JP5470279B2 - 吸収式冷凍機 - Google Patents

吸収式冷凍機 Download PDF

Info

Publication number
JP5470279B2
JP5470279B2 JP2011000789A JP2011000789A JP5470279B2 JP 5470279 B2 JP5470279 B2 JP 5470279B2 JP 2011000789 A JP2011000789 A JP 2011000789A JP 2011000789 A JP2011000789 A JP 2011000789A JP 5470279 B2 JP5470279 B2 JP 5470279B2
Authority
JP
Japan
Prior art keywords
solution
refrigerant
absorber
piping system
liquid reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011000789A
Other languages
English (en)
Other versions
JP2012141111A (ja
Inventor
武 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2011000789A priority Critical patent/JP5470279B2/ja
Publication of JP2012141111A publication Critical patent/JP2012141111A/ja
Application granted granted Critical
Publication of JP5470279B2 publication Critical patent/JP5470279B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は吸収式冷凍機に関し、特に、通常の冷房運転モードとフリークーリング運転モードとを選択的に切り替え可能とした吸収式冷凍機に関する。
空調システムでの省エネルギーを図る観点から、フリークーリングシステムが提案され実施されている(特許文献1、2など参照)。フリークーリングシステムとは、外気温が高い夏期においては、圧縮式あるいは吸収式の冷凍機を稼働して冷水を得る一方で、外気温が低い冬期においては、冷凍機を稼働させずに、冷凍機に付設する冷却塔で得られる冷却水を冷熱源として冷水を得るようにしたシステムである。フリークーリングシステムでは、冬期に冷凍機を稼働させずに所要の冷水を得ることで、大きな省エネルギー効果を期待することができる。
このような空調システムにおいて、冷却塔として、開放式冷却塔と密閉式冷却塔とが用いられる。密閉式冷却塔は、冷却塔内に設置した熱交換器内を循環する冷却水を、当該熱交換器に散水する水の蒸発作用により冷却するものであり、冷却水が外部に曝されず、汚れにくいので、フリークーリング運転時でも、冷却水を空調負荷部に直接供給することができる利点がある。しかし、密閉式冷却塔は、散水の蒸発熱によって冷却水を間接的に冷却する方式であり、冷却効率が低い。
開放式冷却塔は、冷却塔の上部より冷却水を散水し、大気と接触させて蒸発させることで当該冷却水を冷却するものであり、冷却水そのものを直接的に蒸発させるので、冷却効率が高い。しかし、冷却水が空気に直接曝されることで汚れが生じることから、フリークーリング運転時に冷却水を空調負荷部に供給すると、空調負荷部が汚染され、メンテナンスが必要となるという問題がある。
この問題を解決するため、特許文献1に記載のフリークーリング利用冷熱源設備では、開放式冷却塔と空調負荷部との間に熱交換器を設け、フリークーリング運転時には、外部配管の切り替えを行うことで、開放式冷却塔で冷却した冷却水を熱交換器によって空調負荷部に供給される冷却水と熱交換させることで、汚れた冷却水が空調負荷部に直接供給されないようにしている。
また、特許文献2に記載の空調システムでは、基本的な構成は密閉式である冷却塔を用いながら、外部配管の切り替えを行うことで、冷凍機運転時には、冷却塔の散水を冷凍機の凝縮器に循環させる態様、すなわち冷却塔を開放式冷却塔として機能させることで、冷凍機における冷却効率を高めることができ、また、フリークーリング運転時には、散水の蒸発作用により冷却された熱交換機内を循環する冷水を、冷凍機の凝縮器に循環させる態様、すなわち冷却塔を密閉式冷却塔として機能させることで、汚れた冷却水(散水)が空調負荷部に流れるのを防止できるようにしている。
また、冷房運転モードとフリークーリング運転モードとに切り替えできるようにした圧縮式冷凍機も提案されており(非特許文献1)、そこでは、図10に示すように、蒸発器と凝縮器の上部同士および下部同士を配管と開閉弁で接続し、圧縮機を停止、かつ当該開閉弁を開くことでフリークーリングを実現している。低外気温時に冷却水温度が冷水温度よりも低いため、当該上部開閉弁を開くと凝縮器で冷媒蒸気が冷却され凝縮する。凝縮器は蒸発器よりも上部にあるため、凝縮器で凝縮した液冷媒は重力差により当該下部開閉弁を通じて蒸発器に戻り、冷水により加熱されて蒸発して冷媒蒸気となり、上部開閉弁を通じて凝縮器に導かれ、再び凝縮することでサイクルが形成される。また、ここでは、開放式冷却塔を用いても、フリークーリング運転時に空調負荷部が汚染されることもなく、高い冷却効率を得ることができる。
さらに、吸収式冷凍機の運転において、停止するときにサイクル内の溶液濃度を常温で結晶しないレベルまで低下させるために、希釈運転を行うようにされており、その一例が特許文献3あるいは4に記載されている。
特開2004−132651号公報 特開2010−085010号公報 特開平6−294556公報 特開平10−2630公報
トレーン社カタログ第11頁、[2010年10月5日検索]、インターネット<URL:http://www.trane-japan.com/pdf/201007_CTV.pdf>
特許文献1あるいは特許文献2に示される空調システムでは、汚れた冷却水が空調負荷部に直接供給されない構造となっているものの、冷凍機運転とフリークーリングを切替えるために外部の冷水および冷却水配管の切替えを必要とし、一般にこれらの外部配管は巨大でありコストが増加する。また、設置工事が複雑になり、設置コストも増加するなど課題を有する。
図10に示される圧縮式冷凍機では、外部配管の切り替えなしに冷凍運転とフリークーリングを切り替えることができ、特許文献1、2に記載される形態の空調システムと比較して、構成が簡素化される。しかし、この方式を吸収式冷凍機に適用してフリークーリングを実現させる場合、吸収式冷凍機では冷媒に水を使用しているのが普通であり、蒸発圧力が非常に低い(たとえば水の5℃の飽和水蒸気圧は0.87kPa、圧縮式冷凍機では例えば冷媒にR410Aを使用した場合に5℃の飽和蒸気圧は930kPa)ことから、運転を阻害するような圧力損失が生じないようにするために、蒸発器と凝縮器の間の冷媒蒸気が通じる切替弁と配管を巨大なものとする必要がある。そのために、図10に示される圧縮式冷凍機の運転態様をそのまま吸収式冷凍機に適用することは現実的でない。
また、図10に示される態様の圧縮式冷凍機において、冷媒の蒸気圧が高いとはいえ、やはり冷媒蒸気が通る経路の圧力損失を小さくする必要があり、そのためには切替弁の巨大化が必要であって、製造コストがアップするとともに、冷凍運転とフリークーリングとの自動切り替えを行う場合の駆動装置も高価なものとなるのを避けられない。
本発明は、上記のような事情に鑑みてなされたものであり、製造コストも運転コストも高騰させることなく通常の冷房運転モードと冬期間でのフリークーリング運転モードとを選択的に切り替え可能とした新たな吸収式冷凍機とその運転方法を提供することを課題とする。
より具体的には、吸収式冷凍機を用いた空調システムにおいて、冷却効率に優れた開放型冷却塔を使用しても冷水配管を汚染させることなく、かつ外部配管の切り替え無しに冷凍運転とフリークーリングを切り替えることができることに加え、さらに、冷媒蒸気通路や冷却水の切替装置を不要とし、液(冷媒液、溶液)配管に対してのみ切替弁を配置することで冷房運転とフリークーリング運転の切り替えが可能であり、それにより、切替配管および切替弁の小型化を可能とし、結果として機器費の低減にも寄与することのできる吸収式冷凍機を開示することを課題とする。
本発明による吸収式冷凍機は、基本的に、冷媒が蒸発することで負荷側熱媒を冷却する蒸発器と、前記蒸発器に貯留された液冷媒を冷媒散布管に供給する冷媒ポンプと、濃溶液が冷却塔との間で循環する冷却水により冷却されることで前記蒸発器で蒸発した冷媒蒸気を吸収し希溶液となる吸収器と、希溶液が加熱源により加熱されることで冷媒を蒸発し濃溶液となる再生器と、前記吸収器から希溶液を前記再生器に供給する溶液ポンプと、前記濃溶液を前記吸収器に散布する溶液散布管と、前記再生器で蒸発した冷媒を前記冷却水により凝縮させる凝縮器とを少なくとも備える吸収式冷凍機であって、前記吸収式冷凍機は、さらに吸収器と蒸発器を配管で接続し、フリークーリング運転において吸収器内で液化した冷媒を前記蒸発器に戻すことのできる第1配管系と、該第1配管系を導通状態と非導通状態とに切り替える第1切替手段を備えていて、前記第1配管系が非導通状態であり、前記加熱源、冷媒ポンプおよび溶液ポンプが作動状態である冷房運転モードと、前記第1配管系が導通状態であり、冷媒ポンプが作動状態であり、前記加熱源と溶液ポンプが停止状態であるフリークーリング運転モードとを選択的に切替え可能となっていることを特徴とする。
本発明による吸収式冷凍機において、前記第1配管系が非導通状態にある状態では実質的に従来公知の吸収式冷凍機に同じ構成となっており、前記加熱源、冷媒ポンプおよび溶液ポンプを作動状態とすることで、従来公知の吸収式冷凍機と同様にして冷房運転を行うことができる。
フリークーリング運転を行うときは、前記第1配管系を導通状態とし、冷媒ポンプを作動状態とし、前記加熱源と溶液ポンプを停止状態とする。それにより、溶液(吸収液)が吸収器と再生器との間で循環するのを停止する。蒸発器内の液冷媒は冷媒ポンプを介して冷媒散布管より蒸発器内に散布されることにより負荷側熱媒(冷水)から熱を奪うとともに蒸発し、冷媒蒸気となって吸収器内に入る。冷却塔から送られてくる冷却水の温度が冷媒の温度より低ければ、冷媒蒸気は吸収器にて冷却水との熱交換により冷却、液化(凝縮)され、吸収器内に液冷媒として貯留される。そして、吸収器内に貯留された液冷媒は、自重によりにより第1配管系を通過し、前記蒸発器に戻される。
上記のように、本発明による吸収式冷凍機では、基本的に、第1配管系に配置した切替手段を操作することで、冷房運転モードからフリークーリング運転モードに切り替えることができる。そして、フリークーリング運転モードでは加熱源による加熱を必要とせず、また溶液ポンプも停止させることから、フリークーリング運転時での吸収式冷凍機の運転コストは大きく低減する。また、第1配管系は、冷媒蒸気ではなく、液冷媒が通過するので、冷媒が水であっても、管径の小さい配管の使用が可能であり、切替手段として弁を用いる場合でも、小型の切替弁を使用することができる。それにより、機器の低コスト化および運転コストの削減が可能となる。
さらに、吸収器内で冷媒を冷却する冷却水は、冷却塔と吸収器(および凝縮器)との間を循環するだけであり、空調負荷部に直接供給されることはないので、冷却塔として冷却効率が高い開放式冷却塔を用いることが可能となる。
また、冷房運転モードからフリークーリング運転モードに切り替えるときに、冷却水や負荷側熱媒の流路の切り替え、すなわち外部配管の切り替えを要しないので、空調システム全体としての構成も簡素化できる。
(第1態様:溶液タンクなし)
本発明による吸収式冷凍機のより具体的な第1の態様では、前記吸収器の底部液溜と前記溶液ポンプを接続する配管は当該配管を導通状態と非導通状態に切り替える第5切替手段を備え、前記配管は前記冷房運転モードでは導通状態とされ、前記フリークーリング運転モードでは非導通状態とされるとともに、前記第1配管系は前記吸収器と前記第5切替手段を接続する配管から分岐するバイパス配管をなし、当該分岐位置から前記第1切替手段までの配管部分は、前記第5切替手段よりも上部にあることを特徴とする。
この態様では、冷房運転モードでは、前記再生器で加熱、濃縮された溶液が前記吸収器に流入し冷却水と熱交換することで前記蒸発器で蒸発した冷媒蒸気を吸収し、希釈される。希釈された当該溶液(希溶液)が前記吸収器底部の底部液溜に貯留され、そこから前記溶液ポンプによって前記再生器に送られる。冷房運転モードを終了する際は、加熱源を停止するとともに、好ましくは、前記した特許文献3や特許文献4に記載されるような希釈運転を実施する。もちろん、本発明においては、希釈運転の方法を特に限定するものではなく、前記特許文献3および特許文献4は例を示したに過ぎない。
フリークーリング運転において、吸収器に溶液が残留していると冷媒の蒸発、凝縮する圧力が純粋な冷媒よりも低くなり、冷媒蒸気の移動に伴う圧力損失の影響が大きくなり性能が低下する。冷房運転モードを終了しフリークーリング運転モードに切替える際は、加熱源による加熱を停止させるとともに、希釈運転を行った後、溶液ポンプにて前記吸収器底部液溜に貯留されている希溶液を前記再生器に移動させる溶液排出モードによる運転を行うことで、前記吸収器底部に貯留された希溶液を空にすることができ、それによりかかる状態を回避することができる。
さらに、前記バイパス配管における前記分岐位置から前記第1切替手段までの配管部分は、前記第5切替手段よりも上部にあることにより、溶液排出モードにおいて、当該配管内の溶液は自重によりに容易に下方に向けて移動し、配管内の溶液を排出することができ、フリークーリング運転における溶液の残留を防止できる。
溶液排出モードで吸収器の底部液溜の溶液を排出した後にフリークーリング運転モードに移行させ、蒸発器で負荷側熱媒(冷水)と熱交換し蒸発した冷媒蒸気は吸収器内に流入し、冷却塔との間を循環する冷却水と熱交換して液化(凝縮)した後に、空となっている前記吸収器の底部液溜に貯留する。そして、そこから前記第1配管系を通って蒸発器に戻され、サイクルが形成される。
上記の吸収器の底部液溜をフリークーリング運転において液冷媒の液溜として用いる態様において、前記吸収器の底部液溜は前記蒸発器の底部液溜よりも上位に位置していることは好ましい。この態様では、フリークーリング運転モード時に、吸収器の底部液溜に凝縮、滴下する液化した冷媒が、自重により蒸発器側に向けて移動するのを良好にする。
(第2態様:溶液タンクあり)
本発明による吸収式冷凍機の第2の態様では、第1態様の吸収式冷凍機が持つ構成に加えて、さらに、前記吸収器の底部液溜と前記溶液ポンプを接続する配管における前記第5切替手段と前記溶液ポンプを接続する配管部分には、前記吸収器の底部液溜より低い位置に溶液タンクを備えることを特徴とする。
この態様において、冷房運転モードでは、前記再生器で濃縮された溶液が前記吸収器に流入し冷却水と熱交換することで前記蒸発器で蒸発した冷媒蒸気を吸収し、希釈される。そして、希釈された当該溶液(希溶液)は前記吸収器の底部液溜を経由して前記溶液タンクに貯留され、そこから前記溶液ポンプによって前記再生器に送られる。
フリークーリング運転モードに切替える際は、加熱源を停止させるとともに適宜の方法で希釈運転を行った後、前記吸収器の底部液溜に残留している希溶液を自重により前記溶液タンクに移動させるか、もしくは溶液タンクおよび吸収器の底部液溜と前記溶液ポンプを接続する配管が液封されており自重による溶液の移動が期待できないときは、溶液ポンプにて前記吸収器底部の液溜に貯留されている希溶液を前記再生器に移動させる溶液排出モードによる運転を行うことで、前記吸収器の底部に残留している希溶液を空にすることができる。
しかる後にフリークーリング運転モードに移行させる。蒸発器で負荷側熱媒(冷水)と熱交換し蒸発した冷媒蒸気は吸収器内に流入し、冷却塔との間を循環する冷却水と熱交換して液化(凝縮)した後に、液冷媒は空となっている前記吸収器の底部液溜に貯留する。そして、そこから前記第1配管系を通って蒸発器に戻され、サイクルが形成される。
この様態の吸収式冷凍機においても、前記吸収器の底部液溜は前記蒸発器の底部液溜よりも上位に位置していることは好ましい態様である。この態様では、フリークーリング運転時に、吸収器の底部液溜に凝縮、滴下する液冷媒が蒸発器側に向けて移動するのを良好にする。
(第1態様と第2態様:液面検知手段)
また、上記した第1態様の吸収冷凍機において、前記吸収器の底部液溜と前記溶液ポンプを接続する配管における前記第5切替手段と前記溶液ポンプを接続する配管部分に液面検知手段を備えること、また、第2態様の吸収冷凍機において、前記第5切替手段と前記溶液タンクを接続する配管部分には液面検知手段を備えることは好ましい。この態様では、前記溶液排出モードにおいて、液面検知手段により溶液が吸収器の底部液溜にないことを検知でき、確実に冷媒中に溶液を混入させることなく、フリークーリング運転モードに切り替えができる。なお、冷房運転モードによる運転においても、当該液面検知手段により液面を検知し、液面なきときは溶液ポンプの運転を停止する制御とすることにより、溶液ポンプのキャビテーション防止や各部位における適切や溶液貯留量確保に寄与することも可能である。
また、上記した第1態様と第2態様の吸収式冷凍機において、前記吸収器の底部液溜は底部の面積が上部よりも小さくなっていることが好ましい。この態様では、冷房運転モードからフリークーリング運転モードに切替える際において、底部液溜に存在する希釈された溶液の排出が良好となり、また、フリークーリング運転モードでは、そこに冷媒液が貯留する場合に、貯留した冷媒液が蒸発器に向けて移動するのを良好にする。
(第3態様:第2液溜あり)
本発明による吸収式冷凍機の第3の態様では、前記吸収器は底部液溜より上位の位置に底部液溜に連通する第2液溜と、該第2液溜と前記吸収器を接続する第2配管系と、前記第2配管系を導通状態と非導通状態に切替える第2切替手段を備えており、前記第1配管系は前記第2液溜内に貯留した液冷媒を前記蒸発器に戻すことのできるようにされていることを特徴とする。
上記第3態様の吸収冷凍機において、冷房運転モードでは、再生器で加熱、濃縮された溶液が吸収器に流入し冷却水と熱交換することで蒸発器で蒸発した冷媒蒸気を吸収し、希釈される。希釈された当該溶液(希溶液)が吸収器の底部液溜と第2液溜の双方に貯留され、そこから溶液ポンプによって再生器に送られる。冷房運転モードを終了する際は、第1および第2の態様の吸収式冷凍機と同様に、加熱源を停止するとともに、好ましくは希釈運転を実施する。
第3態様の吸収冷凍機において、冷房運転モードにおいては、前記第2切替手段は導通状態、非導通状態のどちらでも問題ない。第2切替手段が導通状態の場合、溶液散布管より散布される溶液は第2液溜に貯留された後、第2配管系を通じて吸収器の底部液溜に貯留される。一方、第2切替手段を非導通状態とした場合、溶液散布管より散布される溶液は第2液溜に貯留された後、第2液溜より溢れて吸収器の底部液溜に貯留される。いずれの場合においても溶液散布管から散布される溶液は吸収器の底部液溜に貯留されるため、溶液ポンプにて再生器に導くことができ、冷房運転モードによる運転は可能になる。
フリークーリング運転において、吸収器に溶液が残留していると冷媒の蒸発、凝縮する圧力が純粋な冷媒よりも低くなり、冷媒蒸気の移動に伴う圧力損失の影響が大きくなり性能が低下する。この態様の吸収冷凍機においても、冷房運転モードを終了しフリークーリング運転モードに切替える際は、上記した第1および第2態様の吸収冷凍機と同様に、加熱源による加熱を停止させるとともに、適宜の方法で希釈運転を行った後、第2液溜内の希溶液を第2配管系を通じて吸収器の底部液溜内に自重により移動させ、第2液溜を空の状態とする溶液排出モードを経ることが好ましく、かかる状態を回避することができる。
溶液排出モードで第2液溜内の希溶液を排出した後にフリークーリング運転モードに移行させ、蒸発器で負荷側熱媒(冷水)と熱交換し蒸発した冷媒蒸気は吸収器内に流入し、冷却塔との間を循環する冷却水と熱交換して液化(凝縮)した後に、空となっている第2液溜内に液冷媒貯留する。そして、当該液冷媒は自重によりそこから第1配管系を通って蒸発器に戻され、サイクルが形成される。
好ましくは、前記第2液溜は底部の面積が上部よりも小さくされ、小面積となった底部部分を介して第2液溜と吸収器の底部液溜とが連通するようにされる。この態様では、第2液溜が広い底面積を持つ場合と比較して、第2液溜に貯留している希釈された溶液を第2配管系を通して迅速に吸収器の底部液溜に排出することが可能であり、冷房運転モードからフリークーリング運転モードへの切り替えを迅速に行うことができる。
(第3態様:切替手段の位置)
第3態様の吸収冷凍機において、前記第1配管系は前記第2配管系から分岐するバイパス配管を備え、当該分岐位置から前記第1切替手段までの配管部分は、前記第2切替手段よりも上部にあることが好ましい。この態様では、フリークーリング運転モードに切替える際に、まずは加熱源を停止させるとともに第2液溜内の希溶液を第2配管系を通じて吸収器の底部液溜内に自重により移動させ空の状態とするときに、第1配管系を満たしている溶液は第2切替手段よりも上の位置にあるため、当該溶液は自重によりにより第2切替手段を通じて移動することができ、配管内を確実に空の状態とすることで、フリークーリング運転における溶液の残留を防止できる。
(第3態様:液面検知手段)
また、第3形態の吸収冷凍機において、前記第2切替手段と前記吸収器を接続する配管の間に液面を検知する液面検知手段を備えていることが望ましい。冷房運転モードからフリークーリング運転モードに切替える際の運転で、液面検知手段により溶液が吸収器の第2液溜にないことを検知でき、確実に冷媒中に溶液を混入させることなく切り替えることができる。
(各態様共通:第3、4配管系)
上記したすべての態様の吸収冷凍機において、前記溶液散布管と前記再生器を接続する第3配管系を導通状態と非導通状態に切替える第3切替手段を備え、さらに、前記溶液散布管と前記冷媒散布管を接続する第4配管系と、当該第4配管系を導通状態と非導通状態とに切替える第4切替手段を備えていることは好ましい。
この態様では、前記溶液排出モードにおいて前記第3配管系を第3切替手段を切り替えて非導通状態とすることにより、溶液が再生器から吸収器に戻るのを防止でき、効率良く溶液を吸収器から排出することができる。
また、この態様では、冷房運転モードからフリークーリング運転モードに切り替える場合において、冷房運転モード終了後、前記溶液排出モードに切替えて運転する際に、前記溶液ポンプを運転し、かつ前記冷媒ポンプを運転し、前記第3配管系を非導通状態にし、かつ前記第4切替手段により第4配管系を導通状態とすることで、蒸発器液溜に貯留する液冷媒を前記冷媒ポンプおよび前記第4配管系を通じて溶液散布管から吸収器内に散布し、吸収器において冷却水が通じる伝熱管および吸収器の底部液溜および第2液溜を液冷媒で洗浄することができる。この作用を実施した後、前記冷媒ポンプを停止しかつ前記溶液ポンプの運転を継続することで吸収器に貯留した液体を再生器に排出し、前記液面検知手段にて液面なきことを確認した後にフリークーリング運転モードに切替えることで、フリークーリング運転モードにおいて冷媒中に溶液が混入するのを防止することができる。
なお、溶液排出モードにおいて、溶液ポンプの循環量が冷媒ポンプの循環量よりも多い場合、吸収器の底部液溜もしくは溶液タンクに貯留される溶液量が減少し、溶液ポンプがキャビテーションを引き起こす可能性があるが、前記液面検知手段にて液面なきことを確認した場合には、溶液ポンプを停止し、冷媒ポンプにより吸収器に冷媒が供給され、前記液面検知手段にて液面が確認されれば溶液ポンプの運転を再開すればよい。
また、この態様ではフリークーリング運転においては前記第4切替手段を非導通状態とすることにより冷媒ポンプを流れる冷媒液を吸収器に流すことなく冷媒散布管を経由して蒸発器に流し、また前記第3切替手段を非導通状態とすることで再生器にある溶液が吸収器に散布されるのを防止することができる。この作用により、冷媒ポンプを運転し流れる冷媒は蒸発器内の冷媒散布管を通じて蒸発器に散布されて蒸発して冷媒蒸気になるとともに冷水から熱を奪い、当該冷媒蒸気は吸収器にて冷却水に冷却され凝縮した後に吸収器液溜に貯留され、更に導通状態にある前記第1配管系を通じて蒸発器液溜に戻り、再び冷媒ポンプに吸引されフリークーリングのサイクルが完成される。また、このとき前記第2切替手段もしくは第5切替手段は非導通状態にあるため、吸収器底部に貯留される液冷媒は溶液と混じり合うことはない。
(各態様共通:吸収器液溜の位置)
上記したすべての態様の吸収冷凍機において、前記吸収器の底部液溜は底部の面積が上部よりも小さくなっていることが好ましい。この態様では、冷房運転モードからフリークーリング運転モードに切替える際において、底部液溜に存在する希釈された溶液の排出が良好となり、また、フリークーリング運転モードでは、そこに冷媒液が貯留する場合に、貯留した冷媒液が蒸発器に向けて移動するのを良好にする。
本発明によれば、製造コストも運転コストも高騰させることなく通常の冷房運転モードと冬期間でのフリークーリング運転モードとを選択的に切り替え可能とした新たな吸収式冷凍機が得られる。
本発明による吸収式冷凍機の第1態様を、それが冷房運転モードにあるときの状態で示す模式図。 第1態様の吸収式冷凍機がフリークーリング運転モードにあるときの状態で示す模式図。 本発明による吸収式冷凍機の第2態様を、それが冷房運転モードにあるときの状態で示す模式図。 第2態様の吸収式冷凍機がフリークーリング運転モードにあるときの状態で示す模式図。 本発明による吸収式冷凍機の第3態様を、それが冷房運転モードにあるときの状態で示す模式図。 本発明による吸収式冷凍機の第3態様を、それがフリークーリング運転モードにあるときの状態で示す模式図。 第1態様の吸収式冷凍機の変形例を示す模式図。 第2液溜および吸収器の底部液溜の好ましい態様を示す概略断面図。 第1態様の吸収式冷凍機のさらに他の態様を示す図1に相当する模式図。 フリークーリング運転を可能とした圧縮式冷凍機を説明するための模式図。
以下、図面を参照しながら、本発明を実施の態様に基づき説明する。
(第1態様の吸収式冷凍機)
図1および図2は、本発明による吸収式冷凍機の第1態様を模式的に示している。この吸収式冷凍機A1は、基本的構成として、蒸発器10、吸収器20、再生器30および凝縮器40とからなる従来公知の単効用型吸収式冷凍機の構成を備えるとともに、後に説明するように、本発明にかかる吸収式冷凍機に固有の構成である、吸収器20内で液化した冷媒を蒸発器10に戻す第1配管系R1と該第1配管系R1を導通状態と非導通状態とに切り替える第1切替手段SV1を備えている。さらに、吸収器20の底部液溜22と溶液ポンプ23を接続する配管52には、当該配管52を導通状態と非導通状態に切替える第5切替手段SV5を備えている。
吸収式冷凍機A1において、従来の吸収式冷凍機と同様に冷媒には水が用いられ、図示しない熱負荷側と蒸発器10内とを繋ぐ配管11内を循環する負荷側熱媒(冷水)から熱を奪うことで冷媒は蒸発(気化)するとともに、負荷側熱媒(冷水)を冷却する。蒸発器10の底部は液化した冷媒(液冷媒)の液溜12とされており、冷媒液溜12に貯留する冷媒液は、冷媒ポンプ13により、配管14を通って蒸発器10の上部空間に配置した冷媒散布管15に送られ、そこから蒸発器10内に散布される。
蒸発器10内で蒸発した冷媒蒸気は吸収器20内に流入する。吸収器20内には、開放式冷却塔100と吸収式冷凍機A1との間で冷却水を循環させるための冷却水配管21の一部が熱交換可能な形態で位置している。吸収器20の底部は液溜22とされており、冷媒蒸気を吸収することで希釈された溶液(希溶液)は底部液溜22内に貯留する。滞留する希溶液は、溶液ポンプ23の作用により、配管24を通って再生器30の上部空間に配置した希溶液散布管26まで送られ、そこから再生器30内に散布される。
再生器30には適宜の加熱源31が備えられており、加熱源31からの熱によって希溶液は加熱され、溶液に含まれている冷媒を蒸発して濃溶液となり、冷媒蒸気は凝縮器40内に流入する。再生器30の底部は再生した溶液のための液溜32となっており、再生した溶液は、戻り配管33および吸収器20の上部空間に配置した溶液散布管25を通り、該溶液散布管25から吸収器20内に散布される。
凝縮器40内には、前記した冷却水配管21が熱交換可能な形で通過しており、凝縮器40内に流入した冷媒蒸気は冷却水配管21内を通る冷却水と熱交換することで液化する。凝縮器40の底部は液化した冷媒のための液溜42となっており、液溜42に貯留した液冷媒は配管43を通って蒸発器10内に戻される。なお、図で27は配管24を流れる希溶液と配管33内を流れる再生した濃溶液との間での熱交換を促進するための熱交換器である。
前記したように、上記の構成は従来知られた単効用型吸収式冷凍機と同じある。本発明の吸収式冷凍機は、さらに次の構成を備える。すなわち、図1および図2に示す態様の吸収式冷凍機A1では、吸収器20の底部液溜22と溶液ポンプ23との間の配管52には配管51を導通状態と非導通状態に切替える開閉弁SV5が取り付けられている。前記開閉弁SV5が、本発明でいう「吸収器20の底部液溜22と溶液ポンプ23を接続する配管52を導通状態と非導通状態に切り替える第5切替手段」に相当する。さらに、この例では、配管52における前記開閉弁SV5と溶液ポンプ23との間に、液面検知手段54が取り付けられている。
前記配管52における前記底部液溜22と開閉弁SV5の間、すなわち開閉弁SV5の上部に位置する分岐点P3からバイパス配管51が分岐しており、該バイパス配管51は蒸発器10の底部液溜12に接続している。また、バイパス配管51には当該配管51を導通状態と非導通状態に切り替える開閉弁SV1が取り付けてある。このバイパス配管51と開閉弁SV1が本発明でいう「第1配管系」に相当し、開閉弁SV1が「第1切替手段」に相当する。そして、前記開閉弁SV1とバイパス配管51の分岐点P3から開閉弁SV1までの部分は、前記した開閉弁SV5(第5切替手段)よりも上位に位置するように設計されている。
前記した液冷媒が通過する配管14は、冷媒散布管15との分岐部P1を超えてさらに延長する延長配管16を備えており、該延長配管16は分岐部P2において前記した再生器30の上部空間に配置した溶液散布管25と接続している。そして、延長配管16における分岐部P1とP2との間には、開閉弁SV4が取り付けられている。また、前記した濃溶液の戻り配管33と吸収器20の上部空間に配置した溶液散布管25も、分岐部P2において接続しており、戻り配管33における前記分岐部P2に近接した位置には開閉弁SV3が取り付けられている。なお、前記溶液散布管25と前記再生器30を接続する前記戻り配管33が本発明でいう「第3配管系」に相当し、当該戻り配管33に取り付けられた開閉弁SV3が第3配管系を導通状態と非導通状態に切替える第3切替手段に相当する。さらに、前記溶液散布管25と前記冷媒散布管15を接続する前記分岐部P1と分岐部P2の間の延長配管16が本発明でいう「第4配管系」に相当し、当該延長配管16に取り付けられた開閉弁SV4が第4配管系を導通状態と非導通状態に切替える第4切替手段に相当する。
次に、上記吸収式冷凍機A1の作動について、表1も参照して説明する。
Figure 0005470279
表1は、上記吸収式冷凍機A1の各運転モードと、そのときに各開閉弁(SV1〜SV5)の開閉状態、加熱源31のON、OFF、溶液ポンプ23のON、OFF、冷媒ポンプ13のON、OFFの状態を示している。ONは作動を、OFFは非作動を示す。
前記したように、吸収式冷凍機A1は基本的に従来公知の吸収式冷凍機の構成を備えている。従って、冷房運転時の作動は、基本的に従来のものと同様である。ただし、上記した第1配管系R1を備えており、冷房運転時には、第1配管系R1は非導通状態とされる。すなわち、表1に示しように、通常の冷房運転モードでは、加熱源31、冷媒ポンプ13、溶液ポンプ23はすべて「ON」であり、開閉弁SV5とSV3は「開」(図1で白抜き)、開閉弁SV1とSV4を「閉」(黒で塗り潰し)として運転される。冷媒および溶液の動きは従来の吸収式冷凍機と同様であり、説明を省略する。冷房運転中、開放式冷却塔100で冷却された冷却水は、吸収器20と凝縮器40を通過することで次第に昇温されていき、冷却水配管21を通って再度開放式冷却塔100に戻される。
吸収式冷凍機A1において、上記した冷房運転モードからフリークーリング運転モードに切り替えるに際しては、従来の吸収式冷凍機と同様に、希釈運転を行うことが推奨される。希釈運転では、表1に示すように、各開閉弁は冷房運転時の状態をそのまま維持し、加熱源31のみ停止(OFF)する。希釈運転を一定時間行うことにより、冷媒を吸収した状態の希溶液が吸収器40と再生器30との間で循環するようになる。
希釈運転を行った後、吸収器20の底部液溜22に貯留されている希溶液を排出する「溶液排出運転」を行う。溶液排出運転時には、表1に示すように、希釈運転の状態から冷媒ポンプをOFFに切り替えるとともに、開閉弁SV3を「開」から「閉」に切り替える。この溶液排出運転を行うことにより、吸収器20内の底部液溜22内に貯留されていた希溶液は、配管52および開状態の開閉弁SV5と配管24を通り、再生器30の底部液溜32内に移動する。そして、再生器30の底部液溜32内に貯留された希溶液は、開閉弁SV3が閉止状態にあるため吸収器に戻ることなく、そのままそこに貯留される。それにより、吸収器20の底部液溜22は空の状態となる。吸収器20の底部液溜22が空になったことは、配管52に取り付けた液面検知手段54からの情報で知ることができる。
なお、溶液排出運転において、冷媒ポンプ13を運転し、前記切替弁SV3を閉じ、かつ前記切替弁SV4を開とすることで、蒸発器10の液溜12に貯留する液冷媒を配管16を通して溶液散布管25から吸収器の伝熱管に散布し、当該伝熱管を液冷媒により洗浄することもできる。
底部液溜22が空になった後に、フリークーリング運転モードに移行する。図2は、フリークーリング運転モードでの吸収式冷凍機Aの状態を示している。ここでは、4つの開閉弁のうち、SV5、SV3、SV4は「閉」(黒で塗り潰し)とされ、SV1のみが「開」(白抜き)の状態とされる。また、加熱源31はOFF、溶液ポンプ23もOFF、すなわち非作動とされ、冷媒ポンプ13はON(作動)とされる。それにより、前記第1配管系R1は導通した状態になり、分岐点P3から下流側の配管52および配管24は非導通状態となる。また、前記した第3配管系と第4配管系も非導通状態におかれている。
冷媒ポンプ13を稼働すると、蒸発器10底部の冷媒液溜12に貯留された液冷媒は、配管14を通り、冷媒散布管15から蒸発器10内に散布される。散布された液冷媒は蒸発(気化)することで、配管11を流れる負荷側熱媒(冷水)を冷却し、冷媒蒸気は吸収器20内に流入する。流入した冷媒蒸気は、冷却水配管21を流れる冷却水と熱交換することで、温度降下するとともに凝縮して液化する。そして、液冷媒は吸収器22の底部液溜22内に貯留され、貯留された液溶媒は、前記した第1管路系R1を通って、自重により蒸発器10の底部冷媒液溜12に戻される。このように冷媒が蒸発器10と吸収器20の間を循環することで、図示しない熱負荷側と蒸発器10内とを繋ぐ配管11内を循環する負荷側熱媒(冷水)に対して連続した冷却作用を与えることができる。
(第2態様の吸収式冷凍機)
図3および図4は、第2態様の吸収式冷凍機A2を示している。この吸収式冷凍機A2は、吸収器20の底部液溜22と溶液ポンプ23を接続する配管52における前記第5切替手段SV5と溶液ポンプ23を接続する配管部分に、吸収器20の底部液溜22より低い位置において、溶液タンク22Aを備える点で、前記した第1態様の吸収式冷凍機A1と相違する。好ましくは、図示のように、第5切替手段SV5と溶液タンク22Aの間の配管部分には液面検知手段54が配置される。その他の構成は、第1態様の吸収式冷凍機A1と同じであり、同じ符号を付すことで、説明は省略する。
吸収式冷凍機A2の運転態様は、第1態様の吸収式冷凍機A1と同じであってよいが、表1に示す溶液排出運転において、溶液ポンプ23の運転を停止することもできる。溶液タンク22Aに空き容量がある場合には、溶液ポンプ23の運転を停止しても、吸収器20の底部液溜22および溶液タンク22Aより上位に位置する配管内の溶液は、自重により溶液タンク22A内に流入し、吸収器20の底部液溜22を空にすることができる。なお、溶液タンク22Aが十分な受け入れ容量を有しなし場合には、溶液ポンプ23を運転して、溶液の一部または全部を再生器30内に送り込むようにする。
なお、図3は、冷房運転モードにあるときの吸収式冷凍機A2を示しており、開閉弁SV1「閉」、開閉弁SV5「開」、開閉弁SV3「開」、開閉弁SV4「閉」とされ、また、溶液ポンプ23「ON」、冷媒ポンプ13「ON」、加熱源31「ON」の状態にある。
フリークーリング運転モートに切り替えるときに、第1態様の吸収式冷凍機A1と同様にして「希釈運転」を行い、その後、溶液排出運転を行う。前記したように、溶液排出運転では溶液ポンプを作動する場合と作動しない場合があるが、いずれにしても、吸収器20の底部液溜22内の希溶液は、溶液タンク22A内に移動することで、吸収器20の底部液溜22は空の状態となる。図4は、その後のフリークーリング運転モードにあるときの吸収式冷凍機A2を示しているが、その運転態様は第1態様の吸収式冷凍機A1と同じであり、単に図示するだけで、説明は省略する。
(第3態様の吸収式冷凍機)
図5および図6は、第3態様の吸収式冷凍機A3を示している。この吸収式冷凍機A3は、吸収器20内に第2液溜50が配置されている点で、第1態様に吸収式冷凍機A1と構成が異なる。すなわち、第3態様の吸収式冷凍機A3は、吸収器20の底部の液溜22より上位の位置であって、前記した冷却水配管21の熱交換器として機能する部分よりも下位の位置に、第2液溜50を配置している。
そして、第2液溜50は、第2配管系R2を介して前記吸収器20の底部液溜22に接続しており、かつ第2配管系R2には、該配管系を導通状態と非導通状態に切替える第2切替手段SV2が備えられている。また、前記第1配管系R1は、第2液溜50内に貯留された液冷媒を蒸発器10に戻すようにされている。
具体的には、第2配管系R2は、第2液溜50と吸収器20の底部液溜22とを接続する配管55を備え、該配管55には切替弁SV2が取り付けられ、好ましくは、前記配管55の前記切替弁SV2と吸収器20の底部液溜22との間には液面検知手段54が備えられている。そして、前記配管55における前記第2液溜50と開閉弁SV2の間、すなわち開閉弁SV2の上部に位置する分岐点P3からバイパス配管51が分岐しており、該バイパス配管51は蒸発器10内に延出している。また、バイパス配管51には当該配管51を導通状態と非導通状態に切り替える開閉弁SV1(第1切替手段)が取り付けてある。また、前記開閉弁SV1とバイパス配管51の分岐点P3から開閉弁SV1までの部分は、前記した開閉弁SV2(第2切替手段)よりも上位に位置するように設計されている。
第3態様の吸収式冷凍機A3では、第1配管系R1と第2配管系R2とを上記した位置に配置した結果として、吸収器20の底部液溜22と溶液ポンプ23を接続する配管52は単に配管のままであり、特別の部材は取り付けられていない。他の構成、すなわち第3の配管系、第4の配管系などにかかる構成は、第1態様および第2態様の吸収式冷凍機A1、A2と同じであり、同じ符号付すことで、説明は省略する。
次に、上記吸収式冷凍機A3の作動について、前記表1も参照して説明する。なお、吸収式冷凍機A3では、第1態様および第2態様の吸収式冷凍機A1、A2での配管52に取り付けた開閉弁SV5は存在せず、前記第2配管系R2に取り付けた開閉弁SV2が、前記開閉弁SV5と同等の機能を果たす。従って、表1では、「SV5(SV2)」として、開閉弁SV2を開閉弁SV5と同じ欄に表示している。
図5は、吸収式冷凍機A3が冷房運転モードにある状態を示している。冷房運転時の作動は、第1態様および第2態様の吸収式冷凍機A1、A2と同じであり、加熱源31、冷媒ポンプ13、溶液ポンプ23はすべて「ON」、開閉弁SV2とSV3は「開」(図5で白抜き)、開閉弁SV1とSV4を「閉」(黒で塗り潰し)として運転される。ただし、冷媒蒸気を吸収して希釈された希溶液は、前記した第2液溜50と底部液溜22の双方に貯留され、第2液溜50された希溶液は、自重により管路55および開状態にある開閉弁SV2を通って底部液溜22内に移動する。そして、底部液溜22に貯留されている希溶液とともに、溶液ポンプ23によって吸い上げられ、管路24を通って再生器30に送られる。また、再生器30で再生した濃溶液は、管路33、開状態にある開閉弁SV3を通り、溶液散布管25から吸収器20内に散布される。
なお、吸収式冷凍機A3では、冷房運転モードにおいて、前記切替弁SV2は表1に示すように開であってもよいが、閉であってもよい。切替弁SV2が開の場合、溶液散布管25より散布される溶液は第2液溜50に貯留された後、配管55を通じて吸収器20の底部液溜22に貯留される。一方、切替弁SV2が閉の場合は、溶液散布管25より散布される溶液は第2液溜50に貯留された後、第2液溜50より溢れて吸収器20の底部液溜22に貯留される。いずれの場合においても溶液散布管25から散布される溶液は吸収器20の底部液溜22に貯留されるため、溶液ポンプ23にて再生器30に導くことができ、冷房運転は可能になる。
吸収式冷凍機A3においても、上記した冷房運転モードからフリークーリング運転モードに切り替えるに際しては、従来の吸収式冷凍機と同様に、希釈運転を行うことが推奨される。冷房運転時の作動は、第1態様および第2態様の吸収式冷凍機A1、A2と同じであり、表1に示すように、各開閉弁は冷房運転時の状態をそのまま維持し、加熱源31のみ停止(OFF)する。
希釈運転を行った後、吸収器20内の第2液溜50と底部液溜22に貯留されている希溶液を排出する「溶液排出運転」を行う。溶液排出運転の作動も、実質的に第1態様および第2態様の吸収式冷凍機A1、A2と同じであり、表1に示すように、希釈運転の状態から冷媒ポンプ13をOFFに切り替えるとともに、開閉弁SV3を「開」から「閉」に切り替える。この溶液排出運転を行うことにより、第2液溜50に貯留されている希溶液は、配管55および開状態の開閉弁SV2を通り、吸収器20の底部液溜22に移動する。そして、吸収器20の底部液溜22に滞留していた希溶液とともに溶液ポンプ23によって再生器30の底部液溜32内に送られる。そして、再生器30の底部液溜32内に貯留された希溶液は、自重で配管33内に移動する分を除き、そのままそこに貯留される。それにより、吸収器20内の第2液溜50および底部液溜22は空の状態となる。
第3態様の吸収式冷凍機A3では、少なくとも第2液溜50が空になっていればフリークーリング運転モードに移行することができる。従って、溶液排出運転の他の作動状態として、溶液ポンプ23をOFFとした状態で、開閉弁SV2を「開」、開閉弁3を「閉」とする作動状態を取ることもできる。その場合には、第2液溜50に貯留されている希溶液は、配管55および開状態の開閉弁SV2を通って吸収器20の底部液溜22に移動して、吸収器20の底部液溜22内に、以前から滞留していた希溶液とともに滞留することとなる。
なお、いずれの態様を取る場合であっても、第2液溜50が空になったことは、配管55に取り付けた液面検知手段54からの情報で知ることができる。
また、吸収式冷凍機A3においても、溶液排出運転において、冷媒ポンプ13を運転し、前記切替弁SV3を閉じ、かつ前記切替弁SV4を開とすることで、蒸発器10の液溜12に貯留する液冷媒を配管16を通して溶液散布管25から吸収器20内に散布し、吸収伝熱管を冷媒液により洗浄することもできる。
図6は、フリークーリング運転モードでの吸収式冷凍機A3の状態を示している。ここでの作動状態も実質的に第1態様および第2態様の吸収式冷凍機A1、A2と同じであり、表1に示すように、4つの開閉弁のうち、SV2とSV3とSV4は「閉」(黒で塗り潰し)、SV1は「開」(白抜き)の状態とされる。また、フリークーリング運転モードでは、溶液ポンプ23は作動停止とされ、冷媒ポンプ13は作動を継続する。また、加熱源31も停止状態とされる。それにより、それにより、前記第1配管系R1は導通した状態になり、第2配管系R2は非導通状態となる。また、第3配管系と第4配管系も非導通状態におかれている。
冷媒ポンプ13を稼働すると、蒸発器10底部の冷媒液溜12に貯留された液冷媒は、配管14を通り、冷媒散布管15から吸収器20内に散布される。散布された液冷媒は蒸発(気化)することで、配管11を流れる負荷側熱媒(冷水)を冷却し、冷媒蒸気は吸収器20内に流入する。流入した冷媒蒸気は、冷却水配管21を流れる冷却水と熱交換することで、温度降下するとともに凝縮して液化する。そして、液冷媒は吸収器20内の第2液溜50内に貯留され、貯留された液溶媒は、前記した第1管路系R1を通って、自重により蒸発器10内に戻される。このようにして冷媒が蒸発器10と吸収器20の間を循環することで、図示しない熱負荷側と蒸発器10内とを繋ぐ配管11内を循環する負荷側熱媒(冷水)に対して連続した冷却作用を与えることができる。なお、一部の冷媒は吸収器20の底部液溜22に入り込むことが起こり得るが、フリークーリング運転において吸収器、蒸発器に保有される冷媒量に対し少量であれば、フリークーリング運転および事後の冷房運転が支障をきたすことはない。
図7に示す吸収式冷凍機A4は、図1に示した吸収式冷凍機A1のさらなる変形例である。この吸収式冷凍機A4は、吸収器20の底部液溜22の位置が蒸発器10の底部冷媒液溜よりも上位に位置している点で、図1に示した吸収式冷凍機A1と相違する。他の構成は同じであり、同じ符号を付すことで説明は省略する。この吸収式冷凍機A4では、吸収器20と蒸発器10の底部冷媒液溜の上下方向の位置関係から、フリークーリング運転モード時に、吸収器20の底部液溜22に貯留された液冷媒が自重により蒸発器10の底部冷媒液溜に移動する(排出される)のを容易かつ迅速化することができる。
図8は、前記した第2液溜50、または吸収器20の底部液溜22の好ましい形態を示す概略断面図である。一般に、容器内に収容されている液体をその底部から自重により排出しようとするときに、図示のように、容器の断面形状を底部bの面積が上部よりも小さくされた形状、すなわち次第に幅狭となる形状とすることにより、より排出されやすくなる。従って、第2液溜50の縦方向の断面形状を図示のように下方に向けて次第に幅狭となる形状とし、その底部bに前記した配管55の一方端を接続することで、前記した溶液排出運転時において、第2液溜50内に貯留した希釈した溶液をより迅速に外部に排出することができ、溶液排出運転からフリークーリング運転へより迅速に移行できるようになる。また、吸収器20の底部液溜22を図示のような形状とすることにより、底部液溜22に貯留されている溶液の排出が迅速となるので、やはり、溶液排出運転からフリークーリング運転への移行をより迅速化することができる。
前記したように、本発明は単効用型吸収冷凍機に限らず、任意の吸収型冷凍機に適用することができる。一例として、二重効用型の吸収式冷凍機に本発明を適用した場合を図9に示す。なお、図9は二重効用型の吸収型冷凍機Bがフリークーリング運転モードにある状態を示しており、前記した図2に相当する図である。図1および図2に示した単効用型の吸収式冷凍機A1の各部材と実質的に同じ機能を果たす部材には同じ符号を付すことで、説明は省略する。
図9において、60は高温再生器であり、高温再生器60の底部は液溜62となっている。図示しないが、高温再生器60には適宜の加熱装置が付設される。そして、二重効用型の吸収式冷凍機では、前記した再生器30は低温再生器と通称される。また、高温再生器60で発生する高温の冷媒蒸気は配管63を通って低温再生器30内に至り、そこで希釈された溶液と熱交換することで液化し、液化した冷媒は凝縮器40に送られる。冷房運転時において、溶液ポンプ23で送られる希溶液の一部は低温再生器30内に設けた冷媒散布管26から低温再生器30内に散布される。残りの希溶液は高温溶液熱交換器64を通って高温再生器60内に送られる。希溶液は高温再生器60内で加熱され、冷媒を蒸発させることで濃溶液となる。その冷媒蒸気は配管63を通って低温再生器30に送られる。高温再生器60内で作られた濃溶液は高温溶液熱交換器64を通過して前記した戻り配管33内に合流する。二重効用型の吸収式冷凍機の冷房運転時での上記作動は、従来知られたものと同じである。
フリークーリング運転モードとする場合には、単効用型吸収式冷凍機に基づき説明したと同様に4つの開閉弁の切り替え操作等を行って、希釈運転と溶液排出運転を行った後、図9に示すフリークーリング運転モードとする。その運転態様は、図1および図2に基づき説明したと同じであり、説明は省略する。
なお、前記した第2態様および第3態様の吸収式冷凍機A2、A3も、基本となる吸収式冷凍機の形態を二重効用型の吸収式冷凍機に置き換えることができることは説明を要しない。
A1〜A4、B…本発明よる吸収式冷凍機、
R1…第1配管系、
R2…第2配管系、
SV1、SV2、SV3、SV4…開閉弁、
10…蒸発器、
11…熱負荷側と蒸発器内とを繋ぐ配管、
12…冷媒液溜、
13…冷媒ポンプ、
15…冷媒散布管、
20…吸収器、
21…冷却水配管、
22…吸収器の底部液溜、
23…溶液ポンプ、
25…溶液散布管、
30…再生器、
31…加熱源、
32…再生器液溜、
40…凝縮器、
42…凝縮器液溜、
50…第2液溜、
100…開放式冷却塔。

Claims (10)

  1. 冷媒が蒸発することで負荷側熱媒を冷却する蒸発器と、前記蒸発器に貯留された液冷媒を冷媒散布管に供給する冷媒ポンプと、濃溶液が冷却塔との間で循環する冷却水により冷却されることで前記蒸発器で蒸発した冷媒蒸気を吸収し希溶液となる吸収器と、希溶液が加熱源により加熱されることで冷媒を蒸発し濃溶液となる再生器と、前記吸収器から希溶液を前記再生器に供給する溶液ポンプと、前記濃溶液を前記吸収器に散布する溶液散布管と、前記再生器で蒸発した冷媒を前記冷却水により凝縮させる凝縮器とを少なくとも備える吸収式冷凍機であって、
    前記吸収式冷凍機は、さらに吸収器と前記蒸発器を接続する第1配管系と、該第1配管系を導通状態と非導通状態とに切り替える第1切替手段を備えていて、前記第1配管系が非導通状態であり、前記加熱源、冷媒ポンプおよび溶液ポンプが作動状態である冷房運転モードと、前記第1配管系が導通状態であり、冷媒ポンプが作動状態であり、前記加熱源と溶液ポンプが停止状態であるフリークーリング運転モードとを選択的に切替え可能となっており、
    前記吸収器は底部液溜より上位の位置に底部液溜に連通する第2液溜と、該第2液溜と前記吸収器を接続する第2配管系と、前記第2配管系を導通状態と非導通状態に切替える第2切替手段を備えており、前記第1配管系は前記第2液溜内に貯留した液冷媒を前記蒸発器に戻すようにされていることを特徴とする吸収式冷凍機。
  2. 請求項に記載の吸収冷凍機であって、前記第1配管系は前記第2配管系から分岐するバイパス配管をなし、当該分岐位置から前記第1切替手段までの配管部分は、前記第2切替手段よりも上部にあることを特徴とする吸収冷凍機。
  3. 請求項1または2に記載の吸収冷凍機であって、前記第2配管系における前記第2切替手段と前記吸収器を接続する配管の間に液面を検知する液面検知手段を備えることを特徴とする吸収冷凍機。
  4. 請求項に記載の吸収冷凍機であって、前記冷房運転モード終了後、前記第2切替手段を導通状態にすることで第2液溜に貯留される溶液を自重により吸収器に移動させ、前記第2液溜に液面なきことを前記液面検知手段にて確認する溶液排出モードを経た後に、フリークーリング運転モードに切替えることを特徴とする吸収冷凍機。
  5. 請求項1〜4のいずれか一項に記載の吸収冷凍機であって、前記溶液散布管と前記再生器を接続する第3配管系において、当該第3配管系を導通状態と非導通状態に切替える第3切替手段を備え、さらに、前記溶液散布管と前記冷媒散布管を接続する第4配管系と、当該第4配管系を導通状態と非導通状態とに切替える第4切替手段を備えていることを特徴とする吸収式冷凍機。
  6. 請求項に記載の吸収冷凍機であって、前記溶液排出モードにおいて前記第3配管系を非導通状態として運転することを特徴とする吸収冷凍機。
  7. 請求項に記載の吸収冷凍機であって、前記冷房運転モード終了後、前記溶液排出モードに切替えて運転している際に、前記冷媒ポンプを運転し、かつ前記第4切替手段を導通状態とし、かつ前記第3切替手段を非導通状態に切替えて所定の期間運転した後、前記冷媒ポンプを停止し前記溶液ポンプを前記液面検知手段にて液面なきことを確認するまで運転することを特徴とする吸収冷凍機。
  8. 請求項5〜7のいずれか一項に記載の吸収冷凍機であって、フリークーリング運転モードにおいて、前記第3配管系および前記第4配管系を非導通状態として運転することを特徴とする吸収冷凍機。
  9. 請求項1〜4のいずれか一項に記載の吸収式冷凍機であって、前記第2液溜は底部の面積が上部よりも小さくなっていることを特徴とする吸収式冷凍機。
  10. 請求項1〜のいずれか一項に記載の吸収式冷凍機であって、前記吸収器の底部液溜は前記蒸発器の底部液溜よりも上位に位置していることを特徴とする吸収式冷凍機。
JP2011000789A 2011-01-05 2011-01-05 吸収式冷凍機 Expired - Fee Related JP5470279B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000789A JP5470279B2 (ja) 2011-01-05 2011-01-05 吸収式冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011000789A JP5470279B2 (ja) 2011-01-05 2011-01-05 吸収式冷凍機

Publications (2)

Publication Number Publication Date
JP2012141111A JP2012141111A (ja) 2012-07-26
JP5470279B2 true JP5470279B2 (ja) 2014-04-16

Family

ID=46677555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000789A Expired - Fee Related JP5470279B2 (ja) 2011-01-05 2011-01-05 吸収式冷凍機

Country Status (1)

Country Link
JP (1) JP5470279B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086835B2 (ja) 2013-07-23 2017-03-01 住友重機械工業株式会社 圧縮機および冷却システム
JP6982408B2 (ja) * 2017-05-30 2021-12-17 株式会社前川製作所 冷風発生装置及び冷風発生方法
CN116428740B (zh) * 2023-06-14 2023-08-29 沈阳世杰电器有限公司 一种固体蓄热恒温热水装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864929A (en) * 1973-12-05 1975-02-11 Borg Warner Absorption refrigeration system
US3864930A (en) * 1973-12-05 1975-02-11 Borg Warner Control for absorption refrigeration system
JPS5315655A (en) * 1976-07-28 1978-02-13 Sanyo Electric Co Ltd Absorption hot and cold water supplying device
JPH06294556A (ja) * 1993-04-07 1994-10-21 Hitachi Ltd 吸収冷温水機を用いた空調システム
JP3837186B2 (ja) * 1996-06-13 2006-10-25 三洋電機株式会社 吸収冷凍機
JP4311924B2 (ja) * 2002-10-11 2009-08-12 株式会社大気社 フリークーリング利用冷熱源設備
JP2010085010A (ja) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd 空調システム

Also Published As

Publication number Publication date
JP2012141111A (ja) 2012-07-26

Similar Documents

Publication Publication Date Title
KR100746241B1 (ko) 저온수 2단 흡수식 냉동기
RU2013141537A (ru) Система быстрого размораживания
JP5470279B2 (ja) 吸収式冷凍機
KR101377690B1 (ko) 흡수열 열교환기를 이용한 고효율 저온수 2단 흡수식 냉동기
KR101586368B1 (ko) 흡수식 냉동 시스템
CN105423683A (zh) 一种冷藏装置及其控制方法
JP2014231921A (ja) 冷凍装置、および負荷冷却器のデフロスト方法
JP2008157481A (ja) 冷却設備及びその改造方法
KR101616516B1 (ko) 흡수식 냉동기를 이용한 외기 냉방 시스템
KR101042812B1 (ko) 2단 저온수 흡수식 냉동기
KR101634345B1 (ko) 압축식 냉동기의 폐열을 이용한 흡수식 냉방장치
KR101750649B1 (ko) 흡수식 냉동기
JP2008116173A (ja) 吸収式冷凍機
KR101652484B1 (ko) 난방과 급탕이 가능한 저온수 2단 흡수식 냉동기
KR101347582B1 (ko) 급탕 겸용 저온수 2단 흡수식 냉난방기
KR100981672B1 (ko) 2단 재생 저온수 흡수식 냉동기
KR101060776B1 (ko) 흡수식 냉동기
KR100983092B1 (ko) 히트펌프를 이용한 냉난방 에너지 절감 장치
JP5338270B2 (ja) 吸収式冷凍装置
KR20100074387A (ko) 저온수 2단 흡수식 냉난방기
JP5434207B2 (ja) 冷凍装置
CN106642795B (zh) 复叠式溶液并联单效溴化锂吸收式制冷热泵机组
JP2014129944A (ja) 冷凍装置
JP2009068816A (ja) 吸収式冷凍機
JP3859567B2 (ja) ハイブリッド空調機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5470279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees