JP4515092B2 - 圧電フィルムで形成された円筒形超音波受信機及びトランシーバ - Google Patents

圧電フィルムで形成された円筒形超音波受信機及びトランシーバ Download PDF

Info

Publication number
JP4515092B2
JP4515092B2 JP2003526288A JP2003526288A JP4515092B2 JP 4515092 B2 JP4515092 B2 JP 4515092B2 JP 2003526288 A JP2003526288 A JP 2003526288A JP 2003526288 A JP2003526288 A JP 2003526288A JP 4515092 B2 JP4515092 B2 JP 4515092B2
Authority
JP
Japan
Prior art keywords
ultrasonic
mechanical protection
electrode
ultrasonic transducer
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003526288A
Other languages
English (en)
Other versions
JP2005502287A (ja
Inventor
イツハック ズロター
ギデオン シェンホルツ
Original Assignee
ペガサス テクノロジーズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペガサス テクノロジーズ リミテッド filed Critical ペガサス テクノロジーズ リミテッド
Priority claimed from PCT/US2001/027562 external-priority patent/WO2003022156A1/en
Publication of JP2005502287A publication Critical patent/JP2005502287A/ja
Application granted granted Critical
Publication of JP4515092B2 publication Critical patent/JP4515092B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0655Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of cylindrical shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、超音波トランスデューサに関し、特に、圧電フィルムで形成された円筒形超音波受信機及びトランシーバ及びデジタイザシステムにおけるその利用分野に関する。
デジタイザシステム内で超音波信号を送信するために円筒形超音波トランスデューサを使用することは、既知のことである。円筒の形状は、用途の広い信号送信を提供し、点状(又はより正確には線状)源に類似した効果を提供することによって、飛行時間型計算の幾何学的処理を単純化する。これらの利点については、デ・ブルイネ(De Bruyne)に対する米国特許第4,758,691号に詳述されている。円筒形超音波トランスデューサのさらなる利点は、位置を測定すべき要素のまわりにそれらの中心を置くことができるということである。これは、PCT公報WO98/40838に記載されている製図器具デジタイザシステムにおいて使用されている。
構造的には、数多くの異なるタイプの円筒形トランスデューサが提案されてきた。デ・ブルイネ特許は、約20μmの円筒形エアギャップを生成するように意図された円筒形層の複雑な配置で形成された容量性デバイスである「セルトランスデューサ」を提案している。このような構造は、製造コストが高く、信頼性が低いと考えられる。
医療用利用分野で提案されてきた第2のタイプのトランスデューサは、圧電要素に基づいている。このタイプの医療用トランスデューサの一例は、超音波マーカーを開示するブレヤー(Breyer)らに対する米国特許第4,706,681号に見いだすことができる。ここでは、円筒形圧電カラーが二つの電極間に挟まれている。電極を横断して交番する電位を印加することにより、カラーが振動し、こうして半径方向に伝播する超音波信号が生成される。
米国特許第4,758,691号 WO98/40838 米国特許第4,706,681号
原理的には、いずれの超音波トランスデューサでも送信機及び受信機の両方として動作させることが可能である。しかし、実際には、数多くの事項を考慮すると、多くの送信機構造が受信機としては効果がないという結果になる。このことは、特に、比較的高い電力により起動されることであり、シリンダのほぼ全体がより広角の送信に寄与する一方、所定方向からの入力信号を受信するように正しく方向づけされているのはシリンダの僅かな部分にしかすぎないということは、円筒形要素について特に言えることである。その上、トランスデューサの大きな不活性領域の固有のキャパシタンスが、受信信号の振幅の大きな割合を吸収してしまい、トランスデューサを受信機として感度性の低いものにする可能性がある。
トランスデューサの分野全般において、圧電フィルム、たとえばPVDFに基づいたデバイスの開発に多くの研究と労力がつぎ込まれてきた。導電性電極は、標準的に表面の領域上に導電性インクを選択的に印刷することにより、フィルムの相対する面上に形成される。これらのフィルムは、製造コストが安く、湿気に対する露呈を含む広範な動作条件に耐えるものである。
円筒形超音波トランスデューサは、圧電フィルムを用いて実施するのが比較的簡単であるが、受信機の実施は、上記の円筒形受信機が有する一般的で複雑な問題を超えた付加的な問題を提起する。具体的には、図1及び図2を参照すると、圧電フィルムで形成された自由に吊り下げられるシリンダ10の概略平面図が示されている。図1は、その弛緩した状態を示し、一方、図2は、入力超音波信号波面12に対するシリンダ10の応答を示す。圧電フィルムは、可とう性であるため、信号12の振動は、シリンダ10のまわりを走行する(明確さを期して誇張された)波を生成する。圧電フィルムの湾曲の方向及び程度は、シリンダのまわりに作り出される波形に沿って変動し、その結果、電極間に生成される電位の方向の逆転がもたらされる。その結果、圧電フィルムによって生成される電位の多くが電極内の局所的渦流の内部で散逸させられ、電極間で測定されるような全体的信号電圧を大幅に減少させる。
圧電フィルムを用いて円筒形超音波トランスデューサを実施することのさらなる問題は、非常に低い信号対雑音比を結果としてもたらし得るという、望ましくない電磁放射をピックアップするアンテナとして電極が作用する傾向にあることである。
従って、圧電フィルムを利用する円筒形超音波受信機構造が求められる。
本発明は、圧電フィルムを用いた円筒形超音波受信機の構造に関する。
本発明の教示によれば、(i)主として可とう性圧電フィルムで形成され、外部表面、内部表面、中心軸及びこの中心軸に対し平行に測定された高さを有する中空シリンダ;(ii)前記内部表面に貼付された導電性材料で形成された検知用電極;(iii)前記外部表面に貼付された導電性材料で形成された接地電極;及び(iv)前記中空シリンダを支持するために、前記中空シリンダの大部分のまわりを円周方向に振動波が伝播できるような形で前記中空シリンダを支持するように構成されている支持構造、を含む超音波受信機において、前記検知用電極が、前記高さの大部分に沿って前記中心軸に対し実質的に平行である伸長方向に伸び、且つ前記中心軸にて90°以下の角度に対して定められた1本のストリップとして形成されている超音波受信機が提供される。
本発明のさらなる特徴によれば、前記ストリップが、前記中心軸にて30°以下の角度に対して定められている。
本発明のさらなる特徴によれば、前記接地電極が前記外部表面の大部分にわたって伸びている。
本発明のさらなる特徴によれば、前記検知用電極と隣接していないパターンで、前記内部表面に貼付された導電性材料で形成された少なくとも一つの付加的な電極も提供される。
本発明のさらなる特徴によれば、前記少なくとも一つの付加的な電極が、前記内部表面の大部分にわたって伸びている。
本発明のさらなる特徴によれば、前記少なくとも一つの付加的な電極が接地されている。
本発明のさらなる特徴によれば、付加的に超音波送信機として使用するように構成され、これにより超音波トランシーバとして機能し、該超音波トランシーバにはさらに、(i)前記検知用電極に電気的に接続された受信機回路;(ii)送信機回路;及び(iii)前記接地電極及び前記付加的な電極の中から選択された起動用電極に接続され、前記起動用電極を前記送信機回路及びアースに交番で電気的に接続するように構成された切換えシステム、を含む制御モジュールが含まれている。
本発明のさらなる特徴によれば、前記支持構造が、前記検知用電極との電気的接触を回避するような形で、前記中空シリンダ内で展開されている電気的に接地された導電性コア要素を含んでいる。一つの好適な実施態様によれば、前記導電性コア要素は、金属コア要素である。代替の実施態様によれば、前記導電性コア要素が導電性フォームで形成される。
本発明のさらなる特徴によれば、前記可とう性圧電フィルムがPVDFフィルムとして実施されている。
本発明のさらなる特徴によれば、前記検知用電極及び前記接地電極が、実質的に透明な電極として実施されている。
本発明の教示によれば、超音波信号を送受信するための超音波トランシーバを動作させる方法において、(i)(a)主として可とう性圧電フィルムで形成され、外部表面、内部表面、中心軸及びこの中心軸に対し平行に測定された高さを有し、その大部分のまわりを円周方向に振動波が伝播できるようにする形で取り付けられている中空シリンダ;(b)前記内部表面に貼付された導電性材料で形成され、前記高さの大部分に沿って前記中心軸に対し実質的に平行である伸長方向に伸び、且つ前記中心軸にて90°以下の角度に対して定められた1本の幅の狭いストリップとして形成されている検知用電極;(c)前記検知用電極と隣接していないパターンで前記内部表面の大部分にわたり伸びるように貼付された導電性材料で形成された少なくとも一つの付加的な内部電極;及び(d)前記外部表面の大部分にわたり伸びるように貼付された導電性材料で形成された少なくとも一つの外部電極、を含む超音波トランシーバ構造を提供するステップ、(ii)(a)前記付加的な内部電極及び前記外部電極の両方をアースに接続すること;及び(b)前記検知用電極を受信機回路に電気的に接続すること、によって超音波信号を受信するステップ;及び(iii)前記付加的な内部電極及び前記外部電極のうちの少なくとも一つに対して駆動電圧を印加することにより超音波信号を送信するステップ、を含む方法も提供される。
本発明の教示によれば、可動要素と結合された少なくとも一つの超音波トランスデューサを含む可動超音波トランスデューサの第1のグループと、ベースユニットに対する固着により幾何学的に固定した関係で維持された少なくとも二つの超音波トランスデューサを含む固定式超音波トランスデューサの第2のグループを含む、可動要素の位置を決定するためのシステムを動作させる方法において、(i)(a)前記第1及び第2の超音波トランスデューサグループのうちの一つが、前記第1及び第2のグループのうちのもう一方のものの中の超音波トランスデューサによって受信された少なくとも一つの測定信号を送信し、且つ(b)可動要素の一つの位置が、前記少なくとも一つの測定信号についての飛行時間型測定から導出される測定モードでシステムを動作させるステップ;及び(ii)(a)前記第2のグループからの少なくとも一つの超音波トランスデューサが較正信号を送信し、前記第2のグループからの少なくとも一つの他の超音波トランスデューサが較正信号を受信し、且つ(b)較正情報が前記較正記号についての飛行時間型測定から導出される較正モードでシステムを間欠的に動作させるステップを含む方法も提供される。
本発明のさらなる特徴によれば、前記第2のグループによる少なくとも一つの超音波トランスデューサが、上記円筒形の超音波トランスデューサ構造として実施される。
本発明の教示によれば、超音波信号との干渉を最小限におさえつつ、超音波信号の所定の周波数について使用される超音波トランスデューサのための機械的保護を提供する方法において、トランスデューサに隣接して保護格子を位置づけるステップが含まれ、格子が、空気中の所定の超音波周波数の波長の約半分未満、好ましくは約四分の一未満の空間周波数で間隔をあけた複数の開口部を有している方法も提供される。円筒形トランスデューサとしては、格子が好ましくはトランスデューサを取り囲む円筒形格子として構成されている。
本発明は、本明細書において、添付図面を参照しつつ単なる一例として記載される。
本発明は、圧電フィルムで形成された円筒形超音波受信機又はトランシーバである。本発明は、また、デジタイザシステム内でのこのようなトランシーバの利用分野も提供している。
本発明に係る受信機及びトランシーバの原理及び動作は、図面及び付随する説明を参照することによって、さらに良く理解することができよう。
ここで図面を参照すると、図3〜図11は、本発明の教示によって構築され作動する一般に20という符号が付されている超音波受信機及びそれに付随するアセンブリを例示している。
一般的に、受信機20は、外部表面24、内部表面26、中心軸28及び軸28に平行に測定された高さhを有する主として可とう性圧電フィルムで形成された中空シリンダ22を含んでいる。内部表面26には、導電性材料で形成された検知用電極30が貼付される。接地電極32は、外部表面24に貼付された導電性材料で形成される。シリンダ22は、その主要部分のまわりで円周方向に振動波が伝播できるようにする形で中空シリンダを支持するように構成された、ここではコア要素34により表わされている支持構造によって支持されている。
検知用電極30は、高さhの大部分に沿って中心軸28に実質的に平行な伸長方向に伸び、且つ中心軸28にて90°以下の角度αに対して定められた一つのストリップとして形成されている、というのが、本発明の最も好ましい実施の独特な特徴である(図4C参照)。ストリップ30の寸法は、好ましくは、意図された作動周波数の超音波振動によって誘発されたシリンダ22内の振動の約1/4波長未満に対応するような形で選択される。大部分の場合では、寸法は、干渉効果などを最小限におさえるように(図2に概略的に例示された約3つの波長ではなくむしろ)振動の約1波長のみを支持するような形で選択される。その結果、ストリップ30が軸28で約90°未満に角度αを定める限りにおいて、位相相殺の問題は大幅に回避できる。しかし、好ましくは、ストリップ30の幅は、標準的に軸28で約20〜約30°の間に角度αを定めるために選択される。
受信機20の動作原理は、図1及び図2を再度参照することによって認識することができる。上記のように、入射圧力波は、シリンダの周囲で伝播する振動波を誘発する傾向を有する。その結果、シリンダの表面上に任意に位置づけされた局部センサーは、圧力波が入射する方向とは実質的に独立して、実質的に同じ振動を経験する。同時に、検知用電極30の円周方向の広がりは、フィルムを通って伝播する振動の波長と比べて小さいことから、位相相殺及び大きいキャパシタンスという上記の問題は回避される。その結果、きわめて効率的な広角超音波受信機が得られる。本発明の構成のこれらの利点及びその他の利点は、以下のさらに詳細な説明からより明確になるであろう。
材料に関しては、任意の圧電フィルム材料及び適当な導電性電極材料を用いて、本発明を実施できるということを指摘しておきたい。フィルム自体についての特に好ましい例は、PVDFである。偏光方向は、シリンダのまわりで円周方向に方向づけされよう。このようなフィルムの使用は、その広い周波数帯応答による特別な利点を提供する。具体的には、ピエゾセラミックスに基づく従来の狭い周波数帯の受信機は、信号雑音を測定周波数範囲内へとシフトさせる傾向をもち、信号対雑音比を徹底的に低減させるということが発見されている。対照的に、本発明の広い周波数帯の受信機は、問題の信号を識別するために、その後のフィルタリングと組み合わせて用いた場合、大幅に増大された信号対雑音比を提供することが発見された。
電極のための適当な導電性材料としては、炭素、銀及び金を含有する組成物が含まれるが、これらに制限されない。透明な構造が必要とされる利用分野においては、透明な導電性材料が使用される。
上記のように、圧電フィルムを用いた円筒形超音波トランスデューサの実施に付随する一つの主要な問題点は、電極が電磁(EM)放射のためのアンテナとして機能する傾向にあることである。この問題を最小限にするか又はなくすために、本発明の好ましい実施は、以下に詳述するように、EM放射から検知用電極30を遮蔽する一助となる一つ以上の特徴を含んでいる。
まず第1に、接地電極32が好ましくはフィルムの外部表面24の大部分にわたって伸びている。これは、検知用電極30のまわりに導電性のシェルを形成し、こうして収容する容積からEMフィールドを除外する傾向がある。ちなみに、フィルムの外部ではなくむしろフィルムの内部表面上に検知用電極30を位置づけるのが好ましい理由はここにある。
付加的な遮蔽は、好ましくは、検知用電極30接続しないパターンで内部表面に貼付された導電性材料で形成された少なくとも一つの付加的な接地電極36を具備することによって提供される。好ましくは、付加的な電極36は、内部表面26の主要部分全体にわたって伸びている。2つ以上の別々の領域が必要とされる場合、それらは有利には、図4Bに示されているような導電性材料のブリッジ部分38により電気的に接続され得る。
EM遮蔽に対するさらなる又は代替的な寄与は、好ましくは、検知用電極30との電気的接触を回避するような形でシリンダ22の内部に配置された電気的に接地した導電性コア要素34を利用することによって提供される。コア要素34は、標準的には(必ずしも必要ではないが)シリンダ22のための支持構造の一部である。
図5は、図示されているように中実であっても中空であってもよい金属コア要素としてのコア要素34の一つの好ましい実施形態を示している。シリンダ22のフィルムが自由に振動できるようにするために、コア要素34は、ここでは、その高さの大部分にわたり、直径の減少した部分38を伴って形成されている。場合によっては、直径の減少した部分34により画定された非接触領域は、検知用電極30との電気的接触を回避するのに十分なものである。あるいは、付加的な絶縁層を、コア要素34と検知用電極30の間に介在させることができる。
図6は、導電性コア要素34の代替的実施を示している。この場合、コア要素34とシリンダ22の間の接触によって、標準的にシリンダ22内部の振動の伝播著しく阻害されない。この場合、コア要素34と検知用電極30との間には、一般に付加的な絶縁層が必要とされる。
受信機20を使用するためには、(以下で言及する)付随する回路の適切な電気部品と様々な電極との間に、適切な電気的接続が明確になされなくてはならない。圧電デバイス設計の分野では、広い範囲の有効な接続構成が知られているという点に留意されたい。しかし、完全さを期するため、特に有利であると考えられているいくつかの接続構成を簡単に参照する。
まず第1に、図3、図4A及び図4Bを参照すると、すべての電気的接点を担持するタブ40がそこから突出するような形でシリンダ22の好ましい形態が構成されていることがわかる。これらの接点をPCBの対応する接点に接続するための三つの技術が、それぞれ図7A〜図7B、図8及び図9の中に例示されている。
図7A及び図7Bの技術によれば、各々の上に導電性接着剤44を一滴沈着させることにより調製されたPCBの対応する接点42とタブ40が心合わせされ、これに対しプレスされる。
図8の技術によれば、PCBと一つ以上のバネ要素46の間にタブ40が強制される。PCB及びバネのうちの一つ又は標準的には両方の上に電気的接点が具備されている。
図9の技術によれば、タブ40の接点部分を通っていくつかの導電性ピン48が挿入され、PCB上の対応する接点ソケットと係合する。
ここで簡単に図10A及び図10Bを見てみると、接点タブ40a及び40bが接線方向ではなくむしろシリンダ22から軸方向に伸びている圧電フィルムの一つの代替的構成が示されている。その他の点では、この構成は、図3〜図4のものと完全に類似している。
デバイス20は、ここまで超音波受信機として説明されてきたが、同じ構造は、以下に記すように、信号の送受信の両方のためのトランシーバシステムで使用するのにきわめて適している。ここで、図4Bに戻ると、付加的な電極(単数又は複数)36が好ましくは接地電極32の反対側で表面26の大きい割合を被覆しているということがわかるであろう。こうして、これら二つの電極間に加えられる駆動電圧は、従来の円筒形超音波送信機の動作に類似して、超音波信号を生成するためにきわめて有効である。
先に言及したとおり、超音波信号の受信中遮蔽を目的として接地電極32及び付加的な電極(単数又は複数)36の両方を接地させることが有利である。この利点を維持するために、送信が必要とされた時点で送信機回路に対する接地電極のうちの一つの接続を選択的に切り換えるのに、切換えシステムを使用することができる。
このようにして、図11を参照すると、デバイス20を利用するトランシーバアセンブリが図示されている。トランシーバアセンブリは、さらに、標準的には増幅器54を介して検知用電極30に電気的に接続された受信機回路52を有する制御モジュール50を含んでいる。制御モジュール50は、また、送信機回路56及び切換えシステム58も含んでいる。切換えシステム58は、起動用電極として機能し、接地電極32又は付加的な電極36のいずれかと接続され、送信のためには送信機回路へ、そして受信中はアースへと、それを交互に接続する。アセンブリ全体は、標準的には、プロセッサ60の制御下で動作させられるが、その詳細は、本発明にとって本質的なことではない。
動作中、アセンブリが受信のために使用されている場合、付加的な電極36及び外部電極32の両方が、アースに接続され、これにより利用可能な最大のEM遮蔽を提供する。送信が必要とされる場合、所望の信号を生成するため、接地電極32又は付加的な電極36のいずれかに対し、駆動電圧が印加される。
この時点で、本発明の原理の範囲内で数多くの変更及び改良を加えることができるという点に留意されたい。一例を挙げると、受信機20がシリンダ22のまわりに間隔をあけて1個より多い検知用電極30を使用できるということに留意されたい。このことは、数多くの理由で有用である。第1に、検出された信号を別々に分析し、信号間の位相差を識別することにより、単一の受信機での測定値から近似の方向情報を導出することが可能である。あるいは、シリンダ22のサイズに比べて波長が短い例においては、所望の周波数に対する受信機の固有の同調を達成するために、数個の共通接続された検知用電極の間隔を選択することが可能であるかもしれない。換言すると、この間隔が、所定の周波数についてのシリンダ周囲の同位相の間隔に対応する場合、各々の検知用電極からの信号は、同じ正負符号を有することになり、増大した振幅まで合算することになる。その他の数多くの周波数で、上記の図2の状況下で説明したとおり、ある程度の相殺が発生することになる。
以上で言及したように、シリンダ22は、好ましくは、動作周波数で超音波信号により誘発された圧電フィルム内で振動波のおよそ単一波長のみを支持するような形で構成されている。より詳細には、円周の半分(πD/2)は、好ましくは、フィルム内部の振動波の波長に等しい。このような理由で、シリンダの直径は、一般に、意図された動作周波数に反比例するように選択される。一例を挙げると、90kHzの動作周波数では、一般に約5mmの直径のシリンダが好ましい。
ここで、図12A〜図13Bに戻ると、本発明のトランスデューサのトランシーバ機能性が、可動要素の位置を決定するためのシステムにおいて精度及び信頼性の増大を提供する本発明の別の態様による自動較正モードを実施するために特に有用であるという点に留意されたい。
まず始めに、超音波飛行時間型デジタイザシステムは、温度、圧力又は湿度の変化の結果としてもたらされる空気を通しての音速の有意な変動に起因する精度の問題に直面するという点に留意されたい。このような変動を補償するために、本発明のこの態様では、以下で説明する自己較正機能が提供されている。
最初に図12Aを参照すると、可動要素72と係合する可動超音波トランスデューサ70と、ベースユニット78に対する取り付けにより固定型の幾何学的関係で維持された少なくとも二つの超音波トランスデューサ74、76とを含む、可動要素の位置を決定するためのシステムが概略的に示されている。ここで示されている例においては、システムの通常の測定モードは、固定型超音波トランスデューサ74及び76によって受信される可動超音波トランスデューサ70からの少なくとも一つの測定信号を送信するステップを含む。可動要素72の位置は、このとき、超音波測定信号についての飛行時間型測定を用いて導出される。
本発明の教示によれば、システムは、また、トランスデューサ74がその通常の受信機能から送信機能に切り換わり、トランスデューサ76により受信された較正信号を送り出す較正モードで間欠的に動作する。トランスデューサ74及び76の間の距離は、ベースユニット78の構造によって画定される固定値であることから、システムが現在動作している環境内の音速の変動を表わす較正情報を導出するために、較正信号用の飛行時間型測定を使用することができる。この較正情報は、次に、可動要素72の位置の導出を補正するために使用することができる。
簡単に図13A及び図13Bを参照すると、これらは、可動トランスデューサ70が固定型トランスデューサ74及び76により送信された信号を受信するための受信機として機能しているシステムのための本発明のこの態様の一つの実施例を示している。この例では、較正モードは、トランスデューサ74により送信された較正信号を受信するための受信機としてトランスデューサ76を一時的に利用することによって実施される。その他のすべての点において、発明の原理は、上記のままである。
ここで図14に戻ると、超音波トランスデューサのための機械的保護を提供するように使用するための本発明のさらなる態様の教示によって構築され作動する、全体として80という符号で示された保護用格子が示されている。
トランスデューサ、特に容易に損傷を受ける圧電フィルムを用いたトランスデューサのためには、しばしば機械的保護を提供しなければならない。数多くの既存のトランスデューサ構造が、トランスデューサの前の様々な保護構造の存在に起因する有意な信号ひずみ及び/又は「盲点」(すなわち、送信された強度又は受信感度が著しく損なわれている方向)の問題を抱えている。
このような問題を最小限におさえるか又は除去するために、本発明は、開口部の周期パターンがλ/2以下、好ましくはλ/4以下(ここで、λは空気中の超音波動作周波数の波長)の空間周期Sを有する保護格子構造80を提供している。既存のシステムに比べてはるかに小さい格子ステップSを有する格子を用いることにより、超音波信号に対し方向的中断がひき起こされることは、ほとんどないか、又は全くない。実施例としては、約4mmの空気中の波長に対応する90kHzの動作周波数については、1.9mmの格子ステップが信号の送信及び受信に対し最小限の中断しか与えないことがわかっている。
信号の減衰を最小限におさえるためには、開放している格子の割合は、構造の機械的必要条件を前提として、好ましくは最大にされる。上記の例において、格子の開放面積は、好ましくは、各々の格子ステップの内部の全面積の少なくとも約70%である。
ここでは矩形格子の形で概略的に示されているが、格子80は、明らかに、各々の特定の利用分野に適合するように、範囲の異なる形態で実施できる。このようにして、上記のもののような円筒形トランスデューサについては、格子80は、好ましくは、Sという周期的間隔で開口部を有する円筒形外部スリーブとして実施される。
具体的には、筆記具の書込み点と結びつけられたトランスデューサについては、好ましくは、ユーザーのチップ視野を良く見えない状態にすることなく書込みチップに非常に近いところに超音波トランスデューサが位置設定され、これを取り囲むことができる程度に、(電極のためには透明な導電性材料、格子80のためには透明なプラスチックなどを用いて)実質的に透明な要素として、トランスデューサ20及び格子80のすべてのコンポーネントが実施されるという点に留意されたい。
上記の説明は、一例として役立つように意図されたものにすぎず、本発明の精神及び範囲内でその他の数多くの実施形態が可能である、ということが理解されよう。
弛緩状態にある圧電フィルムで形成された自由に吊り下げられたシリンダの概略平面図である。 超音波信号に露呈された場合の図1のシリンダの概略図である。 本発明の教示によって構築され動作する円筒形超音波トランシーバの等角図である。 Aは、各々の表面に貼付された電極パターンの形態を示す、図1の円筒形超音波トランシーバ内で使用される圧電フィルムの外部表面及び内部表面のそれぞれの平面図、Bは、各々の表面に貼付された電極パターンの形態を示す、図1の円筒形超音波トランシーバ内で使用される圧電フィルムの外部表面及び内部表面のそれぞれの平面図、Cは、その円筒形構成でのA及びBのフィルムの概略平面図である。 図1の円筒形超音波トランシーバからの金属コア要素の等角図である。 図5のコア要素の代替として使用可能な導電性フォームコア要素の等角図である。 Aは、導電性接着剤を使用する、図1の円筒形超音波トランシーバとの電気的接点を形成するための第1の技術を例示する概略等角図、Bは、導電性接着剤を使用する、図1の円筒形超音波トランシーバとの電気的接点を形成するための第1の技術を例示する概略等角図である。 バネ接続を使用する、図1の円筒形超音波トランシーバとの電気接点を形成するための第2の技術を例示する概略等角図である。 ピンを使用する、図1の円筒形超音波トランシーバとの電気接点を形成するための第3の技術を例示する概略等角図である。 Aは、接続タブの代替的構成を示す、図1の円筒形超音波トランシーバで使用するための圧電フィルムの概略平面図、Bは、円筒形に巻かれたAのフィルムを示す概略等角図である。 図1の円筒形超音波トランシーバを含むトランシーバアセンブリの主要コンポーネントを例示するブロック図である。 Aは、一次的動作モードで動作している、本発明の教示によって構築され動作する、可動要素の位置を決定するためのシステムの動作の概略図、Bは、自己較正動作を実施している間のAのシステムの動作の概略図である。 Aは、一次的動作モードで動作している、本発明の教示によって構築され動作する、可動要素の位置を決定するための代替的システムの動作の概略図、Bは、自己較正動作を実施している間のAのシステムの動作の概略図である。 超音波トランスデューサと共に使用するための、本発明の教示によって構築され動作する保護格子の概略等角図である。
符号の説明
α 角度、S 空間周期(格子ステップ)、h 高さ、10 シリンダ、12 入力超音波信号波面(信号)、20 受信機(デバイス、トランスデューサ)、22 中空シリンダ、24 外部表面、26 内部表面、28 中心軸、30 検知用電極(ストリップ)、32 接地電極、34 コア要素、36 接地電極(付加的な電極)、38 (導電性材料の)ブリッジ部分、40 タブ、40a、40b 接点タブ、42 接点、44 導電性接着剤、46 バネ要素、48 導電性ピン、50 制御モジュール、52 受信機回路、54 増幅器、56 送信機回路、58 切換えシステム、60 プロセッサ、70 可動超音波トランスデューサ、72 可動要素、74、76 超音波トランスデューサ、78 ベースユニット、80 保護格子構造。

Claims (18)

  1. 超音波信号との干渉を最小限におさえつつ、超音波信号の所定の周波数について使用される超音波トランスデューサのための機械的保護を提供する方法において、前記超音波トランスデューサに隣接して保護格子を位置づけるステップが含まれ、前記保護格子が、空気中の所定の超音波周波数の波長の約半分未満の空間周波数で間隔をあけた複数の開口部を有している、機械的保護提供方法。
  2. 前記保護格子が、前記空気中の所定の超音波周波数の波長の約四分の一未満の空間周波数で間隔をあけた複数の開口部を有している、請求項1に記載の機械的保護提供方法。
  3. 前記超音波トランスデューサが円筒形であり、前記保護格子が前記超音波トランスデューサを取り囲む円筒形格子として構成されている、請求項1に記載の機械的保護提供方法。
  4. 超音波信号との干渉を最小限におさえつつ、超音波信号の所定の周波数について使用される超音波トランスデューサのための機械的保護を提供する方法において、前記超音波トランスデューサに隣接して保護格子を位置づけるステップが含まれ、前記保護格子が、空気中の所定の超音波周波数の波長の約半分未満の空間周波数で間隔をあけた複数の開口部を有し、
    前記超音波トランスデューサが円筒形であり、前記保護格子が前記超音波トランスデューサを取り囲む円筒形格子として構成され、
    前記超音波トランスデューサが、
    (i)主として可とう性圧電フィルムで形成され、外部表面、内部表面、中心軸及びこの中心軸に対し平行に測定された高さを有し、その大部分のまわりを円周方向に振動波が伝播できるようにする形で取り付けられている中空シリンダと;
    (ii)前記内部表面に貼付された導電性材料で形成され、前記高さの大部分に沿って前記中心軸に対し実質的に平行である伸長方向に伸び、且つ前記中心軸にて90°以下の角度に対して定められた1本の幅の狭いストリップとして形成されている検知用電極と;
    (iii)前記検知用電極と隣接していないパターンで前記内部表面の大部分にわたり伸びるように貼付された導電性材料で形成された少なくとも一つの付加的な内部電極と;
    (iv)前記外部表面の大部分にわたり伸びるように貼付された導電性材料で形成された少なくとも一つの外部電極と、を含み、
    前記機械的保護提供方法が、さらに、
    (a)(i)前記付加的な内部電極及び前記外部電極の両方をアースに接続すること、及び
    (ii)前記検知用電極を受信機回路に電気的に接続すること、によって超音波信号を受信するステップと;
    (b)前記付加的な内部電極及び前記外部電極のうちの少なくとも一つに対して駆動電圧を印加することにより超音波信号を送信するステップと、
    を含む機械的保護提供方法。
  5. 超音波信号との干渉を最小限におさえつつ、超音波信号の所定の周波数について使用される超音波トランスデューサのための機械的保護を提供する装置において、
    前記超音波トランスデューサに隣接して位置づけられる保護格子を有し、
    前記保護格子が、空気中の所定の超音波周波数の波長の約半分未満の空間周波数で間隔をあけた複数の開口部を有している、機械的保護提供装置。
  6. 前記保護格子が、前記空気中の所定の超音波周波数の波長の約四分の一未満の空間周波数で間隔をあけた複数の開口部を有している、請求項5に記載の機械的保護提供装置。
  7. 前記超音波トランスデューサが円筒形であり、前記保護格子が前記超音波トランスデューサを取り囲む円筒形格子として構成されている、請求項5に記載の機械的保護提供装置。
  8. 超音波信号との干渉を最小限におさえつつ、超音波信号の所定の周波数について使用される超音波トランスデューサのための機械的保護を提供する装置において、
    前記超音波トランスデューサに隣接して位置づけられる保護格子を有し、
    前記保護格子が、空気中の所定の超音波周波数の波長の約半分未満の空間周波数で間隔をあけた複数の開口部を有し、
    前記超音波トランスデューサが円筒形であり、前記保護格子が前記超音波トランスデューサを取り囲む円筒形格子として構成され、
    前記円筒形超音波トランスデューサが、
    (a)主として可とう性圧電フィルムで形成され、外部表面、内部表面、中心軸及びこの中心軸に対し平行に測定された高さを有する中空シリンダと;
    (b)前記内部表面に貼付された導電性材料で形成された検知用電極と;
    (c)前記外部表面に貼付された導電性材料で形成された接地電極と;
    (d)前記中空シリンダを支持するために、前記中空シリンダの大部分のまわりを円周方向に振動波が伝播できるような形で前記中空シリンダを支持するように構成されている支持構造と、を含み、
    前記検知用電極が、前記高さの大部分に沿って前記中心軸に対し実質的に平行である伸長方向に伸び、且つ前記中心軸にて90°以下の角度に対して定められた1本のストリップとして形成されている、機械的保護提供装置。
  9. 前記ストリップが、前記中心軸にて30°以下の角度に対して定められた、請求項8に記載の機械的保護提供装置。
  10. 前記接地電極が、前記外部表面の大部分にわたって伸びている、請求項8に記載の機械的保護提供装置。
  11. 前記検知用電極と接続しないように、前記内部表面に貼付された導電性材料で形成された少なくとも一つの付加的な電極をさらに含む、請求項10に記載の機械的保護提供装置。
  12. 前記少なくとも一つの付加的な電極が、前記内部表面の大部分にわたって伸びている、請求項11に記載の機械的保護提供装置。
  13. 前記少なくとも一つの付加的な電極が、接地されている、請求項12に記載の機械的保護提供装置。
  14. 前記超音波トランスデューサが、付加的に超音波送信機として使用するように構成され、これにより超音波トランシーバとして機能し、該超音波トランシーバにはさらに、
    (a)前記検知用電極に電気的に接続された受信機回路と;
    (b)送信機回路と;
    (c)前記接地電極及び前記付加的な電極の中から選択された起動用電極に接続され、前記起動用電極を前記送信機回路及びアースに交番で電気的に接続するように構成された切換えシステムと、
    を含む制御モジュールが含まれている、請求項12に記載の機械的保護提供装置。
  15. 前記支持構造が、前記検知用電極との電気的接触を回避するような形で、前記中空シリンダ内で展開されている電気的に接地された導電性コア要素を含んでいる、請求項8に記載の機械的保護提供装置。
  16. 前記導電性コア要素が、金属コア要素である、請求項15に記載の機械的保護提供装置。
  17. 前記可とう性圧電フィルムが、PVDFフィルムとして実施されている、請求項8に記載の機械的保護提供装置。
  18. 前記検知用電極及び前記接地電極が、実質的に透明な電極として実施されている、請求項8に記載の機械的保護提供装置。
JP2003526288A 2001-09-06 2001-09-06 圧電フィルムで形成された円筒形超音波受信機及びトランシーバ Expired - Fee Related JP4515092B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2001/027562 WO2003022156A1 (en) 2000-06-05 2001-09-06 Cylindrical ultrasound receivers and transceivers formed from piezoelectric film

Publications (2)

Publication Number Publication Date
JP2005502287A JP2005502287A (ja) 2005-01-20
JP4515092B2 true JP4515092B2 (ja) 2010-07-28

Family

ID=32295732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003526288A Expired - Fee Related JP4515092B2 (ja) 2001-09-06 2001-09-06 圧電フィルムで形成された円筒形超音波受信機及びトランシーバ

Country Status (5)

Country Link
EP (1) EP1423051A4 (ja)
JP (1) JP4515092B2 (ja)
KR (1) KR100905145B1 (ja)
CN (1) CN1287738C (ja)
CA (1) CA2459921C (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588528B (zh) * 2008-05-20 2013-03-13 深圳市豪恩声学股份有限公司 新型声电转换器及一种传声器
WO2013063676A1 (en) * 2010-11-05 2013-05-10 National Research Council Of Canada Ultrasonic transducer assembly and system for monitoring structural integrity
CN106483525A (zh) * 2016-11-21 2017-03-08 北京凌宇智控科技有限公司 全向超声信号接收组件、全向超声测距系统及方法
CN106824735B (zh) * 2017-03-02 2022-06-17 曼图电子(上海)有限公司 一种二维阵列超声探头及其制备方法
KR102366002B1 (ko) * 2018-05-23 2022-02-22 (주)포인트엔지니어링 압전물질을 이용한 전자 장치 및 그 제조 방법
CN110031831B (zh) * 2019-04-24 2022-11-18 吉林大学 一种具备超声波和红外发射功能的小型三维超声波发射器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523744A1 (de) * 1985-07-03 1987-01-08 Dietmar Dipl Ing Lipka Elektro-akustischer wandler fuer unterwasseranwendung
CH669676A5 (ja) * 1986-01-23 1989-03-31 Zellweger Uster Ag
US5323082A (en) * 1989-05-03 1994-06-21 Spectra Physics Lasers, Inc. Piezoelectric actuator for planar alignment
US6030346A (en) * 1996-02-21 2000-02-29 The Whitaker Corporation Ultrasound imaging probe assembly
US5857974A (en) * 1997-01-08 1999-01-12 Endosonics Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
US6731270B2 (en) * 1998-10-21 2004-05-04 Luidia Inc. Piezoelectric transducer for data entry device
KR20020079767A (ko) * 2000-01-04 2002-10-19 어메리컨 테크놀로지 코포레이션 압전 박막 음파 방사 장치

Also Published As

Publication number Publication date
EP1423051A4 (en) 2011-09-28
KR20040064261A (ko) 2004-07-16
KR100905145B1 (ko) 2009-06-29
EP1423051A1 (en) 2004-06-02
CA2459921A1 (en) 2003-03-20
CN1287738C (zh) 2006-12-06
JP2005502287A (ja) 2005-01-20
CA2459921C (en) 2009-12-22
CN1545397A (zh) 2004-11-10

Similar Documents

Publication Publication Date Title
US6392330B1 (en) Cylindrical ultrasound receivers and transceivers formed from piezoelectric film
JP4128144B2 (ja) 円筒形超音波トランシーバ
US7460439B2 (en) Ultrasonic transducer for ranging measurement with high directionality using parametric transmitting array in air and a method for manufacturing same
US20040000838A1 (en) Protective housing for ultrasonic transducer apparatus
US8767514B2 (en) Telemetric sensing using micromachined ultrasonic transducer
US6493288B2 (en) Wide frequency band micromachined capacitive microphone/hydrophone and method
WO2008114582A1 (ja) 超音波探触子及びその製造方法並びに超音波診断装置
JP2007147319A (ja) 障害物検知装置
US11515465B2 (en) EMI reduction in piezoelectric micromachined ultrasound transducer array
JP4515092B2 (ja) 圧電フィルムで形成された円筒形超音波受信機及びトランシーバ
US3603921A (en) Sound transducer
US10848124B2 (en) Piezoelectric transducer device with resonance region
JP2008089569A (ja) 超音波センサ及び障害物検出装置
US9338556B2 (en) Electroacoustic transducer, manufacturing method thereof, and electronic device utilizing same
CN112566731A (zh) 用于区域监测的一维超声换能器单元
JP4426802B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JPH08265897A (ja) 圧電型トランスデューサ
US6637268B1 (en) Vibration displacement sensing system
JP3275930B2 (ja) 分割型の超音波探触子
JP2007166253A (ja) 弾性表面波素子およびそれを用いた環境差異検出装置
JP2002125299A (ja) マイクロホン装置
JP4700748B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
KR100405393B1 (ko) 음향 트랜스듀서
JP4479438B2 (ja) 弾性表面波素子及び弾性表面波素子を用いた環境差異検出装置
JP2005150950A (ja) 弾性表面波素子アレイ及び圧力センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090119

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090219

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees