JP5467702B2 - Multilayer capacitor - Google Patents

Multilayer capacitor Download PDF

Info

Publication number
JP5467702B2
JP5467702B2 JP2013097488A JP2013097488A JP5467702B2 JP 5467702 B2 JP5467702 B2 JP 5467702B2 JP 2013097488 A JP2013097488 A JP 2013097488A JP 2013097488 A JP2013097488 A JP 2013097488A JP 5467702 B2 JP5467702 B2 JP 5467702B2
Authority
JP
Japan
Prior art keywords
internal electrode
layer
dielectric layer
electrode layer
multilayer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013097488A
Other languages
Japanese (ja)
Other versions
JP2013150015A (en
Inventor
雄二 星
正剛 渡部
元輝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2013097488A priority Critical patent/JP5467702B2/en
Publication of JP2013150015A publication Critical patent/JP2013150015A/en
Application granted granted Critical
Publication of JP5467702B2 publication Critical patent/JP5467702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、積層型コンデンサに関する。   The present invention relates to a multilayer capacitor.

1608サイズや1005サイズや0603サイズ等の小型に属する積層型コンデンサは、大型に属する積層型コンデンサに比べて抗折強度が劣るために、回路基板搭載時や実装後等においてコンデンサ本体に加わる力によって亀裂や割れを生じる恐れが高い。ここで言う「抗折強度」とは、積層型コンデンサの外部電極を支えた状態で該積層型コンデンサの長さ方向中央を加圧治具で押す試験方法によって得られる数値であり、割れが生じたときの荷重をgfやNやPa等の単位で表したものである。   Small-sized multilayer capacitors such as the 1608 size, 1005 size, and 0603 size have inferior bending strength compared to large-sized multilayer capacitors, and therefore the force applied to the capacitor body when mounted on a circuit board or after mounting, etc. There is a high risk of cracking and cracking. The “bending strength” as used herein is a numerical value obtained by a test method in which the center of the multilayer capacitor in the lengthwise direction is supported with a pressure jig while supporting the external electrode of the multilayer capacitor, and cracking occurs. Is expressed in units of gf, N, Pa, or the like.

小型に属する積層型コンデンサの抗折強度を向上させるには補強層をコンデンサ本体内に配置すれば良く、該補強層については2通りの考え方がある。1つは内部電極層とは異なる金属層を補強層として付加する考え方で、他の1つは内部電極層を補強層として用いる考え方である。   In order to improve the bending strength of a multilayer capacitor belonging to a small size, a reinforcing layer may be disposed in the capacitor body, and there are two ways of thinking about the reinforcing layer. One is an idea of adding a metal layer different from the internal electrode layer as a reinforcing layer, and the other is an idea of using the internal electrode layer as a reinforcing layer.

因みに、抗折強度の向上を課題としたものではないが、前者の考え方に利用可能な構造は下記特許文献2及び3に開示され、後者の考え方に利用可能な構造は下記特許文献1、4及び5に開示されている。   Incidentally, the structure that can be used for the former concept is disclosed in Patent Documents 2 and 3 below, but the structure that can be used for the latter concept is disclosed in Patent Documents 1 and 4 described below. And 5.

特許文献2及び3に開示された構造は、コンデンサ本体の上下マージン部分(内部電極層が存しない部分)に金属層を付加したものであるが、付加した金属層が外部電極に接続されていないことから、抗折強度はさほど向上しない。   The structures disclosed in Patent Documents 2 and 3 are obtained by adding a metal layer to the upper and lower margin portions (portions where the internal electrode layer does not exist) of the capacitor body, but the added metal layer is not connected to the external electrode. Therefore, the bending strength is not improved so much.

特許文献4に開示された構造は、コンデンサ本体内の隣接する2つの内部電極層を同一の外部電極に接続したものである。この構造は、特許文献2及び3に開示された構造よりも抗折強度の向上が図れるが、2つの内部電極層が一方の外部電極側のみに設けられているため、コンデンサ本体の他方の外部電極側の機械的強度が一方の外部電極側の機械的強度よりも劣ってしまう。また、同一の外部電極に接続された2つの内部電極層間に存する誘電体層の厚さが、異なる外部電極に接続された2つの内部電極層間に存する誘電体層の厚さ以上であるため、積層型コンデンサの高さ寸法が増加してしまうし、該高さ寸法の増加を避けようとすると容量形成に貢献する内部導体層の数が減って積層型コンデンサの全体容量が低下してしまう。   The structure disclosed in Patent Document 4 is a structure in which two adjacent internal electrode layers in a capacitor body are connected to the same external electrode. Although this structure can improve the bending strength as compared with the structures disclosed in Patent Documents 2 and 3, since the two internal electrode layers are provided only on one of the external electrodes, the other external part of the capacitor body is provided. The mechanical strength on the electrode side is inferior to the mechanical strength on the one external electrode side. Moreover, since the thickness of the dielectric layer existing between two internal electrode layers connected to the same external electrode is equal to or greater than the thickness of the dielectric layer existing between two internal electrode layers connected to different external electrodes, The height dimension of the multilayer capacitor increases, and if the increase in the height dimension is to be avoided, the number of internal conductor layers that contribute to the capacity formation decreases, and the overall capacity of the multilayer capacitor decreases.

特許文献1及び5に開示された構造は、一方の外部電極に接続される内部電極層のうちの最も上側の内部電極層と向き合うように該一方の外部電極に接続された別の内部電極層を設け、且つ、他方の外部電極に接続される内部電極層のうちの最も下側の内部電極層と向き合うように該他方の外部電極に接続された別の内部電極層を設けたものである。この構造は、特許文献4に開示された構造よりも抗折強度の向上は図れるものの、別の内部電極層とこれと向き合う内部電極層の間に存する誘電体層(容量形成に寄与しない誘電体層)それぞれの厚さが、異なる外部電極に接続された2つの内部電極層間に存する誘電体層の厚さ(容量形成に寄与する誘電体層)と同じであるため、積層型コンデンサの高さ寸法が増加してしまうし、該高さ寸法の増加を避けようとすると容量形成に貢献する内部導体層の数が減って積層型コンデンサの全体容量が低下してしまう。   The structures disclosed in Patent Documents 1 and 5 are different internal electrode layers connected to the one external electrode so as to face the uppermost internal electrode layer among the internal electrode layers connected to the one external electrode. And another internal electrode layer connected to the other external electrode so as to face the lowermost internal electrode layer of the internal electrode layers connected to the other external electrode. . Although this structure can improve the bending strength as compared with the structure disclosed in Patent Document 4, a dielectric layer existing between another internal electrode layer and an internal electrode layer facing the internal electrode layer (a dielectric material that does not contribute to capacitance formation) Since the thickness of each of the layers is the same as the thickness of the dielectric layer between the two internal electrode layers connected to different external electrodes (dielectric layer contributing to capacity formation), the height of the multilayer capacitor If the size is increased, and if it is attempted to avoid the increase in the height, the number of internal conductor layers contributing to the capacity formation is reduced, and the overall capacity of the multilayer capacitor is reduced.

特開平07−335473号公報JP 07-335473 A 特開平08−181032号公報Japanese Patent Laid-Open No. 08-181032 特開平08−316086号公報Japanese Patent Laid-Open No. 08-316086 特開平10−270281号公報Japanese Patent Laid-Open No. 10-270281 特開2009−224569号公報Japanese Unexamined Patent Publication No. 2009-224569

本発明の目的は、高さ寸法の増加を抑制しつつ抗折強度を向上できる積層型コンデンサを提供することにある。   An object of the present invention is to provide a multilayer capacitor capable of improving the bending strength while suppressing an increase in height dimension.

前記目的を達成するため、本発明は、複数の第1内部電極層と複数の第2内部電極層とが容量形成に寄与する第1誘電体層を介して向き合い、且つ、交互に並ぶように積層配置され、一方極性として用いられる第1外部電極に前記複数の第1内部電極層の端縁が接続され、他方極性として用いられる第2外部電極に前記複数の第2内部電極層の端縁が接続された積層型コンデンサにおいて、前記複数の第1内部電極層と前記複数の第2内部電極層のうち、積層方向一側には第1内部電極層が位置し、積層方向他側には第2内部電極層が位置しており、前記積層方向一側に位置する第1内部電極層の外側には容量形成に寄与しない第2誘電体層を介して向き合うように追加の第1内部電極層が積層配置され、該追加の第1内部電極層の端縁は第1外部電極に接続されており、前記積層方向他側の第2内部電極層の外側には容量形成に寄与しない第3誘電体層を介して向き合うように追加の第2内部電極層が積層配置され、該追加の第2内部電極層の端縁は第2外部電極に接続されており、前記第2誘電体層の厚さと前記第3誘電体層の厚さは、前記第1誘電体層の厚さよりも薄い。   In order to achieve the above object, according to the present invention, a plurality of first internal electrode layers and a plurality of second internal electrode layers are opposed to each other via a first dielectric layer that contributes to capacitance formation, and are alternately arranged. Edges of the plurality of first internal electrode layers are connected to a first external electrode that is stacked and used as one polarity, and edges of the plurality of second internal electrode layers are connected to a second external electrode that is used as the other polarity In the multilayer capacitor connected to each other, a first internal electrode layer is positioned on one side in the stacking direction among the plurality of first internal electrode layers and the plurality of second internal electrode layers, and on the other side in the stacking direction. A second internal electrode layer is located, and an additional first internal electrode is disposed on the outside of the first internal electrode layer located on one side in the stacking direction so as to face each other via a second dielectric layer that does not contribute to capacitance formation. Layers are stacked, and the edge of the additional first internal electrode layer is the first An additional second internal electrode layer is laminated and arranged outside the second internal electrode layer on the other side in the stacking direction so as to face each other via a third dielectric layer that does not contribute to capacitance formation. The edge of the additional second internal electrode layer is connected to the second external electrode, and the thickness of the second dielectric layer and the thickness of the third dielectric layer are the same as those of the first dielectric layer. Thinner than thickness.

本発明によれば、追加の第1内部電極層が補強層として用いられ、且つ、追加の第2内部電極層が補強層として用いられた構造にあるため、これら補強層の存在によって積層型コンデンサの抗折強度の向上が図れる。また、追加の第1内部電極層が第1外部電極に接続され、且つ、追加の第2内部電極層が第2外部電極に接続された構造にあるため、コンデンサ本体の第1外部電極側の機械的強度と第2外部電極側の機械的強度とのバランスを確保して、より的確に積層型コンデンサの抗折強度を向上できる。   According to the present invention, since the additional first internal electrode layer is used as the reinforcing layer and the additional second internal electrode layer is used as the reinforcing layer, the presence of these reinforcing layers results in the multilayer capacitor. The bending strength can be improved. In addition, since the additional first internal electrode layer is connected to the first external electrode and the additional second internal electrode layer is connected to the second external electrode, the capacitor body has a structure on the first external electrode side. The balance between the mechanical strength and the mechanical strength on the second external electrode side can be secured, and the bending strength of the multilayer capacitor can be improved more accurately.

また、第2誘電体層(容量形成に寄与しない誘電体層)の厚さと第3誘電体層(容量形成に寄与しない誘電体層)の厚さが、第1内部誘電体層(容量形成に寄与する誘電体層)の厚さよりも薄いため、積層型コンデンサの高さ寸法の増加を極力抑制できる。   The thickness of the second dielectric layer (dielectric layer that does not contribute to capacitance formation) and the thickness of the third dielectric layer (dielectric layer that does not contribute to capacitance formation) are determined by the first internal dielectric layer (capacitor formation). Since the thickness of the contributing dielectric layer) is thinner, an increase in the height dimension of the multilayer capacitor can be suppressed as much as possible.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

図1は、本発明を適用した積層型コンデンサ(第1実施形態)の外観斜視図である。FIG. 1 is an external perspective view of a multilayer capacitor (first embodiment) to which the present invention is applied. 図2は、図1のS1−S1線に沿う拡大断面図である。FIG. 2 is an enlarged sectional view taken along line S1-S1 of FIG. 図3は、図1のS2−S2線に沿う拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along line S2-S2 of FIG. 図4は、図2の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 図5は、図1〜図4に示した積層型コンデンサの構造変形例を示す図2対応の断面図(長さ方向の1/2を拡大した断面図)である。FIG. 5 is a cross-sectional view corresponding to FIG. 2 (a cross-sectional view enlarging 1/2 in the length direction) showing a structural modification of the multilayer capacitor shown in FIGS. 図6は、本発明を適用した積層型コンデンサ(第2実施形態)の図2対応の断面図である。FIG. 6 is a cross-sectional view corresponding to FIG. 2 of a multilayer capacitor to which the present invention is applied (second embodiment). 図7は、図6に示した積層型コンデンサの構造変形例を示す図5対応の断面図である。7 is a cross-sectional view corresponding to FIG. 5 showing a structural modification of the multilayer capacitor shown in FIG. 図8は、本発明を適用した積層型コンデンサ(第3実施形態)の図2対応の断面図である。FIG. 8 is a cross-sectional view corresponding to FIG. 2 of a multilayer capacitor to which the present invention is applied (third embodiment). 図9は、図8に示した積層型コンデンサの構造変形例を示す図5対応の断面図である。9 is a cross-sectional view corresponding to FIG. 5 showing a structural modification of the multilayer capacitor shown in FIG.

《第1実施形態》
図1〜図4は本発明を適用した積層型コンデンサ10(第1実施形態)を示す。
<< First Embodiment >>
1 to 4 show a multilayer capacitor 10 (first embodiment) to which the present invention is applied.

〈積層型コンデンサ10の構造〉
先ず、積層型コンデンサ10の構造について説明するが、ここでの説明では、説明の便宜上、図2の左、右、手前、奥、上、下をそれぞれ前、後、左、右、上、下と称し、他の図のこれらに相当する向きも同様に称する。
<Structure of multilayer capacitor 10>
First, the structure of the multilayer capacitor 10 will be described. For convenience of explanation, the left, right, front, back, top, and bottom of FIG. 2 are front, back, left, right, top, and bottom, respectively. The directions corresponding to these in other drawings are also referred to.

積層型コンデンサ10は、長さ寸法L>幅寸法W>高さ寸法Hの関係を有する略直方体形状を成し、具体的な長さ寸法Lは1.0mm、幅寸法Wは0.5mm、高さ寸法Hは0.15mmである。   The multilayer capacitor 10 has a substantially rectangular parallelepiped shape having a relationship of length dimension L> width dimension W> height dimension H. The specific length dimension L is 1.0 mm, the width dimension W is 0.5 mm, The height dimension H is 0.15 mm.

積層型コンデンサ10は、前記同等の寸法関係を有する略直方体形状のコンデンサ本体11と、コンデンサ本体11の前面と左右面及び上下面の前側部分を連続して覆う第1外部電極12と、コンデンサ本体11の後面と左右面及び上下面の後側部分を連続して覆う第2外部電極13とを備えている。第1外部電極12は一方極性として用いられ、第2外部電極13は他方極性として用いられる。   The multilayer capacitor 10 includes a substantially rectangular parallelepiped capacitor body 11 having the same dimensional relationship, a first external electrode 12 that continuously covers the front surface, the left and right surfaces, and the front portion of the top and bottom surfaces of the capacitor body 11, and the capacitor body. 11 and a second external electrode 13 that continuously covers the left and right surfaces and the rear portions of the upper and lower surfaces. The first external electrode 12 is used as one polarity, and the second external electrode 13 is used as the other polarity.

コンデンサ本体11は、セラミックスから成る誘電体部14と、金属から成り誘電体部14内に配置された計6つの第1内部電極層15と、第1内部電極層15と同一材料から成り誘電体部14内に配置された計6つの第2内部電極層16とを有している。誘電体部14の具体的な材料名はチタン酸バリウムで、第1内部電極層15と第2内部電極層16の具体的な材料名はニッケルである。   The capacitor body 11 includes a dielectric part 14 made of ceramic, a total of six first internal electrode layers 15 made of metal and disposed in the dielectric part 14, and a dielectric made of the same material as the first internal electrode layer 15. A total of six second internal electrode layers 16 disposed in the portion 14. A specific material name of the dielectric portion 14 is barium titanate, and a specific material name of the first internal electrode layer 15 and the second internal electrode layer 16 is nickel.

因みに、第1内部電極層15の数と第2内部電極層16の数は実際は6よりも多いが、図示の便宜上、第1内部電極層15の数と第2内部電極層16の数を6とし、該数に併せてコンデンサ本体11について説明する。   Incidentally, although the number of the first internal electrode layers 15 and the number of the second internal electrode layers 16 are actually larger than 6, the number of the first internal electrode layers 15 and the number of the second internal electrode layers 16 are set to 6 for convenience of illustration. The capacitor body 11 will be described together with the number.

各第1内部電極層15はコンデンサ本体11の長さ寸法及び幅寸法よりも小さな長さ寸法及び幅寸法を有する矩形状を成し、各第2内部電極層16は第1内部電極層15と略同じ長さ寸法及び幅寸法を有する矩形状を成している。各第1内部電極層15の厚さと各第2内部電極層16の厚さは同じで例えば0.5〜3.0μmである。   Each first internal electrode layer 15 has a rectangular shape having a length dimension and a width dimension smaller than the length dimension and the width dimension of the capacitor body 11, and each second internal electrode layer 16 includes the first internal electrode layer 15 and the first internal electrode layer 15. It has a rectangular shape having substantially the same length and width. The thickness of each 1st internal electrode layer 15 and the thickness of each 2nd internal electrode layer 16 are the same, for example, are 0.5-3.0 micrometers.

各第1内部電極層15の前端縁は第1外部電極12に電気的に接続され、各第2内部電極層16の後端縁は第2外部電極13に電気的に接続されている。つまり、各第1内部電極層15は一方極性として用いられ、各第2内部電極層16は他方極性として用いられる。   The front end edge of each first internal electrode layer 15 is electrically connected to the first external electrode 12, and the rear end edge of each second internal electrode layer 16 is electrically connected to the second external electrode 13. That is, each first internal electrode layer 15 is used as one polarity, and each second internal electrode layer 16 is used as the other polarity.

計6つの第1内部電極層15のうちの5つの第1内部電極層15と、計6つの第2内部電極層16のうちの5つの第2内部電極層16は、基本的には、第1内部電極層15と第2内部電極層16が容量形成に寄与する第1誘電体層DL1を介して向き合い、且つ、該第1誘電体層DL1を介して交互に並ぶように配置されている。各第1誘電体層DL1の厚さtd1は例えば2.0〜6.0μmである。   The five first internal electrode layers 15 of the six first internal electrode layers 15 and the five second internal electrode layers 16 of the six second internal electrode layers 16 are basically the first The first internal electrode layer 15 and the second internal electrode layer 16 are disposed so as to face each other via the first dielectric layer DL1 that contributes to the capacitance formation, and are alternately arranged via the first dielectric layer DL1. . The thickness td1 of each first dielectric layer DL1 is, for example, 2.0 to 6.0 μm.

また、上から3番目の第1内部電極層15には、容量形成に寄与しない第2誘電体層DL2を介して向き合うように追加の第1内部電極層15が1つ配置されている。加えて、上から3番目の第2内部電極層16には、容量形成に寄与しない第3誘電体層DL3を介して向き合うように追加の第2内部電極層16が1つ配置されている。つまり、コンデンサ本体11の最も中央において隣接する第1内部電極層15と第2内部電極層16に、それぞれ追加の第1内部電極層15と追加の第2内部電極層16が1つずつ配置されている。   In addition, one additional first internal electrode layer 15 is disposed on the first internal electrode layer 15 that is third from the top so as to face each other via the second dielectric layer DL2 that does not contribute to capacitance formation. In addition, one additional second internal electrode layer 16 is arranged on the second internal electrode layer 16 that is third from the top so as to face each other via the third dielectric layer DL3 that does not contribute to capacitance formation. That is, one additional first internal electrode layer 15 and one additional second internal electrode layer 16 are disposed on the first internal electrode layer 15 and the second internal electrode layer 16 that are adjacent to each other at the center of the capacitor body 11, respectively. ing.

第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3は略同じで、第1誘電体層DL1の厚さtd1よりも薄い。好ましくは、第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3と第1誘電体層DL1の厚さtd1の関係は、td2≒td3<2/3td1である。第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3は例えば0.5〜3.0μmで、第1誘電体層DL1の厚さtd1よりも各第1内部電極層15の厚さと各第2内部電極層16の厚さに近い。   The thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 are substantially the same and are thinner than the thickness td1 of the first dielectric layer DL1. Preferably, the relationship between the thickness td2 of the second dielectric layer DL2, the thickness td3 of the third dielectric layer DL3, and the thickness td1 of the first dielectric layer DL1 is td2≈td3 <2 / 3td1. The thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 are, for example, 0.5 to 3.0 μm, and each first internal electrode layer is larger than the thickness td1 of the first dielectric layer DL1. 15 and close to the thickness of each second internal electrode layer 16.

因みに、第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3が第1誘電体層DL1の厚さtd1よりも薄いため、後述の製法説明における加熱処理の焼成過程において、2つの第1内部電極層15に挟まれる第2誘電体層DL2の焼き進みと2つの第2内部電極層16に挟まれる第3誘電体層DL3の焼き進みは、第1内部電極層15と第2内部電極層16との間に存する第1誘電体層DL1の厚さtd1の焼き進みよりも早くなり、この焼き進みの差によって第2誘電体層DL2の強度と第3誘電体層DL3の強度は第1誘電体層DL1の強度よりも高くなっていると推考される。   Incidentally, since the thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 are thinner than the thickness td1 of the first dielectric layer DL1, in the baking process of the heat treatment in the description of the manufacturing method to be described later The firing of the second dielectric layer DL2 sandwiched between the two first internal electrode layers 15 and the firing of the third dielectric layer DL3 sandwiched between the two second internal electrode layers 16 are the first internal electrode layer 15 And the thickness td1 of the first dielectric layer DL1 existing between the second internal electrode layer 16 and the second dielectric layer DL2 are increased in strength and the third dielectric layer due to the difference in the firing amount. It is assumed that the strength of DL3 is higher than that of the first dielectric layer DL1.

第1外部電極12と第2外部電極13は、図示を省略したが、下地膜と該下地膜を覆う表面膜との多層構造を有している。下地膜の具体的な材料名はニッケルで、その厚さは例えば1.0〜3.0μmで、表面膜の具体的な材料名はスズで、その厚さは例えば0.5〜1.5μmである。   Although not shown, the first external electrode 12 and the second external electrode 13 have a multilayer structure of a base film and a surface film covering the base film. The specific material name of the base film is nickel, the thickness is, for example, 1.0 to 3.0 μm, the specific material name of the surface film is tin, and the thickness is, for example, 0.5 to 1.5 μm. It is.

前記積層型コンデンサ10の容量は、計6つの第1内部電極層15と計6つの第2内部電極層16のうち、容量形成に寄与する第1誘電体層DL1を介して向き合う第1内部導体層15と第2導体層16との間に形成される。   The capacitance of the multilayer capacitor 10 is such that the first internal conductors facing each other through the first dielectric layer DL1 that contributes to capacitance formation among the six first internal electrode layers 15 and the six second internal electrode layers 16 in total. It is formed between the layer 15 and the second conductor layer 16.

〈積層型コンデンサ10の製造方法〉
次に、前記積層型コンデンサ10の製造方法について説明するが、ここで説明する製法はあくまでも一例であり、後記誘電体スラリーの組成と後記導体ペーストの組成を変えても、後記未焼成チップと後記下地膜用塗布ペーストを同時に加熱処理しても、前記積層型コンデンサ10を製造できることは言うまでもない。
<Method for Manufacturing Multilayer Capacitor 10>
Next, a manufacturing method of the multilayer capacitor 10 will be described. However, the manufacturing method described here is merely an example. Even if the composition of the dielectric slurry and the composition of the conductor paste are changed, the unfired chip and the postscript are described later. It goes without saying that the multilayer capacitor 10 can be manufactured even if the base film coating paste is heat-treated at the same time.

製造に際しては、チタン酸バリウム粉末とポリビニルブチラール(バインダ)とエタノール及び水(溶剤)とリン酸エステル(分散剤)とを所定の重量割合で含有した誘電体スラリーを用意する。また、ニッケル粉末とチタン酸バリウム粉末とポリビニルブチラール(バインダ)とエタノール(溶剤)とリン酸エステル(分散剤)とを所定の重量割合で含有した導体ペーストを用意する。   In production, a dielectric slurry containing barium titanate powder, polyvinyl butyral (binder), ethanol, water (solvent), and phosphate ester (dispersant) in a predetermined weight ratio is prepared. In addition, a conductor paste containing nickel powder, barium titanate powder, polyvinyl butyral (binder), ethanol (solvent), and phosphate ester (dispersant) in a predetermined weight ratio is prepared.

そして、ドクターブレード等の塗工機を利用して、PET等のベースフィルム上に誘電体スラリーを所定の厚さで塗工し乾燥して第1誘電体シートを作製し、同様の方法で第1誘電体シートよりも厚さが薄い第2誘電体シートを作製する。   Then, using a coating machine such as a doctor blade, a dielectric slurry is applied to a predetermined thickness on a base film such as PET and dried to produce a first dielectric sheet. A second dielectric sheet having a thickness smaller than that of the first dielectric sheet is produced.

続いて、スクリーン印刷機等の印刷機を利用して、第1誘電体シート上に導体ペーストを所定の厚さ、形状及び配列で印刷し乾燥して第1内部電極層15用の第1積層シートを作製し、同様の方法で第2内部電極層16用の第2積層シートを作製する。   Subsequently, using a printing machine such as a screen printing machine, the first paste for the first internal electrode layer 15 is printed by drying the conductor paste on the first dielectric sheet with a predetermined thickness, shape and arrangement and drying. A sheet is produced, and a second laminated sheet for the second internal electrode layer 16 is produced by the same method.

また、スクリーン印刷機等の印刷機を利用して、第2誘電体シート上に導体ペーストを所定の厚さ、形状及び配列で印刷し乾燥して追加の第1内部電極層15用の第3積層シートを作製し、同様の方法で追加の第2内部電極層16用の第4積層シートを作製する。   In addition, using a printing machine such as a screen printing machine, a conductor paste is printed on the second dielectric sheet with a predetermined thickness, shape and arrangement, and dried to form a third for the additional first internal electrode layer 15. A laminated sheet is produced, and a fourth laminated sheet for the additional second internal electrode layer 16 is produced in the same manner.

続いて、第1誘電体シートを所定数積み重ね、その上に第2積層シートを積み重ね、その上に第1積層シートを積み重ね、その上に第2積層シートを積み重ね、その上に第1積層シートを積み重ね、その上に第2積層シートを積み重ね、その上に第4積層シートを積み重ね、その上に第1積層シートを積み重ね、その上に第3積層シートを積み重ね、その上に第2積層シートを積み重ね、その上に第1積層シートを積み重ね、その上に第2積層シートを積み重ね、その上に第1積層シートを積み重ね、その上に第1誘電体シートを所定数積み重ねた後、静水圧プレス機等のプレス機を利用して、全体に圧力をかけてシート相互を圧着してシート積層物を作製する。   Subsequently, a predetermined number of first dielectric sheets are stacked, a second stacked sheet is stacked thereon, a first stacked sheet is stacked thereon, a second stacked sheet is stacked thereon, and a first stacked sheet is stacked thereon. The second laminated sheet is stacked thereon, the fourth laminated sheet is stacked thereon, the first laminated sheet is stacked thereon, the third laminated sheet is stacked thereon, and the second laminated sheet is stacked thereon. The first laminated sheet is stacked thereon, the second laminated sheet is stacked thereon, the first laminated sheet is stacked thereon, and a predetermined number of first dielectric sheets are stacked thereon, followed by hydrostatic pressure Using a press machine such as a press machine, pressure is applied to the whole to press the sheets together to produce a sheet laminate.

続いて、ダイシング機等の切断機を利用して、シート積層物をコンデンサ本体11に対応するサイズに切断して未焼成チップを作製する。   Subsequently, using a cutting machine such as a dicing machine, the sheet laminate is cut into a size corresponding to the capacitor body 11 to produce an unfired chip.

続いて、焼成炉等の加熱装置を利用して、多数の未焼成チップに対し一括で所定の温度プロファイルに従った加熱処理を施す。この加熱処理は脱バインダ過程と焼成過程を含み、これらを過程を経ると前記コンデンサ本体11が作製される。   Subsequently, using a heating device such as a firing furnace, a large number of unfired chips are collectively subjected to heat treatment according to a predetermined temperature profile. This heat treatment includes a binder removal process and a baking process, and the capacitor body 11 is manufactured through these processes.

続いて、ディップ装置等の塗布装置を利用して、コンデンサ本体11の長さ方向両端部に前記導体ペーストを塗布し乾燥する。そして、焼成炉等の加熱装置を利用して、導体ペースト塗布後の多数のコンデンサ本体11に対し一括で所定の温度プロファイルに従った加熱処理を施して第1外部電極12の下地膜(ニッケル膜)と第2外部電極13の下地膜(ニッケル膜)を作製する。   Subsequently, the conductor paste is applied to both ends in the length direction of the capacitor body 11 by using a coating device such as a dipping device and dried. Then, by using a heating device such as a baking furnace, a heat treatment according to a predetermined temperature profile is collectively performed on a large number of capacitor bodies 11 after the conductor paste is applied to form a base film (nickel film) of the first external electrode 12 And a base film (nickel film) of the second external electrode 13.

続いて、電解メッキ装置等のメッキ装置を利用して、下地膜作製後のコンデンサ本体11に対し一括でメッキ処理を施して第1外部電極12の表面膜(スズ膜)と第2外部電極13の表面膜(スズ膜)を作製する。以上で、前記積層型コンデンサ10が製造される。   Subsequently, by using a plating apparatus such as an electrolytic plating apparatus, the capacitor body 11 after the base film is subjected to a plating process in a lump so that the surface film (tin film) of the first external electrode 12 and the second external electrode 13 are formed. A surface film (tin film) is prepared. Thus, the multilayer capacitor 10 is manufactured.

〈積層型コンデンサ10に依る効果〉
次に、前記積層型コンデンサ10によって得られる効果について説明する。
<Effects of multilayer capacitor 10>
Next, effects obtained by the multilayer capacitor 10 will be described.

(1)5つの第1内部電極層15の1つには、該第1内部電極層15と同じくその端縁が第1外部電極12に接続されると共に、第1誘電体層DL1の厚さtd1よりも厚さtd2が薄く、且つ、容量形成に寄与しない第2誘電体層DL2を介して向き合うように追加の第1内部電極層15が1つ配置され、また、5つの第2内部電極層16の1つには、該第2内部電極層16と同じくその端縁が第2外部電極13に接続されると共に、第1誘電体層DL1の厚さtd1よりも厚さtd3が薄く、且つ、容量形成に寄与しない第3誘電体層DL3を介して向き合うように追加の第2内部電極層16が1つ配置されている。   (1) The edge of one of the five first internal electrode layers 15 is connected to the first external electrode 12 like the first internal electrode layer 15 and the thickness of the first dielectric layer DL1. One additional first internal electrode layer 15 is disposed so as to face each other through the second dielectric layer DL2 which has a thickness td2 smaller than td1 and does not contribute to the capacitance formation, and five second internal electrodes One of the layers 16 has an edge connected to the second external electrode 13 like the second internal electrode layer 16, and a thickness td3 smaller than the thickness td1 of the first dielectric layer DL1, In addition, one additional second internal electrode layer 16 is disposed so as to face each other via the third dielectric layer DL3 that does not contribute to capacitance formation.

つまり、1つの追加の第1内部電極層15が補強層として用いられ、且つ、1つの追加の第2内部電極層16が補強層として用いられた構造にあるため、これら補強層の存在によって積層型コンデンサ10の抗折強度の向上が図れる。   That is, since one additional first internal electrode layer 15 is used as a reinforcing layer and one additional second internal electrode layer 16 is used as a reinforcing layer, the layers are laminated due to the presence of these reinforcing layers. The bending strength of the mold capacitor 10 can be improved.

また、追加の第1内部電極層15が第1外部電極12に接続され、且つ、追加の第2内部電極層16が第2外部電極13に接続された構造にあるため、コンデンサ本体11の第1外部電極12側の機械的強度と第2外部電極13側の機械的強度とのバランスを確保して、より的確に積層型コンデンサ10の抗折強度を向上できる。   Further, since the additional first internal electrode layer 15 is connected to the first external electrode 12 and the additional second internal electrode layer 16 is connected to the second external electrode 13, The balance between the mechanical strength on the side of the first external electrode 12 and the mechanical strength on the side of the second external electrode 13 can be secured, and the bending strength of the multilayer capacitor 10 can be improved more accurately.

さらに、追加の第1内部電極層15とこれと向き合う第1内部電極層15の間に存する第2誘電体層DL2(容量形成に寄与しない誘電体層)の厚さtd2と、追加の第2内部電極層16とこれと向き合う第2内部電極層16の間に存する第3誘電体層DL3(容量形成に寄与しない誘電体層)の厚さtd3が、第1内部導体層15と第2導体層16との間に存する第1内部誘電体層DL1(容量形成に寄与する誘電体層)の厚さtd1よりも薄いため、積層型コンデンサ10の高さ寸法Hの増加を極力抑制できる。   Furthermore, the thickness td2 of the second dielectric layer DL2 (dielectric layer that does not contribute to capacitance formation) existing between the additional first internal electrode layer 15 and the first internal electrode layer 15 facing the additional first internal electrode layer 15, and the additional second The thickness td3 of the third dielectric layer DL3 (dielectric layer that does not contribute to capacitance formation) existing between the internal electrode layer 16 and the second internal electrode layer 16 facing the internal electrode layer 16 is determined by the first internal conductor layer 15 and the second conductor. Since the thickness is smaller than the thickness td1 of the first internal dielectric layer DL1 (dielectric layer contributing to capacitance formation) existing between the layers 16, an increase in the height dimension H of the multilayer capacitor 10 can be suppressed as much as possible.

(2)追加の第1内部電極層15とこれと向き合う第1内部電極層15の間に存する第2誘電体層DL2(容量形成に寄与しない誘電体層)の強度と、追加の第2内部電極層16とこれと向き合う第2内部電極層16の間に存する第3誘電体層DL3(容量形成に寄与しない誘電体層)の強度が、第1内部導体層15と第2導体層16との間に存する第1内部誘電体層DL1(容量形成に寄与する誘電体層)の強度よりも高くなっているため、、第2誘電体層DL2と第3誘電体層DL3に補強層としての役割を担わせて、より確実に積層型コンデンサ10の抗折強度を向上できる。   (2) Strength of the second dielectric layer DL2 (dielectric layer that does not contribute to capacitance formation) existing between the additional first internal electrode layer 15 and the first internal electrode layer 15 facing the additional first internal electrode layer 15, and the additional second internal electrode The strength of the third dielectric layer DL3 (dielectric layer that does not contribute to capacitance formation) existing between the electrode layer 16 and the second internal electrode layer 16 facing the electrode layer 16 is such that the first internal conductor layer 15 and the second conductor layer 16 Since the strength of the first inner dielectric layer DL1 (dielectric layer contributing to capacity formation) existing between the second dielectric layer DL2 and the third dielectric layer DL3 is higher than the strength of the first inner dielectric layer DL1 (dielectric layer contributing to capacity formation). By playing a role, the bending strength of the multilayer capacitor 10 can be improved more reliably.

〈積層型コンデンサ10の抗折強度の検証〉
ところで、前記〈積層型コンデンサ10の構造〉で説明したサイズ(長さ寸法Lが1.0mmで幅寸法Wが0.5mmで高さ寸法Hが0.15mm)の積層型コンデンサにあっては、内部電極層の総数や積層型コンデンサの容量等に拘わらず、回路基板搭載時や実装後等においてコンデンサ本体に加わる力によって生じる亀裂や割れを未然に防止するには、実測上、100gf以上の抗折強度が必要となる。
<Verification of bending strength of multilayer capacitor 10>
By the way, in the multilayer capacitor having the size described in <Structure of multilayer capacitor 10> (the length dimension L is 1.0 mm, the width dimension W is 0.5 mm, and the height dimension H is 0.15 mm). Regardless of the total number of internal electrode layers, the capacity of the multilayer capacitor, etc., in order to prevent cracks and cracks caused by the force applied to the capacitor body when mounted on the circuit board or after mounting, the actual measurement is 100 gf or more. Folding strength is required.

このような事情を踏まえて、前記積層型コンデンサ10として、第1内部電極層15(追加の第1内部電極層15を含む)の数を19とし、第2内部電極層16(追加の第2内部電極層16を含む)の数を19とし、各第1内部電極層15の厚さと各第2内部電極層16の厚さを0.8μmとし、各第1誘電体層DL1の厚さtd1を2.3μmとし、第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3を0.9μmとしたものを試作して、抗折強度を計測したところ、該抗折強度は180gfであった。   In consideration of such circumstances, in the multilayer capacitor 10, the number of first internal electrode layers 15 (including the additional first internal electrode layer 15) is 19, and the second internal electrode layer 16 (the additional second internal electrode layer 15). The number of internal electrode layers 16 (including the internal electrode layers 16) is 19, the thickness of each first internal electrode layer 15 and the thickness of each second internal electrode layer 16 is 0.8 μm, and the thickness td1 of each first dielectric layer DL1 Is 2.3 μm, the thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 are 0.9 μm, and the bending strength is measured. The strength was 180 gf.

また、前記積層型コンデンサ10として、第1内部電極層15(追加の第1内部電極層15を含む)の数を19とし、第2内部電極層16(追加の第2内部電極層16を含む)の数を19とし、各第1内部電極層15の厚さと各第2内部電極層16の厚さを0.8μmとし、各第1誘電体層DL1の厚さtd1を2.3μmとし、第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3を1.4μmとしたものを試作して、抗折強度を計測したところ、該抗折強度は140gfであった。   In the multilayer capacitor 10, the number of first internal electrode layers 15 (including the additional first internal electrode layers 15) is 19, and the second internal electrode layers 16 (including the additional second internal electrode layers 16) are included. ) Is 19, the thickness of each first internal electrode layer 15 and the thickness of each second internal electrode layer 16 is 0.8 μm, the thickness td1 of each first dielectric layer DL1 is 2.3 μm, A prototype with the thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 set to 1.4 μm was measured, and the bending strength was measured. The bending strength was 140 gf. .

これらに対し、比較のための積層型コンデンサとして、第1内部電極層15(追加の第1内部電極層15は無し)の数を19とし、第2内部電極層16(追加の第2内部電極層16は無し)の数を19とし、各第1内部電極層15の厚さと各第2内部電極層16の厚さを0.8μmとし、各第1誘電体層DL1の厚さtd1を2.3μmとしたもの、即ち、追加の第1内部電極層15と追加の第2内部電極層16と第2誘電体層DL2と第3誘電体層DL3を有しない一般構造のものを試作して、抗折強度を計測したところ、該抗折強度は95gfであった。   On the other hand, as a multilayer capacitor for comparison, the number of first internal electrode layers 15 (there is no additional first internal electrode layer 15) is 19, and the second internal electrode layer 16 (additional second internal electrode) 19), the thickness of each first internal electrode layer 15 and the thickness of each second internal electrode layer 16 are 0.8 μm, and the thickness td1 of each first dielectric layer DL1 is 2 .3 μm, that is, a general structure having no additional first internal electrode layer 15, additional second internal electrode layer 16, second dielectric layer DL2, and third dielectric layer DL3 When the bending strength was measured, the bending strength was 95 gf.

〈積層型コンデンサ10の構造変形例〉
次に、前記積層型コンデンサ10の構造変形例について説明する。
<Structural modification of multilayer capacitor 10>
Next, a structural modification of the multilayer capacitor 10 will be described.

(1)図1〜図4には、追加の第1内部電極層15及び第2誘電体層DL2を1つとし、且つ、追加の第2内部電極層16及び第3誘電体層DL3を1つとした積層型コンデンサ10を示したが、図5に示した積層型コンデンサ10’のように、追加の第1内部電極層15及び第2誘電体層DL2を2つ(或いは3つ以上)とし、且つ、追加の第2内部電極層16及び第3誘電体層DL3を2つ(或いは3つ以上)としても前記同様の効果が得られる。   (1) In FIGS. 1 to 4, the additional first internal electrode layer 15 and the second dielectric layer DL2 are one, and the additional second internal electrode layer 16 and the third dielectric layer DL3 are one. Although the multilayer capacitor 10 is shown as one, the additional first internal electrode layer 15 and the second dielectric layer DL2 are two (or three or more) like the multilayer capacitor 10 ′ shown in FIG. In addition, the same effect as described above can be obtained by using two (or three or more) additional second internal electrode layers 16 and third dielectric layers DL3.

追加の第1内部電極層15及び第2誘電体層DL2の数と追加の第2内部電極層16及び第3誘電体層DL3の数を増加すれば、積層型コンデンサ10’の抗折強度はより向上するが、該増加に伴って積層型コンデンサ10’の高さ寸法Hも増加してしまうため、現実的には、積層型コンデンサ10’の高さ寸法Hの増加分を考慮の上で、追加の第1内部電極層15及び第2誘電体層DL2の数と追加の第2内部電極層16及び第3誘電体層DL3の数が選定されることになる。   If the number of the additional first internal electrode layers 15 and the second dielectric layers DL2 and the number of the additional second internal electrode layers 16 and the third dielectric layers DL3 are increased, the bending strength of the multilayer capacitor 10 ′ is increased. The height dimension H of the multilayer capacitor 10 ′ also increases with the increase, but in reality, the increase in the height dimension H of the multilayer capacitor 10 ′ is taken into consideration. The number of the additional first internal electrode layer 15 and the second dielectric layer DL2 and the number of the additional second internal electrode layer 16 and the third dielectric layer DL3 are selected.

(2)図1〜図4には、第1内部電極層15(追加の第1内部電極層15を含む)の数と第2内部電極層16(追加の第2内部電極層16を含む)の数を6つとした積層型コンデンサ10を便宜的に示したが、先に述べたように第1内部電極層15の数と第2内部電極層16の数は実際は6よりも多く、両者の数が多い場合でも前記同様の効果が得られる。   (2) In FIGS. 1 to 4, the number of first internal electrode layers 15 (including additional first internal electrode layers 15) and second internal electrode layers 16 (including additional second internal electrode layers 16). For convenience, the multilayer capacitor 10 with six is shown, but as described above, the number of the first internal electrode layers 15 and the number of the second internal electrode layers 16 are actually more than six. Even when the number is large, the same effect as described above can be obtained.

(3)図1〜図4には、長さ寸法Lが1.0mmで幅寸法Wが0.5mmで高さ寸法Hが0.15mmの積層型コンデンサ10を示したが、長さ寸法L、幅寸法W及び高さ寸法Hがこれら数値以外の積層型コンデンサであっても前記同様の効果が得られるし、長さ寸法L>幅寸法W=高さ寸法Hの関係を有する積層型コンデンサであっても前記同様の効果が得られる。   (3) FIGS. 1 to 4 show the multilayer capacitor 10 having a length L of 1.0 mm, a width W of 0.5 mm, and a height H of 0.15 mm. The same effect can be obtained even if the width dimension W and the height dimension H are multilayer capacitors other than these values, and the multilayer capacitor having the relationship of length dimension L> width dimension W = height dimension H is obtained. However, the same effect as described above can be obtained.

(4)図1〜図4には、各第1内部電極層15の厚さと各第2内部電極層16の厚さの例として0.5〜3.0μmを示し、各第1誘電体層DL1の厚さtd1の例として2.0〜6.0μmを示し、第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3の例として0.5〜3.0μmを示したが、先に述べた第1内部電極層15の数と第2内部電極層16の数や、先に述べた積層型コンデンサ10のサイズや、積層型コンデンサ10に求める容量等に応じて、これら値は適宜変更可能で、変更した場合でも前記同様の効果が得られる。   (4) In FIGS. 1-4, 0.5-3.0 micrometers is shown as an example of the thickness of each 1st internal electrode layer 15 and each 2nd internal electrode layer 16, and each 1st dielectric layer An example of the thickness td1 of DL1 is 2.0 to 6.0 μm, and an example of the thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 is 0.5 to 3.0 μm. Although shown, it depends on the number of the first internal electrode layers 15 and the number of the second internal electrode layers 16 described above, the size of the multilayer capacitor 10 described above, the capacity required for the multilayer capacitor 10, and the like. These values can be changed as appropriate, and the same effects as described above can be obtained even if they are changed.

(5)図1〜図4には、誘電体部14(第1誘電体層DL1、第2誘電体層DL2及び第3誘電体層DL3を含む)の材料の例としてチタン酸バリウムを示し、第1内部電極層15と第2内部電極層16の材料の例としてニッケルを示し、第1外部電極12と第2外部電極13の下地膜の材料の例としてニッケルを表面膜の材料の例としてスズを示したが、誘電体部14がチタン酸バリウム以外の誘電体から成る場合や、第1内部電極層15と第2内部電極層16がニッケル以外の金属或いは合金から成る場合や、第1外部電極12と第2外部電極13の下地膜がニッケル以外の金属或いは合金から成り表面膜がスズ以外の金属或いは合金から成る場合でも、前記同様の効果が得られる。   (5) FIGS. 1 to 4 show barium titanate as an example of the material of the dielectric portion 14 (including the first dielectric layer DL1, the second dielectric layer DL2, and the third dielectric layer DL3). Nickel is shown as an example of the material of the first internal electrode layer 15 and the second internal electrode layer 16, and nickel is used as an example of the material of the surface film of the first external electrode 12 and the second external electrode 13. Although tin is shown, when the dielectric portion 14 is made of a dielectric other than barium titanate, the first internal electrode layer 15 and the second internal electrode layer 16 are made of a metal or alloy other than nickel, Even when the base film of the external electrode 12 and the second external electrode 13 is made of a metal or alloy other than nickel and the surface film is made of a metal or alloy other than tin, the same effect as described above can be obtained.

《第2実施形態》
図6は本発明を適用した積層型コンデンサ20(第2実施形態)を示す。
<< Second Embodiment >>
FIG. 6 shows a multilayer capacitor 20 (second embodiment) to which the present invention is applied.

〈積層型コンデンサ20の構造〉
積層型コンデンサ20が、前記積層型コンデンサ10(第1実施形態)と構造上で異なるところは、
・上から2番目の第1内部電極層15に、容量形成に寄与しない第2誘電体層DL2を介 して向き合うように追加の第1内部電極層15を1つ配置し、また、上から4番目(下 から2番目)の第2内部電極層16に、容量形成に寄与しない第3誘電体層DL3を介 して向き合うように追加の第2内部電極層16を1つ配置した点
にある。他の構造は、前記積層型コンデンサ10(第1実施形態)と同じであるためのその説明を省略する。
<Structure of multilayer capacitor 20>
The multilayer capacitor 20 is structurally different from the multilayer capacitor 10 (first embodiment) as follows.
An additional first internal electrode layer 15 is arranged on the second first internal electrode layer 15 from the top so as to face each other via the second dielectric layer DL2 that does not contribute to the capacitance formation. One additional second internal electrode layer 16 is arranged on the fourth (second from the bottom) second internal electrode layer 16 so as to face each other through the third dielectric layer DL3 that does not contribute to capacitance formation. is there. Since other structures are the same as those of the multilayer capacitor 10 (first embodiment), description thereof is omitted.

この積層型コンデンサ20の製造方法は、前記第1積層シート〜第4積層シートの積み重ね順序を変更した以外は前記積層型コンデンサ10(第1実施形態)と同じであるためその説明を省略する。また、この積層型コンデンサ20によって得られる効果は、前記積層型コンデンサ10(第1実施形態)と同じであるためその説明を省略する。   Since the manufacturing method of the multilayer capacitor 20 is the same as that of the multilayer capacitor 10 (first embodiment) except that the stacking order of the first multilayer sheet to the fourth multilayer sheet is changed, the description thereof is omitted. Further, the effect obtained by the multilayer capacitor 20 is the same as that of the multilayer capacitor 10 (first embodiment), and the description thereof is omitted.

〈積層型コンデンサ20の構造変形例〉
次に、前記積層型コンデンサ20の構造変形例について説明する。
<Structural modification of multilayer capacitor 20>
Next, a structural modification of the multilayer capacitor 20 will be described.

(1)図6には、追加の第1内部電極層15及び第2誘電体層DL2を1つとし、且つ、追加の第2内部電極層16及び第3誘電体層DL3を1つとした積層型コンデンサ20を示したが、図7に示した積層型コンデンサ20’のように、追加の第1内部電極層15及び第2誘電体層DL2を2つ(或いは3つ以上)とし、且つ、追加の第2内部電極層16及び第3誘電体層DL3を2つ(或いは3つ以上)としても前記同様の効果が得られる。   (1) In FIG. 6, a stack including one additional first internal electrode layer 15 and second dielectric layer DL2 and one additional second internal electrode layer 16 and third dielectric layer DL3. Although the type capacitor 20 is shown, the additional first internal electrode layer 15 and the second dielectric layer DL2 are two (or three or more) like the multilayer capacitor 20 ′ shown in FIG. Even if the additional second internal electrode layer 16 and the third dielectric layer DL3 are two (or three or more), the same effect as described above can be obtained.

追加の第1内部電極層15及び第2誘電体層DL2の数と追加の第2内部電極層16及び第3誘電体層DL3の数を増加すれば、積層型コンデンサ20’の抗折強度はより向上するが、該増加に伴って積層型コンデンサ20’の高さ寸法Hも増加してしまうため、現実的には、積層型コンデンサ20’の高さ寸法Hの増加分を考慮の上で、追加の第1内部電極層15及び第2誘電体層DL2の数と追加の第2内部電極層16及び第3誘電体層DL3の数が選定されることになる。   If the number of the additional first internal electrode layers 15 and the second dielectric layers DL2 and the number of the additional second internal electrode layers 16 and the third dielectric layers DL3 are increased, the bending strength of the multilayer capacitor 20 ′ can be increased. The height dimension H of the multilayer capacitor 20 ′ increases with the increase, but in reality, the increase in the height dimension H of the multilayer capacitor 20 ′ is taken into consideration. The number of the additional first internal electrode layer 15 and the second dielectric layer DL2 and the number of the additional second internal electrode layer 16 and the third dielectric layer DL3 are selected.

(2)図6には、第1内部電極層15(追加の第1内部電極層15を含む)の数と第2内部電極層16(追加の第2内部電極層16を含む)の数を6つとした積層型コンデンサ20を便宜的に示したが、先に述べたように第1内部電極層15の数と第2内部電極層16の数は実際は6よりも多く、両者の数が多い場合でも前記同様の効果が得られる。   (2) FIG. 6 shows the number of first internal electrode layers 15 (including the additional first internal electrode layers 15) and the number of second internal electrode layers 16 (including the additional second internal electrode layers 16). Although six multilayer capacitors 20 are shown for convenience, as described above, the number of first internal electrode layers 15 and the number of second internal electrode layers 16 are actually larger than 6, and the number of both is large. Even in this case, the same effect as described above can be obtained.

(3)図6には、長さ寸法Lが1.0mmで幅寸法Wが0.5mmで高さ寸法Hが0.15mmの積層型コンデンサ20を示したが、長さ寸法L、幅寸法W及び高さ寸法Hがこれら数値以外の積層型コンデンサであっても前記同様の効果が得られるし、長さ寸法L>幅寸法W=高さ寸法Hの関係を有する積層型コンデンサであっても前記同様の効果が得られる。   (3) FIG. 6 shows a multilayer capacitor 20 having a length dimension L of 1.0 mm, a width dimension W of 0.5 mm, and a height dimension H of 0.15 mm. The same effect as described above can be obtained even when the W and height dimensions H are other than these numerical values, and the multilayer capacitor has a relationship of length dimension L> width dimension W = height dimension H. The same effect as described above can be obtained.

(4)図6には、各第1内部電極層15の厚さと各第2内部電極層16の厚さの例として0.5〜3.0μmを示し、各第1誘電体層DL1の厚さtd1の例として2.0〜6.0μmを示し、第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3の例として0.5〜3.0μmを示したが、先に述べた第1内部電極層15の数と第2内部電極層16の数や、先に述べた積層型コンデンサ20のサイズや、積層型コンデンサ20に求める容量等に応じて、これら値は適宜変更可能で、変更した場合でも前記同様の効果が得られる。   (4) FIG. 6 shows 0.5 to 3.0 μm as an example of the thickness of each first internal electrode layer 15 and the thickness of each second internal electrode layer 16, and the thickness of each first dielectric layer DL1. An example of the thickness td1 is 2.0 to 6.0 μm, and an example of the thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 is 0.5 to 3.0 μm. These values depend on the number of the first internal electrode layers 15 and the number of the second internal electrode layers 16 described above, the size of the multilayer capacitor 20 described above, the capacitance required for the multilayer capacitor 20, and the like. Can be changed as appropriate, and the same effect as described above can be obtained even if it is changed.

(5)図6には、誘電体部14(第1誘電体層DL1、第2誘電体層DL2及び第3誘電体層DL3を含む)の材料の例としてチタン酸バリウムを示し、第1内部電極層15と第2内部電極層16の材料の例としてニッケルを示し、第1外部電極12と第2外部電極13の下地膜の材料の例としてニッケルを表面膜の材料の例としてスズを示したが、誘電体部14がチタン酸バリウム以外の誘電体から成る場合や、第1内部電極層15と第2内部電極層16がニッケル以外の金属或いは合金から成る場合や、第1外部電極12と第2外部電極13の下地膜がニッケル以外の金属或いは合金から成り表面膜がスズ以外の金属或いは合金から成る場合でも、前記同様の効果が得られる。   (5) FIG. 6 shows barium titanate as an example of the material of the dielectric portion 14 (including the first dielectric layer DL1, the second dielectric layer DL2, and the third dielectric layer DL3). Nickel is shown as an example of the material of the electrode layer 15 and the second internal electrode layer 16, nickel is shown as an example of the base film material of the first external electrode 12 and the second external electrode 13, and tin is shown as an example of the material of the surface film However, when the dielectric portion 14 is made of a dielectric other than barium titanate, the first internal electrode layer 15 and the second internal electrode layer 16 are made of a metal or alloy other than nickel, or the first external electrode 12 The same effect can be obtained even when the underlying film of the second external electrode 13 is made of a metal or alloy other than nickel and the surface film is made of a metal or alloy other than tin.

《第3実施形態》
図8は本発明を適用した積層型コンデンサ30(第3実施形態)を示す。
<< Third Embodiment >>
FIG. 8 shows a multilayer capacitor 30 (third embodiment) to which the present invention is applied.

〈積層型コンデンサ30の構造〉
積層型コンデンサ30が、前記積層型コンデンサ10(第1実施形態)と構造上で異なるところは、
・上から1番目(最も外側)の第1内部電極層15に、容量形成に寄与しない第2誘電体 層DL2を介して向き合うように追加の第1内部電極層15を1つ配置し、また、上か ら5番目(下から1番目、最も外側)の第2内部電極層16に、容量形成に寄与しない 第3誘電体層DL3を介して向き合うように追加の第2内部電極層16を1つ配置した 点
にある。他の構造は、前記積層型コンデンサ10(第1実施形態)と同じであるためのその説明を省略する。
<Structure of multilayer capacitor 30>
The multilayer capacitor 30 is structurally different from the multilayer capacitor 10 (first embodiment).
One additional first internal electrode layer 15 is disposed on the first internal electrode layer 15 that is the first (outermost) from the top so as to face each other via the second dielectric layer DL2 that does not contribute to capacitance formation. An additional second internal electrode layer 16 is provided on the second internal electrode layer 16 that is fifth from the top (first from the bottom, outermost) so as to face each other via the third dielectric layer DL3 that does not contribute to capacitance formation. It is at the point where one is placed. Since other structures are the same as those of the multilayer capacitor 10 (first embodiment), description thereof is omitted.

この積層型コンデンサ30の製造方法は、前記第1積層シート〜第4積層シートの積み重ね順序を変更した以外は前記積層型コンデンサ10(第1実施形態)と同じであるためその説明を省略する。また、この積層型コンデンサ30によって得られる効果は、前記積層型コンデンサ10(第1実施形態)と同じであるためその説明を省略する。   Since the manufacturing method of the multilayer capacitor 30 is the same as that of the multilayer capacitor 10 (first embodiment) except that the stacking order of the first multilayer sheet to the fourth multilayer sheet is changed, the description thereof is omitted. Further, the effect obtained by the multilayer capacitor 30 is the same as that of the multilayer capacitor 10 (first embodiment), and the description thereof is omitted.

〈積層型コンデンサ30の構造変形例〉
次に、前記積層型コンデンサ30の構造変形例について説明する。
<Structural Modification Example of Multilayer Capacitor 30>
Next, a structural modification of the multilayer capacitor 30 will be described.

(1)図8には、追加の第1内部電極層15及び第2誘電体層DL2を1つとし、且つ、追加の第2内部電極層16及び第3誘電体層DL3を1つとした積層型コンデンサ30を示したが、図9に示した積層型コンデンサ30’のように、追加の第1内部電極層15及び第2誘電体層DL2を2つ(或いは3つ以上)とし、且つ、追加の第2内部電極層16及び第3誘電体層DL3を2つ(或いは3つ以上)としても前記同様の効果が得られる。   (1) FIG. 8 shows a stack in which the additional first internal electrode layer 15 and the second dielectric layer DL2 are one, and the additional second internal electrode layer 16 and the third dielectric layer DL3 are one. Although the type capacitor 30 is shown, the additional first internal electrode layer 15 and the second dielectric layer DL2 are two (or three or more) like the multilayer capacitor 30 ′ shown in FIG. Even if the additional second internal electrode layer 16 and the third dielectric layer DL3 are two (or three or more), the same effect as described above can be obtained.

追加の第1内部電極層15及び第2誘電体層DL2の数と追加の第2内部電極層16及び第3誘電体層DL3の数を増加すれば、積層型コンデンサ30’の抗折強度はより向上するが、該増加に伴って積層型コンデンサ30’の高さ寸法Hも増加してしまうため、現実的には、積層型コンデンサ30’の高さ寸法Hの増加分を考慮の上で、追加の第1内部電極層15及び第2誘電体層DL2の数と追加の第2内部電極層16及び第3誘電体層DL3の数が選定されることになる。   If the number of the additional first internal electrode layers 15 and the second dielectric layers DL2 and the number of the additional second internal electrode layers 16 and the third dielectric layers DL3 are increased, the bending strength of the multilayer capacitor 30 ′ can be increased. The height dimension H of the multilayer capacitor 30 ′ also increases with the increase, but in reality, the increase in the height dimension H of the multilayer capacitor 30 ′ is taken into consideration. The number of the additional first internal electrode layer 15 and the second dielectric layer DL2 and the number of the additional second internal electrode layer 16 and the third dielectric layer DL3 are selected.

(2)図8には、第1内部電極層15(追加の第1内部電極層15を含む)の数と第2内部電極層16(追加の第2内部電極層16を含む)の数を6つとした積層型コンデンサ30を便宜的に示したが、先に述べたように第1内部電極層15の数と第2内部電極層16の数は実際は6よりも多く、両者の数が多い場合でも前記同様の効果が得られる。   (2) FIG. 8 shows the number of first internal electrode layers 15 (including the additional first internal electrode layers 15) and the number of second internal electrode layers 16 (including the additional second internal electrode layers 16). Although six multilayer capacitors 30 are shown for convenience, as described above, the number of first internal electrode layers 15 and the number of second internal electrode layers 16 are actually larger than six, and the number of both is large. Even in this case, the same effect as described above can be obtained.

(3)図8には、長さ寸法Lが1.0mmで幅寸法Wが0.5mmで高さ寸法Hが0.15mmの積層型コンデンサ30を示したが、長さ寸法L、幅寸法W及び高さ寸法Hがこれら数値以外の積層型コンデンサであっても前記同様の効果が得られるし、長さ寸法L>幅寸法W=高さ寸法Hの関係を有する積層型コンデンサであっても前記同様の効果が得られる。   (3) FIG. 8 shows a multilayer capacitor 30 having a length dimension L of 1.0 mm, a width dimension W of 0.5 mm, and a height dimension H of 0.15 mm. The same effect as described above can be obtained even when the W and height dimensions H are other than these numerical values, and the multilayer capacitor has a relationship of length dimension L> width dimension W = height dimension H. The same effect as described above can be obtained.

(4)図8には、各第1内部電極層15の厚さと各第2内部電極層16の厚さの例として0.5〜3.0μmを示し、各第1誘電体層DL1の厚さtd1の例として2.0〜6.0μmを示し、第2誘電体層DL2の厚さtd2と第3誘電体層DL3の厚さtd3の例として0.5〜3.0μmを示したが、先に述べた第1内部電極層15の数と第2内部電極層16の数や、先に述べた積層型コンデンサ30のサイズや、積層型コンデンサ30に求める容量等に応じて、これら値は適宜変更可能で、変更した場合でも前記同様の効果が得られる。   (4) FIG. 8 shows 0.5 to 3.0 μm as an example of the thickness of each first internal electrode layer 15 and the thickness of each second internal electrode layer 16, and the thickness of each first dielectric layer DL1. An example of the thickness td1 is 2.0 to 6.0 μm, and an example of the thickness td2 of the second dielectric layer DL2 and the thickness td3 of the third dielectric layer DL3 is 0.5 to 3.0 μm. These values depend on the number of the first internal electrode layers 15 and the number of the second internal electrode layers 16 described above, the size of the multilayer capacitor 30 described above, the capacity required for the multilayer capacitor 30, and the like. Can be changed as appropriate, and the same effect as described above can be obtained even if it is changed.

(5)図8には、誘電体部14(第1誘電体層DL1、第2誘電体層DL2及び第3誘電体層DL3を含む)の材料の例としてチタン酸バリウムを示し、第1内部電極層15と第2内部電極層16の材料の例としてニッケルを示し、第1外部電極12と第2外部電極13の下地膜の材料の例としてニッケルを表面膜の材料の例としてスズを示したが、誘電体部14がチタン酸バリウム以外の誘電体から成る場合や、第1内部電極層15と第2内部電極層16がニッケル以外の金属或いは合金から成る場合や、第1外部電極12と第2外部電極13の下地膜がニッケル以外の金属或いは合金から成り表面膜がスズ以外の金属或いは合金から成る場合でも、前記同様の効果が得られる。   (5) FIG. 8 shows barium titanate as an example of the material of the dielectric portion 14 (including the first dielectric layer DL1, the second dielectric layer DL2, and the third dielectric layer DL3). Nickel is shown as an example of the material of the electrode layer 15 and the second internal electrode layer 16, nickel is shown as an example of the base film material of the first external electrode 12 and the second external electrode 13, and tin is shown as an example of the material of the surface film However, when the dielectric portion 14 is made of a dielectric other than barium titanate, the first internal electrode layer 15 and the second internal electrode layer 16 are made of a metal or alloy other than nickel, or the first external electrode 12 The same effect can be obtained even when the underlying film of the second external electrode 13 is made of a metal or alloy other than nickel and the surface film is made of a metal or alloy other than tin.

10,10’,20,20’,30,30’…積層型コンデンサ、11…コンデンサ本体、12…第1外部電極、13…第2外部電極、14…誘電体部、15…第1内部電極層(追加の第1内部電極層を含む)、16…第2内部電極層(追加の第2内部電極層を含む)、DL1…第1誘電体層、DL2…第2誘電体層、DL3…第3誘電体層。   10, 10 ', 20, 20', 30, 30 '... multilayer capacitor, 11 ... capacitor body, 12 ... first external electrode, 13 ... second external electrode, 14 ... dielectric portion, 15 ... first internal electrode Layer (including an additional first internal electrode layer), 16 ... second internal electrode layer (including an additional second internal electrode layer), DL1 ... first dielectric layer, DL2 ... second dielectric layer, DL3 ... Third dielectric layer.

Claims (4)

複数の第1内部電極層と複数の第2内部電極層とが容量形成に寄与する第1誘電体層を介して向き合い、且つ、交互に並ぶように積層配置され、一方極性として用いられる第1外部電極に前記複数の第1内部電極層の端縁が接続され、他方極性として用いられる第2外部電極に前記複数の第2内部電極層の端縁が接続された積層型コンデンサにおいて、
前記複数の第1内部電極層と前記複数の第2内部電極層のうち、積層方向一側には第1内部電極層が位置し、積層方向他側には第2内部電極層が位置しており、
前記積層方向一側に位置する第1内部電極層の外側には容量形成に寄与しない第2誘電体層を介して向き合うように追加の第1内部電極層が積層配置され、該追加の第1内部電極層の端縁は第1外部電極に接続されており、
前記積層方向他側の第2内部電極層の外側には容量形成に寄与しない第3誘電体層を介して向き合うように追加の第2内部電極層が積層配置され、該追加の第2内部電極層の端縁は第2外部電極に接続されており、
前記第2誘電体層の厚さと前記第3誘電体層の厚さは、前記第1誘電体層の厚さよりも薄い、
ことを特徴とする積層型コンデンサ。
A plurality of first internal electrode layers and a plurality of second internal electrode layers face each other via a first dielectric layer that contributes to capacitance formation, and are arranged in layers so as to be alternately arranged. In a multilayer capacitor in which the edges of the plurality of first internal electrode layers are connected to an external electrode, and the edges of the plurality of second internal electrode layers are connected to a second external electrode used as the other polarity,
Of the plurality of first internal electrode layers and the plurality of second internal electrode layers, a first internal electrode layer is positioned on one side in the stacking direction, and a second internal electrode layer is positioned on the other side in the stacking direction. And
An additional first internal electrode layer is stacked on the outside of the first internal electrode layer located on one side in the stacking direction so as to face each other via a second dielectric layer that does not contribute to capacitance formation, and the additional first The edge of the internal electrode layer is connected to the first external electrode,
An additional second internal electrode layer is laminated outside the second internal electrode layer on the other side in the stacking direction so as to face each other via a third dielectric layer that does not contribute to capacitance formation, and the additional second internal electrode The edge of the layer is connected to the second external electrode;
The thickness of the second dielectric layer and the thickness of the third dielectric layer are thinner than the thickness of the first dielectric layer,
A multilayer capacitor characterized by that.
前記追加の第1内部電極層の形状は前記積層方向一側に位置する第1内部電極層の形状と略同じであり、
前記追加の第2内部電極層の形状は前記積層方向他側に位置する第2内部電極層の形状と略同じである、
ことを特徴とする請求項1に記載の積層型コンデンサ。
The shape of the additional first internal electrode layer is substantially the same as the shape of the first internal electrode layer located on one side in the stacking direction,
The shape of the additional second internal electrode layer is substantially the same as the shape of the second internal electrode layer located on the other side in the stacking direction.
The multilayer capacitor according to claim 1.
前記第2誘電体層の厚さと前記第3誘電体層の厚さは略同じである、
ことを特徴とする請求項1又は2に記載の積層型コンデンサ。
The thickness of the second dielectric layer and the thickness of the third dielectric layer are substantially the same.
The multilayer capacitor according to claim 1 or 2, wherein
前記第2誘電体層の厚さと前記第3誘電体層の厚さは、前記第1誘電体層の厚さの2/3未満である、
ことを特徴とする請求項3に記載の積層型コンデンサ。
The thickness of the second dielectric layer and the thickness of the third dielectric layer are less than 2/3 of the thickness of the first dielectric layer.
The multilayer capacitor according to claim 3.
JP2013097488A 2013-05-07 2013-05-07 Multilayer capacitor Active JP5467702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097488A JP5467702B2 (en) 2013-05-07 2013-05-07 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097488A JP5467702B2 (en) 2013-05-07 2013-05-07 Multilayer capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011089023A Division JP5276137B2 (en) 2011-04-13 2011-04-13 Multilayer capacitor

Publications (2)

Publication Number Publication Date
JP2013150015A JP2013150015A (en) 2013-08-01
JP5467702B2 true JP5467702B2 (en) 2014-04-09

Family

ID=49047145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097488A Active JP5467702B2 (en) 2013-05-07 2013-05-07 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JP5467702B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335473A (en) * 1994-06-10 1995-12-22 Murata Mfg Co Ltd Laminated ceramic capacitor
JPH09260200A (en) * 1996-03-26 1997-10-03 Taiyo Yuden Co Ltd Multilayer capacitor
JP2005108890A (en) * 2003-09-26 2005-04-21 Kyocera Corp Laminated ceramic capacitor
JP2005251940A (en) * 2004-03-03 2005-09-15 Murata Mfg Co Ltd Laminated ceramic capacitor
JP4418969B2 (en) * 2005-06-03 2010-02-24 株式会社村田製作所 Multilayer ceramic capacitor
JP2007042743A (en) * 2005-08-01 2007-02-15 Tdk Corp Laminated electronic part
JP4539489B2 (en) * 2005-08-05 2010-09-08 Tdk株式会社 Manufacturing method of multilayer capacitor
JP2009224569A (en) * 2008-03-17 2009-10-01 Samsung Electro Mech Co Ltd Laminated ceramic capacitor

Also Published As

Publication number Publication date
JP2013150015A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5276137B2 (en) Multilayer capacitor
JP6852253B2 (en) Multilayer ceramic electronic components and their manufacturing methods
JP6834091B2 (en) Multilayer ceramic electronic components and their manufacturing methods
JP7116139B2 (en) Multilayer ceramic capacitor and its mounting substrate
JP4049181B2 (en) Multilayer capacitor
JP4049182B2 (en) Multilayer capacitor
JP5590055B2 (en) Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
JP5590054B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2014130999A (en) Multilayer ceramic capacitor and manufacturing method therefor
JP6513328B2 (en) Multilayer ceramic capacitor
KR20150011263A (en) Multi-layered ceramic capacitor and board for mounting the same
JP2005136132A (en) Laminated capacitor
KR101598297B1 (en) Multi-layered ceramic electronic component and mounting circuit thereof
JP2007035848A (en) Stacked ceramic capacitor and its manufacturing method
KR20140038911A (en) Multi-layered ceramic capacitor and board for mounting the same
JP2021174838A (en) Multilayer ceramic capacitor
JP2014082462A (en) Multilayer ceramic capacitor
KR20140012577A (en) Laminated chip electronic component, board for mounting the same, packing unit thereof
JP2015053512A (en) Multilayer ceramic capacitor
JP5620938B2 (en) Multilayer ceramic capacitor
KR102483617B1 (en) Multilayer electronic component
JP5467702B2 (en) Multilayer capacitor
JP2015207749A (en) multilayer ceramic capacitor
JP2015043423A (en) Multilayer ceramic capacitor
JP4107351B2 (en) Multilayer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5467702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140221

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20140605

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250