JP5469577B2 - 化成処理めっき鋼板およびその製造方法 - Google Patents

化成処理めっき鋼板およびその製造方法 Download PDF

Info

Publication number
JP5469577B2
JP5469577B2 JP2010221425A JP2010221425A JP5469577B2 JP 5469577 B2 JP5469577 B2 JP 5469577B2 JP 2010221425 A JP2010221425 A JP 2010221425A JP 2010221425 A JP2010221425 A JP 2010221425A JP 5469577 B2 JP5469577 B2 JP 5469577B2
Authority
JP
Japan
Prior art keywords
chemical conversion
phosphate
plated steel
film
conversion treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010221425A
Other languages
English (en)
Other versions
JP2012077322A (ja
Inventor
雅典 松野
雅也 山本
博文 武津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2010221425A priority Critical patent/JP5469577B2/ja
Publication of JP2012077322A publication Critical patent/JP2012077322A/ja
Application granted granted Critical
Publication of JP5469577B2 publication Critical patent/JP5469577B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、耐候性、耐水性、耐黒変性、皮膜密着性および防眩性に優れる化成処理めっき鋼板およびその製造方法に関する。
溶融Zn−Al−Mg合金めっき鋼板は、優れた耐食性を有しており、外装建材などの様々な用途において使用されている。溶融Zn−Al−Mg合金めっき鋼板は、易酸化性のAlやMgを含有するため、時間の経過とともに光沢が低下したり、黒変現象が生じたりしてしまう可能性がある。また、溶融Zn−Al−Mg合金めっき鋼板は、優れた耐食性を有しているものの、海塩粒子飛散雰囲気や高温多湿雰囲気などの高腐食環境下で使用すると、白錆が発生してしまう可能性がある。
このような黒変現象や白錆の発生を抑制するために、めっき鋼板の表面に有機樹脂を含む化成処理皮膜が形成されることがある(例えば、特許文献1、2参照)。特許文献1、2には、亜鉛系めっき鋼板の表面に、ウレタン樹脂などの有機樹脂を含む化成処理皮膜を形成することが記載されている。このようにめっき鋼板の表面を有機樹脂を含む化成処理皮膜で被覆することで、耐黒変性や耐食性などだけでなく、耐カジリ性も向上させることができる。
また、めっき鋼板の耐食性や塗膜密着性などを向上させるために、めっき鋼板の表面にリン酸塩皮膜を形成することがある(例えば、特許文献3〜6参照)。特許文献3〜6には、亜鉛系めっき鋼板の表面に、リン酸塩の結晶を含むリン酸塩皮膜を形成することが記載されている。このようにめっき鋼板の表面をリン酸塩皮膜で被覆することで、耐食性や塗膜密着性などを向上させることができる。
一方、化成処理めっき鋼板の耐候性を向上させるために、化成処理皮膜を構成する有機樹脂として耐候性に優れるフッ素樹脂を使用することがある。このように耐候性の向上を目的としてフッ素樹脂を使用する場合、有機溶剤系フッ素樹脂組成物が使用されることが多い。しかし、このような有機溶剤系フッ素樹脂組成物には、火災の危険性や有害性、大気汚染などの問題がある。
また、水系フッ素樹脂組成物も様々なものが提案されている(例えば、特許文献7参照)。しかし、このような水系フッ素樹脂組成物は、いずれも高温での焼付けを必要とする(例えば180〜230℃、特許文献7参照)。このような高温での焼き付けは、現場での塗装においては現実的に不可能であり(通常は常乾樹脂を使用する)、加熱乾燥が主流である工場ラインにおいても不利である。
特開2005−15834号公報 特開2005−206764号公報 特開2005−126811号公報 特開2005−126812号公報 特開2005−290551号公報 特開2005−290552号公報 特開昭57−38845号公報
前述の通り、めっき鋼板の表面に有機樹脂を含む化成処理皮膜を形成することで、耐食性や耐黒変性などを向上させることができる。しかしながら、有機樹脂を含む化成処理皮膜を形成された従来の化成処理めっき鋼板は、外装建材として使用した場合に耐候性が不十分である場合があった。すなわち、ウレタン樹脂などの多くの有機樹脂は紫外線により劣化してしまうため、従来の化成処理めっき鋼板を外装建材として使用した場合、めっき鋼板の表面を被覆する化成処理皮膜が時間の経過とともに失われてしまうおそれがある。このように化成処理皮膜が失われてしまうと、変色や錆などが発生して美観が損なわれるおそれがあり、外装建材として好ましくない。
有機樹脂を含む化成処理皮膜の耐候性を向上させる手段としては、化成処理皮膜を構成する有機樹脂として耐候性に優れるフッ素樹脂を使用することが考えられる。そこで、本発明者は取り扱いが容易な水系フッ素樹脂組成物を用いてめっき鋼板の表面に化成処理皮膜を形成する予備実験を行った。その結果、水系フッ素樹脂組成物を使用することで、耐紫外線性を向上させることはできたが、その一方で造膜性、耐水性および皮膜密着性が低下してしまった。本発明者によるさらなる検討の結果、これらの品質の低下は、水系フッ素樹脂組成物を製造する際に使用される乳化剤(例えば、ペルフルオロオクタン酸アンモニウム塩)が化成処理皮膜中に残存するためであることが推察された。
以上のように、有機樹脂を含む化成処理皮膜を形成された従来の化成処理めっき鋼板は、耐候性が不十分である場合があった。また、有機樹脂として水系フッ素樹脂を使用することで、化成処理めっき鋼板の耐候性(耐紫外線性)を向上させることはできるが、その一方で造膜性、耐水性および皮膜密着性が低下してしまうため、耐候性、耐水性、耐黒変性および皮膜密着性を両立させることはできなかった。
一方で、溶融Zn−Al−Mg合金めっき鋼板は、特に使用初期においては高金属光沢を有するため、外装建材として使用した場合にその眩しさが問題となる場合があった。
本発明は、かかる点に鑑みてなされたものであり、溶融Zn−Al−Mg合金めっき鋼板を基材とし、かつ有機樹脂を含む化成処理皮膜を有する化成処理めっき鋼板であって、耐候性、耐水性、耐黒変性、皮膜密着性および防眩性のすべてに優れる化成処理めっき鋼板を提供することを目的とする。
本発明者は、溶融Zn−Al−Mg合金めっき鋼板の表面にリン酸塩皮膜を形成し、かつリン酸皮膜の上に乳化剤を使用せずに調製された水系フッ素含有樹脂を有機系架橋剤および4A族金属化合物で架橋した化成処理皮膜を形成することで、溶融Zn−Al−Mg合金めっき鋼板を基材とする化成処理鋼板の耐候性、耐水性、耐黒変性、皮膜密着性および防眩性のすべてを向上させうることを見出し、さらに検討を加えて本発明を完成させた。
すなわち、本発明の第一は、以下の化成処理めっき鋼板に関する。
[1]Al/Zn/ZnMgの三元共晶組織を含むめっき層を有する溶融Zn−Al−Mg合金めっき鋼板と;前記溶融Zn−Al−Mg合金めっき鋼板の表面に形成された、リン酸塩の結晶粒子を含むリン酸塩皮膜と;前記リン酸塩皮膜上に形成された、膜厚0.5〜10μmの化成処理皮膜とを有する化成処理めっき鋼板であって;前記リン酸塩皮膜の形成面において、前記リン酸塩の結晶粒子は、前記溶融Zn−Al−Mg合金めっき鋼板の表面の50〜98面積%を被覆しており;前記化成処理皮膜は、有機系架橋剤により架橋された、F原子を7〜20質量%含有するフッ素含有樹脂と、前記フッ素含有樹脂に対して金属換算で0.1〜5質量%の4A族金属化合物とを含有する、化成処理めっき鋼板。
[2]前記有機系架橋剤は、メラミン化合物である、[1]に記載の化成処理めっき鋼板。
[3]前記化成処理皮膜は、さらにリン酸塩を含有し;前記フッ素含有樹脂に対する前記リン酸塩の量は、P換算で0.05〜3質量%の範囲内である、[1]または[2]に記載の化成処理めっき鋼板。
[4]前記化成処理皮膜は、さらにシランカップリング剤を含有し;前記フッ素含有樹脂に対する前記シランカップリング剤の量は、0.5〜5質量%の範囲内である、[1]〜[3]のいずれかに記載の化成処理めっき鋼板。
[5]前記4A族金属は、Ti、Zr、Hfおよびこれらの組み合わせからなる群から選ばれる、[1]〜[4]のいずれかに記載の化成処理めっき鋼板。
本発明の第二は、以下の化成処理めっき鋼板の製造方法に関する。
[6]Al/Zn/ZnMgの三元共晶組織を含むめっき層を有する溶融Zn−Al−Mg合金めっき鋼板を準備するステップと;前記溶融Zn−Al−Mg合金めっき鋼板の表面に、リン酸イオン換算で0.03〜0.5モル/Lのリン酸塩を含有するリン酸塩処理液を塗布し、乾燥させて、リン酸塩の結晶粒子を含むリン酸塩皮膜を形成するステップと;前記リン酸塩皮膜上に化成処理液を塗布し、乾燥させて、膜厚が0.5〜10μmの化成処理皮膜を形成するステップとを含み;前記化成処理液は、反応性官能基0.05〜5質量%とF原子7〜20質量%とを含有し、数平均分子量が1000〜8万の範囲内であるフッ素含有樹脂と、前記反応性官能基と反応しうる官能基を有する有機系架橋剤と、4A族金属の酸素酸塩、フッ化物、水酸化物、有機酸塩、炭酸塩または過酸化塩のいずれかとを含有し;前記フッ素含有樹脂に対する前記有機系架橋剤の量は、0.8〜9.6質量%の範囲内であり;前記フッ素含有樹脂に対する、前記4A族金属の酸素酸塩、フッ化物、水酸化物、有機酸塩、炭酸塩または過酸化塩の量は、金属換算で0.1〜5質量%の範囲内である、化成処理めっき鋼板の製造方法。
[7]前記フッ素含有樹脂は、前記反応性官能基としてカルボキシル基およびスルホン酸基を有し;前記フッ素含有樹脂が有するカルボキシル基とスルホン酸基との比率は、カルボキシル基/スルホン酸基のモル比で5〜60の範囲内である、[6]に記載の化成処理めっき鋼板の製造方法。
[8]前記有機系架橋剤は、メラミン化合物である、[6]または[7]に記載の化成処理めっき鋼板の製造方法。
[9]前記化成処理液は、さらにリン酸塩を含有し;前記フッ素含有樹脂に対する前記リン酸塩の量は、P換算で0.05〜3質量%の範囲内である、[6]〜[8]のいずれかに記載の化成処理めっき鋼板の製造方法。
[10]前記化成処理液は、さらにシランカップリング剤を含有し;前記フッ素含有樹脂に対する前記シランカップリング剤の量は、0.5〜5質量%の範囲内である、[6]〜[9]のいずれかに記載の化成処理めっき鋼板の製造方法。
[11]前記4A族金属は、Ti、Zr、Hfおよびこれらの組み合わせからなる群から選ばれる、[6]〜[10]のいずれかに記載の化成処理めっき鋼板の製造方法。
[12]乳化剤非存在下の水溶媒中でフルオロオレフィンと反応性官能基含有モノマーとを共重合させて、前記フッ素含有樹脂を準備するステップをさらに含む、[6]〜[11]のいずれかに記載の化成処理めっき鋼板の製造方法。
[13]前記リン酸塩処理液は、Ni、Co、FeおよびMnからなる群から選ばれる金属イオンを0.01〜0.5モル/Lの濃度でさらに含有する、[6]〜[12]のいずれかに記載の化成処理めっき鋼板の製造方法。
[14]前記リン酸塩処理液は、−NHまたは=NHの少なくとも一方の官能基を有し、数平均分子量が200〜30000のポリアミン系有機インヒビターを0.01〜5質量%の濃度でさらに含有する、[6]〜[13]のいずれかに記載の化成処理めっき鋼板の製造方法。
[15]前記ポリアミン系有機インヒビターは、ポリエチルアミン、ポリエチレンイミン、ポリエーテルアミンおよびポリアミノアクリレートからなる群から選ばれる1種類または2種類以上の脂肪族アミンである、[14]に記載の化成処理めっき鋼板の製造方法。
本発明によれば、耐候性、耐水性、耐黒変性、皮膜密着性および防眩性のすべてに優れる化成処理めっき鋼板を提供することができる。本発明の化成処理めっき鋼板は、耐候性、耐水性、耐食性、耐黒変性および防眩性に優れているため、例えば外装建材用のめっき鋼板として有用である。
1.化成処理めっき鋼板
本発明の化成処理めっき鋼板は、溶融Zn−Al−Mg合金めっき鋼板(化成処理原板)と、溶融Zn−Al−Mg合金めっき鋼板の表面に形成されたリン酸塩皮膜と、リン酸塩皮膜の上に形成された化成処理皮膜とを有する。本発明の化成処理めっき鋼板は、化成処理皮膜が有機系架橋剤により架橋されたフッ素含有樹脂と4A族金属化合物とを含むことを一つの特徴とする。
以下、本発明の化成処理めっき鋼板の各構成要素について説明する。
[化成処理原板]
化成処理原板としては、耐食性および意匠性に優れる溶融Zn−Al−Mg合金めっき鋼板が使用される。
溶融Zn−Al−Mg合金めっき鋼板は、Al/Zn/ZnMgの三元共晶組織を含むめっき層を有する。Al/Zn/ZnMgの三元共晶組織を形成している各相(Al相、Zn相およびZnMg相)は、それぞれ不規則な大きさおよび形状をしており、互いに入り組んでいる。リン酸塩処理の反応性を確保する観点からは、めっき層表面における三元共晶組織の面積率は高いほど好ましい。具体的には、めっき層表面における三元共晶組織の面積率は、60面積%以上が好ましく、80面積%以上がより好ましい。たとえば、めっき浴中のAlの濃度を低くすることで三元共晶組織の面積率を高くすることが可能であり、Alを4質量%以下とすることで三元共晶組織の面積率をほぼ100%とすることができる。
溶融Zn−Al−Mg合金めっき鋼板の下地鋼としては、低炭素鋼や中炭素鋼、高炭素鋼、合金鋼などが使用される。加工性が必要とされる場合は、低炭素Ti添加鋼、低炭素Nb添加鋼などの深絞り用鋼板が下地鋼として好ましい。
[リン酸塩皮膜]
リン酸塩皮膜は、上述の溶融Zn−Al−Mg合金めっき鋼板(化成処理原板)の表面に形成されている。リン酸塩皮膜は、リン酸塩の結晶粒子を主成分として含み、その他の成分としてNiやCo、Fe、Mnなどの金属元素や脂肪族アミンなど(後述)を含んでいてもよい。リン酸塩皮膜は、必ずしも溶融Zn−Al−Mg合金めっき鋼板の表面を完全に被覆しているわけではなく、リン酸塩の結晶粒子間では、溶融Zn−Al−Mg合金めっき鋼板の表面が露出していることもある。リン酸塩皮膜は、従来から知られているように耐食性やその上に形成される化成処理皮膜の密着性を向上させるだけでなく、リン酸塩の結晶粒子が光を散乱させることにより防眩性も向上させる。
リン酸塩皮膜の付着量は、0.3〜2.8g/mの範囲内が好ましい。リン酸塩皮膜の付着量が0.3g/m未満の場合、耐食性や皮膜密着性、防眩性などを十分に向上させることができないおそれがある。一方、リン酸塩皮膜の付着量が2.8g/m超の場合、本発明の化成処理めっき鋼板を成形加工した際にリン酸塩皮膜が凝集破壊してしまうおそれがある。リン酸塩皮膜の付着量は、蛍光X線分析装置により測定することができる。
主成分として含まれるリン酸塩の結晶粒子は、リン酸塩皮膜が形成されている面において、めっき層の表面の50〜98面積%を被覆していることが好ましい。めっき層表面の被覆率が50面積%未満の場合、耐食性や皮膜密着性、防眩性などを十分に向上させることができないおそれがある。一方、めっき層表面の被覆率が98面積%超の場合、本発明の化成処理めっき鋼板を成形加工した際にリン酸塩皮膜が凝集破壊してしまうおそれがある。リン酸塩の結晶粒子によるめっき層表面の被覆率は、めっき層表面を撮像した走査型電子顕微鏡(SEM)写真を画像解析することにより測定することができる。
リン酸塩結晶を構成するリン酸塩の種類は、リン酸アニオンを有する化合物であって、水溶性のものであれば特に限定されない。リン酸塩の例には、リン酸マグネシウム、リン酸マンガン、リン酸亜鉛、リン酸鉄、リン酸亜鉛鉄、リン酸亜鉛カルシウムなどが含まれる。
リン酸塩の結晶粒子の平均粒径は、0.5〜5.0μmの範囲内が好ましい。平均粒径が0.5μm未満の場合、耐食性や皮膜密着性、防眩性などを十分に向上させることができないおそれがある。一方、平均粒径が5.0μm超の場合、本発明の化成処理めっき鋼板を成形加工した際にリン酸塩皮膜が凝集破壊してしまうおそれがある。また、リン酸塩皮膜(リン酸塩結晶)の密着性を向上させる観点から、リン酸塩の結晶粒子は、その基部がめっき層に食い込んでいることが好ましい。めっき層に食い込むリン酸塩の結晶粒子の平均深さは、0.05μm以上であることが好ましい。リン酸塩の結晶粒子の食い込み深さは、クロム酸二アンモニウム水溶液を用いてリン酸塩の結晶粒子を除去した後、リン酸塩の結晶粒子の痕跡を走査型レーザ顕微鏡を用いて観察することで測定できる。
[化成処理皮膜]
化成処理皮膜は、上述のリン酸塩皮膜の上に形成されている。化成処理皮膜は、リン酸塩の結晶粒子の上だけでなく、リン酸塩の結晶粒子間の空隙にも形成されていてよい。リン酸塩の結晶粒子間の空隙では、化成処理皮膜はめっき層の表面に直接接触していることもある。化成処理皮膜は、溶融Zn−Al−Mg合金めっき鋼板の耐候性や耐黒変性、耐カジリ性などを向上させる。
本発明は、化成処理皮膜の耐候性、耐水性、耐黒変性および皮膜密着性のすべてを向上させることを目的としている。前述の通り、化成処理皮膜の耐候性(耐紫外線性)を向上させるためには、有機樹脂としてフッ素含有樹脂を使用すればよい。フッ素含有樹脂は、有機溶剤系フッ素含有樹脂と水系フッ素含有樹脂に大別される。有機溶剤系フッ素含有樹脂組成物を用いて化成処理皮膜を形成する場合は、揮発した溶剤の回収が問題となるが、水系フッ素含有樹脂組成物を用いた場合は、このような問題は生じない。そこで、本発明者は、取り扱いが容易な水系フッ素含有樹脂組成物を使用して耐候性、耐水性、耐黒変性および皮膜密着性のすべてに優れた化成処理皮膜を形成することを試みた。
前述の通り、本発明者の予備実験によれば、水系フッ素含有樹脂組成物を用いて化成処理皮膜を形成した場合に耐水性が低下するのは、水系フッ素含有樹脂組成物を製造する際に使用される乳化剤が化成処理皮膜中に残存するためと考えられた。そこで、本発明者は、乳化剤を使用せずに水系フッ素含有樹脂組成物を製造することができれば、化成処理皮膜の耐水性の低下を抑制できると考えた。
そこで、本発明者は、様々な観点から検討した結果、1)低分子量の水系フッ素含有樹脂であれば、乳化剤を使用しなくても水系フッ素含有樹脂組成物を製造可能であること、2)低分子量のフッ素含有樹脂を用いて化成処理皮膜を形成する場合も化成処理皮膜の耐水性の低下が問題となるが、低分子量のフッ素含有樹脂を用いて化成処理皮膜を形成する場合であっても、フッ素含有樹脂のポリマー鎖間を有機系架橋剤および4A族金属化合物で架橋することで化成処理皮膜に十分な耐水性を付与できること、を見出した。
そして、本発明者は、低分子量の水系フッ素含有樹脂をベースとする化成処理液に、さらに有機系架橋剤および4A族金属化合物を配合することで、耐候性、耐水性、耐黒変性および皮膜密着性のすべてに優れる化成処理皮膜を形成できることを見出したのである。
従来、有機系架橋剤を用いてフッ素含有樹脂皮膜を形成すると、有機系架橋剤による架橋部位が優先的に耐候劣化して皮膜が多孔質状となってしまい、皮膜の耐水性が低下してしまうという問題があった。この問題に対して、本発明者は、有機系架橋剤と4A族金属化合物とを組み合わせて用いることで、皮膜の多孔質化を抑制できることを見出した。その理由は明らかではないが、1)有機系架橋剤と4A族金属化合物とを組み合わせることでフッ素含有樹脂の架橋反応がより進行し、フッ素含有樹脂が高分子量化することで有機系架橋剤による架橋部位の結合がより安定化しているという可能性や、2)4A族金属化合物による架橋部位の結合が安定であるため、紫外線により有機系架橋剤による架橋が解離してもフッ素含有樹脂の低分子量化が抑制されているという可能性などが考えられる。
本発明の化成処理めっき鋼板の化成処理皮膜では、1)フッ素含有樹脂(好ましくはフッ素含有オレフィン樹脂)を配合することで耐候性(耐紫外線性)を向上させている。また、2)低分子量のフッ素含有樹脂を使用することでエマルション製造時の乳化剤の使用を回避し、かつ3)フッ素含有樹脂を有機系架橋剤および4A族金属化合物で架橋させることで耐水性を向上させている。
以下、化成処理皮膜に含まれる各成分について説明する。
1)フッ素含有樹脂
化成処理皮膜は、フッ素含有樹脂、より具体的にはフッ素含有オレフィン樹脂を主成分として含む。化成処理皮膜における架橋されたフッ素含有樹脂の含有量は、70〜99質量%の範囲内が好ましい。前述の通り、化成処理皮膜を構成する有機樹脂としてフッ素含有樹脂を用いることで、化成処理皮膜の耐候性(耐紫外線性)を向上させることができる。
化成処理皮膜に含まれるフッ素含有樹脂中のF原子の含有量は、7〜20質量%の範囲内が好ましい。F原子の含有量が7質量%未満の場合、化成処理皮膜の耐候性を十分に向上させることができない。一方、F原子の含有量が20質量%超の場合、塗料化が困難であり、かつ密着性および乾燥性が低下するおそれがある。フッ素含有樹脂中のF原子の含有量は、蛍光X線分析装置を用いることで測定することができる。
本発明の化成処理めっき鋼板の化成処理皮膜では、乳化剤を使用せずに調製された水系フッ素樹脂組成物を用いて形成される。ここで「水系フッ素含有樹脂」とは、水系溶媒に分散しうるフッ素含有樹脂を意味する。また、「水系フッ素樹脂組成物」とは、水系フッ素含有樹脂のエマルションや懸濁液などを意味する。
乳化剤を使用せずに高分子量のフッ素含有樹脂を調製することは困難なため、通常、乳化剤を使用せずに調製された水系フッ素樹脂組成物に含まれるフッ素含有樹脂の分子量は、1000〜8万の範囲内である。このような低分子量のフッ素含有樹脂を用いて化成処理皮膜を形成した場合、化成処理皮膜の耐水性が十分ではなく、湿気や腐食性ガスなどが化成処理皮膜を容易に貫通してめっき鋼板に到達し、その結果としてめっき鋼板が腐食してしまうおそれがある。さらに、低分子量のフッ素含有樹脂を用いて化成処理皮膜を形成した場合、光エネルギーなどの作用により発生したラジカルがポリマー鎖の末端に作用しやすいため、水などの相乗作用によりフッ素含有樹脂が容易に加水分解されてしまうおそれもある。これらの問題を防ぐために、本発明の化成処理めっき鋼板の化成処理皮膜では、フッ素含有樹脂のポリマー鎖間を有機系架橋剤および4A族金属化合物で架橋させる。
フッ素含有樹脂は、有機系架橋剤および4A族金属化合物により架橋されている。架橋前のフッ素含有樹脂は反応性官能基を有しており、この反応性官能基と有機系架橋剤または4A族金属化合物とが反応することで、フッ素含有樹脂は架橋される。架橋前のフッ素含有樹脂が有する反応性官能基の種類は、有機系架橋剤および4A族金属化合物と反応しうるものであれば特に限定されない。反応性官能基の例には、カルボキシル基、スルホン酸基、アミノ基、ヒドロキシル基などが含まれる。フッ素含有樹脂の親水性を高める観点からは、カルボキシル基およびスルホン酸基が反応性官能基として好ましい。
架橋前のフッ素含有樹脂は、反応性官能基を0.05〜5質量%有することが好ましい。反応性官能基の量が0.05質量%未満の場合、有機系架橋剤および4A族金属化合物と十分に架橋させることができず、化成処理皮膜の耐水性を十分に向上させることができない。一方、反応性官能基の量が5質量%超の場合、紫外線に曝されるとラジカルを生じさせうる未反応の反応性官能基が残存してしまい、このラジカルがフッ素含有樹脂の結合を不安定化し、分解を引き起こすことで、化成処理皮膜の耐候性および耐水性が低下するおそれがある。
フッ素含有樹脂中の反応性官能基の含有量は、フッ素含有樹脂に含まれる反応性官能基の総モル質量を、フッ素含有樹脂の数平均分子量で除して求めればよい。たとえば、フッ素含有樹脂がカルボキシル基およびスルホン酸基を有する場合、カルボキシル基のモル質量は45であり、スルホン酸基のモル質量は81であるので、フッ素含有樹脂に含まれるカルボキシル基およびスルホン酸基それぞれの数を求め;それぞれにモル質量を乗じることで、フッ素含有樹脂に含まれる反応性官能基の総モル質量が求まる。フッ素含有樹脂の数平均分子量はGPCで測定される。
架橋前のフッ素含有樹脂は、反応性官能基としてカルボキシル基およびスルホン酸基の両方を有することが好ましい。フッ素含有樹脂中のカルボキシル基は、めっき層表面と水素結合などを形成して化成処理皮膜とめっき層表面との密着性の向上に寄与するが、Hが解離しにくいため有機系架橋剤および4A族金属化合物との架橋反応が生じにくい。一方、フッ素含有樹脂中のスルホン酸基は、Hが解離しやすいものの、有機系架橋剤および4A族金属化合物と架橋反応せずに未反応のまま皮膜中に残存すると、水分子の吸着作用が強いため皮膜の耐水性を著しく低下させてしまうおそれがある。したがって、それぞれの特徴を活かすべく、フッ素含有樹脂には、カルボキシル基およびスルホン酸基の両方を含むことが好ましい。この場合、カルボキシル基とスルホン酸基との比率は、カルボキシル基/スルホン酸基のモル比で5〜60の範囲内が好ましい。
フッ素含有樹脂としては、フルオロオレフィンと反応性官能基含有モノマーとの共重合体が挙げられる。反応性官能基含有モノマーとは、カルボキシル基含有モノマーやスルホン酸基含有モノマーなどである。
フルオロオレフィンの例には、テトラフルオロエチレン、トリフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フッ化ビニル、フッ化ビニリデン、ペンタフルオロプロピレン、2,2,3,3−テトラフルオロプロピレン、3,3,3−トリフルオロプロピレン、ブロモトリフルオロエチレン、1−クロロ−1,2−ジフルオロエチレン、1,1−ジクロロ−2,2−ジフルオロエチレンなどが含まれる。これらのフルオロオレフィンは、単独で使用されてもよいし、2種類以上を組み合わせて使用されてもよい。耐候性(耐紫外線性)の観点からは、これらのフルオロオレフィンの中でも、テトラフルオロエチレン、ヘキサフルオロプロピレンなどのパーフルオロオレフィンや、フッ化ビニリデンなどが好ましい。クロロトリフルオロエチレンなどの塩素を含むフルオロオレフィンは、塩素イオンによる腐食が生じるおそれがあるため好ましくない。
カルボキシル基含有モノマーの一例としては、以下の式(1)に示される不飽和カルボン酸や、これらのエステルまたは酸無水物などの不飽和カルボン酸類が挙げられる。
Figure 0005469577
(式中、R、RおよびRは同じかまたは異なり、いずれも水素原子、アルキル基、カルボキシル基またはエステル基である。nは0〜20の範囲内である。)
上記式(1)に示される不飽和カルボン酸の例には、アクリル酸、メタクリル酸、ビニル酢酸、クロトン酸、桂皮酸、イタコン酸、イタコン酸モノエステル、マレイン酸、マレイン酸モノエステル、フマル酸、フマル酸モノエステル、5−ヘキセン酸、5−ヘプテン酸、6−ヘプテン酸、7−オクテン酸、8−ノネン酸、9−デセン酸、10−ウンデシレン酸、11−ドデシレン酸、17−オクタデシレン酸、オレイン酸などが含まれる。
カルボキシル基含有モノマーの別の例としては、以下の式(2)に示されるカルボキシル基含有ビニルエーテルモノマーが挙げられる。
Figure 0005469577
(式中、RおよびRは同じかまたは異なり、いずれも飽和または不飽和の直鎖または環状アルキル基である。nは0または1である。mは0または1である。)
上記式(2)に示されるカルボキシル基含有ビニルエーテルモノマーの例には、3−(2−アリロキシエトキシカルボニル)プロピオン酸、3−(2−アリロキシブトキシカルボニル)プロピオン酸、3−(2−ビニロキシエトキシカルボニル)プロピオン酸、3−(2−ビニロキシブトキシカルボニル)プロピオン酸などが含まれる。
スルホン酸基含有モノマーの例としては、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、2−メタクリロイルオキシエタンスルホン酸、3−メタクリロイルオキシプロパンスルホン酸、4−メタクリロイルオキシブタンスルホン酸、3−メタクリロイルオキシ−2−ヒドロキシプロパンスルホン酸、3−アクリロイルオキシプロパンスルホン酸、アリルオキシベンゼンスルホイン酸、メタリルオキシベンゼンスルホン酸、イソプレンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
フルオロオレフィンと反応性官能基含有モノマーとの共重合体には、必要に応じてさらに共重合可能な他のモノマーを共重合されていてもよい。共重合可能な他のモノマーとしては、カルボン酸ビニルエステル類、アルキルビニルエーテル類、非フッ素系オレフィン類などが挙げられる。
カルボン酸ビニルエステル類は、相溶性および光沢を向上させたり、ガラス転移温度を上昇させたりすることができる。カルボン酸ビニルエステル類の例には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、シクロヘキシルカルボン酸ビニル、安息香酸ビニル、パラ−t−ブチル安息香酸ビニルなどが含まれる。
アルキルビニルエーテル類は、光沢および柔軟性を向上させることができる。アルキルビニルエーテル類の例には、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテルなどが含まれる。
非フッ素系オレフィン類は、可とう性を向上させることができる。非フッ素系オレフィン類の例には、エチレン、プロピレン、n−ブテン、イソブテンなどが含まれる。
上記モノマーを公知の重合法で共重合させることで、反応性官能基を有するフルオロオレフィン共重合体を得ることができる。このとき、乳化剤をまったく使用しなくても、低分子量のフルオロオレフィン共重合体であれば、水系組成物を製造することができる。
前述の通り、フッ素含有樹脂は、化成処理皮膜の耐水性を向上させる観点から、有機系架橋剤により架橋されている。フッ素含有樹脂を架橋する有機系架橋剤の種類は、フッ素含有樹脂が有する反応性官能基に反応しうる官能基を有しているものであれば特に限定されない。有機系架橋剤の例には、メラミン樹脂、(ブロック化)イソシアネート化合物、フェノール樹脂、オキサゾリン系化合物、アジリジン系化合物などが含まれる。これらの化合物は、単独で使用されてもよいし、2種類以上を組み合わせて使用されてもよい。
たとえば、メラミン樹脂としては、メラミンとホルムアルデヒドを縮合して得られるメチロールメラミン誘導体に低級アルコール(メチルアルコールやエチルアルコール、イソプロピルアルコールなど)を反応させてエーテル化した化合物や、それらの混合物などが使用されうる。メチロールメラミン誘導体の例には、モノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミンなどが含まれる。
また、イソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ポリメチレンポリフェニルポリイソシアネート、トリジンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどが使用されうる。
また、オキサゾリン系化合物としては、例えば、2−メチル−2−オキサゾリン、2−エチル−2−オキサゾリン、2−イソプロピル−2−オキサゾリン、2−n−プロピル−2−オキサゾリン、2−メチル−2−オキサゾリン、2−ビニル−4−メチル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4−メチル−2−オキサゾリンなどが使用されうる。
また、アジリジン系化合物としては、例えば、1−(メチレン−ジ−p−フェニレン)ビス−3,3−アジリジニル尿素、1,1’−(ヘキサメチレン)ビス−3,3−アジリジニル尿素、エチレンビス−(2−アジリジニルプロピオネート)、2,4,6−トリアジリジニル−1,3,5−トリアジンなどが使用されうる。
2)4A族金属化合物
化成処理皮膜は、4A族金属化合物を含む。4A族金属化合物は、フッ素含有樹脂中のカルボキシル基やスルホン酸基などの反応性官能基と反応しやすく、フッ素含有樹脂の硬化または架橋反応を促進する。そのため、低温乾燥でも化成処理皮膜の耐水性を向上させることができる。
また、4A族金属化合物は、皮膜密着性、耐水性および耐黒変性も向上させる。すなわち、めっき層表面と化成処理皮膜とが直接接触している領域において、めっき層表面に存在する強固なAl酸化物は、化成処理皮膜の密着性を低下させるが、化成処理皮膜に4A族金属化合物を含ませることにより、このAl酸化物による皮膜密着性の低下を抑制することができる。また、4A族金属化合物は、エッチング反応により溶出したAlイオンと反応する4A族金属イオンの供給源ともなる。反応生成物は、めっき層と化成処理皮膜の界面に濃化して、初期の耐食性および耐黒変性を向上させる。4A族金属の例には、TiやZr、Hfなどが含まれる。
化成処理皮膜中の4A族金属化合物の含有量は、フッ素含有樹脂に対して金属換算で0.1〜5質量%の範囲内が好ましい。含有量が金属換算で0.1質量%未満の場合、Al酸化物の濃化に起因する悪影響を十分に抑制することができず、また水系フッ素含有樹脂を十分に架橋させることができず、結果として化成処理皮膜の耐水性を十分に向上させることができない。一方、含有量が金属換算で5質量%超の場合、化成処理皮膜が多孔質状となり、加工性、耐候性が低下するおそれがある。化成処理皮膜中の4A族金属化合物の金属換算量は、蛍光X線分析装置を用いることで測定することができる。
上述のように化成処理皮膜中にはめっき層から溶出したAlが存在する。このAlは、耐食性の向上に寄与する。Alの存在により耐食性が向上するのは、以下のメカニズムによるものと推察される。すなわち、1)化成処理液が弱アルカリ性であるため、化成処理液を塗布した際に、めっき層に含まれるAlの酸化物および金属Alが選択的に化成処理液に溶出する(Znはほとんど溶出しない)。2)化成処理液のpH域では、AlはAl(OH) の状態で化成処理液に溶解する。3)化成処理液を乾燥させて化成処理皮膜を形成する際に、化成処理液中のAlは脱水縮合などにより化成処理皮膜中に取り込まれる。4)その結果として、化成処理皮膜の絶縁性や緻密度などが向上し、耐食性が向上する。
3)リン酸塩
化成処理皮膜は、さらにリン酸塩を含むことが好ましい。リン酸塩は、めっき層表面と化成処理皮膜とが直接接触している領域において、めっき層表面と反応して、化成処理皮膜の溶融Zn−Al−Mg合金めっき鋼板への密着性を向上させる。
リン酸塩の種類は、リン酸アニオンを有する化合物であって、水溶性のものであれば特に限定されない。リン酸塩の例には、リン酸ナトリウム、リン酸アンモニウム、リン酸マグネシウム、リン酸カリウム、リン酸マンガン、リン酸亜鉛、オルトリン酸、メタリン酸、ピロリン酸(二リン酸)、三リン酸、四リン酸などが含まれる。これらのリン酸塩は、単独で使用されてもよいし、2種類以上を組み合わせて使用されてもよい。
化成処理皮膜中のリン酸塩の含有量は、フッ素含有樹脂に対してP換算量として0.05〜3質量%の範囲内が好ましい。P換算量が0.05質量%未満の場合、めっき層表面との反応が不足して、化成処理皮膜の密着性を十分に向上させることができない。一方、P換算量が3質量%超の場合、4A族金属化合物との反応が過剰に進行して、4A族金属化合物による架橋効果が損なわれてしまう。
化成処理皮膜中のリン酸塩のP換算量は、蛍光X線分析装置を用いることで測定することができる。
4)シランカップリング剤
化成処理皮膜は、さらにシランカップリング剤を含むことが好ましい。シランカップリング剤を配合することで、化成処理皮膜の密着性をより向上させることができる。シランカップリング剤としては、アミノ基、エポキシ基、メルカプト基、アクリロキシ基、メタクリロキシ基、アルコキシ基、ビニル基、スチリル基、イソシアネート基、クロロプロピル基などの官能基を1種類または2種類以上含むシラン化合物が使用される。
化成処理皮膜中のシランカップリング剤の含有量は、フッ素含有樹脂に対して0.5〜5質量%の範囲内が好ましい。シランカップリング剤の含有量が0.5質量%未満の場合、化成処理皮膜の密着性を十分に向上させることができない。一方、シランカップリング剤の含有量が5質量%超の場合、皮膜密着性は飽和し、それ以上の向上は認められない。化成処理皮膜中のシランカップリング剤の含有量は、蛍光X線分析装置を用いることで測定することができる。
化成処理皮膜の膜厚は、0.5〜10μmの範囲内が好ましい。膜厚が0.5μm未満の場合、耐食性や耐変色性などを十分に付与することができない。一方、膜厚を10μm超としても、膜厚の増加に伴う性能向上を期待することはできない。
2.化成処理めっき鋼板の製造方法
本発明の化成処理めっき鋼板の製造方法は、特に限定されないが、例えば以下の方法により製造されうる。
本発明の化成処理めっき鋼板の製造方法は、1)溶融Zn−Al−Mg合金めっき鋼板(化成処理原板)を準備する第1のステップと、2)リン酸塩処理液を準備する第2のステップと、3)溶融Zn−Al−Mg合金めっき鋼板の表面にリン酸塩皮膜を形成する第3のステップと、4)化成処理液を準備する第4のステップと、5)リン酸塩皮膜の上に化成処理皮膜を形成する第5のステップとを含む。
[化成処理原板の準備]
第1のステップでは、化成処理原板として前述の溶融Zn−Al−Mg合金めっき鋼板を準備する。
前述の通り、化成処理原板となる溶融Zn−Al−Mg合金めっき鋼板は、Al/Zn/ZnMgの三元共晶組織を含むめっき層を有するものが好ましい。三元共晶組織を含むめっき層を有する溶融Zn−Al−Mg合金めっき鋼板は、例えばAlが2.5〜22質量%、Mgが0.05〜20.0質量%、残部が実質的にZnの合金めっき浴を用いた溶融めっき法で製造されうる。このとき、下地鋼とめっき層との密着性を向上させるために、下地鋼とめっき層との界面におけるAl−Fe合金層の成長を抑制できるSiを0.005〜2.0質量%の範囲でめっき浴に添加することが好ましい。また、外観および耐食性に悪影響を与えるZn11Mg相の生成および成長を抑制するために、Ti、B、Ti−B合金、Ti含有化合物またはB含有化合物をめっき浴に添加してもよい。これらの化合物の添加量は、Tiが0.001〜0.1質量%の範囲内となるように、Bが0.001〜0.045質量%の範囲内となるように設定することが好ましい。TiまたはBを過剰量添加すると、めっき層に析出物を成長させる原因となりうる。
[リン酸塩処理液の準備]
第2のステップでは、リン酸塩処理液を準備する。
リン酸塩処理液は、前述のリン酸塩を水溶媒に溶解させるか、リン酸と金属塩を水溶媒に溶解させることで調製されうる。リン酸塩処理液中のリン酸イオンの濃度は、0.03〜0.5モル/Lの範囲内が好ましい。リン酸イオンの濃度が0.03モル/L未満の場合、第3のステップにおいて短時間で十分な数のリン酸塩の結晶を析出させることができない。一方、リン酸イオンの濃度が0.5モル/L超の場合、リン酸塩処理液の安定性が低下し、スラッジが発生しやすくなるおそれがある。
リン酸塩処理液には、さらに、Ni、Co、FeおよびMnからなる群から選ばれる金属イオンを添加してもよい。これらの金属イオンを添加することで、第3のステップにおいてめっき層に食い込んだリン酸塩の結晶粒子を生成させることができる。すなわち、これらの金属イオンは、溶融Zn−Al−Mg合金めっき鋼板の三元共晶組織の中でも表面電位が最も低いZnMg相に選択的に置換析出する。貴な金属であるNi、Co、FeまたはMnの化合物がZnMg相に析出することで、近傍のZn相が選択的に溶解する。このZn相の溶解は深さ方向に進行し、形成された窪みにリン酸塩が析出する。結果として、めっき層に食い込んだリン酸塩の結晶粒子を生成させることができる。
リン酸塩処理液中の金属イオンの濃度は、0.01〜0.5モル/Lの範囲内が好ましい。金属イオンの濃度が0.01モル/L未満の場合、リン酸塩の結晶粒子をめっき層に十分に食い込ませることができないおそれがある。一方、金属イオンの濃度が0.5モル/L超の場合、これらの金属の置換析出量が過剰量となり、かえって溶融Zn−Al−Mg合金めっき鋼板の耐食性が低下してしまうおそれがある。
リン酸塩処理液には、さらに、−NHまたは=NHの少なくとも一方の官能基を有するポリアミン系有機インヒビターを添加してもよい。ポリアミン系有機インヒビターは、−NHまたは=NHの作用によりめっき層表面に吸着するとともに、外界側(処理液側)に配向した炭化水素基などの非極性基が分子間力により単分子膜を形成し、エッチング成分(前述の金属イオンなど)とめっき層表面との接触を阻害する。その結果、適度な間隔を空けてリン酸塩の結晶粒子を析出させることができるとともに、リン酸塩の結晶粒子を微細化することもできる。
ポリアミン系有機インヒビターの例には、ポリエチルアミンやポリエチレンイミン、ポリエーテルアミン、ポリアミノアクリレートなどの脂肪族ポリアミン、ポリアニリンなどの芳香族ポリアミンなどが含まれる。リン酸塩処理液中の安定性を考慮すると、ポリアミン系有機インヒビターとしては、芳香族ポリアミンよりも脂肪族ポリアミンの方がより好ましい。
ポリアミン系有機インヒビターの数平均分子量は、200〜30000の範囲内が好ましい。数平均分子量が200未満の場合、ポリアミン系有機インヒビターのめっき層表面に対する吸着力が不足し、リン酸塩の結晶粒子の微細化および結晶粒子間の空隙の形成が不十分となるおそれがある。リン酸塩の結晶粒子の微細化および結晶粒子間の空隙の形成が不十分であると、本発明の化成処理めっき鋼板を成形加工した際にリン酸塩皮膜が凝集破壊してしまうおそれがある。一方、数平均分子量が30000超の場合、リン酸塩結晶の析出が過剰に抑制され、リン酸塩の結晶粒子の被覆率が50%未満となるおそれがある。
リン酸塩処理液中のポリアミン系有機インヒビターの濃度は、0.01〜5質量%の範囲内が好ましい。ポリアミン系有機インヒビターの濃度が0.01質量%未満の場合、リン酸塩の結晶粒子の微細化および結晶粒子間の空隙の形成が不十分となり、加工時にリン酸塩皮膜が凝集破壊してしまうおそれがある。一方、ポリアミン系有機インヒビターの濃度が5質量%超の場合、リン酸塩結晶の析出が過剰に抑制され、リン酸塩の結晶粒子の被覆率が50%未満となるおそれがある。
リン酸塩処理液には、さらに硝酸イオンを添加してもよい。硝酸イオンは、第3のステップにおいてリン酸塩の析出を促進させる。リン酸塩処理液中の硝酸イオンの濃度は、0.01〜1.0モル/Lの範囲内が好ましい。硝酸イオンの濃度が0.01モル/L未満の場合、硝酸イオンを添加した効果がほとんどみられない。一方、硝酸イオンの濃度が1.0モル/L超の場合、硝酸の酸化作用によってめっき層表面が不活性化し、かえってリン酸塩の析出が阻害されてしまうおそれがある。
リン酸塩処理液には、さらにフッ化物を添加してもよい。第3のステップにおいて、めっき層から溶出したAlがリン酸塩の析出を妨げることがあるが、リン酸塩処理液にフッ化物を添加することでこの溶出Alの悪影響を抑制することができる。フッ化物の例には、フッ化ナトリウム、フッ化カリウム、フッ化水素ナトリウムなどが含まれる。リン酸塩処理液中のフッ化物の濃度は、0.001〜0.5モル/Lの範囲内が好ましい。フッ化物の濃度が0.001モル/L未満の場合、フッ化物を添加した効果がほとんどみられない。一方、フッ化物の濃度が0.5モル/L超の場合、めっき層のエッチングが強くなり、リン酸塩結晶が析出しにくくなるおそれがある。
[リン酸塩皮膜の形成]
第3のステップでは、第1のステップで準備した溶融Zn−Al−Mg合金めっき鋼板の表面に、リン酸塩皮膜を形成する。リン酸塩皮膜を形成するには、第2のステップで準備したリン酸塩処理液を第1のステップで準備した溶融Zn−Al−Mg合金めっき鋼の表面に塗布し、リン酸塩を析出させた後、洗浄し、乾燥させればよい。
リン酸塩処理液の塗布方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような塗布方法の例には、ロールコート法やカーテンフロー法、スピンコート法、スプレー法、浸漬引き上げ法などが含まれる。
リン酸塩処理液を塗布する際のリン酸塩処理液の温度は、40〜80℃の範囲内が好ましい。40〜80℃に加温したリン酸塩処理液を使用することで、めっき層表面にリン酸塩の結晶核が形成されやすくなり、その結果として短時間で微細なリン酸塩結晶を多数析出させることができる。一方で、リン酸塩処理液の温度が40℃未満の場合は、短時間でリン酸塩結晶を十分に析出させることができない。また、リン酸塩処理液の温度が80℃超の場合は、リン酸塩処理液の安定性が低下し、スラッジの発生や水分の蒸発が多くなるため、連続操業における濃度管理が難しくなる。
たとえば、40〜80℃に加温したリン酸塩処理液をスプレー法で塗布した場合は、2〜6秒程度でリン酸塩結晶が析出してリン酸塩皮膜が形成される。また、40〜80℃に加温したリン酸塩処理液を浸漬引き上げ法で塗布した場合は、3〜9秒程度でリン酸塩結晶が析出してリン酸塩皮膜が形成される。処理時間を上記時間より長くしても、リン酸塩の析出が飽和するため、特に問題は無い。
[化成処理液の準備]
第4のステップでは、前述の反応性官能基を有するフッ素含有樹脂(好ましくは、フッ素含有オレフィン樹脂)、有機系架橋剤および4A族金属化合物を含む化成処理液を準備する。
化成処理液は、前述の反応性官能基を有するフッ素含有樹脂(好ましくは、フッ素含有オレフィン樹脂)の水系組成物(エマルションや懸濁液など)に、有機系架橋剤および4A族金属化合物を添加することで調製されうる。化成処理液に添加する有機系架橋剤としては、前述の有機系架橋剤が用いられる。化成処理液に添加する4A族金属化合物としては、4A族金属の酸素酸塩やフッ化物、水酸化物、有機酸塩、炭酸塩、過酸化塩などが用いられる。酸素酸塩の例には、水素酸塩、アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩などが含まれる。化成処理液には、さらに必要に応じてリン酸塩やシランカップリング剤などを添加してもよい。
乳化剤非存在下で製造されたフッ素含有樹脂の水系組成物に含まれるフッ素含有樹脂の数平均分子量は、通常、1000〜8万の範囲内である。乳化剤を使用せずに製造したフッ素含有樹脂の分子量を8万以上とすることは困難だからである。
化成処理液中のフッ素含有樹脂の含有量は、水100質量部に対して、10〜50質量部の範囲内が好ましい。フッ素含有樹脂の含有量が10質量部未満の場合、乾燥過程において水の蒸発量が多くなり、化成処理皮膜の成膜性および緻密性が低下するおそれがある。一方、フッ素含有樹脂の含有量が50質量部超の場合、化成処理液の保存安定性が低下するおそれがある。
化成処理液中の有機系架橋剤の含有量は、有機系架橋剤の種類に応じて前後するものの、一般的にはフッ素含有樹脂100質量部に対して0.8〜9.6質量部の範囲内が好ましい。有機系架橋剤の含有量が0.8質量部未満の場合、架橋反応が不足して、化成処理皮膜の耐水性を十分に向上させることができない。一方、有機系架橋剤の含有量が9.6質量部超の場合、架橋反応せず未反応のまま皮膜に残存する有機系架橋剤が多くなり、皮膜の耐水性や耐候性が低下するおそれがある。
化成処理液中の4A族金属の酸素酸塩、フッ化物、水酸化物、有機酸塩、炭酸塩または過酸化塩の含有量は、フッ素含有樹脂100質量部に対して、金属換算で0.1〜5質量部の範囲内が好ましい。これらの塩の含有量が0.1質量部未満の場合、架橋反応およびめっき層表面との反応が不足して、化成処理皮膜の耐水性および皮膜密着性を十分に向上させることができない。一方、これらの塩の含有量が5質量部超の場合、架橋反応が進行して、化成処理液の保存安定性が低下するおそれがある。
化成処理液にリン酸塩を添加する場合、化成処理液中のリン酸塩の含有量は、フッ素含有樹脂100質量部に対して、P換算で0.05〜3質量部の範囲内が好ましい。リン酸塩の含有量が0.05質量部未満の場合、化成処理皮膜の密着性を十分に向上させることができない。一方、リン酸塩の含有量が3質量部超の場合、4A族金属化合物との反応が過剰に進行して、4A族金属化合物による架橋効果が損なわれてしまうおそれがある。
化成処理液にシランカップリング剤を添加する場合、化成処理液中のシランカップリング剤の含有量は、フッ素含有樹脂100質量部に対して、0.5〜5質量部の範囲内が好ましい。シランカップリング剤の含有量が0.5質量部未満の場合、化成処理皮膜の密着性を十分に向上させることができない。一方、シランカップリング剤の含有量が5質量部超の場合、皮膜密着性は飽和し、それ以上の向上は認められない。また、処理液の安定性が低下してしまうおそれもある。
化成処理液には、その他の成分として、エッチング剤や無機化合物、潤滑剤、着色顔料、染料などを必要に応じて添加してもよい。エッチング剤としては、フッ化物などが使用される。エッチング剤は、めっき層表面を活性化することにより化成処理皮膜の密着性をより高める。MgやCa、Sr、V、W、Mn、B、Si、Snなどの無機化合物(酸化物、リン酸塩など)は、化成処理皮膜を緻密化して耐水性を向上させる。フッ素系やポリエチレン系、スチレン系などの有機潤滑剤、二硫化モリブデンやタルクなどの無機潤滑剤は、化成処理液から皮膜に持ち込まれ、化成処理皮膜の潤滑性、さらには化成処理めっき鋼板の加工性を向上させる。また、無機顔料や有機顔料、有機染料などを配合することで、化成処理皮膜に所定の色調を付与することができる。
[化成処理皮膜の形成]
第5のステップでは、第3のステップでリン酸塩皮膜を形成した溶融Zn−Al−Mg合金めっき鋼板の表面に、化成処理皮膜を形成する。化成処理皮膜を形成するには、第4のステップで準備した化成処理液を第3のステップでリン酸塩皮膜を形成した溶融Zn−Al−Mg合金めっき鋼板の表面に塗布し、乾燥および硬化させればよい。
化成処理液の塗布方法は、特に限定されず、公知の方法から適宜選択すればよい。そのような塗布方法の例には、ロールコート法やカーテンフロー法、スピンコート法、スプレー法、浸漬引き上げ法などが含まれる。
化成処理液の乾燥条件は、使用する有機系硬化剤の種類に応じて適宜設定すればよい。しかし、300℃超に保持した場合、有機成分が熱分解して化成処理皮膜の性能が低下するおそれがあるため、乾燥温度は300℃以下が好ましい。本発明の製造方法では、化成処理液中に乳化剤が含まれていないため、乾燥温度を50℃程度としても乳化剤が残存せず、耐水性に優れた化成処理皮膜を形成することができる。
以上の手順により、溶融Zn−Al−Mg合金めっき鋼板を基材とし、耐候性、耐水性、耐黒変性、皮膜密着性および防眩性のすべてに優れる本発明の化成処理めっき鋼板を製造することができる。
以下、本発明を実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
1.化成処理めっき鋼板の作製
板厚0.8mmのSPCCを基材として、めっき付着量45g/mの溶融Zn−6質量%Al−3質量%Mg合金めっき鋼板を作製した。本実施例では、この溶融Zn−Al−Mg合金めっき鋼板を化成処理原板として使用した。
60℃に加温した表1に示す組成のリン酸塩処理液に、溶融Zn−Al−Mg合金めっき鋼板をスプレー処理方式で5秒間接触させ、水洗、乾燥して、リン酸塩皮膜を形成した。リン酸塩皮膜の付着量を蛍光X線分析装置を用いて測定したところ、1.5g/mであった。また、めっき鋼板表面におけるリン酸塩結晶の被覆率を走査型電子顕微鏡を用いて測定したところ、95%であった。
Figure 0005469577
次いで、リン酸塩皮膜を形成した溶融Zn−Al−Mg合金めっき鋼板の表面に、表2に示す組成の化成処理液を塗布し、到達板温110℃で加熱乾燥して、膜厚2.0μmの化成処理皮膜を形成した。なお、表2に示されるNo.10およびNo.12の化成処理液は、塗布前にゲル化してしまったため、化成処理皮膜を形成することができなかった。
表2に示される処理液No.1〜13の化成処理液は、所定量の反応性官能基(カルボキシル基およびスルホン酸基)を有するフッ素含有樹脂の水系エマルション(不揮発分25質量%;表3参照)に、有機系架橋剤や4A族金属化合物などを添加して調製した。処理液No.14の化成処理液は、ウレタン樹脂の水系エマルション(不揮発分25質量%;表3参照)に、4A族金属化合物などを添加して調製した。
フッ素含有樹脂を含む水系エマルションは、水溶媒に、所定量のフルオロオレフィン、カルボキシル基含有モノマーおよびスルホン酸基含有モノマーを添加して、乳化剤の非存在下においてそれらを共重合反応させることで得た。有機系架橋剤について、メラミン樹脂は、ベッカミンM−3(DIC株式会社)を使用した。イソシアネート化合物は、DNW−5000(DIC株式会社)を使用した。オキサゾリン系化合物は、エポクロスK−2010E(株式会社日本触媒)を使用した。アジリジン系化合物は、ケミタイトDZ−22E(株式会社日本触媒)を使用した。ウレタン樹脂を含む水系エマルションは、PR135(住化バイエルンウレタン株式会社)を使用した。シランカップリング剤は、A−1891(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)を使用した。
Figure 0005469577
Figure 0005469577
各化成処理めっき鋼板の化成処理皮膜における有機樹脂に対する4A族金属、リン酸塩およびシランカップリング剤の量を蛍光X線分析装置を用いて測定した。リン酸塩およびシランカップリング剤の含有量は、PおよびSiの測定値から算出した。各化成処理液について、形成される化成処理皮膜における有機樹脂に対する4A族金属、リン酸塩およびシランカップリング剤の量を表4に示す。
Figure 0005469577
2.化成処理めっき鋼板の評価
(1)促進耐候性試験
各化成処理めっき鋼板から試験片を切り出し、JIS K5600−7−7:2008に準拠して促進耐候性試験(キセノンランプ法)を実施した。本試験では、キセノンアーク灯の光を120分間照射する間に18分間水を噴射する工程を1サイクル(2時間)とし、この工程を0〜1000サイクル(0、500、1000サイクル)繰り返した。
(2)耐候性の評価
各化成処理めっき鋼板について、促進耐候試験前後の化成処理皮膜の厚さを断面検鏡により測定し、塗膜残存率を求めた。各化成処理めっき鋼板について、塗膜残存率が95%以上の場合は「◎」、80%以上95%未満の場合は「○」、60%以上80%未満の場合は「△」、30%以上60%未満の場合は「▲」、30%未満の場合は「×」と評価した。
(3)耐黒変性の評価
各化成処理めっき鋼板について、促進耐候試験前後の化成処理皮膜の表面の明度差(ΔL値)を測定し、耐黒変性を評価した。各化成処理めっき鋼板について、明度差(ΔL値)が1以下の場合は「◎」、1を超え2以下の場合は「○」、2を超え5以下の場合は「△」、5を超え10以下の場合は「▲」、10を超える場合は「×」と評価した。
(4)耐食性の評価
各化成処理めっき鋼板について、促進耐候試験後の試験片を用いて塩水噴霧試験(JIS Z2371に準拠;120時間)を行い、平坦部の白錆発生面積率を評価した。各化成処理めっき鋼板について、白錆発生面積率が5%以下の場合は「◎」、5%を超え10%以下の場合は「○」、10%を超え30%以下の場合は「△」、30%を超え50%以下の場合は「▲」、50%を超える場合は「×」と評価した。
(5)防眩性の評価
各化成処理めっき鋼板について、化成処理皮膜の表面の60度鏡面光沢度を測定し、防眩性を評価した。60度鏡面光沢度の測定は、光沢度計を用いてJIS Z8741に準拠して行った。各化成処理めっき鋼板について、60度鏡面光沢度が100未満の場合は「◎」、100以上150未満の場合は「○」、150以上200未満の場合は「△」、200以上の場合は「×」と評価した。
(6)皮膜密着性の評価
[耐水密着性]
各化成処理めっき鋼板から試験片を切り出し、耐水密着性試験を行った。各試験片を90℃の熱水に2時間浸漬した後、熱水から引き上げた。熱水処理後の試験片を用いて碁盤目試験(JIS K5400に準拠)を行い、塗膜残存率を測定した。各試験片について、塗膜残存率が100%の場合は「◎」、80%以上100%未満の場合は「○」、60%以上80%未満の場合は「△」、30%以上60%未満の場合は「▲」、30%未満の場合は「×」として皮膜密着性を評価した。
[加工密着性]
各化成処理めっき鋼板から試験片を切り出し、加工密着性試験を行った。各試験片をエリクセン5mmで張り出し加工した。耐水密着性試験と同様に、加工後の試験片を用いて、碁盤目試験(JIS K5400に準拠)を行い、塗膜残存率を測定した。各試験片について、塗膜残存率が100%の場合は「◎」、80%以上100%未満の場合は「○」、60%以上80%未満の場合は「△」、30%以上60%未満の場合は「▲」、30%未満の場合は「×」として皮膜密着性を評価した。
(7)評価結果
各化成処理めっき鋼板(実施例1〜8、比較例1〜12)についての、リン酸塩皮膜の有無、使用した処理液の種類、ならびに耐候性試験、耐黒変性試験および平坦部耐食性試験の評価結果を表5に示す。また、各化成処理めっき鋼板(実施例1〜8、比較例1〜12)についての、リン酸塩皮膜の有無、使用した処理液の種類、ならびに防眩性試験および皮膜密着性の評価結果を表6に示す。
Figure 0005469577
Figure 0005469577
耐候性は、促進耐候性試験後の化成処理皮膜の塗膜残存率により評価した。ウレタン樹脂を含む化成処理皮膜を形成した比較例12の化成処理めっき鋼板では、500サイクル(屋外暴露5年相当)で化成処理皮膜が消失してしまった。また、過剰量の反応性官能基を有するフッ素含有オレフィン樹脂を含む化成処理皮膜を形成した比較例11の化成処理めっき鋼板でも、サイクル数の増加に伴い化成処理皮膜が減少してしまった。一方、所定量の反応性官能基を有するフッ素含有オレフィン樹脂、有機系架橋剤および酸素酸塩由来の4A族金属を含む化成処理皮膜を形成した実施例1〜8の化成処理めっき鋼板では、1000サイクル(屋外暴露10年相当)繰り返した後でも化成処理皮膜の膜厚はほとんど変化しなかった。
耐黒変性は、促進耐候性試験前後の明度差(ΔL値)により評価した。ウレタン樹脂を含む化成処理皮膜を形成した比較例12の化成処理めっき鋼板では、サイクル数の増加に伴いめっき層の黒変が進行して、明度が低下してしまった。一方、所定量の反応性官能基を有するフッ素含有オレフィン樹脂、有機系架橋剤および酸素酸塩由来の4A族金属を含む化成処理皮膜を形成した実施例1〜8の化成処理めっき鋼板では、1000サイクル(屋外暴露10年相当)繰り返した後でも明度はほとんど低下しなかった。
耐食性は、塩水噴霧試験後の白錆発生面積率により評価した。ウレタン樹脂を含む化成処理皮膜を形成した比較例12の化成処理めっき鋼板では、促進耐候性試験前は耐食性が良好であったものの、皮膜の消失に伴い耐食性が著しく低下してしまった。また、4A族金属を含まない化成処理皮膜を形成した比較例9の化成処理めっき鋼板、および過少量の反応性官能基を有するフッ素含有オレフィン樹脂を含む化成処理皮膜を形成した比較例10の化成処理めっき鋼板では、促進耐候性試験前から耐食性が劣っていた。一方、所定量の反応性官能基を有するフッ素含有オレフィン樹脂、有機系架橋剤および酸素酸塩由来の4A族金属を含む化成処理皮膜を形成した実施例1〜8の化成処理めっき鋼板では、1000サイクル(屋外暴露10年相当)繰り返した後でも耐食性が良好であった。
防眩性は、60度鏡面光沢度により評価した。リン酸塩皮膜を形成しなかった比較例1〜8の化成処理めっき鋼板では、鏡面光沢度が非常に高かった。一方、リン酸塩皮膜を形成した実施例1〜8の化成処理めっき鋼板では、鏡面光沢度が安定して所定の範囲内であった。
皮膜密着性は、熱水処理後または加工後の塗膜残存率により評価した。リン酸塩皮膜を形成しなかった比較例1〜8の化成処理めっき鋼板では、耐水密着性および加工密着性がいずれも劣っていた。一方、リン酸塩皮膜を形成した実施例1〜8の化成処理めっき鋼板では、耐水密着性および加工密着性がいずれも良好であった。
以上の結果から、本発明の化成処理めっき鋼板は、耐候性、耐黒変性、耐食性、皮膜密着性および防眩性に優れていることがわかる。
本発明の化成処理めっき鋼板は、耐候性、耐水性、耐黒変性、皮膜密着性および防眩性に優れているため、外装建材などの様々な用途において有用である。たとえば、本発明の化成処理めっき鋼板は、1)ビニールハウスまたは農業ハウス用の鋼管、形鋼、支柱、梁、搬送用部材、2)遮音壁、防音壁、吸音壁、防雪壁、ガードレール、高欄、防護柵、支柱、3)鉄道車両用部材、架線用部材、電気設備用部材、安全環境用部材、構造用部材、太陽光架台などの用途に好適に使用されうる。

Claims (15)

  1. Al/Zn/ZnMgの三元共晶組織を含むめっき層を有する溶融Zn−Al−Mg合金めっき鋼板と、
    前記溶融Zn−Al−Mg合金めっき鋼板の表面に形成された、リン酸塩の結晶粒子を含むリン酸塩皮膜と、
    前記リン酸塩皮膜上に形成された、膜厚0.5〜10μmの化成処理皮膜と、を有する化成処理めっき鋼板であって、
    前記リン酸塩皮膜の形成面において、前記リン酸塩の結晶粒子は、前記溶融Zn−Al−Mg合金めっき鋼板の表面の50〜98面積%を被覆しており、
    前記化成処理皮膜は、有機系架橋剤により架橋された、F原子を7〜20質量%含有するフッ素含有樹脂と、前記フッ素含有樹脂に対して金属換算で0.1〜5質量%の4A族金属化合物とを含有する、化成処理めっき鋼板。
  2. 前記有機系架橋剤は、メラミン化合物である、請求項1に記載の化成処理めっき鋼板。
  3. 前記化成処理皮膜は、さらにリン酸塩を含有し、
    前記フッ素含有樹脂に対する前記リン酸塩の量は、P換算で0.05〜3質量%の範囲内である、
    請求項1に記載の化成処理めっき鋼板。
  4. 前記化成処理皮膜は、さらにシランカップリング剤を含有し、
    前記フッ素含有樹脂に対する前記シランカップリング剤の量は、0.5〜5質量%の範囲内である、
    請求項1に記載の化成処理めっき鋼板。
  5. 前記4A族金属は、Ti、Zr、Hfおよびこれらの組み合わせからなる群から選ばれる、請求項1に記載の化成処理めっき鋼板。
  6. Al/Zn/ZnMgの三元共晶組織を含むめっき層を有する溶融Zn−Al−Mg合金めっき鋼板を準備するステップと、
    前記溶融Zn−Al−Mg合金めっき鋼板の表面に、リン酸イオン換算で0.03〜0.5モル/Lのリン酸塩を含有するリン酸塩処理液を塗布し、乾燥させて、リン酸塩の結晶粒子を含むリン酸塩皮膜を形成するステップと、
    前記リン酸塩皮膜上に化成処理液を塗布し、乾燥させて、膜厚が0.5〜10μmの化成処理皮膜を形成するステップとを含み、
    前記化成処理液は、反応性官能基0.05〜5質量%とF原子7〜20質量%とを含有し、数平均分子量が1000〜8万の範囲内であるフッ素含有樹脂と、前記反応性官能基と反応しうる官能基を有する有機系架橋剤と、4A族金属の酸素酸塩、フッ化物、水酸化物、有機酸塩、炭酸塩または過酸化塩のいずれかとを含有し、
    前記フッ素含有樹脂に対する前記有機系架橋剤の量は、0.8〜9.6質量%の範囲内であり、
    前記フッ素含有樹脂に対する、前記4A族金属の酸素酸塩、フッ化物、水酸化物、有機酸塩、炭酸塩または過酸化塩の量は、金属換算で0.1〜5質量%の範囲内である、
    化成処理めっき鋼板の製造方法。
  7. 前記フッ素含有樹脂は、前記反応性官能基としてカルボキシル基およびスルホン酸基を有し、
    前記フッ素含有樹脂が有するカルボキシル基とスルホン酸基との比率は、カルボキシル基/スルホン酸基のモル比で5〜60の範囲内である、請求項6に記載の化成処理めっき鋼板の製造方法。
  8. 前記有機系架橋剤は、メラミン化合物である、請求項6に記載の化成処理めっき鋼板の製造方法。
  9. 前記化成処理液は、さらにリン酸塩を含有し、
    前記フッ素含有樹脂に対する前記リン酸塩の量は、P換算で0.05〜3質量%の範囲内である、
    請求項6に記載の化成処理めっき鋼板の製造方法。
  10. 前記化成処理液は、さらにシランカップリング剤を含有し、
    前記フッ素含有樹脂に対する前記シランカップリング剤の量は、0.5〜5質量%の範囲内である、
    請求項6に記載の化成処理めっき鋼板の製造方法。
  11. 前記4A族金属は、Ti、Zr、Hfおよびこれらの組み合わせからなる群から選ばれる、請求項6に記載の化成処理めっき鋼板の製造方法。
  12. 乳化剤非存在下の水溶媒中でフルオロオレフィンと反応性官能基含有モノマーとを共重合させて、前記フッ素含有樹脂を準備するステップをさらに含む、請求項6に記載の化成処理めっき鋼板の製造方法。
  13. 前記リン酸塩処理液は、Ni、Co、FeおよびMnからなる群から選ばれる金属イオンを0.01〜0.5モル/Lの濃度でさらに含有する、請求項6に記載の化成処理めっき鋼板の製造方法。
  14. 前記リン酸塩処理液は、−NHまたは=NHの少なくとも一方の官能基を有し、数平均分子量が200〜30000のポリアミン系有機インヒビターを0.01〜5質量%の濃度でさらに含有する、請求項6に記載の化成処理めっき鋼板の製造方法。
  15. 前記ポリアミン系有機インヒビターは、ポリエチルアミン、ポリエチレンイミン、ポリエーテルアミンおよびポリアミノアクリレートからなる群から選ばれる1種類または2種類以上の脂肪族アミンである、請求項14に記載の化成処理めっき鋼板の製造方法。
JP2010221425A 2010-09-30 2010-09-30 化成処理めっき鋼板およびその製造方法 Active JP5469577B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221425A JP5469577B2 (ja) 2010-09-30 2010-09-30 化成処理めっき鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221425A JP5469577B2 (ja) 2010-09-30 2010-09-30 化成処理めっき鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2012077322A JP2012077322A (ja) 2012-04-19
JP5469577B2 true JP5469577B2 (ja) 2014-04-16

Family

ID=46237909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221425A Active JP5469577B2 (ja) 2010-09-30 2010-09-30 化成処理めっき鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP5469577B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5097305B1 (ja) * 2012-04-25 2012-12-12 日新製鋼株式会社 黒色めっき鋼板
KR101500049B1 (ko) 2012-12-27 2015-03-06 주식회사 포스코 아연 또는 아연계합금도금 강판용 인산염 용액 및 이를 이용한 아연 또는 아연계합금도금 강판
JP6070596B2 (ja) * 2014-02-13 2017-02-01 Jfeスチール株式会社 表面処理皮膜付き亜鉛系めっき鋼板およびその製造方法
JP2020055241A (ja) * 2018-10-03 2020-04-09 Agc株式会社 樹脂付金属箔及び樹脂付金属箔の製造方法
JP7201128B2 (ja) * 2021-01-06 2023-01-10 日本製鉄株式会社 表面処理鋼板

Also Published As

Publication number Publication date
JP2012077322A (ja) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5328980B2 (ja) 化成処理めっき鋼板およびその製造方法
JP5328981B2 (ja) 化成処理めっき鋼板およびその製造方法
JP5469556B2 (ja) 化成処理めっき鋼板およびその製造方法
JP5595305B2 (ja) 溶接めっき鋼管
JP5952877B2 (ja) 亜鉛−アルミニウム−マグネシウム合金めっき鋼板の表面処理方法
JP5674605B2 (ja) 化成処理めっき鋼板およびその製造方法
JP5469577B2 (ja) 化成処理めっき鋼板およびその製造方法
WO2015080268A1 (ja) 亜鉛-アルミニウム-マグネシウム合金めっき鋼板の表面処理方法
JP5808626B2 (ja) 化成処理めっき鋼板およびその製造方法
JP5575009B2 (ja) めっき鋼板の成形加工品およびその製造方法ならびに化成処理液
JP6271062B1 (ja) 水系処理液、化成処理方法および化成処理鋼板
JP4478057B2 (ja) 表面処理金属板
JP6367462B2 (ja) 亜鉛めっき鋼材用または亜鉛基合金めっき鋼材用の金属表面処理剤、被覆方法及び被覆鋼材
JP5631231B2 (ja) 化成処理Zn系めっき鋼板およびその製造方法
JP2009061608A (ja) ロール成形性に優れた樹脂塗装金属板
TWI788511B (zh) 鍍覆鋼板的端面防鏽處理液、鍍覆鋼板的端面的化學轉化處理方法、化學轉化處理鋼板及成形加工品
JP5631239B2 (ja) 化成処理Al系めっき鋼板およびその製造方法
JP5674606B2 (ja) 化成処理めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140131

R150 Certificate of patent or registration of utility model

Ref document number: 5469577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350