JP5471605B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5471605B2
JP5471605B2 JP2010046590A JP2010046590A JP5471605B2 JP 5471605 B2 JP5471605 B2 JP 5471605B2 JP 2010046590 A JP2010046590 A JP 2010046590A JP 2010046590 A JP2010046590 A JP 2010046590A JP 5471605 B2 JP5471605 B2 JP 5471605B2
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
semiconductor device
insulating layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010046590A
Other languages
Japanese (ja)
Other versions
JP2010232648A (en
Inventor
新太郎 山道
嘉樹 中島
健太郎 森
克 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2010046590A priority Critical patent/JP5471605B2/en
Publication of JP2010232648A publication Critical patent/JP2010232648A/en
Application granted granted Critical
Publication of JP5471605B2 publication Critical patent/JP5471605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • H01L2224/251Disposition
    • H01L2224/2518Disposition being disposed on at least two different sides of the body, e.g. dual array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82009Pre-treatment of the connector or the bonding area
    • H01L2224/8203Reshaping, e.g. forming vias
    • H01L2224/82035Reshaping, e.g. forming vias by heating means
    • H01L2224/82039Reshaping, e.g. forming vias by heating means using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06527Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10252Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0187Dielectric layers with regions of different dielectrics in the same layer, e.g. in a printed capacitor for locally changing the dielectric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/063Lamination of preperforated insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、半導体素子を内蔵した半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device incorporating a semiconductor element and a method for manufacturing the same.

電子機器の継続的な軽薄短小化に伴い、半導体素子そのものの微細化や集積化と共に、半導体パッケージにおける高密度実装技術がますます進展している。半導体素子とパッケージの配線基板との接続には、金線等を用いるワイヤーボンディング接続や、半田ボール等を用いるフリップチップ接続が用いられている。   As electronic devices continue to become lighter, thinner, and smaller, semiconductor devices themselves are becoming smaller and more integrated, and high-density mounting technology for semiconductor packages is advancing more and more. For the connection between the semiconductor element and the wiring board of the package, wire bonding connection using a gold wire or the like, or flip chip connection using a solder ball or the like is used.

ワイヤーボンディング接続は、半導体素子のパッド数が少ない場合には、低コストでパッケージングすることができる。しかしながら、半導体素子のパッドの狭ピッチ化に伴って、ワイヤー径を小さくする必要が生じ、ワイヤー切れ等の組立プロセスにおける歩留まり低下が課題となっている。   The wire bonding connection can be packaged at a low cost when the number of pads of the semiconductor element is small. However, it is necessary to reduce the wire diameter as the pitch of the pads of the semiconductor element is narrowed, and the yield reduction in the assembly process such as wire breakage is a problem.

フリップチップ接続は、ワイヤーボンディング接続に比べて半導体素子と配線基板間の高速信号伝送が可能であるというメリットがある。しかしながら、半導体素子のパッド数の増加や狭ピッチ化に伴って、半田バンプの接続強度が弱くなり、接続箇所のクラック発生等の不良が多発していた。   The flip-chip connection has an advantage that high-speed signal transmission between the semiconductor element and the wiring board is possible compared to the wire bonding connection. However, as the number of pads of the semiconductor element increases and the pitch is narrowed, the connection strength of the solder bumps is weakened, and defects such as the occurrence of cracks at the connection locations frequently occur.

そこで、近年、半導体素子を内蔵するパッケージ技術、いわゆる半導体素子内蔵技術が提案されている(例えば、特許文献1、2)。この技術は、半導体装置のさらなる高集積化及び高機能化を実現し、パッケージの薄型化、低コスト化、高周波対応、低ストレス接続、エレクトロマイグレーション特性改善等を実現する高密度実装技術として期待されている。   Therefore, in recent years, a package technology incorporating a semiconductor element, a so-called semiconductor element incorporation technology has been proposed (for example, Patent Documents 1 and 2). This technology is expected as a high-density packaging technology that realizes further high integration and high functionality of semiconductor devices, and realizes package thinning, low cost, high frequency response, low stress connection, improved electromigration characteristics, etc. ing.

特許文献1においては、絶縁性基板に内蔵された半導体チップが、絶縁性基板に埋め込まれたバンプを介して絶縁性基板上に形成された配線と電気的に接続する構成が開示されている。   Patent Document 1 discloses a configuration in which a semiconductor chip built in an insulating substrate is electrically connected to wiring formed on the insulating substrate through bumps embedded in the insulating substrate.

特許文献2においては、配線基板の反りを抑制するために、半導体チップが埋設される絶縁層内であって、半導体チップの外周領域に補強構造体を埋設する構成が提案されている。   Patent Document 2 proposes a configuration in which a reinforcing structure is embedded in an outer peripheral region of a semiconductor chip in an insulating layer in which the semiconductor chip is embedded in order to suppress warping of the wiring board.

特開2007−134569号公報JP 2007-134568 A 特開2006−261246号公報JP 2006-261246 A

特許文献1においては、薄い圧延銅の配線層上に半導体素子をフリップチップ実装して内蔵型基板を作製している。このため、フリップチップ実装時及びその後の基板用絶縁樹脂を用いた内蔵工程において、基板全体に大きな反りやうねりが発生してしまうという問題があった。   In Patent Document 1, a semiconductor element is flip-chip mounted on a thin rolled copper wiring layer to produce a built-in substrate. For this reason, there has been a problem that large warpage and undulation occur in the entire substrate during the flip chip mounting and in the subsequent built-in process using the insulating resin for the substrate.

特許文献2においては、前述したように、内蔵された半導体素子の周辺の絶縁層に補強構造体を埋設することにより、基板全体の反りを抑制する構造が開示されている。しかしながら、補強構造体を半導体素子の外周に配置するスペースを確保する必要があった。従って、半導体装置の小型化、高密度化に有利とはいえなかった。また、補強構造体が配設されていない半導体素子の配設領域及びその近傍(以下、「半導体素子近傍」と称する)の反りに対しては抑制効果がなかった。従って、半導体素子近傍の反りに対する効果が十分ではなかった。   In Patent Document 2, as described above, a structure that suppresses the warpage of the entire substrate by embedding a reinforcing structure in an insulating layer around a built-in semiconductor element is disclosed. However, it is necessary to secure a space for arranging the reinforcing structure on the outer periphery of the semiconductor element. Therefore, it cannot be said that it is advantageous for miniaturization and high density of the semiconductor device. In addition, there was no suppression effect on the warp of the semiconductor element placement region where the reinforcing structure is not placed and the vicinity thereof (hereinafter referred to as “semiconductor element neighborhood”). Therefore, the effect on the warpage in the vicinity of the semiconductor element is not sufficient.

本発明は、上記問題点に鑑みてなされたものであり、その目的とするところは、半導体素子を基板内に内蔵する半導体装置において、半導体素子近傍の反りを抑制することである。   The present invention has been made in view of the above problems, and an object of the present invention is to suppress warpage in the vicinity of a semiconductor element in a semiconductor device in which the semiconductor element is built in a substrate.

本発明に係る半導体装置は、半導体基板を具備する半導体素子と、前記半導体素子が埋設された絶縁層と、少なくとも一部が、前記半導体素子に接続される配線構造とを備える。そして、前記半導体基板には、前記半導体素子の反り量を低減する手段として、当該半導体基板の少なくとも一主面側に1又は複数の開口部を形成した。   A semiconductor device according to the present invention includes a semiconductor element including a semiconductor substrate, an insulating layer in which the semiconductor element is embedded, and a wiring structure at least partially connected to the semiconductor element. In the semiconductor substrate, one or a plurality of openings are formed on at least one main surface side of the semiconductor substrate as means for reducing the warpage amount of the semiconductor element.

本発明の半導体装置によれば、半導体素子を基板内に内蔵する半導体装置において、半導体素子近傍の反りを抑制することができるという優れた効果を有する。   According to the semiconductor device of the present invention, in the semiconductor device in which the semiconductor element is built in the substrate, there is an excellent effect that warpage in the vicinity of the semiconductor element can be suppressed.

本発明に係る半導体装置の構造の例を示す模式的断面図。1 is a schematic cross-sectional view illustrating an example of a structure of a semiconductor device according to the present invention. 実施形態1に係る半導体装置の構造の例を示す模式的断面図。FIG. 3 is a schematic cross-sectional view showing an example of the structure of the semiconductor device according to the first embodiment. (a)実施形態1に係る半導体基板の平面図。(b)図3(a)中のIIIB−IIIB切断部断面図。(A) The top view of the semiconductor substrate which concerns on Embodiment 1. FIG. (B) IIIB-IIIB cutting part sectional drawing in Fig.3 (a). 実施形態1と比較例1に係る半導体装置の反り量をプロットした図。The figure which plotted the amount of curvature of the semiconductor device concerning Embodiment 1 and comparative example 1. FIG. (a)〜(f)変形例に係る半導体基板及び開口部(基板貫通部)の模式的平面図。(A)-(f) The typical top view of the semiconductor substrate which concerns on a modification, and an opening part (board | substrate penetration part). (a)〜(c)変形例に係る半導体基板及び開口部(基板貫通部)の模式的平面図。(A)-(c) The typical top view of the semiconductor substrate which concerns on a modification, and an opening part (board | substrate penetration part). (a)変形例に係る半導体基板の平面図。(b)図7(a)中のVIIB−VIIB切断部断面図。(A) The top view of the semiconductor substrate which concerns on a modification. (B) Sectional view taken along the line VIIB-VIIB in FIG. (a)変形例に係る半導体基板の平面図。(b)図8(a)中のVIIIB−VIIIB切断部断面図。(A) The top view of the semiconductor substrate which concerns on a modification. (B) VIIIB-VIIIB cutting part sectional drawing in Fig.8 (a). 実施形態2に係る半導体装置の構造の例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view illustrating an example of a structure of a semiconductor device according to a second embodiment. (a)実施形態2に係る半導体基板の平面図。(b)図10(a)中のXB−XB切断部断面図。(A) The top view of the semiconductor substrate which concerns on Embodiment 2. FIG. (B) XB-XB cutting part sectional drawing in Fig.10 (a). (a)、(b)変形例に係る半導体基板及び開口部(基板ざぐり部)の模式的断面。(A), (b) The typical cross section of the semiconductor substrate which concerns on a modification, and an opening part (board | substrate counterbore part). 実施形態3に係る半導体装置の構造の例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to a third embodiment. (a)〜(e)実施形態3に係る半導体装置の製造工程断面図。(A)-(e) Manufacturing process sectional drawing of the semiconductor device which concerns on Embodiment 3. FIG. 変形例3−1に係る半導体装置の構造の例を示す模式的断面図。FIG. 9 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to Modification 3-1. 変形例3−2に係る半導体装置の構造の例を示す模式的断面図。FIG. 14 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to Modification 3-2. 実施形態4に係る半導体装置の構造の例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to a fourth embodiment. 実施形態5に係る半導体装置の構造の例を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to a fifth embodiment. 実施形態6に係る半導体装置の構造の例を示す模式的断面図。9 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to Embodiment 6. FIG. 実施形態7に係る半導体装置の構造の例を示す模式的断面図。FIG. 10 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to a seventh embodiment. 実施形態8に係る半導体装置の構造の例を示す模式的断面図。FIG. 10 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to an eighth embodiment. (a)〜(e)実施形態8に係る半導体装置の製造工程断面図。(A)-(e) Manufacturing process sectional drawing of the semiconductor device which concerns on Embodiment 8. FIG. (f)〜(h)実施形態8に係る半導体装置の製造工程断面図。(F)-(h) Manufacturing process sectional drawing of the semiconductor device which concerns on Embodiment 8. FIG. 実施形態9に係る半導体装置の構造の例を示す模式的断面図。10 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to Embodiment 9. FIG. (a)〜(c)実施形態9に係る半導体装置の製造工程断面図。(A)-(c) Manufacturing process sectional drawing of the semiconductor device which concerns on Embodiment 9. FIG. (d)、(e)実施形態9に係る半導体装置の製造工程断面図。(D), (e) Manufacturing process sectional drawing of the semiconductor device which concerns on Embodiment 9. FIG. (f)、(g)実施形態9に係る半導体装置の製造工程断面図。(F), (g) Manufacturing process sectional drawing of the semiconductor device which concerns on Embodiment 9. FIG. 比較例1に係る半導体装置の構造の例を示す模式的断面図。6 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to Comparative Example 1. FIG. 比較例2に係る半導体装置の構造の例を示す模式的断面図。10 is a schematic cross-sectional view showing an example of the structure of a semiconductor device according to Comparative Example 2. FIG.

図1に、本発明に係る半導体装置50Aの要部の模式的断面図を示す。本発明に係る半導体装置50Aは、半導体素子1、絶縁層10、配線構造20を備える。半導体素子1は、半導体基板2を備える。半導体基板2の素子形成面には、電子回路(不図示)やパッド(不図示)が形成されている。また、半導体基板2には、半導体装置50A内における半導体素子1の反りを低減するように、1又は複数の開口部3Aが形成されている。図1中の開口部3Aは、半導体基板2を貫通するものを図示しているが、貫通しないものであってもよい。   FIG. 1 shows a schematic cross-sectional view of a main part of a semiconductor device 50A according to the present invention. A semiconductor device 50 </ b> A according to the present invention includes a semiconductor element 1, an insulating layer 10, and a wiring structure 20. The semiconductor element 1 includes a semiconductor substrate 2. Electronic circuits (not shown) and pads (not shown) are formed on the element formation surface of the semiconductor substrate 2. Further, one or a plurality of openings 3A are formed in the semiconductor substrate 2 so as to reduce the warp of the semiconductor element 1 in the semiconductor device 50A. Although the opening 3 </ b> A in FIG. 1 is illustrated as penetrating the semiconductor substrate 2, it may not be penetrating.

絶縁層10は、半導体素子1を埋設するように形成されている。配線構造20は、少なくとも一部が半導体素子1に接続されるように形成されている。   The insulating layer 10 is formed so as to embed the semiconductor element 1. The wiring structure 20 is formed so as to be at least partially connected to the semiconductor element 1.

以下、本発明のより具体的な実施形態について図面を参照しつつ説明する。なお、複数の実施形態において、同一の要素部材には同一の符号を付し、適宜、重複する説明を省略する。また、各部材のサイズや比率は、説明の便宜上のものであり、実際のものとは必ずしも一致しない。   Hereinafter, more specific embodiments of the present invention will be described with reference to the drawings. Note that, in a plurality of embodiments, the same element member is denoted by the same reference numeral, and repeated description is appropriately omitted. Moreover, the size and ratio of each member are for convenience of explanation and do not necessarily match the actual ones.

[実施形態1]
図2は、本発明の実施形態1に係る半導体装置50の模式的断面図である。同図に示すように、半導体装置50は、半導体素子1と、絶縁層10と、配線構造20を備える。半導体素子1は、絶縁層10内に埋設されている。半導体素子1は、薄く研削された半導体基板2を具備する。半導体基板2の第1主面2A側には、電子回路(不図示)やパッド(不図示)等の素子が形成されている。
[Embodiment 1]
FIG. 2 is a schematic cross-sectional view of the semiconductor device 50 according to the first embodiment of the present invention. As shown in the figure, the semiconductor device 50 includes a semiconductor element 1, an insulating layer 10, and a wiring structure 20. The semiconductor element 1 is embedded in the insulating layer 10. The semiconductor element 1 includes a semiconductor substrate 2 that is thinly ground. Elements such as electronic circuits (not shown) and pads (not shown) are formed on the first main surface 2A side of the semiconductor substrate 2.

半導体基板2には、開口部として基板貫通部3が複数設けられている。基板貫通部3は、半導体装置(絶縁層)全体の反りの方向と反対側の方向に反る半導体素子1の反り量を低減する役割を担う。図2においては、基板貫通部3が複数設けられている例について説明するが、基板貫通部3を半導体基板2に1つ形成する構成としてもよい。   The semiconductor substrate 2 is provided with a plurality of substrate through portions 3 as openings. The substrate penetration part 3 plays a role of reducing the warpage amount of the semiconductor element 1 that warps in the direction opposite to the warping direction of the entire semiconductor device (insulating layer). In FIG. 2, an example in which a plurality of substrate through-holes 3 are provided will be described, but one substrate through-hole 3 may be formed on the semiconductor substrate 2.

半導体基板2は、例えば、シリコン(Si)、ゲルマニウム(Ge)、ガリウム砒素(GaAs)、ガリウム砒素リン(GaAsP)、窒化ガリウム(GaN)、炭化珪素(SiC)、酸化亜鉛(ZnO)を適用することができる。また、半導体特性を示すII−VI族化合物、III−V族化合物や、ダイアモンドなどを用いてもよい。勿論、これらに限定されるものではない。本実施形態1では、半導体基板2としてシリコンを用いた。   For example, silicon (Si), germanium (Ge), gallium arsenide (GaAs), gallium arsenide phosphorus (GaAsP), gallium nitride (GaN), silicon carbide (SiC), or zinc oxide (ZnO) is applied to the semiconductor substrate 2. be able to. In addition, II-VI group compounds, III-V group compounds, diamond, or the like exhibiting semiconductor characteristics may be used. Of course, it is not limited to these. In the first embodiment, silicon is used as the semiconductor substrate 2.

半導体基板2の厚さは、半導体装置50に求められる厚さに応じて、適宜、調整することができる。本実施形態1では、半導体基板2の厚さを50μmとし、チップサイズを10mm角とした。半導体装置50全体の大きさは30mm角とした。なお、半導体装置50内に内蔵する半導体素子1の数は、1つに限定されるものではなく、複数配設することができる。複数配設する方法としては、図2中のX方向に半導体素子を複数配設する態様の他、図2中のY方向に半導体素子1を複数積層するものであってもよい。   The thickness of the semiconductor substrate 2 can be appropriately adjusted according to the thickness required for the semiconductor device 50. In the first embodiment, the thickness of the semiconductor substrate 2 is 50 μm, and the chip size is 10 mm square. The overall size of the semiconductor device 50 was 30 mm square. The number of semiconductor elements 1 incorporated in the semiconductor device 50 is not limited to one, and a plurality of semiconductor elements 1 can be provided. As a method of arranging a plurality of semiconductor elements, a plurality of semiconductor elements 1 may be stacked in the Y direction in FIG. 2 in addition to an aspect in which a plurality of semiconductor elements are arranged in the X direction in FIG.

図3(a)に、半導体基板2の第1主面2A側からみたときの模式的平面図を示す。また、図3(b)に、図3(a)のIIIB−IIIB切断部断面図を示す。   FIG. 3A is a schematic plan view when viewed from the first main surface 2A side of the semiconductor substrate 2. FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB in FIG.

本実施形態1に係る基板貫通部3は、図3(a)に示すように、平面視上の形状を正方形状とし、半導体基板2内に5つ配置した。具体的には、基板貫通部3を、半導体基板2のコーナー部近傍にそれぞれ1つずつ配置し、かつ、半導体基板2の中心部に1つ配置した。   As shown in FIG. 3A, the substrate penetrating part 3 according to the first embodiment has a square shape in plan view, and is arranged in the semiconductor substrate 2. Specifically, one through-substrate portion 3 is disposed in the vicinity of the corner portion of the semiconductor substrate 2, and one is disposed in the central portion of the semiconductor substrate 2.

基板貫通部3を配設する位置は、特に限定されない。但し、半導体装置内における半導体素子の反りをより効果的に低減する観点から、応力集中位置である半導体基板2の外周部近傍に基板貫通部3を設けることが好ましい。また、半導体基板2における部分的な応力集中を分散する観点から、半導体基板2内において、平面視上、点対称、若しくは線対称に配置することが好ましい。より好ましくは、本実施形態1の基板貫通部3のように、点対称であり、かつ線対称とすることである。但し、上述の点対称、線対称とは、半導体素子1に形成する電子回路の配置等を考慮して配置すればよく、厳密な配置に限定されるものではない。   The position where the substrate penetration part 3 is disposed is not particularly limited. However, from the viewpoint of more effectively reducing the warpage of the semiconductor element in the semiconductor device, it is preferable to provide the substrate through portion 3 in the vicinity of the outer peripheral portion of the semiconductor substrate 2 that is the stress concentration position. Further, from the viewpoint of dispersing the partial stress concentration in the semiconductor substrate 2, it is preferable that the semiconductor substrate 2 be arranged point-symmetrically or line-symmetrically in plan view. More preferably, it is point-symmetric and line-symmetric as in the substrate penetration part 3 of the first embodiment. However, the above-described point symmetry and line symmetry may be arranged in consideration of the arrangement of electronic circuits formed in the semiconductor element 1, and are not limited to exact arrangement.

基板貫通部3の個々の形状は、特に限定されるものではなく、例えば、円形、矩形等の多角形状、または曲線で囲まれた形状、若しくはこれらを組み合わせたものであってもよい。基板貫通部3の径は、特に限定されるものではないが、例えば、10μm〜100μm程度とすることができる。基板貫通部3は、半導体基板2に予め形成しておいてもよいし、半導体素子1を形成後に形成してもよい。   The individual shape of the substrate penetration part 3 is not particularly limited, and may be, for example, a circular shape, a polygonal shape such as a rectangle, a shape surrounded by a curve, or a combination thereof. Although the diameter of the substrate penetration part 3 is not specifically limited, For example, it can be set as about 10 micrometers-100 micrometers. The substrate penetrating portion 3 may be formed in advance in the semiconductor substrate 2 or may be formed after the semiconductor element 1 is formed.

1つの半導体素子1内に配置される基板貫通部3の形状は、同一のものに限定されるものではなく、複数の形状の基板貫通部3が混在するものであってもよい。基板貫通部3の径は特に限定されるものではなく、半導体基板の厚み、面積等を考慮しつつ、反り量を低減する観点から、決定すればよい。本実施形態1においては、矩形状の基板貫通部3として、外径が50μmのものを用いた。   The shape of the substrate through-holes 3 arranged in one semiconductor element 1 is not limited to the same shape, and a plurality of substrate through-holes 3 having a plurality of shapes may be mixed. The diameter of the substrate penetrating portion 3 is not particularly limited, and may be determined from the viewpoint of reducing the amount of warp while considering the thickness, area, etc. of the semiconductor substrate. In the first embodiment, the rectangular substrate penetrating portion 3 having an outer diameter of 50 μm is used.

基板貫通部3は、空隙としてもよく、また、基板貫通部3内の一部又は全部を充填材6により充填してもよい。充填材6としては、絶縁性材料を好適に適用することができる。機械的強度を高める観点からは、充填材6により充填する構造とすることが好ましい。半導体基板2が、例えばシリコンの場合、充填材6としては、弾性率が5MPa以上、5GPa以下のものを用いることが好ましい。これにより、効果的に半導体素子の反りを低減することができる。充填材6のより好ましいものは、弾性率が10MPa以上、2GPa以下のものである。   The substrate penetrating part 3 may be a gap, or a part or all of the substrate penetrating part 3 may be filled with the filler 6. As the filler 6, an insulating material can be suitably applied. From the viewpoint of increasing the mechanical strength, a structure filled with the filler 6 is preferable. When the semiconductor substrate 2 is, for example, silicon, it is preferable to use a filler 6 having an elastic modulus of 5 MPa or more and 5 GPa or less. Thereby, the curvature of a semiconductor element can be reduced effectively. More preferable fillers 6 have an elastic modulus of 10 MPa or more and 2 GPa or less.

充填材6は、特に限定されるものではないが、好適な例として以下の低弾性特性を示す樹脂群Aを挙げることができる。すなわち、樹脂群Aとして、エポキシ樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、フェノール樹脂、ポリイミド樹脂、BCB(benzocyclobutene)、PBO(polybenzoxazole)、ポリノルボルネン樹脂等を列挙することができる。また、上記樹脂群A、若しくはケイ素樹脂に無機フィラーや有機フィラーを添加したものを充填材6として用いてもよい。また、上記樹脂群A、若しくはケイ素樹脂の樹脂マトリクス内に、金属微粒子を添加した複合材料を用いてもよい。無論、これらに限定されるものではなく、無機材料も好適に適用することができる。   Although the filler 6 is not specifically limited, As a suitable example, the following resin group A which shows the low elasticity characteristic can be mentioned. That is, as the resin group A, epoxy resin, epoxy acrylate resin, urethane acrylate resin, polyester resin, phenol resin, polyimide resin, BCB (benzocyclobutene), PBO (polybenzoxazole), polynorbornene resin, and the like can be listed. Further, the resin group A or a silicon resin obtained by adding an inorganic filler or an organic filler may be used as the filler 6. Further, a composite material in which metal fine particles are added in the resin matrix of the resin group A or silicon resin may be used. Of course, it is not limited to these, and inorganic materials can also be suitably applied.

基板貫通部3は、例えば、D−RIE(Deep-Reactive Ion Etching)法やレーザ法により形成することができる。無論、これに限定されるものではない。本実施形態1においては、D−RIE法により基板貫通部3を形成し、これらの内部に、弾性率1.9GPaのエポキシ樹脂を充填した。   The substrate penetration part 3 can be formed by, for example, a D-RIE (Deep-Reactive Ion Etching) method or a laser method. Of course, it is not limited to this. In the first embodiment, the substrate penetrating part 3 is formed by the D-RIE method, and an epoxy resin having an elastic modulus of 1.9 GPa is filled in these.

絶縁層10は、第1絶縁層11と接着層19を備える。換言すると、半導体素子1は、第1絶縁層11と接着層19内に埋設されている。具体的には、半導体基板2の第2主面2B側は、接着層19と当接され、その他の領域は第1絶縁層11により被覆されている。接着層19は、本実施形態1においては、半導体基板2と平面視上の形状が略同一のものを用いた。   The insulating layer 10 includes a first insulating layer 11 and an adhesive layer 19. In other words, the semiconductor element 1 is embedded in the first insulating layer 11 and the adhesive layer 19. Specifically, the second main surface 2 </ b> B side of the semiconductor substrate 2 is in contact with the adhesive layer 19, and other regions are covered with the first insulating layer 11. In the first embodiment, the adhesive layer 19 is substantially the same as the semiconductor substrate 2 in plan view.

第1絶縁層11は、例えば、感光性又は非感光性の有機材料を用いて形成することができる。有機材料としては、例えば、上記樹脂群Aを適用することができる。また、樹脂群Aから選ばれる樹脂等を、ガラスクロスやアラミド繊維などで形成された織布や不織布に含浸させた材料を用いてもよい。また、樹脂群Aから選ばれる樹脂等やケイ素樹脂に、無機フィラーや有機フィラーを含ませたものを用いてもよい。勿論、これらに限定されるものではなく、無機材料を含め、本発明の趣旨を逸脱しない範囲において種々のものを適用することができる。本実施形態1では、第1絶縁層11として厚さ90μmのエポキシ樹脂を用いた。   The first insulating layer 11 can be formed using, for example, a photosensitive or non-photosensitive organic material. As the organic material, for example, the resin group A can be applied. Alternatively, a material obtained by impregnating a woven fabric or a non-woven fabric formed of glass cloth, aramid fiber, or the like with a resin selected from the resin group A may be used. Alternatively, a resin selected from the resin group A or a silicon resin containing an inorganic filler or an organic filler may be used. Of course, the present invention is not limited to these, and various materials including inorganic materials can be applied without departing from the spirit of the present invention. In the first embodiment, an epoxy resin having a thickness of 90 μm is used as the first insulating layer 11.

接着層19は、例えば、ダイアタッチメントフィルム(DAF;Die Attachment Film)と呼ばれる半硬化樹脂や、エポキシ樹脂、ポリイミド樹脂、BCB(benzocyclobutene)、PBO(polybenzoxazole)などの樹脂ペースト、あるいは銀ペーストなどが好適である。無論、これらに限定されない。本実施形態1ではエポキシ樹脂を主成分とするDAFを用いた。   For example, the adhesive layer 19 is preferably a semi-cured resin called a die attachment film (DAF), a resin paste such as epoxy resin, polyimide resin, BCB (benzocyclobutene), PBO (polybenzoxazole), or silver paste. It is. Of course, it is not limited to these. In the first embodiment, DAF mainly composed of epoxy resin is used.

配線構造20は、本実施形態1においては、第1配線層21、素子接続プラグ30を備える。第1配線層21は、第1絶縁層11の第1主面11A上に設けられている。素子接続プラグ30は、第1配線層21と半導体素子1に形成されたパッド(不図示)とを接続する役割を担う。   The wiring structure 20 includes a first wiring layer 21 and an element connection plug 30 in the first embodiment. The first wiring layer 21 is provided on the first main surface 11 </ b> A of the first insulating layer 11. The element connection plug 30 plays a role of connecting the first wiring layer 21 and a pad (not shown) formed in the semiconductor element 1.

素子接続プラグ30は、第1絶縁層11の表面から半導体素子1のパッド(不図示)まで貫通するビア41に、導電体が充填されたものである。素子接続プラグ30は、例えば、レーザにより第1絶縁層11にビアを形成し、第1配線層21の形成と同時に形成することができる。また、半導体素子1に予め金属バンプなどを形成したものを素子接続プラグ30として好適に適用することができる。本実施形態1においては、レーザを用いて、ビア41を開口し、ビア41内にメッキにより銅を充填した。   The element connection plug 30 is obtained by filling a conductor into a via 41 penetrating from the surface of the first insulating layer 11 to a pad (not shown) of the semiconductor element 1. The element connection plug 30 can be formed simultaneously with the formation of the first wiring layer 21 by forming a via in the first insulating layer 11 by laser, for example. Moreover, what formed the metal bump etc. previously in the semiconductor element 1 can be applied suitably as the element connection plug 30. FIG. In the first embodiment, the via 41 is opened using a laser, and the via 41 is filled with copper by plating.

第1配線層21は、例えば、銅、銀、金、ニッケル、アルミニウム、チタン、モリブデン、タングステン、及びパラジウムからなる群から選択された少なくとも1種の金属、若しくはこれらを主成分とする合金、あるいは導電性フィラーを含有する樹脂から成る導電性樹脂などが好適であるが、これらに限定されない。電気抵抗値及びコストの観点からは、銅により形成することが望ましい。本実施形態1では、第1配線層21として銅を用いた。   The first wiring layer 21 is, for example, at least one metal selected from the group consisting of copper, silver, gold, nickel, aluminum, titanium, molybdenum, tungsten, and palladium, or an alloy containing these as a main component, or A conductive resin made of a resin containing a conductive filler is suitable, but is not limited thereto. From the viewpoint of electrical resistance value and cost, it is desirable to form with copper. In the first embodiment, copper is used as the first wiring layer 21.

<比較例1>
ここで、本発明の効果を説明するために、比較例に係る半導体装置について説明する。図27に、比較例1に係る半導体装置150の要部の断面図を示す。比較例1に係る半導体装置150は、半導体素子101を備える。半導体素子101は、半導体基板102を具備する。半導体装置150は、半導体基板102の厚み方向に開口部(基板貫通部)が設けられていない以外は、上記実施形態1と同様の構成となっている。すなわち、絶縁層110内に半導体素子101が内蔵されている。半導体基板102の第1主面102Aに設けられたパッド(不図示)は、素子接続プラグ130を介して配線構造120の第1配線121に接続されている。
<Comparative Example 1>
Here, in order to explain the effect of the present invention, a semiconductor device according to a comparative example will be described. FIG. 27 is a cross-sectional view of a main part of the semiconductor device 150 according to Comparative Example 1. The semiconductor device 150 according to the comparative example 1 includes the semiconductor element 101. The semiconductor element 101 includes a semiconductor substrate 102. The semiconductor device 150 has the same configuration as that of the first embodiment, except that an opening (substrate through-hole) is not provided in the thickness direction of the semiconductor substrate 102. That is, the semiconductor element 101 is built in the insulating layer 110. A pad (not shown) provided on the first main surface 102A of the semiconductor substrate 102 is connected to the first wiring 121 of the wiring structure 120 via the element connection plug 130.

本発明者らは、鋭意研究を重ね、比較例1に係る半導体装置150には、以下の問題点があることを突き止めた。すなわち、絶縁層110に半導体素子101を内蔵することによって、半導体装置150全体が下に凸の反り形状となる一方、半導体素子1の配設領域及びその近傍(以下、「半導体素子1近傍」とも称する)は上に凸の反りとなることがわかった。   The present inventors have made extensive studies and found that the semiconductor device 150 according to Comparative Example 1 has the following problems. That is, by incorporating the semiconductor element 101 in the insulating layer 110, the entire semiconductor device 150 has a downwardly convex warp shape, while the region where the semiconductor element 1 is disposed and its vicinity (hereinafter referred to as “semiconductor element 1 vicinity”). It has been found that this is a convex warpage.

半導体装置150は、絶縁層110の大きな熱膨張係数によって絶縁層110が硬化時に収縮し、下に凸の反りを発生させる。しかしながら、半導体素子101の周辺は、半導体基板の小さな熱膨張係数によって逆向きの反りが発生する。従って、半導体装置全体としては、下に凸の反りが発生し、半導体素子近傍では上に凸の反りが発生する。   In the semiconductor device 150, the insulating layer 110 contracts during curing due to a large thermal expansion coefficient of the insulating layer 110, and generates a convex warp downward. However, a reverse warp occurs around the semiconductor element 101 due to a small thermal expansion coefficient of the semiconductor substrate. Accordingly, the entire semiconductor device has a downward convex warp, and an upward convex warp in the vicinity of the semiconductor element.

半導体装置150全体の反りと、半導体素子101近傍の局所的な反りが逆方向であるため、半導体素子101の外周部近傍に内部応力が集中する。その結果、温度サイクル試験などの信頼性評価試験において、規定サイクル数以下で半導体素子101の外周部周辺の絶縁層110にクラックが発生し、第1配線層121のオープン不良が発生してしまった。   Since the warpage of the entire semiconductor device 150 and the local warpage in the vicinity of the semiconductor element 101 are in opposite directions, internal stress is concentrated in the vicinity of the outer peripheral portion of the semiconductor element 101. As a result, in a reliability evaluation test such as a temperature cycle test, cracks occurred in the insulating layer 110 around the outer peripheral portion of the semiconductor element 101 when the number of cycles was less than a predetermined number, and an open failure of the first wiring layer 121 occurred. .

<比較例2>
図28に、比較例2に係る半導体装置150aの断面図を示す。比較例2に係る半導体装置150aは、以下の点を除く基本的な構成は、上記比較例1と同様である。すなわち、比較例2に係る半導体装置150aは、半導体基板102aの厚みdが比較例1の半導体基板102の厚みdに比して薄い点において相違する。
<Comparative example 2>
FIG. 28 is a cross-sectional view of a semiconductor device 150a according to Comparative Example 2. The basic configuration of the semiconductor device 150a according to the comparative example 2 is the same as that of the comparative example 1 except for the following points. That is, the semiconductor device 150a according to Comparative Example 2, the thickness d 2 of the semiconductor substrate 102a is different in that a thin compared to the thickness d 1 of the semiconductor substrate 102 of Comparative Example 1.

比較例2によれば、半導体基板102aの厚さdを比較例1の半導体基板102の厚さdよりも薄くしているので、半導体素子101周辺の上に凸の反りをわずかに低減することが可能となる。これは、系全体で最も熱膨張係数の小さな半導体基板102aの体積を小さくしたことによるものである。しかしながら、半導体基板102aを全体的に薄くしたことにより、製造プロセスにおけるハンドリング性の劣化は避けられない。このため、半導体素子101aの特に周辺部における割れ不良や欠け不良が多発してしまった。 According to Comparative Example 2, since the thinner than the thickness d 1 of the semiconductor substrate 102 of Comparative Example 1 the thickness d 2 of the semiconductor substrate 102a, slightly reducing bent upwardly convex near the semiconductor element 101 It becomes possible to do. This is because the volume of the semiconductor substrate 102a having the smallest thermal expansion coefficient in the entire system is reduced. However, since the semiconductor substrate 102a is thinned as a whole, the handling property in the manufacturing process is inevitably deteriorated. For this reason, cracking defects and chipping defects occurred frequently in the peripheral portion of the semiconductor element 101a.

図4に、実施形態1及び比較例1に係る半導体装置の反り量の位置依存性を示す。図中の点線が、比較例1に係る半導体装置の反りプロファイルであり、図中の実線が、実施形態1に係る半導体装置の反りプロファイルである。   FIG. 4 shows the position dependency of the warpage amount of the semiconductor device according to the first embodiment and the comparative example 1. The dotted line in the figure is the warp profile of the semiconductor device according to Comparative Example 1, and the solid line in the figure is the warp profile of the semiconductor device according to the first embodiment.

図4に示すように、本実施形態1の半導体装置50によれば、比較例1に比して効果的に反りを低減できることがわかる。具体的には、比較例1に比して、ほぼ1/2以下の反り量が実現できている。本実施形態1においては、半導体基板2に基板貫通部3を設けることにより、半導体素子1の近傍の反りを効果的に低減し、かつ半導体装置50全体の反り量も低減することができることがわかった。   As shown in FIG. 4, according to the semiconductor device 50 of the first embodiment, it can be seen that the warpage can be effectively reduced as compared with the first comparative example. Specifically, compared to Comparative Example 1, a warpage amount of approximately ½ or less can be realized. In the first embodiment, it is found that by providing the substrate through portion 3 in the semiconductor substrate 2, the warpage in the vicinity of the semiconductor element 1 can be effectively reduced and the warpage amount of the entire semiconductor device 50 can be reduced. It was.

実施形態1及び比較例1に係る半導体装置について、温度サイクル試験を実施した。具体的には、−55℃〜+125℃の温度サイクル試験を行った。−55℃、125℃それぞれの温度において10分保持した。   About the semiconductor device which concerns on Embodiment 1 and the comparative example 1, the temperature cycle test was implemented. Specifically, a temperature cycle test of −55 ° C. to + 125 ° C. was performed. The temperature was held at −55 ° C. and 125 ° C. for 10 minutes.

比較例1に係る半導体装置においては、500サイクル付近でオープン不良が発生した。一方、実施形態1の半導体装置においては、2000サイクル行っても不良が発生しないことを確認した。これは、半導体基板2の基板貫通部3によって、半導体素子1の内部応力が低減し、半導体装置(絶縁層)全体の反り量が小さくなったためと考察している。   In the semiconductor device according to Comparative Example 1, an open defect occurred in the vicinity of 500 cycles. On the other hand, in the semiconductor device of Embodiment 1, it was confirmed that no defect occurred even after 2000 cycles. It is considered that this is because the internal stress of the semiconductor element 1 is reduced by the substrate penetration part 3 of the semiconductor substrate 2 and the warpage of the entire semiconductor device (insulating layer) is reduced.

本実施形態1に係る半導体装置50によれば、半導体素子を内蔵した半導体素子内蔵基板の反り、うねりを抑制できるため、信頼性を改善することができる。特に、温度サイクル試験特性を改善することができる。さらに、低反りによって、内蔵基板の配線歩留まりが改善されるため、配線不良による良品の半導体素子の破棄損失が減少し、製造コストを低減することができる。さらに、低反りによって、内蔵基板の配線をより微細化することも可能となり、配線層数削減によるコスト低減も可能となる。また、半導体素子を薄くしても半導体素子の強度が劣化せず、半導体素子内蔵基板の全体の厚さを小さくすることができる。また半導体素子を薄くしたときのハンドリング性を改善でき、製造歩留まりを向上させることができる。   According to the semiconductor device 50 according to the first embodiment, since the warpage and undulation of the semiconductor element built-in substrate incorporating the semiconductor element can be suppressed, the reliability can be improved. In particular, the temperature cycle test characteristics can be improved. Furthermore, since the wiring yield of the built-in substrate is improved due to the low warpage, the loss of discard of non-defective semiconductor elements due to wiring defects is reduced, and the manufacturing cost can be reduced. Furthermore, the low warpage makes it possible to further miniaturize the wiring of the built-in substrate, and to reduce the cost by reducing the number of wiring layers. Further, even if the semiconductor element is thinned, the strength of the semiconductor element is not deteriorated, and the entire thickness of the semiconductor element-embedded substrate can be reduced. Moreover, the handling property when the semiconductor element is thinned can be improved, and the manufacturing yield can be improved.

また、本実施形態1に係る基板貫通部3には、低弾性樹脂を充填しているので、より効果的に半導体素子1の内部応力を低減することができる。しかも、特許文献2のように、補強構造体を埋設する必要がないので、半導体装置の小型化、高密度化に有利である。   Moreover, since the board | substrate penetration part 3 which concerns on this Embodiment 1 is filled with low elastic resin, the internal stress of the semiconductor element 1 can be reduced more effectively. Moreover, unlike Patent Document 2, it is not necessary to embed a reinforcing structure, which is advantageous for downsizing and increasing the density of a semiconductor device.

なお、基板貫通部3の形状及び配置は、本発明の趣旨を逸脱しない範囲において種々の変形が可能である。図5(a)〜図5(f)、図6(a)〜(c)、図7(a)(b)、及び図8(a)(b)に、基板貫通部の変形例の一例を示す。   The shape and arrangement of the substrate penetration part 3 can be variously modified without departing from the spirit of the present invention. FIG. 5A to FIG. 5F, FIG. 6A to FIG. 7C, FIG. 7A and FIG. 7B, and FIG. 8A and FIG. Indicates.

図5(a)に示す半導体基板2aは、4つの長方形状の基板貫通部3aを有する。基板貫通部3aは、半導体基板2aの外周の近傍において、外周辺と概ね平行となるように配置されている。そして、これらの4つの基板貫通部3aは、半導体基板2aの中心位置に対して概ね点対称となるように配置されている。また、半導体基板2aの中心点を通る2等分線に対して概ね線対称となるように配置されている。   The semiconductor substrate 2a shown in FIG. 5A has four rectangular substrate through portions 3a. The substrate penetrating portion 3a is disposed in the vicinity of the outer periphery of the semiconductor substrate 2a so as to be substantially parallel to the outer periphery. And these four board | substrate penetration parts 3a are arrange | positioned so that it may become substantially point symmetrical with respect to the center position of the semiconductor substrate 2a. Further, the semiconductor substrate 2a is arranged so as to be substantially line symmetric with respect to the bisector passing through the center point of the semiconductor substrate 2a.

図5(b)に示す半導体基板2bは、半導体基板2bの4つのコーナー部において、半導体基板2bのコーナー部の辺と平行な2辺と、その端点を曲線により結んで得られる基板貫通部3bを有する。そして、これらの4つの基板貫通部3bは、半導体基板2bの中心位置に対して概ね点対称となるように配置されている。また、半導体基板2aの中心点を通る2等分線に対して概ね線対称となるように配置されている。   A semiconductor substrate 2b shown in FIG. 5B has a substrate penetrating portion 3b obtained by connecting two sides parallel to the corner portion of the semiconductor substrate 2b at the four corner portions of the semiconductor substrate 2b and the end points thereof by curves. Have And these four board | substrate penetration parts 3b are arrange | positioned so that it may become substantially point symmetrical with respect to the center position of the semiconductor substrate 2b. Further, the semiconductor substrate 2a is arranged so as to be substantially line symmetric with respect to the bisector passing through the center point of the semiconductor substrate 2a.

図5(c)に示す半導体基板2cは、5個の円形状の基板貫通部3cを有する。基板貫通部3cは、半導体基板2cのコーナー部と、半導体基板2cの略中心部に配置されている。これらの5つの半導体基板貫通部3cは、半導体基板2cの中心位置に対して概ね点対称となるように配置されている。また、半導体基板2cの中心点を通る2等分線に対して概ね線対称となるように配置されている。   The semiconductor substrate 2c shown in FIG. 5C has five circular substrate through-holes 3c. The substrate penetrating portion 3c is disposed at a corner portion of the semiconductor substrate 2c and a substantially central portion of the semiconductor substrate 2c. These five semiconductor substrate through-holes 3c are arranged so as to be substantially point-symmetric with respect to the center position of the semiconductor substrate 2c. Further, the semiconductor substrate 2c is arranged so as to be substantially line symmetric with respect to the bisector passing through the center point of the semiconductor substrate 2c.

図5(d)に示す半導体基板2dは、12個の正方形状の基板貫通部3dを有する。基板貫通部3dは、半導体基板2dの任意の位置に設けられている。基板貫通部3dのように、線対称、若しくは線対称を満たさない配置としても、応力低減の効果を十分に得ることができる。このように、任意の位置に基板貫通部(開口部)を形成する方法によれば、素子形成面の回路形成位置やパッド形成位置に応じて、適宜調整することが可能であり、設計上の自由度が高いというメリットを有する。   A semiconductor substrate 2d shown in FIG. 5D has twelve square substrate through portions 3d. The substrate penetration part 3d is provided at an arbitrary position of the semiconductor substrate 2d. Even if the arrangement is not line symmetric or does not satisfy line symmetry as in the substrate penetration part 3d, the effect of reducing stress can be sufficiently obtained. As described above, according to the method of forming the substrate through-hole (opening) at an arbitrary position, it is possible to appropriately adjust according to the circuit formation position and the pad formation position on the element formation surface. It has the advantage of a high degree of freedom.

図5(e)に示す半導体基板2eは、4個の円形状の基板貫通部3eと、1個の正方形状の基板貫通部3e’を有する。このように、基板貫通部として異なる形状が、複数混在していてもよい。   The semiconductor substrate 2e shown in FIG. 5E has four circular substrate through portions 3e and one square substrate through portion 3e '. As described above, a plurality of different shapes may be mixed as the substrate penetrating portion.

図5(f)に示す半導体基板2fは、半導体基板2fの略中央部に、円形状の基板貫通部3fを1つ有する。このように、基板貫通部3fを1つ設ける例であっても、応力低減の効果を得ることができる。なお、基板貫通部3fとして、半導体基板2fの略中央部に設ける例を説明したが、この位置に限定されるものではなく、任意の位置に設けることができる。   A semiconductor substrate 2f shown in FIG. 5 (f) has one circular substrate through-hole 3f at a substantially central portion of the semiconductor substrate 2f. Thus, even if it is an example which provides one board penetration part 3f, the effect of stress reduction can be acquired. In addition, although the example provided in the substantially center part of the semiconductor substrate 2f was demonstrated as the board | substrate penetration part 3f, it is not limited to this position, It can provide in arbitrary positions.

図6(a)に示す半導体基板2gは、同図に示すように、平面視上の形状が長方形状である。そして、半導体基板2gは、6つの楕円形状の基板貫通部3gを有する。基板貫通部3gは、長辺近傍に、其々3個配列されており、これら6個の基板貫通部3gは線対称となるように配置されている。   The semiconductor substrate 2g shown in FIG. 6A has a rectangular shape in plan view as shown in FIG. The semiconductor substrate 2g has six elliptical substrate through portions 3g. Three substrate penetrating portions 3g are arranged in the vicinity of the long side, and these six substrate penetrating portions 3g are arranged to be line-symmetric.

図6(b)に示す半導体基板2hは、5つの楕円形状の基板貫通部3hを有する。基板貫通部3hは、半導体基板2hの1つの長辺近傍に3個配列されており、さらに、その真ん中の基板貫通部3hに対し、垂直方向に均等に2つの基板貫通部3hが配列されている。これら5個の基板貫通部3hは概ね線対称となるように配置されている。   The semiconductor substrate 2h shown in FIG. 6B has five elliptical substrate through portions 3h. Three substrate through-holes 3h are arranged in the vicinity of one long side of the semiconductor substrate 2h, and two substrate through-holes 3h are evenly arranged in the vertical direction with respect to the middle substrate through-hole 3h. Yes. These five substrate through-holes 3h are arranged so as to be generally line symmetric.

図6(c)に示す半導体基板2iは、3つの円形状の基板貫通部3iを有する。基板貫通部3iは、半導体基板2の1つの対角線ライン上に均等に配置されている。すなわち、概ね点対称となるように配置されている。   The semiconductor substrate 2i shown in FIG. 6C has three circular substrate through portions 3i. The substrate penetrating portions 3 i are equally arranged on one diagonal line of the semiconductor substrate 2. That is, they are arranged so as to be substantially point-symmetric.

図7(a)及び図7(b)に示す半導体基板2jは、平面視上の形状が、図5(c)の基板貫通部3cと同様の基板貫通部3jを有する。但し、図7(b)に示すように、基板貫通部3jの開口径が、第1主面2Aから、第2主面2Bに向かうにつれて大きくなっている点において相違する。このように、開口径が、半導体基板の厚み方向に異なるものであっても、応力低減の効果を得ることができる。また、厚み方向に複数の開口径を有する段差構造としてもよい。素子形成面側である第1主面側の開口径を小さくすることにより、応力低減を実現しつつ、電子回路やパッド等の形成位置と基板貫通部の位置の調整を容易に行うことができる。   The semiconductor substrate 2j shown in FIGS. 7A and 7B has a substrate through-hole 3j similar in shape to the substrate through-hole 3c in FIG. 5C in plan view. However, as shown in FIG. 7 (b), the difference is that the opening diameter of the substrate penetrating portion 3j increases from the first main surface 2A toward the second main surface 2B. Thus, even if the opening diameter is different in the thickness direction of the semiconductor substrate, the effect of reducing the stress can be obtained. Moreover, it is good also as a level | step difference structure which has several opening diameters in the thickness direction. By reducing the opening diameter on the first main surface side, which is the element formation surface side, it is possible to easily adjust the formation position of the electronic circuit, the pad, etc. and the position of the substrate penetrating portion while realizing stress reduction. .

図8(a)は、半導体基板2kの第2主面2B側からみた平面図であり、図8(b)は、図8(a)のVIIIB−VIIIB切断部断面図である。半導体基板2kは、図8(a)及び図8(b)に示すように、第2主面2B側に形成された長方形状の溝部と、その溝部から第1主面2A側まで貫通する貫通孔を組み合わせた形状の基板貫通部3kを有する。このように、半導体基板の厚み方向に複数の異なる形状を組み合わせてもよい。   FIG. 8A is a plan view seen from the second main surface 2B side of the semiconductor substrate 2k, and FIG. 8B is a sectional view taken along the line VIIIB-VIIIB in FIG. 8A. As shown in FIGS. 8A and 8B, the semiconductor substrate 2k has a rectangular groove formed on the second main surface 2B side and a through hole penetrating from the groove portion to the first main surface 2A side. It has the board | substrate penetration part 3k of the shape which combined the hole. In this way, a plurality of different shapes may be combined in the thickness direction of the semiconductor substrate.

[実施形態2]
次に、上記実施形態1とは異なる半導体装置の一例について説明する。本実施形態2に係る半導体装置は、以下の点を除く基本的な構成は上記実施形態1と同様である。すなわち、上記実施形態1においては、半導体素子1の半導体基板2に開口部として基板貫通部3を設けていたのに対し、本実施形態2においては、半導体素子の半導体基板に開口部として基板ざぐり部3nを設けている点において相違する。
[Embodiment 2]
Next, an example of a semiconductor device different from the first embodiment will be described. The basic configuration of the semiconductor device according to the second embodiment is the same as that of the first embodiment except for the following points. That is, in the first embodiment, the substrate through-hole 3 is provided as an opening in the semiconductor substrate 2 of the semiconductor element 1, whereas in the second embodiment, a substrate spot is formed as an opening in the semiconductor substrate of the semiconductor element. The difference is that the portion 3n is provided.

図9は、本発明の実施形態2に係る半導体装置50nの模式的断面図である。同図に示すように、半導体装置50nは、半導体素子1nと、絶縁層10と、配線構造20を備える。半導体素子1nは、薄く研削された半導体基板2nを具備する。   FIG. 9 is a schematic cross-sectional view of a semiconductor device 50n according to Embodiment 2 of the present invention. As shown in the figure, the semiconductor device 50n includes a semiconductor element 1n, an insulating layer 10, and a wiring structure 20. The semiconductor element 1n includes a semiconductor substrate 2n that is thinly ground.

半導体基板2nには、開口部として基板ざぐり部3nが複数設けられている。基板ざぐり部3nは、半導体素子1nの反り量を低減する役割を担う。本実施形態2に係る基板ざぐり部3nは、半導体基板2nの第2主面2B側に設けられている。   The semiconductor substrate 2n is provided with a plurality of counterbore portions 3n as openings. The substrate counterbore 3n plays a role of reducing the amount of warpage of the semiconductor element 1n. The substrate counterbore 3n according to the second embodiment is provided on the second main surface 2B side of the semiconductor substrate 2n.

半導体基板2nの好適な材料としては、上記実施形態1と同様のものを例示することができる。半導体基板2nの厚さは、半導体装置50nに求められる厚さに応じて、適宜、調整することができる。本実施形態2では、半導体素子1nの半導体基板2nの厚さを30μmとし、半導体素子1nのチップサイズを10mm角とした。半導体装置50n全体の大きさは30mm角とした。内蔵する半導体素子1nの数は、1つであっても複数であってもよい。また、基板ざぐり部3nの個数が複数である例について説明したが、1つであってもよい。   As a suitable material for the semiconductor substrate 2n, the same materials as those in the first embodiment can be exemplified. The thickness of the semiconductor substrate 2n can be appropriately adjusted according to the thickness required for the semiconductor device 50n. In the second embodiment, the thickness of the semiconductor substrate 2n of the semiconductor element 1n is 30 μm, and the chip size of the semiconductor element 1n is 10 mm square. The overall size of the semiconductor device 50n was 30 mm square. The number of built-in semiconductor elements 1n may be one or plural. Moreover, although the example in which the number of the substrate spot portions 3n is plural has been described, the number may be one.

図10(a)は、第2主面2B側から見たときの半導体基板2nの模式的平面図であり、図10(b)は、図10(a)のXB−XB切断部断面図である。   FIG. 10A is a schematic plan view of the semiconductor substrate 2n when viewed from the second main surface 2B side, and FIG. 10B is a cross-sectional view taken along the line XB-XB in FIG. is there.

本実施形態2に係る基板ざぐり部3nは、図10(a)(b)に示すように、平面視上の形状を正方形状とし、側面視上の形状を凹部形状とした。基板ざぐり部3nは、第2主面2B側に5つ配置されている。具体的には、基板ざぐり部3nは、半導体基板2nのコーナー部近傍にそれぞれ1つずつ配置され、かつ、半導体基板2nの中心部に1つ配置されている。基板ざぐり部3nを配設する位置は、特に限定されないが、応力集中位置である半導体基板の外周部近傍に基板ざぐり部3nを設けることが好ましい。また、半導体基板2nにおける部分的な応力集中を分散する観点から、平面視上、点対称、若しくは線対称に配置することが好ましい。より好ましくは、本実施形態1の基板貫通部3のように、点対称であり、かつ線対称とすることである。基板ざぐり部3nの個々の形状は、特に限定されるものではなく、例えば、円形、矩形等の多角形状、または曲線で囲まれた形状、若しくはこれらを組み合わせたものであってもよい。さらに、半導体基板2nに配置される基板ざぐり部3nの形状は、同一のものに限定されるものではなく、複数の形状の基板ざぐり部3nが混在するものであってもよい。   As shown in FIGS. 10A and 10B, the substrate counterbore 3n according to the second embodiment has a square shape in plan view and a concave shape in side view. Five counterbore portions 3n are arranged on the second main surface 2B side. Specifically, the counterbore 3n is disposed one by one near the corner of the semiconductor substrate 2n, and one is disposed at the center of the semiconductor substrate 2n. The position at which the substrate spot 3n is disposed is not particularly limited, but it is preferable to provide the substrate spot 3n in the vicinity of the outer peripheral portion of the semiconductor substrate which is the stress concentration position. Further, from the viewpoint of dispersing the partial stress concentration in the semiconductor substrate 2n, it is preferable that the semiconductor substrate 2n be arranged in a point symmetry or a line symmetry in plan view. More preferably, it is point-symmetric and line-symmetric as in the substrate penetration part 3 of the first embodiment. The individual shape of the counterbore 3n is not particularly limited, and may be, for example, a circular shape, a polygonal shape such as a rectangle, a shape surrounded by a curve, or a combination thereof. Furthermore, the shape of the substrate spot portion 3n disposed on the semiconductor substrate 2n is not limited to the same shape, and a plurality of substrate spot portions 3n having a plurality of shapes may be mixed.

凹部(基板ざぐり部3n)の深さは、特に限定されるものではないが、応力低減をより効果的に得る観点から、半導体基板2nの厚みに対して1/2以上とすることが好ましい。本実施形態2では、基板ざぐり部3nの外径を50μm、深さを15μmとした。   The depth of the concave portion (substrate counterbore portion 3n) is not particularly limited, but is preferably set to 1/2 or more with respect to the thickness of the semiconductor substrate 2n from the viewpoint of more effectively reducing stress. In the second embodiment, the substrate counterbore 3n has an outer diameter of 50 μm and a depth of 15 μm.

基板ざぐり部3nの変形例としては、上記実施形態1の変形例として述べた図5(a)〜図7(b)の平面視上の形状配置において、側面視上の形状を凹部に変更したものを一例として挙げることができる。   As a modification of the counterbore portion 3n, the shape in the side view in the shape arrangement in the plan view of FIGS. 5A to 7B described as the modification of the first embodiment is changed to a concave portion. Things can be mentioned as an example.

基板ざぐり部3nは、例えば、D−RIE法やレーザ法により、半導体素子1nの厚み方向に凹部状の開口部(基板ざぐり部)を形成する。開口部内部は、空隙でもよいが、その一部または全部を充填材により充填してもよい。充填材6としては、特に限定されるものではないが、実施形態1で記載した例を好適に適用することができる。本実施形態2では、基板ざぐり部をD−RIE法で形成し、基板ざぐり部内部に、低弾性のエポキシ樹脂を充填した。   The substrate counterbore 3n forms a concave opening (substrate counterbore) in the thickness direction of the semiconductor element 1n by, for example, a D-RIE method or a laser method. The inside of the opening may be a gap, but a part or all of the opening may be filled with a filler. Although it does not specifically limit as the filler 6, The example described in Embodiment 1 can be applied suitably. In the second embodiment, the substrate spot portion is formed by the D-RIE method, and the substrate spot portion is filled with a low-elastic epoxy resin.

本実施形態2の半導体装置50nの反り量を検討したところ、図4の実線(実施形態1)と同様のプロファイルが得られ、反り量を低減できることを確認した。基板ざぐり部3nを設けることにより、半導体装置50n全体の反り量を低減しつつ、半導体素子近傍の反りを低減可能な半導体装置を提供することができる。また、基板ざぐり部3nに充填した充填材によって、半導体素子1nの機械的強度を劣化させることなく、反りの原因となる内部応力を低減することができる。充填材として低弾性材料(弾性率が5MPa以上、5GPa以下、好ましくは10MPa以上、2GPa以下)を適用することにより、より効果的に半導体素子の内部応力を低減することができる。また、これにより、半導体装置50n全体の厚さも薄くすることも可能である。しかも、基板ざぐり部3nを半導体基板2nの第2主面2Bに設けることにより、素子形成面への設計の影響を無くす、若しくは最小限に抑制することができる。   When the warpage amount of the semiconductor device 50n according to the second embodiment was examined, it was confirmed that the same profile as the solid line (first embodiment) in FIG. 4 was obtained and the warpage amount could be reduced. By providing the substrate counterbore 3n, it is possible to provide a semiconductor device capable of reducing the warpage in the vicinity of the semiconductor element while reducing the amount of warpage of the entire semiconductor device 50n. Further, the internal stress that causes the warp can be reduced without deteriorating the mechanical strength of the semiconductor element 1n by the filler filled in the counterbore portion 3n. By applying a low elastic material (elastic modulus is 5 MPa or more and 5 GPa or less, preferably 10 MPa or more and 2 GPa or less) as the filler, the internal stress of the semiconductor element can be more effectively reduced. This also makes it possible to reduce the overall thickness of the semiconductor device 50n. In addition, by providing the substrate spot 3n on the second main surface 2B of the semiconductor substrate 2n, the influence of the design on the element formation surface can be eliminated or minimized.

本実施形態2の半導体装置50nについて、温度サイクル試験(−55℃〜+125℃、10分保持)を実施し、2000サイクルまで不良が発生しないことを確認した。これは、半導体装置(絶縁層)全体の反り量と反対方向に反る半導体素子1の反り量を、基板ざぐり部3nにより低減した効果によるものと考察している。   A temperature cycle test (-55 ° C. to + 125 ° C., 10 minutes hold) was performed on the semiconductor device 50n of the second embodiment, and it was confirmed that no defect occurred until 2000 cycles. This is considered to be due to the effect of reducing the warpage amount of the semiconductor element 1 that is warped in the opposite direction to the warpage amount of the entire semiconductor device (insulating layer) by the substrate counterbore 3n.

本実施形態2に係る半導体装置によれば、半導体基板に開口部として基板ざぐり部3nを設けているので、上記実施形態1と同様の効果を得ることができる。   According to the semiconductor device according to the second embodiment, since the substrate counterbore 3n is provided as an opening in the semiconductor substrate, the same effect as in the first embodiment can be obtained.

なお、基板ざぐり部3nは、図11(a)に示すようなV字溝の基板ざぐり部3p、図11(b)に示すようなU字溝の基板ざぐり部3q等であってもよく、本発明の趣旨を逸脱しない範囲において種々の変形が可能である。また、本実施形態2においては、素子形成面とは反対側の第2主面2B側に基板ざぐり部を設ける構成について述べたが、これに限定されない。製造方法や用いる材料によっては、半導体装置全体(絶縁層10)の反りが、図9中、上に凸となり、半導体素子の反りが下に凸となる場合もあり得る。かかる場合には、第1主面2A側に基板ざぐり部を設ければよい。また、半導体装置全体(絶縁層10)と、半導体素子の反り方向が同一であるが、半導体素子の方が、絶縁層に比して反り量が大きい場合もあり得る。かかる場合にも、半導体素子の反り量を低減する方向に開口する凹部を設ければよい。すなわち、半導体素子の反りを低減する凹部であればよく、第1主面2Aと第2主面2B側の両方に開口する凹部を設ける態様であってもよい。   The substrate counterbore 3n may be a V-groove substrate counterbore 3p as shown in FIG. 11A, a U-groove substrate counterbore 3q as shown in FIG. Various modifications are possible without departing from the spirit of the present invention. In the second embodiment, the configuration in which the counterbore portion is provided on the second main surface 2B side opposite to the element formation surface is described, but the present invention is not limited to this. Depending on the manufacturing method and the material used, the warpage of the entire semiconductor device (insulating layer 10) may be upward in FIG. 9, and the warpage of the semiconductor element may be downward. In such a case, a counterbore portion may be provided on the first main surface 2A side. Further, the warpage direction of the semiconductor device as a whole and the semiconductor element is the same, but the warpage amount of the semiconductor element may be larger than that of the insulating layer. Even in such a case, it is only necessary to provide a recess that opens in a direction that reduces the amount of warpage of the semiconductor element. That is, it is only necessary to have a recess that reduces warpage of the semiconductor element, and an embodiment in which a recess that opens on both the first main surface 2A and the second main surface 2B side may be provided.

[実施形態3]
図12は、本発明の実施形態3に係る半導体装置50rの模式的断面図である。同図に示すように、半導体装置50rは、半導体素子1と、絶縁層10rと、配線構造20rを備える。本実施形態3に係る半導体素子1は、上記実施形態1と同様の構成となっている。すなわち、半導体素子1は、薄く研削された半導体基板2を具備する。そして、半導体素子1の反り量を低減するために、半導体基板2に開口部として基板貫通部3を形成する。
[Embodiment 3]
FIG. 12 is a schematic cross-sectional view of a semiconductor device 50r according to Embodiment 3 of the present invention. As shown in the figure, the semiconductor device 50r includes a semiconductor element 1, an insulating layer 10r, and a wiring structure 20r. The semiconductor element 1 according to the third embodiment has the same configuration as that of the first embodiment. That is, the semiconductor element 1 includes a semiconductor substrate 2 that is thinly ground. Then, in order to reduce the amount of warping of the semiconductor element 1, the substrate through portion 3 is formed as an opening in the semiconductor substrate 2.

絶縁層10rは、第1絶縁層11r、接着層19を備える。これらの材料は、上記実施形態1と同様に選定することができる。半導体素子1は、絶縁層10rに埋設されている。具体的には、半導体素子1の半導体基板2の第2主面2B側は、接着層19と当接され、その他の領域は第1絶縁層11rに当接されている。接着層19は、本実施形態3においては、半導体基板2と平面視上の形状が略同一のものを用いた。   The insulating layer 10 r includes a first insulating layer 11 r and an adhesive layer 19. These materials can be selected in the same manner as in the first embodiment. The semiconductor element 1 is embedded in the insulating layer 10r. Specifically, the second principal surface 2B side of the semiconductor substrate 2 of the semiconductor element 1 is in contact with the adhesive layer 19, and the other region is in contact with the first insulating layer 11r. In the third embodiment, the adhesive layer 19 has substantially the same shape as the semiconductor substrate 2 in plan view.

配線構造20rは、第1配線層21、素子接続プラグ30、第2配線層22、第1貫通プラグ31を備える。第1配線層21は、第1絶縁層11rの第1主面11A上に設けられている。素子接続プラグ30は、第1配線層21と半導体素子1に形成されたパッド(不図示)とを接続する役割を担う。素子接続プラグ30は、第1絶縁層11rに設けられたビア41内に導電体が充填されている。   The wiring structure 20 r includes a first wiring layer 21, an element connection plug 30, a second wiring layer 22, and a first through plug 31. The first wiring layer 21 is provided on the first main surface 11A of the first insulating layer 11r. The element connection plug 30 plays a role of connecting the first wiring layer 21 and a pad (not shown) formed in the semiconductor element 1. In the element connection plug 30, a conductor is filled in a via 41 provided in the first insulating layer 11r.

第2配線層22は、第1絶縁層11rの第2主面11B側に設けられている。第2配線層22のうちの一部は、第1配線層21に第1貫通プラグ31を介して電気的に接続される。また、第2配線層22のうちの一部は、接着層19と当接される。本実施形態3においては、接着層19と当接する第2配線層22は、接着層19の面積よりも平面視上のサイズが一回り大きくなるようにした。これにより、耐湿性などの信頼性が向上する。   The second wiring layer 22 is provided on the second main surface 11B side of the first insulating layer 11r. A part of the second wiring layer 22 is electrically connected to the first wiring layer 21 via the first through plug 31. A part of the second wiring layer 22 is in contact with the adhesive layer 19. In the third embodiment, the size of the second wiring layer 22 in contact with the adhesive layer 19 is slightly larger than the area of the adhesive layer 19 in plan view. Thereby, reliability, such as moisture resistance, improves.

第1貫通プラグ31は、第1配線層21と第2配線層22を電気的に接続する役割を担う。第1貫通プラグ31は、第1絶縁層11rの第1主面11Aから、第2配線層22の表面まで貫通するビア42内に配設された導電体により構成される。   The first through plug 31 plays a role of electrically connecting the first wiring layer 21 and the second wiring layer 22. The first through plug 31 is configured by a conductor disposed in a via 42 that penetrates from the first main surface 11A of the first insulating layer 11r to the surface of the second wiring layer 22.

第1配線層21は、上記実施形態1と同様の材料から選定することができる。第2配線層22は、第1配線層21と同様の材料から選定することができる。本実施形態3では、第1配線層21及び第2配線層22として、銅を用いた。   The first wiring layer 21 can be selected from the same material as in the first embodiment. The second wiring layer 22 can be selected from the same material as the first wiring layer 21. In the third embodiment, copper is used for the first wiring layer 21 and the second wiring layer 22.

次に、本実施形態3に係る半導体装置50rの製造方法の一例について図13(a)〜図13(e)の製造工程断面図を用いつつ説明する。   Next, an example of a method for manufacturing the semiconductor device 50r according to the third embodiment will be described using the manufacturing process cross-sectional views of FIGS. 13 (a) to 13 (e).

まず、支持体45の主面上に第2配線層22を形成する(図13(a)参照)。支持体45は、樹脂、金属、ガラス、半導体、セラミック等のいずれか又はそれらの組み合わせたものを用いることができる。また、半導体素子1を搭載する位置を明確にするために、支持体45上に位置マーク(不図示)を適宜設けてもよい。本実施形態3では、支持体45として銅合金を用いた。また、半導体素子1を搭載するための位置マークとして、電気めっきによる厚さ5μmのニッケルを設けた。   First, the second wiring layer 22 is formed on the main surface of the support body 45 (see FIG. 13A). As the support 45, any one of resin, metal, glass, semiconductor, ceramic, or a combination thereof can be used. Further, in order to clarify the position where the semiconductor element 1 is mounted, a position mark (not shown) may be appropriately provided on the support body 45. In the third embodiment, a copper alloy is used as the support body 45. In addition, as a position mark for mounting the semiconductor element 1, nickel having a thickness of 5 μm was provided by electroplating.

第2配線層22は、例えば、サブトラクティブ法、セミアディティブ法又はフルアディティブ法等の方法により形成することができる。サブトラクティブ法は、基板上に設けられた金属層(銅箔)上に所望のパターンのレジストを形成し、不要な銅箔をエッチングした後に、レジストを剥離して所望のパターンを得る方法である。セミアディティブ法は、無電解めっき法、スパッタ法、CVD法等で給電層を形成した後、所望のパターンに開口されたレジストを形成し、レジスト開口部内に電解めっき法による金属を析出させ、レジストを除去した後に給電層をエッチングして所望の配線パターンを得る方法である。フルアディティブ法は、基板上に無電解めっき触媒を吸着させた後に、レジストでパターンを形成し、このレジストを絶縁膜として残したまま触媒を活性化し、無電解めっき法により絶縁膜の開口部に金属を析出させることで所望の配線パターンを得る方法である。   The second wiring layer 22 can be formed by a method such as a subtractive method, a semi-additive method, or a full additive method. The subtractive method is a method in which a resist having a desired pattern is formed on a metal layer (copper foil) provided on a substrate, an unnecessary copper foil is etched, and then the resist is removed to obtain a desired pattern. . In the semi-additive method, a power supply layer is formed by an electroless plating method, a sputtering method, a CVD method, etc., a resist having an opening in a desired pattern is formed, and a metal is deposited in the resist opening by an electrolytic plating method. This is a method of obtaining a desired wiring pattern by etching the power feeding layer after removing the wire. In the full additive method, after an electroless plating catalyst is adsorbed on a substrate, a pattern is formed with a resist, and the catalyst is activated while leaving the resist as an insulating film. In this method, a desired wiring pattern is obtained by depositing metal.

第2配線層22としては、例えば、主成分が銅、銀、金、ニッケル、アルミニウム、チタン、モリブデン、タングステン、及びパラジウムからなる群から選択された1種又は複数の金属を使用することができる。電気抵抗値及びコストの観点からは、銅により形成することが好ましい。本実施形態3では、銅を用い、セミアディティブ法により第2配線層22を形成した。   As the second wiring layer 22, for example, one or more metals selected from the group consisting of copper, silver, gold, nickel, aluminum, titanium, molybdenum, tungsten, and palladium can be used. . From the viewpoint of electrical resistance value and cost, it is preferable to form with copper. In the third embodiment, the second wiring layer 22 is formed using copper by a semi-additive method.

次に、基板貫通部3が形成された半導体基板2を有する半導体素子1を用意する。半導体素子の基板材料としては、例えば、上記実施形態1で説明した材料を好適に適用することができる。本実施形態3においては、半導体基板2としてシリコン基板を用いた。半導体基板2の厚さは、30μmとし、半導体素子のサイズは、10mm角とした。基板貫通部3は、任意の場所に設けることができる。搭載する半導体素子の数は、1つであっても複数であってもよい。また、積層型の半導体素子を搭載してもよい。   Next, the semiconductor element 1 having the semiconductor substrate 2 on which the substrate penetration part 3 is formed is prepared. As the substrate material of the semiconductor element, for example, the materials described in the first embodiment can be suitably applied. In the third embodiment, a silicon substrate is used as the semiconductor substrate 2. The thickness of the semiconductor substrate 2 was 30 μm, and the size of the semiconductor element was 10 mm square. The board penetration part 3 can be provided in an arbitrary place. The number of semiconductor elements to be mounted may be one or plural. A stacked semiconductor element may be mounted.

基板貫通部3は、半導体基板2上に、電子回路やパッド等の各種素子を形成する前に所定の位置に設けることができる。また、半導体基板上に各種素子を形成した後に、半導体基板2に貫通部を形成してもよい。基板貫通部3の径は、特に限定されないが、本実施形態3においては、外径を50μmとした。   The substrate penetrating portion 3 can be provided at a predetermined position on the semiconductor substrate 2 before forming various elements such as electronic circuits and pads. Further, the through portion may be formed in the semiconductor substrate 2 after forming various elements on the semiconductor substrate. The diameter of the substrate penetrating portion 3 is not particularly limited, but in the third embodiment, the outer diameter is 50 μm.

半導体素子1は、支持体45の所定の第2配線層22の上層に、接着層19を介して搭載する(図13(b)参照)。半導体素子1の支持体45上への搭載は、フェースアップの状態で半導体搭載機を用いて行った。   The semiconductor element 1 is mounted on the upper layer of the predetermined second wiring layer 22 of the support body 45 through the adhesive layer 19 (see FIG. 13B). The semiconductor element 1 was mounted on the support 45 using a semiconductor mounting machine in a face-up state.

次に、半導体素子1を埋設するように第1絶縁層11rを形成する(図13(c)参照)。第1絶縁層11rの材料としては、例えば、上記実施形態1で説明した材料を好適に適用することができる。半導体素子1の内蔵には、例えば、トランスファーモールディング法、圧縮形成モールド法、印刷法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、カーテンコート法、又はフォトリソグラフィー法等を適用することができる。本実施形態3では、エポキシ樹脂を用いて真空ラミネート法により第1絶縁層11rを形成した。なお、第1絶縁層11rを形成する際には、事前に半導体素子1に相当する箇所に凹部を形成し、第1絶縁層11rと支持体45を接合してもよい。   Next, a first insulating layer 11r is formed so as to embed the semiconductor element 1 (see FIG. 13C). As the material of the first insulating layer 11r, for example, the material described in the first embodiment can be suitably applied. For example, a transfer molding method, a compression molding mold method, a printing method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a curtain coating method, or a photolithography method is applied to the semiconductor element 1. Can do. In the third embodiment, the first insulating layer 11r is formed by vacuum lamination using an epoxy resin. When forming the first insulating layer 11r, a concave portion may be formed in advance at a location corresponding to the semiconductor element 1, and the first insulating layer 11r and the support body 45 may be joined.

続いて、第1絶縁層11rの表面から、半導体素子1のパッド(不図示)の表面まで貫通するビア41を設ける。また、第1絶縁層11rの表面から、第2配線層22の表面まで貫通するビア42を形成する(図13(d)参照)。これらのビア41,42は、第1絶縁層11rとして感光性材料を用いた場合には、フォトリソグラフィーにより直接的にパターン形成することができる。また、第1絶縁層11rとして非感光性樹脂を用いた場合、あるいは感光性材料でも解像度が低い場合には、例えば、レーザ加工法、ドライエッチング法又はブラスト法等によりビア41、42を形成する。本実施形態3では、レーザ加工法を用いてビア41、42を形成した。   Subsequently, a via 41 penetrating from the surface of the first insulating layer 11r to the surface of the pad (not shown) of the semiconductor element 1 is provided. In addition, a via 42 penetrating from the surface of the first insulating layer 11r to the surface of the second wiring layer 22 is formed (see FIG. 13D). These vias 41 and 42 can be directly patterned by photolithography when a photosensitive material is used as the first insulating layer 11r. Further, when a non-photosensitive resin is used as the first insulating layer 11r, or when the resolution is low even with a photosensitive material, the vias 41 and 42 are formed by, for example, a laser processing method, a dry etching method, or a blast method. . In the third embodiment, the vias 41 and 42 are formed using a laser processing method.

次に、ビア41の内部に導体を形成することにより素子接続プラグ30を、ビア42の内部に導体を形成することにより第1貫通プラグ31を形成する。そして、第1絶縁層11rの上層に第1配線層21を形成する(図13(e)参照)。ビア41に導体を充填することにより素子接続プラグ30が、ビア42に導体を充填することにより第1貫通プラグ31が形成される。これらの導体は、特に限定されるものではないが、例えば、主成分が銅、銀、金、ニッケル、アルミニウム、チタン、モリブデン、タングステン、及びパラジウムからなる群から選択された1種又は複数の金属を用いることができる。導体の充填は、例えば、電気めっき、無電解めっき、印刷法又は溶融金属吸引法等の方法により行うことができる。   Next, the element connection plug 30 is formed by forming a conductor inside the via 41, and the first through plug 31 is formed by forming a conductor inside the via 42. Then, the first wiring layer 21 is formed on the first insulating layer 11r (see FIG. 13E). The element connection plug 30 is formed by filling the via 41 with a conductor, and the first through plug 31 is formed by filling the via 42 with the conductor. These conductors are not particularly limited, but, for example, one or more metals selected from the group consisting of copper, silver, gold, nickel, aluminum, titanium, molybdenum, tungsten, and palladium as main components. Can be used. The conductor can be filled by a method such as electroplating, electroless plating, a printing method or a molten metal suction method.

なお、素子接続プラグ30及び第1貫通プラグ31の所望の位置に予め金属バンプ等の通電用のポストを形成し、その後に第1絶縁層11rを形成し、研磨により第1絶縁層11rの表面を削って通電用ポストを露出させることにより素子接続プラグ30及び第1貫通プラグ31を形成してもよい。この方法によれば、第1絶縁層11rにビアを設けるプロセスをカットすることができる。   It should be noted that energization posts such as metal bumps are formed in advance at desired positions of the element connection plug 30 and the first through plug 31, and then the first insulating layer 11r is formed, and the surface of the first insulating layer 11r is polished. The element connection plug 30 and the first through plug 31 may be formed by shaving to expose the energization post. According to this method, the process of providing a via in the first insulating layer 11r can be cut.

第1配線層21は、例えば、前述の第2配線層22の形成方法と同様の方法により製造することができる。第1配線層21の例は、特に限定されないが、第2配線層22で挙げたものを好適な例として挙げることができる。本実施形態3では、銅を用い、セミアディティブ法により第1配線層21を形成した。   The first wiring layer 21 can be manufactured, for example, by a method similar to the method for forming the second wiring layer 22 described above. Although the example of the 1st wiring layer 21 is not specifically limited, What was mentioned by the 2nd wiring layer 22 can be mentioned as a suitable example. In the third embodiment, the first wiring layer 21 is formed by using a semi-additive method using copper.

その後、支持体45を除去し、図12に示すような半導体装置50rを得た。支持体45の除去には、薬液によるウェットエッチング法、機械的研磨による研削法、物理的な剥離法等が好適であるが、これらに限定されない。本実施形態3においては、アルカリ性のウェットエッチング液を用いて、銅合金である支持体45を除去した。   Thereafter, the support 45 was removed to obtain a semiconductor device 50r as shown in FIG. For removing the support 45, a wet etching method using a chemical solution, a grinding method using mechanical polishing, a physical peeling method, and the like are suitable, but not limited thereto. In this Embodiment 3, the support body 45 which is a copper alloy was removed using alkaline wet etching liquid.

なお、本実施形態3において適用した半導体基板2(シリコン)の熱膨張係数は約3.5ppm/K、絶縁層(エポキシ樹脂)の熱膨張係数は約60ppm/K、支持体(銅)の熱膨張係数は約17ppm/Kである。従って、半導体素子1の熱膨張係数が最も小さい。   The thermal expansion coefficient of the semiconductor substrate 2 (silicon) applied in the third embodiment is about 3.5 ppm / K, the thermal expansion coefficient of the insulating layer (epoxy resin) is about 60 ppm / K, and the heat of the support (copper). The expansion coefficient is about 17 ppm / K. Therefore, the thermal expansion coefficient of the semiconductor element 1 is the smallest.

半導体素子の反り量を低減する手段である基板貫通部、若しくは基板ざぐり部等の開口部を半導体基板2に設けない場合、絶縁層10の硬化時に、支持体45、接着層、半導体素子、埋め込み絶縁層の各々の熱膨張係数の差によって、内部応力が蓄積される。そして、その後、支持体45を除去すると、内蔵基板全体が大きく下に凸の反り形状となる。その一方、半導体素子搭載領域は、逆に上に凸という反り形状が局所的に発生する。半導体装置(絶縁層)全体の反りと半導体素子の局所的な反りが逆方向であるため、半導体素子の外周部に内部応力が集中する。そして、温度サイクル試験などの信頼性評価試験において、規定サイクル数以下で外周部周辺の絶縁樹脂にクラックが発生し、配線のオープン不良が発生してしまう。このような特徴的な反りは、半導体素子と絶縁層、さらには、半導体素子の製造工程において適用した支持体45の熱膨張係数の差によって生じる。特に、支持体として銅のような金属を用いた場合、顕著であることがわかった。   When the semiconductor substrate 2 is not provided with an opening such as a substrate through-hole or a counterbore, which is a means for reducing the warpage of the semiconductor element, the support 45, the adhesive layer, the semiconductor element, and the embedded layer are cured when the insulating layer 10 is cured Internal stress accumulates due to the difference in thermal expansion coefficient of each insulating layer. After that, when the support body 45 is removed, the entire built-in substrate becomes a warped shape that protrudes greatly downward. On the other hand, in the semiconductor element mounting region, on the contrary, a warped shape that is convex upward is locally generated. Since the warpage of the entire semiconductor device (insulating layer) and the local warpage of the semiconductor element are in opposite directions, internal stress concentrates on the outer periphery of the semiconductor element. In a reliability evaluation test such as a temperature cycle test, cracks occur in the insulating resin around the outer peripheral portion when the number of cycles is less than the specified number, and an open defect of the wiring occurs. Such characteristic warpage is caused by a difference in thermal expansion coefficient between the semiconductor element and the insulating layer, and further, the support 45 applied in the manufacturing process of the semiconductor element. In particular, it has been found that this is remarkable when a metal such as copper is used as the support.

本発明者らが鋭意研究を重ねた結果、半導体素子の反り量を低減する手段として、基板貫通部若しくは基板ざぐり部を設けた半導体基板を用いることにより、図4の比較例に示すような反り形状を抑制することができることを見出した。換言すると、基板貫通部若しくは基板ざぐり部を設けることにより、内蔵基板全体が大きく下に凸の反り形状となる一方、半導体素子搭載領域のみ逆に上に凸という反り形状が局所的に発生するのを抑制できることを見いだした。   As a result of repeated studies by the present inventors, as a means for reducing the warpage amount of the semiconductor element, a warp as shown in the comparative example of FIG. It has been found that the shape can be suppressed. In other words, by providing the substrate through-hole portion or the substrate counterbore portion, the entire built-in substrate has a large downward convex warp shape, whereas only the semiconductor element mounting region has a convex upward convex shape locally. It was found that it can be suppressed.

本実施形態3に係る半導体装置50rにおいて、図4中の実線(実施形態1)の反りプロファイルと同様のプロファイルが得られることを確認した。すなわち、半導体装置50rの反り量を、効果的に低減できることを確認した。これは、半導体素子1に基板貫通部3を設け、かつ基板貫通部3内を空隙、若しくは低弾性の材料により充填する構造を採用しているので、半導体素子1の機械的強度を劣化させることなく、反りの原因となる内部応力を低減できたことによるものと考察している。   In the semiconductor device 50r according to the third embodiment, it was confirmed that a profile similar to the warp profile of the solid line (first embodiment) in FIG. 4 was obtained. That is, it was confirmed that the warpage amount of the semiconductor device 50r can be effectively reduced. This employs a structure in which the substrate through-hole 3 is provided in the semiconductor element 1 and the inside of the substrate through-hole 3 is filled with a gap or a low elastic material, so that the mechanical strength of the semiconductor element 1 is deteriorated. However, it is considered that the internal stress that causes the warp could be reduced.

本実施形態3に係る半導体装置に対して、温度サイクル試験(−55℃〜+125℃、10分保持)を実施したところ、2000サイクル行っても不良が発生しないことを確認した。これは、半導体基板2の基板貫通部3により半導体素子の内部応力が低減し、半導体装置(絶縁層)全体の反り量が小さくなったためと考えられる。   When a temperature cycle test (-55 ° C. to + 125 ° C., held for 10 minutes) was performed on the semiconductor device according to the third embodiment, it was confirmed that no defect occurred even after 2000 cycles. This is presumably because the internal stress of the semiconductor element is reduced by the substrate penetration part 3 of the semiconductor substrate 2 and the warpage of the entire semiconductor device (insulating layer) is reduced.

本実施形態3に係る半導体装置50rによれば、基板貫通部3を設けることにより、半導体装置50全体の反り量を低減しつつ、半導体素子近傍の反りを低減可能な半導体装置を提供することができる。また、本実施形態3の半導体装置50rは、第2配線層22を有しているため、より多ピン、高機能な半導体素子を内蔵することが可能であるというメリットを有する。しかも、第1貫通プラグ31によって、上層側の第1配線層21と、下層側の第2配線層22が接続されているため、半導体装置50rの両面を用いた接続を可能とする。これにより、例えば、パッケージ・オン・パッケージ型のシステム・イン・パッケージ等の複雑な構造のモジュールを作製することも可能となる。   According to the semiconductor device 50r according to the third embodiment, by providing the substrate through portion 3, it is possible to provide a semiconductor device capable of reducing the warpage in the vicinity of the semiconductor element while reducing the warpage amount of the entire semiconductor device 50. it can. In addition, since the semiconductor device 50r according to the third embodiment has the second wiring layer 22, it has an advantage that it is possible to incorporate a higher-functionality semiconductor element with more pins. In addition, since the first wiring layer 21 on the upper layer side and the second wiring layer 22 on the lower layer side are connected by the first through plug 31, the connection using both surfaces of the semiconductor device 50r is possible. Accordingly, for example, a module having a complicated structure such as a package-on-package system-in-package can be manufactured.

さらに、本実施形態3に係る半導体装置は、半導体素子1の搭載場所に、半導体素子1よりも大きな面積の第2配線層22が設けられている。これにより、接着層19が表面に露出することを防ぐことができる。その結果、耐湿性などの信頼性が向上する。   Furthermore, in the semiconductor device according to the third embodiment, the second wiring layer 22 having a larger area than that of the semiconductor element 1 is provided at the place where the semiconductor element 1 is mounted. Thereby, it can prevent that the contact bonding layer 19 is exposed to the surface. As a result, reliability such as moisture resistance is improved.

<変形例3−1>
次に、実施形態3の変形例の一例について説明する。図14に、変形例3−1に係る半導体装置50sの要部の模式的断面図を示す。半導体装置50sにおいては、半導体装置の両主面にソルダーレジスト46が設けられている。ソルダーレジスト46の材料は、特に限定されないが、エポキシ系、アクリル系、ウレタン系、又はポリイミド系の有機材料を好適に用いることができる。また、必要に応じて、無機材料又は有機材料のフィラーを添加してもよい。また、ソルダーレジスト46として、感光性レジストインクを使用してもよい。本変形例3−1では、感光性レジストインクを用いた。本変形例3−1によれば、上記実施形態3と同様に、低反り効果を得ることができる。しかも、ソルダーレジスト46を設けることにより耐環境性を改善することができる。
<Modification 3-1>
Next, an example of a modification of the third embodiment will be described. FIG. 14 is a schematic cross-sectional view of a main part of a semiconductor device 50s according to Modification 3-1. In the semiconductor device 50s, solder resists 46 are provided on both main surfaces of the semiconductor device. The material of the solder resist 46 is not particularly limited, but an epoxy-based, acrylic-based, urethane-based, or polyimide-based organic material can be suitably used. Moreover, you may add the filler of an inorganic material or an organic material as needed. A photosensitive resist ink may be used as the solder resist 46. In this modified example 3-1, a photosensitive resist ink was used. According to the modified example 3-1, a low warpage effect can be obtained as in the third embodiment. In addition, the environmental resistance can be improved by providing the solder resist 46.

<変形例3−2>
図15に、変形例3−2に係る半導体装置50tの模式的断面図を示す。半導体装置50tの片面側には、外部端子47が設けられている。半導体装置50tは、外部端子47を介して機器(不図示)のボードに実装可能な構造となっている。外部端子47の材料は、特に限定されないが、第1配線層21や第2配線層22と同様の材料から選択することができる。その表面には、金、銀、銅、錫及び半田材料等からなる群から選択された1種、又は複数の金属を形成してもよい。本変形例3−2では、外部端子47として錫、銀及び銅の合金を用いた。本変形例3−2によれば、上記実施形態3と同様に、低反り効果が得られる。
<Modification 3-2>
FIG. 15 is a schematic cross-sectional view of a semiconductor device 50t according to Modification 3-2. An external terminal 47 is provided on one side of the semiconductor device 50t. The semiconductor device 50 t has a structure that can be mounted on a board of a device (not shown) via the external terminal 47. The material of the external terminal 47 is not particularly limited, but can be selected from the same material as the first wiring layer 21 and the second wiring layer 22. One or a plurality of metals selected from the group consisting of gold, silver, copper, tin, solder material, and the like may be formed on the surface. In Modification 3-2, an alloy of tin, silver, and copper was used as the external terminal 47. According to the modification 3-2, the low warping effect can be obtained as in the third embodiment.

[実施形態4]
本実施形態4に係る半導体装置は、以下の点を除く基本的な構成は上記実施形態3と同様である。すなわち、上記実施形態3においては、基板貫通部3が半導体基板2を貫通するように設けていたのに対し、本実施形態4においては、基板貫通部が半導体基板のみならず、その下層に配置された接着層をも貫通するように形成されている点において相違する。
[Embodiment 4]
The basic configuration of the semiconductor device according to the fourth embodiment is the same as that of the third embodiment except for the following points. That is, in the third embodiment, the substrate penetrating portion 3 is provided so as to penetrate the semiconductor substrate 2, whereas in the fourth embodiment, the substrate penetrating portion is arranged not only in the semiconductor substrate but also in the lower layer. The difference is that the adhesive layer is formed so as to penetrate the adhesive layer.

図16は、本発明の実施形態4に係る半導体装置50uの模式的断面図である。同図に示すように、半導体装置50uは、半導体素子1と、絶縁層10uと、配線構造20uを備える。本実施形態4に係る半導体素子1は、薄く研削された半導体基板2を具備する。そして、半導体基板2には、半導体素子1の反りを低減するための開口部として基板貫通部3uが形成されている。   FIG. 16 is a schematic cross-sectional view of a semiconductor device 50u according to Embodiment 4 of the present invention. As shown in the figure, the semiconductor device 50u includes a semiconductor element 1, an insulating layer 10u, and a wiring structure 20u. The semiconductor element 1 according to the fourth embodiment includes a semiconductor substrate 2 that is thinly ground. The semiconductor substrate 2 is provided with a substrate through portion 3u as an opening for reducing the warp of the semiconductor element 1.

基板貫通部3uは、図16に示すように、半導体基板2を貫通するのみならず、接着層19uをも貫通するように形成されている。換言すると、接着層19uの直下層に配設された第2配線層22の表面まで到達するように、半導体基板2と接着層19uに一体的に基板貫通部3uが形成されている。この基板貫通部3uは、1つ、又は複数形成することが可能である。充填剤6uは、特に限定されないが、好ましくは、フィラー含有の低弾性樹脂を適用することである。これにより、半導体素子1において発生した熱を、基板貫通部3u経由で第2配線層22に逃すことが可能となる。すなわち、放熱効果を付与することができる。   As shown in FIG. 16, the substrate penetration 3u is formed not only to penetrate the semiconductor substrate 2, but also to penetrate the adhesive layer 19u. In other words, the substrate through-hole 3u is formed integrally with the semiconductor substrate 2 and the adhesive layer 19u so as to reach the surface of the second wiring layer 22 disposed immediately below the adhesive layer 19u. One or a plurality of the substrate penetrating portions 3u can be formed. The filler 6u is not particularly limited, but preferably a filler-containing low-elasticity resin is applied. Thereby, the heat generated in the semiconductor element 1 can be released to the second wiring layer 22 via the substrate penetration part 3u. That is, a heat dissipation effect can be imparted.

絶縁層10uは、第1絶縁層11r、接着層19uを備える。これらの材料は、上記実施形態1と同様に選定することができる。   The insulating layer 10u includes a first insulating layer 11r and an adhesive layer 19u. These materials can be selected in the same manner as in the first embodiment.

半導体基板2の材料、厚み、半導体素子のサイズは、上記実施形態3と同様とした。   The material, thickness, and size of the semiconductor element of the semiconductor substrate 2 were the same as those in the third embodiment.

絶縁層10、第1配線層21、第2配線層22、接着層19u等の材料としては、上記実施形態で述べたものを好適に適用することができる。接着層19uとしては、本実施形態4においては、エポキシ樹脂を主成分とするDAFを適用した。   As materials for the insulating layer 10, the first wiring layer 21, the second wiring layer 22, the adhesive layer 19 u and the like, those described in the above embodiment can be suitably applied. As the adhesive layer 19u, in the fourth embodiment, DAF mainly composed of an epoxy resin is applied.

製造方法についても、上記実施形態3で述べた方法を好適に適用することができる。本実施形態4においては、基板貫通部3uは、D−RIE法によりビアを開口し、ビア内部を低弾性のエポキシ樹脂で充填した構造を用いた。素子接続プラグ30は、レーザにより開口されたビアに銅を充填することにより得た。   Also for the manufacturing method, the method described in the third embodiment can be preferably applied. In the fourth embodiment, the substrate penetrating portion 3u has a structure in which a via is opened by a D-RIE method and the inside of the via is filled with a low elasticity epoxy resin. The element connection plug 30 was obtained by filling copper in a via opened by a laser.

本実施形態4に係る半導体装置50uによれば、図4中の実線(実施形態1)の反りプロファイルと同様のプロファイルを得ることができた。すなわち、半導体装置50uの反り量を、効果的に低減できることを確認した。これは、半導体素子1に基板貫通部3を設けているので、半導体素子1の機械的強度を劣化させることなく、反りの原因となる内部応力を基板貫通部3の低弾性樹脂によって低減できたことによるものと考察している。   According to the semiconductor device 50u according to the fourth embodiment, a profile similar to the warp profile of the solid line (first embodiment) in FIG. 4 could be obtained. That is, it was confirmed that the warpage amount of the semiconductor device 50u can be effectively reduced. This is because the semiconductor element 1 is provided with the substrate penetrating portion 3, so that the internal stress causing the warp can be reduced by the low elastic resin of the substrate penetrating portion 3 without deteriorating the mechanical strength of the semiconductor element 1. It is considered to be due to this.

本実施形態4の半導体装置に対して、温度サイクル試験(−55℃〜+125℃、10分保持)を実施したところ、2000サイクル後も不良が発生しないことを確認した。これは、半導体基板2の基板貫通部3により半導体素子の内部応力が低減し、半導体装置(絶縁層)全体の反り量が小さくなったためであると考察している。   When a temperature cycle test (-55 ° C. to + 125 ° C., 10 minutes hold) was performed on the semiconductor device of the fourth embodiment, it was confirmed that no defect occurred after 2000 cycles. It is considered that this is because the internal stress of the semiconductor element is reduced by the substrate penetration part 3 of the semiconductor substrate 2 and the warpage of the entire semiconductor device (insulating layer) is reduced.

本実施形態4に係る半導体装置によれば、上記実施形態3と同様の効果を得ることができる。しかも、本実施形態4の半導体装置50uは、基板貫通部3uが半導体素子1と接着層19uを貫通し、第2配線層22と接続している。これにより、半導体素子1内の放熱を効率的に行うことが可能となる。また、基板貫通部3uを半導体素子1のグランド層と接続することで、電磁輻射などのEMC特性を改善することができる。また、これらの効果は、基板貫通部3uに代えて基板ざぐり部を設けても同様の効果を得ることができる。   According to the semiconductor device of the fourth embodiment, the same effects as those of the third embodiment can be obtained. In addition, in the semiconductor device 50 u according to the fourth embodiment, the substrate penetrating portion 3 u penetrates the semiconductor element 1 and the adhesive layer 19 u and is connected to the second wiring layer 22. Thereby, it is possible to efficiently dissipate heat in the semiconductor element 1. Further, by connecting the substrate penetration 3u to the ground layer of the semiconductor element 1, EMC characteristics such as electromagnetic radiation can be improved. In addition, these effects can be obtained by providing a substrate counterbore in place of the substrate penetration 3u.

[実施形態5]
本実施形態5に係る半導体装置は、以下の点を除く基本的な構成は上記実施形態3と同様である。すなわち、上記実施形態3においては、第2配線層22が接着層19と当接するように設けられ、かつ、第2配線層22が第1絶縁層11と当接するように設けられていたのに対し、本実施形態5においては、第2配線層が接着層と離間して設けられ、かつ、第2配線層が第2絶縁層と当接するように設けられている点において相違する。
[Embodiment 5]
The basic configuration of the semiconductor device according to the fifth embodiment is the same as that of the third embodiment except for the following points. That is, in the third embodiment, the second wiring layer 22 is provided so as to contact the adhesive layer 19 and the second wiring layer 22 is provided so as to contact the first insulating layer 11. On the other hand, the fifth embodiment is different in that the second wiring layer is provided so as to be separated from the adhesive layer, and the second wiring layer is provided so as to contact the second insulating layer.

図17は、本発明の実施形態5に係る半導体装置50vの模式的断面図である。同図に示すように、半導体装置50vは、半導体素子1と、絶縁層10vと、配線構造20vを備える。本実施形態5に係る半導体素子1は、薄く研削された半導体基板2を具備する。そして、半導体基板2には、開口部として基板貫通部3が形成されている。   FIG. 17 is a schematic cross-sectional view of a semiconductor device 50v according to Embodiment 5 of the present invention. As shown in the figure, the semiconductor device 50v includes a semiconductor element 1, an insulating layer 10v, and a wiring structure 20v. The semiconductor element 1 according to the fifth embodiment includes a semiconductor substrate 2 that is thinly ground. The semiconductor substrate 2 is provided with a substrate through portion 3 as an opening.

絶縁層10vは、第1絶縁層11v、接着層19、第2絶縁層12を備える。半導体素子1は、絶縁層10vに埋設されている。具体的には、半導体素子1の半導体基板2の第2主面2B側は、接着層19と当接され、その他の領域は第1絶縁層11vに当接されている。そして、接着層19の半導体基板2と当接する側と反対側の面側には、第2絶縁層12が配設されている。換言すると、第2絶縁層12の上層には、半導体基板2と略同一形状の接着層19が積層されている。そして、接着層19の上層に半導体基板2が搭載されている。さらに、半導体素子1を埋設するように、半導体素子1の上層には、第1絶縁層11vが形成されている。   The insulating layer 10v includes a first insulating layer 11v, an adhesive layer 19, and a second insulating layer 12. The semiconductor element 1 is embedded in the insulating layer 10v. Specifically, the second principal surface 2B side of the semiconductor substrate 2 of the semiconductor element 1 is in contact with the adhesive layer 19, and the other region is in contact with the first insulating layer 11v. The second insulating layer 12 is disposed on the side of the adhesive layer 19 opposite to the side in contact with the semiconductor substrate 2. In other words, the adhesive layer 19 having substantially the same shape as that of the semiconductor substrate 2 is laminated on the second insulating layer 12. The semiconductor substrate 2 is mounted on the adhesive layer 19. Further, a first insulating layer 11v is formed in the upper layer of the semiconductor element 1 so as to embed the semiconductor element 1.

第1絶縁層11v、接着層19の材料は、上記実施形態1で説明したとおりである。第2絶縁層12の材料は、特に限定されないが、上記実施形態1において記載した第1絶縁層11と同様の材料を好適に適用することができる。第1絶縁層11vと第2絶縁層12の材料を同じにすることにより、製造プロセス上の歩留まりを向上させることができる。また、第2絶縁層12の熱膨張係数を第1絶縁層11vの熱膨張係数よりも小さくすることにより、半導体装置50v全体の下側に凸の反り量を低減することができる。本実施形態5においては、第1絶縁層11v、第2絶縁層12の両方にエポキシ樹脂を適用した。   The materials of the first insulating layer 11v and the adhesive layer 19 are as described in the first embodiment. Although the material of the 2nd insulating layer 12 is not specifically limited, The material similar to the 1st insulating layer 11 described in the said Embodiment 1 can be applied suitably. By using the same material for the first insulating layer 11v and the second insulating layer 12, the yield in the manufacturing process can be improved. Further, by making the thermal expansion coefficient of the second insulating layer 12 smaller than the thermal expansion coefficient of the first insulating layer 11v, it is possible to reduce the amount of warpage protruding downward on the entire semiconductor device 50v. In the fifth embodiment, epoxy resin is applied to both the first insulating layer 11v and the second insulating layer 12.

配線構造20vは、第1配線層21、素子接続プラグ30、第2配線層22v、第1貫通プラグ31vを備える。第2配線層22vは、第2絶縁層12の第2主面12B側に設けられている。第2配線層22vのうちの一部は、第1配線層21に第1貫通プラグ31vを介して電気的に接続される。また、第2配線層22vのうちの一部は、半導体素子1の下層に接着層19、第2絶縁層12を介して対向配置される。   The wiring structure 20v includes a first wiring layer 21, an element connection plug 30, a second wiring layer 22v, and a first through plug 31v. The second wiring layer 22v is provided on the second main surface 12B side of the second insulating layer 12. A part of the second wiring layer 22v is electrically connected to the first wiring layer 21 via the first through plug 31v. In addition, a part of the second wiring layer 22v is disposed opposite to the lower layer of the semiconductor element 1 with the adhesive layer 19 and the second insulating layer 12 interposed therebetween.

第1貫通プラグ31vは、第1配線層21と第2配線層22vを電気的に接続する役割を担う。第1貫通プラグ31vは、第1絶縁層11vの第1主面11Aから、第2配線層22vの表面まで貫通するビア42内に配設された導電体により構成される。従って、ビア42は、第1絶縁層11vから第2絶縁層12に亘って形成されている。   The first through plug 31v plays a role of electrically connecting the first wiring layer 21 and the second wiring layer 22v. The first through plug 31v is composed of a conductor disposed in a via 42 that penetrates from the first main surface 11A of the first insulating layer 11v to the surface of the second wiring layer 22v. Accordingly, the via 42 is formed from the first insulating layer 11 v to the second insulating layer 12.

半導体素子1の厚さは、半導体装置に求められる厚さに応じて適宜調整することができる。本実施形態5では、半導体素子1に備えられた半導体基板2をシリコンとし、半導体基板2の厚さを30μmとした。また、半導体素子1のチップサイズを10mm角とした。また、第1配線層21、第2配線層22vとして、銅を用いた。なお、内蔵される半導体素子1の数は1つであっても複数であってもよい。基板貫通部3は、半導体素子1の機械的強度を低下させない範囲で任意の場所に設けることができる。   The thickness of the semiconductor element 1 can be appropriately adjusted according to the thickness required for the semiconductor device. In the fifth embodiment, the semiconductor substrate 2 provided in the semiconductor element 1 is silicon, and the thickness of the semiconductor substrate 2 is 30 μm. The chip size of the semiconductor element 1 was 10 mm square. Further, copper was used for the first wiring layer 21 and the second wiring layer 22v. Note that the number of semiconductor elements 1 incorporated may be one or plural. The substrate penetrating portion 3 can be provided at an arbitrary place as long as the mechanical strength of the semiconductor element 1 is not lowered.

第1貫通プラグ31vは、例えばレーザにより第1絶縁層11v及び第2絶縁層12の一部にビア42を開口し、その後に導電体を充填することにより形成することができる。また、第2配線層22v上に予め金属バンプなどを設けることにより形成してもよい。本実施形態5においては、レーザにより開口されたビアにメッキにより充填された銅を用いた。   The first through plug 31v can be formed, for example, by opening a via 42 in a part of the first insulating layer 11v and the second insulating layer 12 with a laser and then filling the conductor. Further, it may be formed by providing a metal bump or the like in advance on the second wiring layer 22v. In the fifth embodiment, copper filled by plating in a via opened by a laser is used.

本実施形態5に係る半導体装置50vにおいて、図4中の実線(実施形態1)の反りプロファイルと同様のプロファイルが得られることを確認した。すなわち、半導体装置50vの反り量を、効果的に低減できることを確認した。これは、半導体素子1に基板貫通部3を設け、かつ基板貫通部3内を空隙、若しくは低弾性の材料により充填する構造を採用しているので、半導体素子1の機械的強度を劣化させることなく、反りの原因となる内部応力を低減できたことによるものと考察している。   In the semiconductor device 50v according to the fifth embodiment, it was confirmed that a profile similar to the warp profile of the solid line (first embodiment) in FIG. 4 was obtained. That is, it was confirmed that the warpage amount of the semiconductor device 50v can be effectively reduced. This employs a structure in which the substrate through-hole 3 is provided in the semiconductor element 1 and the inside of the substrate through-hole 3 is filled with a gap or a low elastic material, so that the mechanical strength of the semiconductor element 1 is deteriorated. However, it is considered that the internal stress that causes the warp could be reduced.

本実施形態5に係る半導体装置に対して、温度サイクル試験(−55℃〜+125℃、10分保持)を実施したところ、2000サイクル行っても不良が発生しないことを確認した。これは、半導体基板2の基板貫通部3により半導体素子の内部応力が低減し、半導体装置(絶縁層)全体の反り量が小さくなったことによるものと考察している。   When a temperature cycle test (-55 ° C. to + 125 ° C., held for 10 minutes) was performed on the semiconductor device according to the fifth embodiment, it was confirmed that no defect occurred even after 2000 cycles. It is considered that this is because the internal stress of the semiconductor element is reduced by the substrate penetration part 3 of the semiconductor substrate 2 and the warpage amount of the entire semiconductor device (insulating layer) is reduced.

本実施形態5に係る半導体装置50vによれば、上記実施形態3と同様の効果が得られる。さらに、本実施形態5の半導体装置は、第2絶縁層12を配設することにより、半導体素子1の下方において、微細配線を複数本配設することが可能となり、上記実施形態3に示した例よりもさらに高密度な配線収容が可能となる。これらの効果は、基板貫通部に代えて基板ざぐり部を設けても同様の効果を得ることができる。   According to the semiconductor device 50v according to the fifth embodiment, the same effect as in the third embodiment can be obtained. Furthermore, in the semiconductor device according to the fifth embodiment, it is possible to arrange a plurality of fine wirings below the semiconductor element 1 by arranging the second insulating layer 12, which is shown in the third embodiment. It becomes possible to accommodate wiring with higher density than the example. These effects can be obtained even if a counterbore portion is provided instead of the substrate penetration portion.

[実施形態6]
本実施形態6に係る半導体装置は、以下の点を除く基本的な構成は上記実施形態5と同様である。すなわち、本実施形態6においては、実施形態5に係る第1配線層21の上層にさらに、第3絶縁層を介して第3配線層が設けられている点において相違する。また、実施形態5に係る第2配線層22の上層にさらに、第4絶縁層を介して第4配線層が設けられている点において相違する。
[Embodiment 6]
The basic configuration of the semiconductor device according to the sixth embodiment is the same as that of the fifth embodiment except for the following points. That is, the sixth embodiment is different in that a third wiring layer is further provided above the first wiring layer 21 according to the fifth embodiment via a third insulating layer. Another difference is that a fourth wiring layer is further provided above the second wiring layer 22 according to the fifth embodiment via a fourth insulating layer.

図18は、本発明の実施形態6に係る半導体装置50wの模式的断面図である。同図に示すように、半導体装置50wは、半導体素子1と、絶縁層10wと、配線構造20wを備える。本実施形態6に係る半導体素子1は、薄く研削された半導体基板2を具備する。そして、半導体基板2には、半導体素子1の反りを低減するための開口部として基板貫通部3が形成されている。   FIG. 18 is a schematic cross-sectional view of a semiconductor device 50w according to Embodiment 6 of the present invention. As shown in the figure, the semiconductor device 50w includes a semiconductor element 1, an insulating layer 10w, and a wiring structure 20w. A semiconductor element 1 according to the sixth embodiment includes a semiconductor substrate 2 that is thinly ground. The semiconductor substrate 2 is provided with a substrate through portion 3 as an opening for reducing warpage of the semiconductor element 1.

絶縁層10wは、第1絶縁層11v、接着層19、第2絶縁層12、第3絶縁層13、第4絶縁層14を備える。半導体素子1は、絶縁層10wに埋設されている。具体的には、半導体素子1の半導体基板2の第2主面2B側は、接着層19と当接され、その他の領域は第1絶縁層11vに当接されている。そして、接着層19において、半導体基板2と当接する側と反対側の面側には、第2絶縁層12が配設されている。また、第1絶縁層11vの上層には、第3絶縁層13が配設され、第2絶縁層12の下層には、第4絶縁層14が配設されている。換言すると、第4絶縁層14の上層に第2絶縁層12が形成され、第2絶縁層12の上層に接着層19を介して半導体素子1が配設されている。また、第2絶縁層12の上層、及び半導体素子1の上には、第1絶縁層11vが配設され、第1絶縁層11vの上層には第3絶縁層13が配設されている。   The insulating layer 10w includes a first insulating layer 11v, an adhesive layer 19, a second insulating layer 12, a third insulating layer 13, and a fourth insulating layer 14. The semiconductor element 1 is embedded in the insulating layer 10w. Specifically, the second principal surface 2B side of the semiconductor substrate 2 of the semiconductor element 1 is in contact with the adhesive layer 19, and the other region is in contact with the first insulating layer 11v. The second insulating layer 12 is disposed on the side of the adhesive layer 19 opposite to the side in contact with the semiconductor substrate 2. A third insulating layer 13 is disposed above the first insulating layer 11v, and a fourth insulating layer 14 is disposed below the second insulating layer 12. In other words, the second insulating layer 12 is formed on the fourth insulating layer 14, and the semiconductor element 1 is disposed on the second insulating layer 12 with the adhesive layer 19 interposed therebetween. A first insulating layer 11v is disposed on the second insulating layer 12 and the semiconductor element 1, and a third insulating layer 13 is disposed on the first insulating layer 11v.

第1絶縁層11v、接着層19、第2絶縁層12材料は、上記実施形態5で説明したとおりである。また、第3絶縁層13、第4絶縁層14の材料は、第1絶縁層11v、第2絶縁層12にて例示したものを好適に適用することができる。第1絶縁層11v〜第4絶縁層14の材料を同じにすることにより、製造プロセス上の歩留まりを向上させることができる。また、第2絶縁層12の熱膨張係数を第1絶縁層11vの熱膨張係数よりも小さくすることにより、半導体装置50w全体の下側に凸の反り量を低減することができる。本実施形態6においては、第1絶縁層11v〜第4絶縁層14の全てにエポキシ樹脂を適用した。   The materials of the first insulating layer 11v, the adhesive layer 19, and the second insulating layer 12 are as described in the fifth embodiment. Further, as the materials of the third insulating layer 13 and the fourth insulating layer 14, those exemplified for the first insulating layer 11v and the second insulating layer 12 can be suitably applied. By making the materials of the first insulating layer 11v to the fourth insulating layer 14 the same, the yield in the manufacturing process can be improved. Further, by making the thermal expansion coefficient of the second insulating layer 12 smaller than the thermal expansion coefficient of the first insulating layer 11v, it is possible to reduce the amount of warpage protruding downward on the entire semiconductor device 50w. In the sixth embodiment, epoxy resin is applied to all of the first insulating layer 11v to the fourth insulating layer 14.

配線構造20wは、第1配線層21、素子接続プラグ30、第2配線層22v、第1貫通プラグ31v、第3配線層23、第2貫通プラグ32、第4配線層24、第3貫通プラグ33を備える。   The wiring structure 20w includes a first wiring layer 21, an element connection plug 30, a second wiring layer 22v, a first through plug 31v, a third wiring layer 23, a second through plug 32, a fourth wiring layer 24, and a third through plug. 33.

第3配線層23は、第3絶縁層13の上層に形成されている。第1配線層21と第3配線層23は、第3絶縁層13に設けられた第2貫通プラグ32により電気的に接続されている。一方、第4配線層26は、第4絶縁層14の第2主面15B側に形成されている。第2配線層23と第4配線層24は、第3貫通プラグ33により電気的に接続されている。   The third wiring layer 23 is formed in the upper layer of the third insulating layer 13. The first wiring layer 21 and the third wiring layer 23 are electrically connected by a second through plug 32 provided in the third insulating layer 13. On the other hand, the fourth wiring layer 26 is formed on the second main surface 15B side of the fourth insulating layer 14. The second wiring layer 23 and the fourth wiring layer 24 are electrically connected by a third through plug 33.

半導体基板の材料、厚みは、上記実施形態5と同様とした。半導体素子1のサイズも上記実施形態1と同様とした。また、第1配線層21、第2配線層22、第3配線層23、第4配線層24として、銅を用いた。なお、内蔵される半導体素子1の数は1つであっても複数であってもよい。基板貫通部3は、任意の場所に設けることができる。   The material and thickness of the semiconductor substrate were the same as those in the fifth embodiment. The size of the semiconductor element 1 was also the same as that of the first embodiment. Also, copper was used for the first wiring layer 21, the second wiring layer 22, the third wiring layer 23, and the fourth wiring layer 24. Note that the number of semiconductor elements 1 incorporated may be one or plural. The board penetration part 3 can be provided in an arbitrary place.

本実施形態6に係る半導体装置50wにおいて、図4中の実線(実施形態1)の反りプロファイルと同様のプロファイルが得られることを確認した。すなわち、半導体装置50wの反り量を、効果的に低減できることを確認した。これは、半導体素子1に基板貫通部3を設け、かつ基板貫通部3内を空隙、若しくは低弾性の材料により充填する構造を採用しているので、半導体素子1の機械的強度を劣化させることなく、反りの原因となる内部応力を低減できたことによるものと考察している。   In the semiconductor device 50w according to the sixth embodiment, it was confirmed that a profile similar to the warp profile of the solid line (first embodiment) in FIG. 4 was obtained. That is, it was confirmed that the warpage amount of the semiconductor device 50w can be effectively reduced. This employs a structure in which the substrate through-hole 3 is provided in the semiconductor element 1 and the inside of the substrate through-hole 3 is filled with a gap or a low elastic material, so that the mechanical strength of the semiconductor element 1 is deteriorated. However, it is considered that the internal stress that causes the warp could be reduced.

本実施形態6に係る半導体装置について、温度サイクル試験(−55℃〜+125℃、10分保持)を実施した結果、2000サイクル行っても不良が発生しないことを確認した。これは、半導体基板2の基板貫通部3により半導体素子の内部応力が低減し、半導体装置(絶縁層)全体の反り量が小さくなったことによるものと考察している。   As a result of conducting a temperature cycle test (-55 ° C. to + 125 ° C., 10 minutes hold) for the semiconductor device according to the sixth embodiment, it was confirmed that no defect occurred even after 2000 cycles. It is considered that this is because the internal stress of the semiconductor element is reduced by the substrate penetration part 3 of the semiconductor substrate 2 and the warpage amount of the entire semiconductor device (insulating layer) is reduced.

本実施形態6に係る半導体装置50wによれば、上記実施形態5と同様の効果を得ることができる。また、第3配線層、第4配線層を追加することにより、実施形態5よりもさらに高密度な配線収容が可能となる。   According to the semiconductor device 50w according to the sixth embodiment, the same effect as in the fifth embodiment can be obtained. Further, by adding the third wiring layer and the fourth wiring layer, it is possible to accommodate the wiring at a higher density than in the fifth embodiment.

[実施形態7]
本実施形態7に係る半導体装置は、以下の点を除く基本的な構成は上記実施形態6と同様である。すなわち、本実施形態7においては、実施形態6に係る半導体装置よりも、配線層及び絶縁層が、主面の両側において1層ずつ追加されている点において相違する。具体的には、実施形態6の第3配線層23の上層にさらに、第5絶縁層を介して第5配線層が設けられている。また、実施形態6の第4配線層24の下層にさらに、第6絶縁層を介して第6配線層が設けられている。以下、実施形態6との相違点について説明する。
[Embodiment 7]
The basic configuration of the semiconductor device according to the seventh embodiment is the same as that of the sixth embodiment except for the following points. That is, the seventh embodiment is different from the semiconductor device according to the sixth embodiment in that one wiring layer and one insulating layer are added on both sides of the main surface. Specifically, a fifth wiring layer is provided on the third wiring layer 23 of the sixth embodiment via a fifth insulating layer. Further, a sixth wiring layer is further provided below the fourth wiring layer 24 of the sixth embodiment via a sixth insulating layer. Hereinafter, differences from the sixth embodiment will be described.

図19は、本発明の実施形態7に係る半導体装置50xの模式的断面図である。同図に示すように、半導体装置50xは、半導体素子1と、絶縁層10xと、配線構造20xを備える。本実施形態7に係る半導体素子1は、薄く研削された半導体基板2を具備する。そして、半導体基板2には、半導体素子1の反りを低減するための開口部として基板貫通部3が形成されている。   FIG. 19 is a schematic cross-sectional view of a semiconductor device 50x according to Embodiment 7 of the present invention. As shown in the figure, the semiconductor device 50x includes a semiconductor element 1, an insulating layer 10x, and a wiring structure 20x. The semiconductor element 1 according to the seventh embodiment includes a semiconductor substrate 2 that is thinly ground. The semiconductor substrate 2 is provided with a substrate through portion 3 as an opening for reducing warpage of the semiconductor element 1.

絶縁層10xは、第1絶縁層11v、接着層19、第2絶縁層12、第3絶縁層13、第4絶縁層14、第5絶縁層15、第6絶縁層16を備える。第1絶縁層11vの上層には、第3絶縁層13が配設され、さらにその上層には、第5絶縁層15が配設されている。一方、第2絶縁層12の下層には、第4絶縁層14が配設され、さらにその下層に第6絶縁層16が配設されている。換言すると、第6絶縁層16の上層に第4絶縁層14が形成され、第4絶縁層14の上層に第2絶縁層12が形成されている。そして、第2絶縁層12の上層に接着層19を介して半導体素子1が配設されている。また、第2絶縁層12の上層、及び半導体素子1の上には、第1絶縁層11vが配設され、第1絶縁層11vの上層には第3絶縁層13が配設されている。さらに、第3絶縁層13の上層には、第5絶縁層15が配設されている。   The insulating layer 10x includes a first insulating layer 11v, an adhesive layer 19, a second insulating layer 12, a third insulating layer 13, a fourth insulating layer 14, a fifth insulating layer 15, and a sixth insulating layer 16. A third insulating layer 13 is disposed above the first insulating layer 11v, and a fifth insulating layer 15 is disposed thereon. On the other hand, a fourth insulating layer 14 is disposed below the second insulating layer 12, and a sixth insulating layer 16 is disposed below the fourth insulating layer 14. In other words, the fourth insulating layer 14 is formed above the sixth insulating layer 16, and the second insulating layer 12 is formed above the fourth insulating layer 14. The semiconductor element 1 is disposed on the second insulating layer 12 with an adhesive layer 19 interposed therebetween. A first insulating layer 11v is disposed on the second insulating layer 12 and the semiconductor element 1, and a third insulating layer 13 is disposed on the first insulating layer 11v. Further, a fifth insulating layer 15 is disposed on the third insulating layer 13.

第5絶縁層15、第6絶縁層16の材料は、特に限定されるものではないが、例えば、第1絶縁層11v、第2絶縁層12にて例示した材料を好適に適用することができる。第1絶縁層11v〜第6絶縁層16の材料を同じにすることにより、製造プロセス上の歩留まりを向上させることができる。また、半導体素子1よりも下層に配置される絶縁層の熱膨張係数を半導体素子1の上層側に配置される絶縁層の熱膨張係数よりも小さくすることにより、半導体装置50x全体の下側に凸の反り量を低減することができる。本実施形態7においては、第1絶縁層11v〜第6絶縁層16の全てにエポキシ樹脂を適用した。   The materials of the fifth insulating layer 15 and the sixth insulating layer 16 are not particularly limited. For example, the materials exemplified in the first insulating layer 11v and the second insulating layer 12 can be suitably applied. . By making the materials of the first insulating layer 11v to the sixth insulating layer 16 the same, the yield in the manufacturing process can be improved. Further, by making the thermal expansion coefficient of the insulating layer disposed below the semiconductor element 1 smaller than the thermal expansion coefficient of the insulating layer disposed on the upper layer side of the semiconductor element 1, The amount of convex warpage can be reduced. In the seventh embodiment, epoxy resin is applied to all of the first insulating layer 11v to the sixth insulating layer 16.

配線構造20xは、第1配線層21、素子接続プラグ30、第2配線層22v、第1貫通プラグ31v、第3配線層23、第2貫通プラグ32、第4配線層24、第3貫通プラグ33、第5配線層25、第4貫通プラグ34、第6配線層26、第5貫通プラグ35を備える。   The wiring structure 20x includes a first wiring layer 21, an element connection plug 30, a second wiring layer 22v, a first through plug 31v, a third wiring layer 23, a second through plug 32, a fourth wiring layer 24, and a third through plug. 33, a fifth wiring layer 25, a fourth through plug 34, a sixth wiring layer 26, and a fifth through plug 35.

第5配線層25は、第5絶縁層15の上層に形成されている。第5配線層25と第3配線層23は、第5絶縁層15に設けられた第4貫通プラグ34により電気的に接続されている。一方、第6配線層26は、第6絶縁層16の第2主面16B側に設けられている。第6配線層26と第4配線層24は、第5貫通プラグ35により電気的に接続されている。   The fifth wiring layer 25 is formed in the upper layer of the fifth insulating layer 15. The fifth wiring layer 25 and the third wiring layer 23 are electrically connected by a fourth through plug 34 provided in the fifth insulating layer 15. On the other hand, the sixth wiring layer 26 is provided on the second main surface 16B side of the sixth insulating layer 16. The sixth wiring layer 26 and the fourth wiring layer 24 are electrically connected by a fifth through plug 35.

本実施形態7では、半導体基板2の材料、厚み、半導体素子のサイズ等は、上記実施形態6と同様とした。また、第1配線層21、第2配線層22vとして、銅を用いた。   In the seventh embodiment, the material, thickness, semiconductor element size, and the like of the semiconductor substrate 2 are the same as those in the sixth embodiment. Further, copper was used for the first wiring layer 21 and the second wiring layer 22v.

本実施形態7に係る半導体装置50xにおいて、図4中の実線(実施形態1)の反りプロファイルと同様のプロファイルが得られることを確認した。すなわち、半導体装置50xの反り量を、効果的に低減できることを確認した。また、温度サイクル試験(−55℃〜+125℃、10分保持)を実施した結果、2000サイクル行っても不良が発生しないことを確認した。   In the semiconductor device 50x according to the seventh embodiment, it was confirmed that a profile similar to the warp profile of the solid line (first embodiment) in FIG. 4 was obtained. That is, it was confirmed that the warpage amount of the semiconductor device 50x can be effectively reduced. Moreover, as a result of carrying out a temperature cycle test (-55 ° C. to + 125 ° C., 10 minutes hold), it was confirmed that no defect occurred even after 2000 cycles.

本実施形態7に係る半導体装置50xによれば、上記実施形態6と同様の効果を得ることができる。また、第5配線層25、第6配線層26を追加することにより、実施形態6よりもさらに高密度な配線収容が可能となる。また、配線層として電源やグランド専用層を設けることにより、半導体素子1に供給する電源を安定化することができる。その結果、信頼性の高い半導体装置を提供することができる。   According to the semiconductor device 50x according to the seventh embodiment, the same effect as in the sixth embodiment can be obtained. Further, by adding the fifth wiring layer 25 and the sixth wiring layer 26, it is possible to accommodate wiring with higher density than in the sixth embodiment. Further, the power supply supplied to the semiconductor element 1 can be stabilized by providing a power supply or ground dedicated layer as the wiring layer. As a result, a highly reliable semiconductor device can be provided.

[実施形態8]
本実施形態8に係る半導体装置は、以下の点を除く基本的な構成は上記実施形態7と同様である。すなわち、本実施形態8においては、実施形態7に係る半導体装置に対して、第6配線層26の下層にソルダーレジストと外部端子を備えている点において相違する。
以下、実施形態7との相違点について説明する。
[Eighth embodiment]
The basic configuration of the semiconductor device according to the eighth embodiment is the same as that of the seventh embodiment except for the following points. That is, the eighth embodiment is different from the semiconductor device according to the seventh embodiment in that a solder resist and an external terminal are provided below the sixth wiring layer 26.
Hereinafter, differences from the seventh embodiment will be described.

図20は、本発明の実施形態8に係る半導体装置50yの模式的断面図である。同図に示すように、半導体装置50yは、半導体素子1と、絶縁層10yと、配線構造20yを備える。さらに、第6絶縁層16の第2主面16B上にソルダーレジスト46が配設されている。また、第6配線層26の露出面には外部端子47が配設されている。本実施形態7では、ソルダーレジストとして感光性レジストインクを用いた。また、外部端子47として、錫と銀と銅の合金を用いた。その他は、上記実施形態7と同様とした。   FIG. 20 is a schematic cross-sectional view of a semiconductor device 50y according to Embodiment 8 of the present invention. As shown in the figure, the semiconductor device 50y includes a semiconductor element 1, an insulating layer 10y, and a wiring structure 20y. Further, a solder resist 46 is disposed on the second main surface 16B of the sixth insulating layer 16. An external terminal 47 is disposed on the exposed surface of the sixth wiring layer 26. In the seventh embodiment, a photosensitive resist ink is used as a solder resist. As the external terminal 47, an alloy of tin, silver and copper was used. Others were the same as in the seventh embodiment.

次に、本実施形態8に係る半導体装置50yの製造方法の一例について図21(a)〜図21(e)、図22(f)〜図22(h)の製造工程断面図を用いつつ説明する。なお、以下に説明する製造方法は、一例であって、これに限定されるものではない。   Next, an example of a method for manufacturing the semiconductor device 50y according to the eighth embodiment will be described with reference to the manufacturing process cross-sectional views of FIGS. 21 (a) to 21 (e) and FIGS. 22 (f) to 22 (h). To do. In addition, the manufacturing method demonstrated below is an example, Comprising: It is not limited to this.

まず、支持体45の主面上に第2配線層22vを形成する。そして、支持体45、及び第2配線層22vを第2絶縁層12により被覆する(図21(a)参照)。支持体45の材料は、上記実施形態3で述べたとおりである。本実施形態8では、支持体45として銅合金を用いた。また、半導体素子1を搭載するための位置マークとして、電気めっきによる厚さ5μmのニッケルを設けた。   First, the second wiring layer 22v is formed on the main surface of the support 45. Then, the support body 45 and the second wiring layer 22v are covered with the second insulating layer 12 (see FIG. 21A). The material of the support 45 is as described in the third embodiment. In the eighth embodiment, a copper alloy is used as the support body 45. In addition, as a position mark for mounting the semiconductor element 1, nickel having a thickness of 5 μm was provided by electroplating.

第2絶縁層12の好適な材料は、上記実施形態5において述べたとおりである。第2絶縁層12の形成方法としては、トランスファーモールディング法、圧縮形成モールド法、印刷法、真空プレス法、真空ラミネート法、スピンコート法、ダイコート法、カーテンコート法、又はフォトリソグラフィー法等を適用することができる。本実施形態8では、エポキシ樹脂を用いて真空ラミネート法により第2絶縁層12を形成した。   Suitable materials for the second insulating layer 12 are as described in the fifth embodiment. As a method for forming the second insulating layer 12, a transfer molding method, a compression molding method, a printing method, a vacuum pressing method, a vacuum laminating method, a spin coating method, a die coating method, a curtain coating method, a photolithography method, or the like is applied. be able to. In the eighth embodiment, the second insulating layer 12 is formed by vacuum lamination using an epoxy resin.

次に、基板貫通部3が形成された半導体基板2を有する半導体素子1を用意する。そして、支持体45の所定の位置の上層に、接着層19を介して半導体素子1を搭載する。その後、第2絶縁層12及び半導体素子1を被覆するように第1絶縁層11vを形成する(図21(b)参照)。基板貫通部3は、半導体素子1の機械的強度を低下させない範囲において、任意の場所に設けることができる。半導体素子の基板材料としては、例えば、上記実施形態1で説明した材料を好適に適用することができる。本実施形態8ではシリコンのLSIを用いた。半導体素子1の支持体45上への搭載は、フェースアップの状態で半導体搭載機を用いて行った。   Next, the semiconductor element 1 having the semiconductor substrate 2 on which the substrate penetration part 3 is formed is prepared. Then, the semiconductor element 1 is mounted on the upper layer of the support 45 at a predetermined position via the adhesive layer 19. Thereafter, the first insulating layer 11v is formed so as to cover the second insulating layer 12 and the semiconductor element 1 (see FIG. 21B). The substrate penetrating portion 3 can be provided at an arbitrary place as long as the mechanical strength of the semiconductor element 1 is not lowered. As the substrate material of the semiconductor element, for example, the materials described in the first embodiment can be suitably applied. In the eighth embodiment, a silicon LSI is used. The semiconductor element 1 was mounted on the support 45 using a semiconductor mounting machine in a face-up state.

第1絶縁層11vは、半導体素子1を埋設するように形成する。第1絶縁層11vの材料としては、例えば、上記実施形態1で説明した材料を好適に適用することができる。半導体素子1の内蔵方法は、上記実施形態3で述べたとおりである。   The first insulating layer 11v is formed so as to embed the semiconductor element 1 therein. As a material of the first insulating layer 11v, for example, the material described in the first embodiment can be suitably applied. The method for incorporating the semiconductor element 1 is as described in the third embodiment.

続いて、第1絶縁層11vの表面から、半導体素子1のパッド(不図示)の表面まで貫通するビア41を設ける。同時に、第1絶縁層11vの表面から、第2配線層22の表面まで貫通するビア42を形成する(図21(c)参照)。本実施形態8では、レーザ加工法を用いてビア41、ビア42を形成した。   Subsequently, a via 41 penetrating from the surface of the first insulating layer 11v to the surface of the pad (not shown) of the semiconductor element 1 is provided. At the same time, a via 42 penetrating from the surface of the first insulating layer 11v to the surface of the second wiring layer 22 is formed (see FIG. 21C). In the eighth embodiment, the via 41 and the via 42 are formed using a laser processing method.

次に、ビア41及びビア42の内部に導体を形成し、第1配線層21を形成する(図21(d)参照)。ビア41に導体を充填することにより素子接続プラグ30が、ビア42に導体を充填することにより第1貫通プラグ31が形成される。これらの導体の材料、及び形成方法の好適な例は、上記実施形態3で述べたとおりである。また、第1配線層21の材料、及び形成方法も上記実施形態3で述べた材料や方法を好適に適用することができる。本実施形態8においては、銅を用い、セミアディティブ法により第1配線層21を形成した。   Next, a conductor is formed inside the via 41 and the via 42 to form the first wiring layer 21 (see FIG. 21D). The element connection plug 30 is formed by filling the via 41 with a conductor, and the first through plug 31 is formed by filling the via 42 with the conductor. Suitable examples of these conductor materials and formation methods are as described in the third embodiment. In addition, the material and the method described in the third embodiment can be suitably applied to the material and the formation method of the first wiring layer 21. In the eighth embodiment, copper is used to form the first wiring layer 21 by a semi-additive method.

その後、支持体45を除去する(図21(e)参照)。支持体45の除去は、上記実施形態3で説明した方法を好適に適用できるが、これらに限定されない。本実施形態8においては、アルカリ性のウェットエッチング液を用いて、銅合金である支持体45を除去した。   Thereafter, the support body 45 is removed (see FIG. 21E). The method for removing the support 45 can be suitably applied to the method described in the third embodiment, but is not limited thereto. In this Embodiment 8, the support body 45 which is a copper alloy was removed using alkaline wet etching liquid.

次に、第3絶縁層13、第4絶縁層14、第3配線層23、第2貫通プラグ32、第4配線層24、第3貫通プラグ33を形成する(図22(f)参照)。第3絶縁層13、第4絶縁層14の好適な材料は、上述したとおりである。また、第3絶縁層13、第4絶縁層14の形成方法としては、例えば、上述した第2絶縁層と同様の方法により形成することができる。本実施形態8においては、エポキシ樹脂を用いて真空ラミネート法により第3絶縁層13、第4絶縁層14を形成した。   Next, the third insulating layer 13, the fourth insulating layer 14, the third wiring layer 23, the second through plug 32, the fourth wiring layer 24, and the third through plug 33 are formed (see FIG. 22F). Suitable materials for the third insulating layer 13 and the fourth insulating layer 14 are as described above. Moreover, as a formation method of the 3rd insulating layer 13 and the 4th insulating layer 14, it can form by the method similar to the 2nd insulating layer mentioned above, for example. In the eighth embodiment, the third insulating layer 13 and the fourth insulating layer 14 are formed by vacuum lamination using epoxy resin.

第3絶縁層13、第4絶縁層14のビアの形成方法としては、特に限定されないが、上記ビア41、ビア42と同様の方法を好適に適用することができる。本実施形態8においては、レーザ加工法を用いて開口部を形成した。また、銅を用いセミアディティブ法により第3配線層23、及び第4配線層24を形成した。   A method for forming the vias of the third insulating layer 13 and the fourth insulating layer 14 is not particularly limited, but the same method as the via 41 and the via 42 can be suitably applied. In the eighth embodiment, the opening is formed using a laser processing method. Further, the third wiring layer 23 and the fourth wiring layer 24 were formed by using a semi-additive method using copper.

次に、第5絶縁層15、第6絶縁層16、第5配線層25、第4貫通プラグ34、第6配線層26、第5貫通プラグ35を形成する(図22(g)参照)。第5絶縁層15、第6絶縁層16の好適な材料は、上述したとおりである。また、第5絶縁層15、第6絶縁層16の形成方法としては、例えば、上述した第2絶縁層と同様の方法により形成することができる。   Next, the fifth insulating layer 15, the sixth insulating layer 16, the fifth wiring layer 25, the fourth through plug 34, the sixth wiring layer 26, and the fifth through plug 35 are formed (see FIG. 22G). Suitable materials for the fifth insulating layer 15 and the sixth insulating layer 16 are as described above. Moreover, as a formation method of the 5th insulating layer 15 and the 6th insulating layer 16, it can form by the method similar to the 2nd insulating layer mentioned above, for example.

その後、第6配線層26上に開口部を有するソルダーレジスト46を形成する(図22(h)参照)。ソルダーレジスト46を設けることにより、半導体装置の表面回路を保護するとともに、難燃性を付与することができる。本実施形態8においては、感光性レジストインクを用いた。   Thereafter, a solder resist 46 having an opening is formed on the sixth wiring layer 26 (see FIG. 22H). By providing the solder resist 46, the surface circuit of the semiconductor device can be protected and flame retardancy can be imparted. In the eighth embodiment, a photosensitive resist ink is used.

次に、ソルダーレジスト46側において、第6配線層26と接続する外部端子47を形成する。上記工程等を経て、図20に示す半導体装置50yが製造される。   Next, external terminals 47 connected to the sixth wiring layer 26 are formed on the solder resist 46 side. Through the above steps, the semiconductor device 50y shown in FIG. 20 is manufactured.

本実施形態8に係る半導体装置50yにおいて、図4中の実線(実施形態1)の反りプロファイルと同様のプロファイルが得られることを確認した。すなわち、半導体装置50yの反り量を、効果的に低減できることを確認した。また、温度サイクル試験(−55℃〜+125℃、10分保持)を実施した結果、2000サイクル行っても不良が発生しないことを確認した。   In the semiconductor device 50y according to the eighth embodiment, it was confirmed that a profile similar to the warp profile of the solid line (first embodiment) in FIG. 4 was obtained. That is, it was confirmed that the warpage amount of the semiconductor device 50y can be effectively reduced. Moreover, as a result of carrying out a temperature cycle test (-55 ° C. to + 125 ° C., 10 minutes hold), it was confirmed that no defect occurred even after 2000 cycles.

本実施形態8に係る半導体装置50yによれば、上記実施形態7と同様の効果を得ることができる。また、外部端子47を設けることにより、半導体装置50yをより安定に機器の基板等に実装することができる。   According to the semiconductor device 50y according to the eighth embodiment, the same effect as in the seventh embodiment can be obtained. Also, by providing the external terminal 47, the semiconductor device 50y can be more stably mounted on the substrate of the device.

なお、配線層の数や絶縁層は、一例であって、上記実施形態に限定されることなく、必要な数だけ配線層を積層することができることは言うまでもない。   Note that the number of wiring layers and the insulating layers are merely examples, and it is needless to say that the wiring layers can be stacked in a necessary number without being limited to the above embodiment.

[実施形態9]
次に、上記実施形態8とは異なる半導体装置の製造方法について説明する。本実施形態9に係る半導体装置は、以下の点を除く基本的な構成は上記実施形態8と同様である。すなわち、第4配線層24が、上記実施形態8においては、第4絶縁層14の図中下側の表面上に形成されているのに対し、本実施形態9においては、第6絶縁層16の図中上側の表面上に形成されている点において相違する。これは、製造方法の相違に基づくものである。
[Embodiment 9]
Next, a method for manufacturing a semiconductor device different from that of the eighth embodiment will be described. The basic configuration of the semiconductor device according to the ninth embodiment is the same as that of the eighth embodiment except for the following points. That is, the fourth wiring layer 24 is formed on the lower surface of the fourth insulating layer 14 in the drawing in the eighth embodiment, whereas the sixth insulating layer 16 in the ninth embodiment. Are different in that they are formed on the upper surface in FIG. This is based on the difference in the manufacturing method.

図23は、本発明の実施形態9に係る半導体装置50zの模式的断面図である。同図に示すように、半導体装置50zは、半導体素子1と、絶縁層10zと、配線構造20zを備える。また、第4配線層24が第6絶縁層16の図中上側の表面上に形成されている。従って、絶縁層10zの構成が第4配線層24との関係において実施形態8と異なるが、その他の構成は同様である。   FIG. 23 is a schematic cross-sectional view of a semiconductor device 50z according to Embodiment 9 of the present invention. As shown in the figure, the semiconductor device 50z includes a semiconductor element 1, an insulating layer 10z, and a wiring structure 20z. The fourth wiring layer 24 is formed on the upper surface of the sixth insulating layer 16 in the drawing. Therefore, the configuration of the insulating layer 10z is different from that of the eighth embodiment in relation to the fourth wiring layer 24, but the other configurations are the same.

以下、実施形態9の製造方法について、図24(a)〜図26(g)の製造工程断面図を用いつつ説明する。なお、上記実施形態8と同一部材について、特に言及しない場合には同一材料を適用する。また、各部材の製造方法についても、特に言及しない場合には、上記実施形態8と同様の方法を適用する。   Hereinafter, the manufacturing method of Embodiment 9 will be described with reference to the manufacturing process cross-sectional views of FIGS. 24 (a) to 26 (g). Note that the same materials are applied to the same members as those in the eighth embodiment unless otherwise specified. Also, the manufacturing method of each member applies the same method as in Embodiment 8 unless otherwise specified.

まず、支持体45の主面上に、第6配線層26、第6絶縁層16、第5貫通プラグ35、第4配線層24、第4絶縁層14、第3貫通プラグ33、第2配線層22v、第2絶縁層12を形成する(図24(a)参照)。具体的には、まず、第6配線層26を形成し、これを被覆するように第6絶縁層16を形成した。そして、第6絶縁層16にビアを形成し、第5貫通プラグ35を配設した。前述したように、予め通電用のポストを形成する方法等を適用してもよい。以下に説明する貫通プラグにおいても同様である。   First, on the main surface of the support 45, the sixth wiring layer 26, the sixth insulating layer 16, the fifth through plug 35, the fourth wiring layer 24, the fourth insulating layer 14, the third through plug 33, the second wiring. The layer 22v and the second insulating layer 12 are formed (see FIG. 24A). Specifically, first, the sixth wiring layer 26 was formed, and the sixth insulating layer 16 was formed so as to cover it. Then, vias were formed in the sixth insulating layer 16 and a fifth through plug 35 was disposed. As described above, a method of forming a post for energization in advance may be applied. The same applies to the through plug described below.

その後、第4配線層24を形成する。そして、第4絶縁層14を被覆し、第4絶縁層14表面から第4配線層24の表面まで貫通するビアを形成し、第3貫通プラグ33を配設する。次いで、第2配線層22vを形成する。   Thereafter, the fourth wiring layer 24 is formed. Then, the fourth insulating layer 14 is covered, a via penetrating from the surface of the fourth insulating layer 14 to the surface of the fourth wiring layer 24 is formed, and the third through plug 33 is disposed. Next, the second wiring layer 22v is formed.

次に、基板貫通部3が形成された半導体基板2を有する半導体素子1を、支持体45の所定の位置の上層に、接着層19を介して半導体素子1を搭載する(図24(b)参照)。その後、半導体素子1を埋設するように第1絶縁層11vを形成する(図24(c)参照)。   Next, the semiconductor element 1 having the semiconductor substrate 2 in which the substrate penetration part 3 is formed is mounted on the upper layer of the support 45 at a predetermined position via the adhesive layer 19 (FIG. 24B). reference). Thereafter, the first insulating layer 11v is formed so as to embed the semiconductor element 1 (see FIG. 24C).

続いて、第1絶縁層11vの表面から、半導体素子1のパッド(不図示)の表面まで貫通するビア41、第1絶縁層11vの表面から、第2配線層22vの表面まで貫通するビア42を形成する。そして、ビア41及びビア42の内部に導体を形成することにより、素子形成プラグ30、第1貫通プラグ31を形成する。その後、第1配線層21を形成する(図25(d)参照)。   Subsequently, a via 41 penetrating from the surface of the first insulating layer 11v to the surface of the pad (not shown) of the semiconductor element 1, and a via 42 penetrating from the surface of the first insulating layer 11v to the surface of the second wiring layer 22v. Form. Then, the element forming plug 30 and the first through plug 31 are formed by forming a conductor inside the via 41 and the via 42. Thereafter, the first wiring layer 21 is formed (see FIG. 25D).

次に、第3絶縁層13、第2貫通プラグ32、第3配線層23、第5絶縁層15、第4貫通プラグ34、第5配線層25を形成する(図25(e)参照)。   Next, the third insulating layer 13, the second through plug 32, the third wiring layer 23, the fifth insulating layer 15, the fourth through plug 34, and the fifth wiring layer 25 are formed (see FIG. 25E).

その後、支持体45を除去する(図26(f)参照)。次いで、第6配線層26上に開口部を有するソルダーレジスト46を形成する(図26(g)参照)。その後、ソルダーレジスト46側において、第6配線層26と接続する外部端子47を形成する。上記工程等を経て、図23に示す半導体装置50zが製造される。   Thereafter, the support body 45 is removed (see FIG. 26F). Next, a solder resist 46 having an opening is formed on the sixth wiring layer 26 (see FIG. 26G). Thereafter, external terminals 47 connected to the sixth wiring layer 26 are formed on the solder resist 46 side. Through the above steps and the like, the semiconductor device 50z shown in FIG. 23 is manufactured.

本実施形態9に係る半導体装置の製造方法によれば、支持体45上に全ての配線層を作り込むことができるため、製造工程中の反りが小さく、製造歩留まりを向上させることができる。また、本実施形態9に係る半導体装置は、上記実施形態8と同様の効果が得られる。   According to the method for manufacturing a semiconductor device according to the ninth embodiment, since all the wiring layers can be formed on the support body 45, warpage during the manufacturing process is small, and the manufacturing yield can be improved. The semiconductor device according to the ninth embodiment can obtain the same effects as those of the eighth embodiment.

なお、上記実施形態は一例であって、これらに限定されるものではない。また、各実施形態を組み合わせたものも好適に適用することができる。例えば、開口部3として基板貫通部を適用した箇所を、基板ざぐり部に変更する態様も好適に適用することができる。また、1つの半導体基板内に基板ざぐり部や基板貫通部が混在しているものであってもよい。また、複数の半導体素子を搭載する場合に、基板ざぐり部を有する半導体素子、基板貫通部を有する半導体素子、若しくはこれらの開口部を有しない半導体素子が混在していてもよい。また、基板ざぐり部に加え、補強構造体などを追加する態様であってもよい。また、本発明の半導体装置は、所望の位置に、他の電子部品が搭載されていてもよい。電子部品としては、特に限定されないが、例えば、回路のノイズフィルターの役割を果たすLCR素子を設けることができる。また、受動部品として、MEMS部品、センサ、エネルギーデバイス、光部品などが搭載されていてもよい。また、これら他の電子部品は、絶縁層10内に内蔵されていても良い。このほか、本発明の趣旨を逸脱しない範囲において種々の変形が可能である。   In addition, the said embodiment is an example, Comprising: It is not limited to these. Moreover, what combined each embodiment can also be applied suitably. For example, the aspect which changes the location which applied the board | substrate penetration part as the opening part 3 to a board spot part can also be applied suitably. Moreover, a substrate counterbore part or a substrate through part may be mixed in one semiconductor substrate. Further, when a plurality of semiconductor elements are mounted, a semiconductor element having a counterbore part, a semiconductor element having a substrate through part, or a semiconductor element not having these openings may be mixed. Further, in addition to the counterbore portion of the substrate, a reinforcing structure or the like may be added. In the semiconductor device of the present invention, another electronic component may be mounted at a desired position. Although it does not specifically limit as an electronic component, For example, the LCR element which plays the role of the noise filter of a circuit can be provided. Moreover, a MEMS component, a sensor, an energy device, an optical component, etc. may be mounted as a passive component. These other electronic components may be incorporated in the insulating layer 10. In addition, various modifications can be made without departing from the spirit of the present invention.

また、上記実施形態においては、半導体装置(絶縁層10)が下に凸に反り、半導体素子1が上に凸となる例について述べたが、半導体装置(絶縁層10)が上に凸に反り、半導体素子1が下に凸となる例についても、本発明を適用できる。また、半導体装置(絶縁層10)と半導体素子1の反りが同一方向である場合において、半導体素子1の反り量の方が大きい場合にも、本発明を好適に適用することが可能である。   In the above-described embodiment, the example in which the semiconductor device (insulating layer 10) warps downward and the semiconductor element 1 protrudes upward has been described. However, the semiconductor device (insulating layer 10) warps upward. The present invention can also be applied to an example in which the semiconductor element 1 is convex downward. In addition, when the warp of the semiconductor device 1 (insulating layer 10) and the semiconductor element 1 is in the same direction, and the warp amount of the semiconductor element 1 is larger, the present invention can be suitably applied.

1 半導体素子
2 半導体基板
3 開口部(基板貫通部、基板ざぐり部)
6 充填材
10 絶縁層
11 第1絶縁層
12 第2絶縁層
13 第3絶縁層
14 第4絶縁層
15 第5絶縁層
19 接着層
20 配線構造
21 第1配線層
22 第2配線層
23 第3配線層
24 第4配線層
25 第5配線層
26 第6配線層
30 素子接続プラグ
31 第1貫通プラグ
32 第2貫通プラグ
33 第3貫通プラグ
34 第4貫通プラグ
35 第5貫通プラグ
41 ビア
42 ビア
45 支持体
46 ソルダーレジスト
47 外部端子
50 半導体装置
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Semiconductor substrate 3 Opening part (substrate penetration part, substrate spot part)
6 Filler 10 Insulating layer 11 First insulating layer 12 Second insulating layer 13 Third insulating layer 14 Fourth insulating layer 15 Fifth insulating layer 19 Adhesive layer 20 Wiring structure 21 First wiring layer 22 Second wiring layer 23 Third Wiring layer 24 Fourth wiring layer 25 Fifth wiring layer 26 Sixth wiring layer 30 Element connection plug 31 First through plug 32 Second through plug 33 Third through plug 34 Fourth through plug 35 Fifth through plug 41 Via 42 Via 45 Support 46 Solder Resist 47 External Terminal 50 Semiconductor Device

Claims (19)

半導体基板を具備する半導体素子と、
前記半導体素子が埋設された絶縁層と、
少なくとも一部が、前記半導体素子に接続される配線構造と
を備え、
前記半導体基板には、当該半導体基板の少なくとも一主面側に1又は複数の開口部を形成した半導体装置であって、
前記開口部内は、空隙であり、若しくは当該開口部内の一部又は全部に、絶縁性材料を主成分とし、弾性率が5MPa以上、5GPa以下の充填材が充填されており、但し、前記充填材は全体として導電性を有しないことを特徴とする半導体装置。
A semiconductor device comprising a semiconductor substrate;
An insulating layer in which the semiconductor element is embedded;
And at least a part of the wiring structure connected to the semiconductor element,
The semiconductor substrate is a semiconductor device having one or more openings formed on at least one main surface side of the semiconductor substrate,
The opening is a void, or a part or all of the opening is filled with an insulating material as a main component and an elastic modulus of 5 MPa or more and 5 GPa or less , provided that the filler Is a semiconductor device characterized by not having conductivity as a whole .
前記開口部は、少なくとも前記半導体基板の外周部近傍に設けられていることを特徴とする請求項に記載の半導体装置。 The semiconductor device according to claim 1 , wherein the opening is provided at least in the vicinity of an outer peripheral portion of the semiconductor substrate. 前記開口部は、前記半導体基板を貫通する基板貫通部であることを特徴とする請求項1又は2に記載の半導体装置。 The opening, the semiconductor device according to claim 1 or 2, characterized in that a substrate through portion that penetrates the semiconductor substrate. 前記基板貫通部は、前記半導体基板の一主面側に設けた溝と、該溝から前記半導体基板の他の主面側に貫通する複数の貫通孔とを組み合わせたものであることを特徴とする請求項3に記載の半導体装置。The substrate penetrating portion is a combination of a groove provided on one main surface side of the semiconductor substrate and a plurality of through holes penetrating from the groove to the other main surface side of the semiconductor substrate. The semiconductor device according to claim 3. 前記開口部の形状は、前記半導体基板を貫通しない凹部形状であることを特徴とする請求項1又は2に記載の半導体装置。 Wherein the shape of the openings, the semiconductor device according to claim 1 or 2, characterized in that a recess shape that does not penetrate the semiconductor substrate. 前記凹部の深さを、前記半導体基板の厚さの半分以上に設定することを特徴とする請求項に記載の半導体装置。 6. The semiconductor device according to claim 5 , wherein the depth of the concave portion is set to be not less than half of the thickness of the semiconductor substrate. 前記凹部は、前記半導体基板の素子形成面とは逆側に形成されている請求項5又は6に記載の半導体装置。 The semiconductor device according to claim 5 , wherein the recess is formed on a side opposite to an element formation surface of the semiconductor substrate. 前記開口部は、複数形成されており、
前記複数の開口部は、前記半導体基板内において、線対称、又は/及び点対称に形成されていることを特徴とする請求項1〜のいずれか1項に記載の半導体装置。
A plurality of the openings are formed,
Wherein the plurality of openings, wherein the semiconductor substrate, axisymmetric, or / and a semiconductor device according to any one of claims 1 to 7, characterized in that it is formed in point symmetry.
前記絶縁層は、接着層を備え、
前記接着層の第1主面は、前記半導体基板の一主面側と当接し、
前記接着層の第1主面とは反対側の第2主面は、前記配線構造により構成される配線層と当接することを特徴とする請求項1〜8のいずれか1項に記載の半導体装置。
The insulating layer includes an adhesive layer;
A first main surface of the adhesive layer is in contact with one main surface side of the semiconductor substrate;
It said first major surface and a second major surface opposite to the adhesive layer, a semiconductor according to any one of claims 1 to 8, characterized in that contact with the formed wiring layer by the wiring structure apparatus.
前記接着層に前記開口部に連通し、前記配線層に達する貫通孔が設けられており、前記開口部及び前記接着層の貫通孔に前記充填材が充填されていることを特徴とする請求項9に記載の半導体装置。The through-hole reaching the wiring layer is provided in the adhesive layer, and the filler is filled in the through-hole of the opening and the adhesive layer. 9. The semiconductor device according to 9. 前記配線構造は、多層配線層を含むことを特徴とする請求項1〜10のいずれか1項に記載の半導体装置。 The wiring structure, a semiconductor device according to any one of claims 1 to 10, characterized in that it comprises a multi-layer wiring layer. 前記絶縁層に、さらに電子部品が実装されていることを特徴とする請求項1〜11のいずれか1項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 11, characterized in that said insulating layer, further electronic components are mounted. 半導体素子を形成する工程と、
支持体上に、前記半導体素子を搭載する工程と、
前記半導体素子を絶縁層で内蔵する工程と、
少なくとも一部が前記半導体素子と接続されるように配線構造を形成する工程と、
前記支持体を除去する工程と
を備え、
前記半導体素子を形成する工程において、当該半導体素子が具備する半導体基板の少なくとも一主面側に、1又は複数の開口部を形成し、
前記半導体基板に形成した開口部を空隙のままとする、若しくは当該開口部内の一部又は全部に、絶縁性材料を主成分とし、弾性率が5MPa以上、5GPa以下の充填材を充填する工程を含め、但し、前記充填材は全体として導電性を有しないことを特徴とする半導体装置の製造方法。
Forming a semiconductor element;
Mounting the semiconductor element on a support;
A step of incorporating the semiconductor element with an insulating layer;
Forming a wiring structure so that at least a portion is connected to the semiconductor element;
And removing the support.
In the step of forming the semiconductor element, one or more openings are formed on at least one main surface side of the semiconductor substrate included in the semiconductor element,
A step of leaving an opening formed in the semiconductor substrate as a void, or filling a part or all of the opening with a filler having an insulating material as a main component and an elastic modulus of 5 MPa or more and 5 GPa or less. including, however, a method of manufacturing a semiconductor device you characterized in that the filler is not electrically conductive as a whole.
前記開口部は、前記半導体基板を貫通するように設けることを特徴とする請求項13に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 13 , wherein the opening is provided so as to penetrate the semiconductor substrate. 前記開口部は、前記半導体基板に前記半導体基板を貫通しない凹部を形成するように設けることを特徴とする請求項13に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 13 , wherein the opening is provided in the semiconductor substrate so as to form a recess that does not penetrate the semiconductor substrate . 前記凹部の深さを、前記半導体基板の厚さの半分以上に設定することを特徴とする請求項15に記載の半導体装置の製造方法。 16. The method of manufacturing a semiconductor device according to claim 15 , wherein the depth of the concave portion is set to half or more of the thickness of the semiconductor substrate. 前記凹部は、前記半導体基板の素子形成面とは逆側に形成する請求項15又は16に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 15 , wherein the recess is formed on a side opposite to an element formation surface of the semiconductor substrate. 前記配線構造として、多層配線層を含むようにし、
前記多層配線層の少なくとも一部は、前記支持体を除去した後に形成することを特徴とする請求項13〜17のいずれか1項に記載の半導体装置の製造方法。
The wiring structure includes a multilayer wiring layer,
18. The method of manufacturing a semiconductor device according to claim 13 , wherein at least a part of the multilayer wiring layer is formed after the support is removed.
前記配線構造として、多層配線層を含むようにし、
前記多層配線層は、前記支持体を除去する前に形成することを特徴とする請求項13〜17のいずれか1項に記載の半導体装置の製造方法。
The wiring structure includes a multilayer wiring layer,
The method for manufacturing a semiconductor device according to claim 13 , wherein the multilayer wiring layer is formed before the support is removed.
JP2010046590A 2009-03-04 2010-03-03 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5471605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046590A JP5471605B2 (en) 2009-03-04 2010-03-03 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009050488 2009-03-04
JP2009050488 2009-03-04
JP2010046590A JP5471605B2 (en) 2009-03-04 2010-03-03 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010232648A JP2010232648A (en) 2010-10-14
JP5471605B2 true JP5471605B2 (en) 2014-04-16

Family

ID=42709718

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010046590A Expired - Fee Related JP5471605B2 (en) 2009-03-04 2010-03-03 Semiconductor device and manufacturing method thereof
JP2011502769A Pending JPWO2010101163A1 (en) 2009-03-04 2010-03-03 Functional element built-in substrate and electronic device using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011502769A Pending JPWO2010101163A1 (en) 2009-03-04 2010-03-03 Functional element built-in substrate and electronic device using the same

Country Status (2)

Country Link
JP (2) JP5471605B2 (en)
WO (1) WO2010101163A1 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101053079A (en) 2004-11-03 2007-10-10 德塞拉股份有限公司 Stacked packaging improvements
US8058101B2 (en) 2005-12-23 2011-11-15 Tessera, Inc. Microelectronic packages and methods therefor
JP5143211B2 (en) * 2009-12-28 2013-02-13 パナソニック株式会社 Semiconductor module
JP5581830B2 (en) * 2010-06-11 2014-09-03 富士通株式会社 Manufacturing method of component-embedded substrate and component-embedded substrate
US9159708B2 (en) 2010-07-19 2015-10-13 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US8482111B2 (en) 2010-07-19 2013-07-09 Tessera, Inc. Stackable molded microelectronic packages
JP5589735B2 (en) * 2010-10-06 2014-09-17 日本電気株式会社 Electronic component built-in substrate and manufacturing method thereof
KR101075241B1 (en) 2010-11-15 2011-11-01 테세라, 인코포레이티드 Microelectronic package with terminals on dielectric mass
JP5879030B2 (en) * 2010-11-16 2016-03-08 新光電気工業株式会社 Electronic component package and manufacturing method thereof
US20120146206A1 (en) 2010-12-13 2012-06-14 Tessera Research Llc Pin attachment
US8736065B2 (en) * 2010-12-22 2014-05-27 Intel Corporation Multi-chip package having a substrate with a plurality of vertically embedded die and a process of forming the same
US8618659B2 (en) 2011-05-03 2013-12-31 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
KR101128063B1 (en) 2011-05-03 2012-04-23 테세라, 인코포레이티드 Package-on-package assembly with wire bonds to encapsulation surface
JP5779970B2 (en) * 2011-05-13 2015-09-16 イビデン株式会社 Printed wiring board and printed wiring board manufacturing method
JP5660462B2 (en) * 2011-05-13 2015-01-28 イビデン株式会社 Printed wiring board
JP2013030593A (en) * 2011-07-28 2013-02-07 J Devices:Kk Semiconductor devices, semiconductor module structure formed by vertically laminated semiconductor devices, and manufacturing method of semiconductor module structure
WO2013054790A1 (en) * 2011-10-11 2013-04-18 日立化成株式会社 Structure containing conductor circuit, method for manufacturing same, and heat-curable resin composition
US8836136B2 (en) 2011-10-17 2014-09-16 Invensas Corporation Package-on-package assembly with wire bond vias
US8946757B2 (en) 2012-02-17 2015-02-03 Invensas Corporation Heat spreading substrate with embedded interconnects
US8372741B1 (en) 2012-02-24 2013-02-12 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
JP5977051B2 (en) * 2012-03-21 2016-08-24 新光電気工業株式会社 Semiconductor package, semiconductor device, and semiconductor package manufacturing method
US8835228B2 (en) 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9391008B2 (en) 2012-07-31 2016-07-12 Invensas Corporation Reconstituted wafer-level package DRAM
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US8866287B2 (en) * 2012-09-29 2014-10-21 Intel Corporation Embedded structures for package-on-package architecture
US8975738B2 (en) 2012-11-12 2015-03-10 Invensas Corporation Structure for microelectronic packaging with terminals on dielectric mass
US9496211B2 (en) * 2012-11-21 2016-11-15 Intel Corporation Logic die and other components embedded in build-up layers
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
KR20140081193A (en) * 2012-12-21 2014-07-01 삼성전기주식회사 Hybrid substrate with high density and low density substrate area and manufacturing method thereof
US9136254B2 (en) 2013-02-01 2015-09-15 Invensas Corporation Microelectronic package having wire bond vias and stiffening layer
JPWO2014188493A1 (en) * 2013-05-20 2017-02-23 株式会社メイコー Component built-in substrate and manufacturing method thereof
US9167710B2 (en) 2013-08-07 2015-10-20 Invensas Corporation Embedded packaging with preformed vias
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
KR101514539B1 (en) 2013-08-29 2015-04-22 삼성전기주식회사 Substrate embedding electronic component
US20150076714A1 (en) 2013-09-16 2015-03-19 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
JP2015065400A (en) * 2013-09-25 2015-04-09 サムソン エレクトロ−メカニックス カンパニーリミテッド. Element embedded printed circuit board and method of manufacturing the same
KR20160036666A (en) * 2013-09-27 2016-04-04 인텔 코포레이션 Die package with superposer substrate for passive components
US9583456B2 (en) 2013-11-22 2017-02-28 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9263394B2 (en) 2013-11-22 2016-02-16 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9379074B2 (en) 2013-11-22 2016-06-28 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US10381326B2 (en) 2014-05-28 2019-08-13 Invensas Corporation Structure and method for integrated circuits packaging with increased density
US9646917B2 (en) 2014-05-29 2017-05-09 Invensas Corporation Low CTE component with wire bond interconnects
JP2015226013A (en) * 2014-05-29 2015-12-14 イビデン株式会社 Printed wiring board and method of manufacturing the same
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
JP6378616B2 (en) * 2014-11-12 2018-08-22 イビデン株式会社 Printed wiring board with built-in electronic components
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
CN105845635B (en) * 2015-01-16 2018-12-07 恒劲科技股份有限公司 Electron package structure
JP6511830B2 (en) * 2015-01-29 2019-05-15 日立化成株式会社 Semiconductor device manufacturing method
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9502372B1 (en) 2015-04-30 2016-11-22 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
JP2016213372A (en) * 2015-05-12 2016-12-15 日立化成株式会社 Semiconductor device and method of manufacturing the same
US9401350B1 (en) * 2015-07-29 2016-07-26 Qualcomm Incorporated Package-on-package (POP) structure including multiple dies
US10490528B2 (en) 2015-10-12 2019-11-26 Invensas Corporation Embedded wire bond wires
US9490222B1 (en) 2015-10-12 2016-11-08 Invensas Corporation Wire bond wires for interference shielding
US10332854B2 (en) 2015-10-23 2019-06-25 Invensas Corporation Anchoring structure of fine pitch bva
US10181457B2 (en) 2015-10-26 2019-01-15 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US10299368B2 (en) 2016-12-21 2019-05-21 Invensas Corporation Surface integrated waveguides and circuit structures therefor
JP2018206797A (en) * 2017-05-30 2018-12-27 アオイ電子株式会社 Semiconductor device and semiconductor device manufacturing method
JPWO2019049899A1 (en) * 2017-09-11 2020-10-29 株式会社ライジングテクノロジーズ Electronic circuit equipment and manufacturing method of electronic circuit equipment
CN109300882A (en) * 2018-09-20 2019-02-01 蔡亲佳 Stack embedded packaging structure and preparation method thereof
JP6515243B2 (en) * 2018-11-14 2019-05-15 アオイ電子株式会社 Semiconductor device manufacturing method
JP7486934B2 (en) 2018-12-25 2024-05-20 Tdk株式会社 Circuit Board
US11277917B2 (en) 2019-03-12 2022-03-15 Advanced Semiconductor Engineering, Inc. Embedded component package structure, embedded type panel substrate and manufacturing method thereof
JP7371882B2 (en) 2019-04-12 2023-10-31 株式会社ライジングテクノロジーズ Electronic circuit device and method for manufacturing electronic circuit device
WO2020230442A1 (en) 2019-05-16 2020-11-19 株式会社ライジングテクノロジーズ Electronic circuit device and method for manufacturing electronic circuit device
JP2020065088A (en) * 2020-01-29 2020-04-23 株式会社アムコー・テクノロジー・ジャパン Semiconductor device and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137659B2 (en) * 2003-02-13 2008-08-20 新光電気工業株式会社 Electronic component mounting structure and manufacturing method thereof
JP4800606B2 (en) * 2004-11-19 2011-10-26 Okiセミコンダクタ株式会社 Method for manufacturing element-embedded substrate
JP5134194B2 (en) * 2005-07-19 2013-01-30 ナミックス株式会社 Component built-in device and manufacturing method
JP2007180529A (en) * 2005-12-02 2007-07-12 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP5027823B2 (en) * 2007-01-15 2012-09-19 株式会社ザイキューブ Three-dimensional semiconductor integrated circuit device and manufacturing method thereof
WO2008120755A1 (en) * 2007-03-30 2008-10-09 Nec Corporation Circuit board incorporating functional element, method for manufacturing the circuit board, and electronic device
JP2008258522A (en) * 2007-04-09 2008-10-23 Renesas Technology Corp Method of manufacturing semiconductor device
JP5018270B2 (en) * 2007-06-22 2012-09-05 パナソニック株式会社 Semiconductor laminate and semiconductor device using the same

Also Published As

Publication number Publication date
WO2010101163A1 (en) 2010-09-10
JPWO2010101163A1 (en) 2012-09-10
JP2010232648A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5471605B2 (en) Semiconductor device and manufacturing method thereof
JP5851211B2 (en) Semiconductor package, semiconductor package manufacturing method, and semiconductor device
JP5605429B2 (en) Wiring board with built-in semiconductor element
JP4298559B2 (en) Electronic component mounting structure and manufacturing method thereof
JP4343044B2 (en) Interposer, manufacturing method thereof, and semiconductor device
JP5703010B2 (en) Semiconductor package and manufacturing method thereof
TWI436717B (en) Wiring board capable of having built-in functional element and method for manufacturing the same
JP5662551B1 (en) WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
KR101134123B1 (en) Semiconductor device
US9054082B2 (en) Semiconductor package, semiconductor device, and method for manufacturing semiconductor package
JP3773896B2 (en) Manufacturing method of semiconductor device
KR100943009B1 (en) Semiconductor device and method of manufacturing the same
WO2010041630A1 (en) Semiconductor device and method for manufacturing same
JP4182140B2 (en) Chip built-in substrate
US9136220B2 (en) Semiconductor package and method for manufacturing the semiconductor package
WO2011122228A1 (en) Substrate with built-in semiconductor
JPWO2007069606A1 (en) Manufacturing method of chip embedded substrate
JP5367523B2 (en) Wiring board and method of manufacturing wiring board
KR20060101284A (en) Wiring board manufacturing method
JP5548855B2 (en) Wiring board and manufacturing method thereof
JP4783843B2 (en) Electronic component built-in printed circuit board
US8872334B2 (en) Method for manufacturing semiconductor device
JP5310103B2 (en) Semiconductor device and manufacturing method thereof
JP2017034059A (en) Printed wiring board, semiconductor package and manufacturing method for printed wiring board
JP4182144B2 (en) Manufacturing method of chip embedded substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees