面上の伝搬表面帯12aに直接形成されていないことである。
この実施の形態では、3次元基体12の外表面上の伝搬表面帯12a以外の部分を支持する台座52が伝搬表面帯12aとの間に所定の隙間Sを介して対面する伝搬表面帯対面領域52aを有していて、台座52の伝搬表面帯対面領域52aに電気音響変換素子14が形成されている。伝搬表面帯12aに対する電気音響変換素子14の寸法や配置は、第1の実施の形態の弾性表面波素子10において伝搬表面帯12aに電気音響変換素子14が直接形成されている場合と同様である。
なお所定の隙間Sは、電気音響変換素子14が櫛型電極のようなすだれ状電極22の場合、すだれ状電極22のパターンの複数の線要素(端子)の配列周期P(図4の(B)参照)の4分の1以下であることが好ましい。所定の隙間Sが配列周期P(図4の(B)参照)の4分の1以上であると、電気音響変換素子14は3次元基体12の外表面上の伝搬表面帯12aに所望の弾性表面波を常に確実に励起させることが難しくなる。
第4の実施の形態に従った弾性表面波素子50は、前述の第1の実施の形態の3次元基体12と同様に、使用することができる。しかも、電気音響変換素子14が3次元基体12の外表面上の伝搬表面帯12aに所定の隙間Sを介して対面している場合には、3次元基体12の外表面上の伝搬表面帯12aに電気音響変換素子14が直接形成されている場合と比べると、伝搬表面帯12aに直接形成されている電気音響変換素子14が電気音響変換素子14により伝搬表面帯12aに励起され伝搬表面帯12a中を伝搬する弾性表面波に極僅かに与えるかも知れない影響を排除することが出来、伝搬表面帯12a中を伝搬する弾性表面波の変化をより精密に検知することが出来る。
さらに、この実施の形態においても、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、前記外表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面と前記内表面との複数の交線に一致させた複数の最大外周線12bに沿った複数の伝搬表面帯12aの夫々に、他の伝搬表面帯12aとの交差部位を除き、台座52の伝搬表面帯対面領域52aを対面させるとともに、この伝搬表面帯対面領域52aに3次元基体12の外表面上の複数の伝搬表面帯12aの上記交差領域に所定の隙間Sを介して対面する電気音響変換素子14を形成することが出来る。そしてこの場合も、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、より精密に環境の差異を検出することが出来る環境差異検出装置として使用することが出来る。
またさらに、この実施の形態においても、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、3次元基体12が上述したようにLi結晶により形成されている場合、3次元基体12の外表面に対し弾性表面波を励起し外表面に沿い弾性表面波を伝搬させるとともに内表面を伝搬する弾性表面波を受信可能な電気音響変換素子14の送受信部分が、3次元基体12の外表面において前記交線(最大外周線12b)の一部を含むように配置されている、ことが好ましい。このような配置により電気音響変換素子14の送受信部分が弾性表面波を励起し受信する効率をより高めることが出来る。
このような配置に加え、3次元基体12が上述したようにLi結晶により形成されているとともに図2中に示されているように最大外周線12bが規定されている場合には、電気音響変換素子14の前記送受信部の上記効率をより高める為に、電気音響変換素子14の前記送受信部がさらに、3次元基体12の外表面において、図2中に示されているように前記C軸から任意の方向に75°と105°との間を示す帯域AAに配置されていることがさらに好ましい。
[第5の実施の形態]
次に、図9を参照しながら、この発明に従った弾性表面波素子の第5の実施の形態を詳細に説明する。
第5の実施の形態に従った弾性表面波素子60は半球形状を有している3次元基体12’を備えていて、3次元基体12’の外表面に弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部によってなる伝播表面帯12’aを含んでいる。
半球形状の3次元基体12’は、前述の第1の実施の形態の3次元基体12と同様に、全体がLi結晶により形成されている。そして、前述の第1の実施の形態の3次元基体12の外表面に3次元基体12を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記外表面との交線に、伝搬表面体12aを連続して沿わせる基準となる最大外周線12bが規定されていたのと同様に、第5の実施の形態に従った弾性表面波素子60の3次元基体12’の半球形状の外表面に3次元基体12’を形成している結晶の種類に特有の複数の結晶面の少なくとも1つと前記外表面との交線に一致させて、伝搬表面体12’aを連続して沿わせる基準となる少なくとも1つの最大外周線12’bが規定されている。そして、好ましくは伝搬表面帯12’aの範囲内に最大外周線12’bが含まれている。
この実施の形態の3次元基体12’の外表面において伝搬表面帯12’aを沿わせる基準となる最大外周線12’bの規定の仕方は、前述の第1の実施の形態の3次元基体12の外表面における最大外周線12bの規定の仕方と同じである。
そして、この実施の形態の3次元基体12’の外表面における伝搬表面帯12’aにも、伝搬表面帯12’aの範囲内で最大外周線12’bに沿い弾性表面波を少なくとも80%以上のエネルギを保ち伝搬させるよう電気音響変換素子14が直接形成されていて、電気音響変換素子14には前述の電気音響変換素子制御ユニット20が接続されている。
この実施の形態においては、電気音響変換素子14により伝搬表面帯12’aの範囲内に励起され伝搬表面帯12’aの範囲内で最大外周線12’bに沿い伝搬する弾性表面波の伝搬方向に電気音響変換素子14から離れた位置に、弾性表面波反射体62が形成されている。弾性表面波反射体62は、電気音響変換素子14から伝搬表面帯12’a中を弾性表面波反射体62に向い伝搬して来た弾性表面波を伝搬表面帯12’aを同じ経路で電気音響変換素子14に向うよう反射する。
この実施の形態においても、前記外表面は伝搬表面帯12’aが前述した所定の方法により規定されていれば、伝搬表面帯12’a以外の部位の形状は任意である。
この実施の形態においても、3次元基体12’は伝搬表面帯12’a以外の部分が図示しない台座に支持されている。
この実施の形態の弾性表面波素子60は、電気音響変換素子14により少なくとも円環状の曲面の一部によってなる伝搬表面帯12’aに励起され伝搬表面帯12’a内を大きく減衰することなく伝搬する弾性表面波が、3次元基体12の外表面における伝搬表面帯12’aが接する環境である外部空間に含まれている流体(気体又は流体)の種々の変化に対応して、変化するのを電気音響変換素子14を介して電気音響変換素子制御ユニット20により電気信号として受信することにより、前記環境の変化、即ち差異、を検知することが出来る。
さらに、この実施の形態においても、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、前記外表面に3次元基体12’を形成している結晶の種類に特有の複数の結晶面と前記外表面との複数の交線により規定された複数の最大外周線12’bに沿った複数の伝搬表面帯12’aの夫々に、他の伝搬表面帯12’aとの交差部位を除き前述の電気音響変換素子制御ユニット20が接続されている電気音響変換素子14を形成することが出来る。なおこの場合、複数の伝搬表面帯12’aの夫々において他の伝搬表面帯12’aとの交差部位を除き電気音響変換素子14と対向する位置に弾性表面波反射体62が設置される。
またさらに、この実施の形態においても、図5を参照しながら前述した第2の実施の形態の弾性表面波素子30と同様に、3次元基体12’が上述したようにLi結晶により形成されている場合、3次元基体12’の外表面に対し弾性表面波を励起し外表面に沿い弾性表面波を伝搬させるとともに内表面を伝搬する弾性表面波を受信可能な電気音響変換素子14の送受信部分が、3次元基体12’の外表面において前記交線(最大外周線12’b)の一部を含むように配置されている、ことが好ましい。このような配置により電気音響変換素子14の送受信部分が弾性表面波を励起し受信する効率をより高めることが出来る。
このような配置に加え、3次元基体12’が上述したようにLi結晶により形成されているとともに図2中に示されているように最大外周線12’bが規定されている場合には、電気音響変換素子14の前記送受信部の上記効率をより高める為に、電気音響変換素子14の前記送受信部がさらに、3次元基体12’の外表面において、図2中に示されているように前記C軸から任意の方向に75°と105°との間を示す帯域AAに配置されていることがさらに好ましい。
またさらに、この実施の形態においても、図6を参照しながら前述した第3の実施の形態の弾性表面波素子40と同様に、3次元基体12’に形成した例えば半球形状の凹所又は空洞の内表面に最大外周線12’bを伴なった少なくとも円環状の曲面の一部によってなる伝搬表面帯12’aを規定し、このような伝搬表面帯12’aに最大外周線12aに沿い相互に離間し相互に対向する電気音響変換素子14及び弾性表面波反射体62を設置するよう変形させることも出来る。
またさらに、この実施の形態においても、図7及び図8を参照しながら前述した第4の実施の形態の弾性表面波素子50と同様に、3次元基体12’の伝搬表面帯12’aに直接電気音響変換素子14を形成するのではなく、伝搬表面帯12’aに対し所定の隙間Sを介して対向するよう前述の図示しない台座に電気音響変換素子14を形成することも出来る。
さらに、弾性表面波反射体62の代わりに前述の電気音響変換素子制御ユニット20が接続されているもう1つの電気音響変換素子14を使用することも出来る。
10…弾性表面波素子、12,12’…3次元基体、12a,12’a…伝搬表面帯、12b,12’b…最大外周線、12c…内表面、14…電気音響変換素子、14’…電気音響変換素子、22…すだれ状電極、22a…線要素(端子)、30,40,50,60…弾性表面波素子、AA…帯域,C…C軸,CA,CB…方向、P…配列周期。

Claims (19)

  1. 弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
    前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
    を備えていて、
    前記3次元基体がLi結晶であり、
    前記3次元基体の前記表面において前記電気音響変換素子は、Li結晶のC結晶軸と直交する方向を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
    ことを特徴とする弾性表面波素子。
  2. 前記3次元基体の前記表面が少なくとも球面の一部を有する、ことを特徴とする請求項1に記載の弾性表面波素子。
  3. 前記表面は、前記弾性表面波が伝搬可能な曲面が円環状に連続しており、
    前記電気音響変換素子は、前記表面に前記弾性表面波を励起し前記交線に沿い前記弾性表面波を伝搬し周回させる、
    ことを特徴とする請求項1に記載の弾性表面波素子。
  4. 前記3次元基体の前記表面が球面である、ことを特徴とする請求項3に記載の弾性表面波素子。
  5. 前記3次元基体の前記表面に対し前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子の送受信部分が、前記3次元基体の前記表面において前記交線の一部を含むように配置されている、ことを特徴とする請求項2又は4に記載の弾性表面波素子。
  6. 弾性表面波が伝搬可能な曲面が連続した少なくとも円環状の曲面の一部を含む表面を有する3次元基体と;
    前記表面に前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子と;
    を備えていて、
    前記3次元基体がLi結晶であり、
    前記3次元基体の前記表面において前記電気音響変換素子は、Li結晶のC結晶軸から任意の方向に30°と40°との間で傾斜した方向を法線とする結晶面と前記表面との交線に沿い、前記励起した弾性表面波を伝搬させており、前記交線は前記表面の最大外周線になっている、
    ことを特徴とする弾性表面波素子。
  7. 前記3次元基体の前記表面が少なくとも球面の一部を有する、ことを特徴とする請求項6に記載の弾性表面波素子。
  8. 前記表面は、前記弾性表面波が伝搬可能な曲面が円環状に連続しており、
    前記電気音響変換素子は、前記表面に前記弾性表面波を励起し前記交線に沿い前記弾性表面波を伝搬し周回させる、
    ことを特徴とする請求項6に記載の弾性表面波素子。
  9. 前記3次元基体の前記表面が球面である、ことを特徴とする請求項8に記載の弾性表面波素子。
  10. 前記3次元基体の前記表面に対し前記弾性表面波を励起し前記表面に沿い前記弾性表面波を伝搬させるとともに前記表面を伝搬する前記弾性表面波を受信可能な電気音響変換素子の送受信部分が、前記3次元基体の前記表面において前記交線の一部を含むように配置されている、ことを特徴とする請求項7又は9に記載の弾性表面波素子。
  11. 電気音響変換素子の前記送受信部がさらに、前記3次元基体の前記表面において前記C軸から任意の方向に75°と105°との間の領域に少なくとも一部を配置されている、ことを特徴とする請求項10に記載の弾性表面波素子。
  12. 前記表面に沿い前記交線の延出方向と交差する方向において、前記電気音響変換素子が前記表面に対し弾性表面波を励起し前記交線に沿い前記弾性表面波のエネルギーを1周回当たり80%以上保って伝搬するとともに前記弾性表面波を受信可能な寸法が、前記表面において前記交線と直交する方向に延びる曲面の曲率半径の1.5分の1以下である、
    ことを特徴とする請求項1乃至11のいずれか1項に記載の弾性表面波素子。
  13. 前記電気音響変換素子は、前記対応する交線に対し、前記交線に沿い前記電気音響変換素子から出射される弾性表面波のエネルギーの流れる密度が最大になる方位が20°を含む20°以内になるよう前記表面に配置されている、ことを特徴とする請求項12に記載の弾性表面波素子。
  14. 前記電気音響変換素子が前記伝搬表面帯に形成されている、ことを特徴とする請求項1乃至13のいずれか1項に記載の弾性表面波素子。
  15. 前記電気音響変換素子はすだれ状電極を備えていて、前記すだれ状電極は、前記すだれ状電極の複数の端子において前記表面に対し弾性表面波を励起するとともに前記表面に伝搬する前記弾性表面波を受信可能な送受信部分に対し前記表面に沿い直交する線が、対応する交線に対し10°以下の範囲に含まれるよう構成されている、ことを特徴とする請求項1乃至14のいずれか1項に記載の弾性表面波素子。
  16. 前記交線に沿った方向における前記すだれ状電極の複数の端子の配列周期は、前記交線の曲率半径の1/10以下である、ことを特徴とする請求項15に記載の弾性表面波素子。
  17. 前記3次元基体の前記表面は、前記3次元基体の外表面である、ことを特徴とする請求項1乃至16のいずれか1項に記載の弾性表面波素子。
  18. 前記3次元基体は凹所又は中空部を有していて、前記表面は、前記3次元基体の凹所又は中空部の内表面である、ことを特徴とする請求項1乃至16のいずれか1項に記載の弾性表面波素子。
  19. 請求項1乃至18のいずれか1項に記載の弾性表面波素子の表面において複数の交線に沿い複数の電気音響変換素子に弾性表面波を励起させ伝搬させるとともに伝搬する前記弾性表面波を受信させて受信信号を出力させ、複数の電気音響変換素子から出力される受信信号を比較し、前記表面において複数の弾性表面波が伝搬する複数の部分が接する空間の複数の部分の環境の差異を検出する、ことを特徴とする環境差異検出装置。
JP2009222864A 2009-09-28 2009-09-28 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置 Expired - Fee Related JP4700748B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009222864A JP4700748B2 (ja) 2009-09-28 2009-09-28 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009222864A JP4700748B2 (ja) 2009-09-28 2009-09-28 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003327950A Division JP4426802B2 (ja) 2003-09-19 2003-09-19 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置

Publications (2)

Publication Number Publication Date
JP2009303266A JP2009303266A (ja) 2009-12-24
JP4700748B2 true JP4700748B2 (ja) 2011-06-15

Family

ID=41549589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009222864A Expired - Fee Related JP4700748B2 (ja) 2009-09-28 2009-09-28 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置

Country Status (1)

Country Link
JP (1) JP4700748B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (fr) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Dispositif de production d'ondes acoustiques superficielles
JP2003115743A (ja) * 2001-10-09 2003-04-18 Toppan Printing Co Ltd 弾性表面波素子、弾性表面波素子を用いた電気信号処理装置、及び電気信号処理装を用いた環境評価装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041777A (ja) * 1996-07-26 1998-02-13 Kyocera Corp 弾性表面波装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045255A1 (fr) * 1999-12-17 2001-06-21 Toppan Printing Co., Ltd. Dispositif de production d'ondes acoustiques superficielles
JP2003115743A (ja) * 2001-10-09 2003-04-18 Toppan Printing Co Ltd 弾性表面波素子、弾性表面波素子を用いた電気信号処理装置、及び電気信号処理装を用いた環境評価装置

Also Published As

Publication number Publication date
JP2009303266A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
US7247969B2 (en) Surface acoustic wave device and environmental difference detecting apparatus using the surface acoustic wave device
JP4426802B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4426803B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4700749B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4700748B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP2005191650A (ja) ランガサイト結晶を用いた弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4700750B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4479438B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP4515092B2 (ja) 圧電フィルムで形成された円筒形超音波受信機及びトランシーバ
JP2007166253A (ja) 弾性表面波素子およびそれを用いた環境差異検出装置
JP2008042498A (ja) 弾性表面波素子
JP5310362B2 (ja) 球状弾性表面波素子
JP2011095092A (ja) ガラス破壊検知装置
JP5135838B2 (ja) 弾性表面波素子
JP5482244B2 (ja) 球状弾性表面波素子
JP5533509B2 (ja) 球状弾性表面波素子
JP4816915B2 (ja) 弾性表面波素子の表面洗浄方法
JP5533508B2 (ja) 球状弾性表面波素子
JP2006173917A (ja) 弾性表面波素子の使用方法
JP2002039823A (ja) ガス計測装置
JP2012073170A (ja) 球状弾性表面波素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees